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1 Introduction

Many evolution boundary value problems in PDEs can be reformulated as spe-
cial cases of abstract Cauchy problems of the type

(ACP )

(
du
dt (t) +Au(t) 3 F (u) in X;

u(0) = u0:
(1)

where the operator A is, in fact, a nonlinear operator on a Banach space X and
F (u) represents the operator associated to a real continuous function f:
Di¤erent ideas have been introduced at the literature in order to get con-

clusions on the solution u but by using the information obtained trough some
auxiliary simpli�ed Cauchy problems. Here we shall pay attention to two dif-
ferent arguments of this nature.
The �rst of them is the so called �method of quasi-linearization�introduced

by Bellman and Kalaba in [8] in order to prove the existence of solutions of
nonlinear parabolic semilinear problems with A a second order linear elliptic
operator and f written as f = fcv + fcn with fcv convex and fcn concave by
means of some iteration schemes. One of ours contributions to this respect is to
avoid any additional assumption on the second derivative of the function f , in
contrast with other results in the literature (see, for instance, Laksmikantham
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and Vatsala [27] and Carl and Laksmikantham [11], [12], [13]):To do that we shall
combine an iterative scheme with some approximation arguments (we replace f
by a regular approximation fk) of the type

8>>>>>>>><>>>>>>>>:

duk+1
dt +Auk+1 3

fk(uk) + (f
k
cv)u(uk)(uk+1 � uk) + (fkcn)u(uk)(uk+1 � uk) in X;

duk+1
dt +Auk+1 3

fk(uk) + (f
k
cv)u(uk)(uk+1 � uk) + (fkcn)u(uk)(uk+1 � uk) in X;

uk+1(0) = u0; uk+1(0) = u0:

We also prove that this method can be extended beyond the linear assumption
on A and, which is perhaps more useful, we formulate and prove this princi-
ple in the abstract framework of T-accretive operators in the Banach lattices
X = Lp(
) for some p 2 [1;+1] or X = C(
); where 
 is a regular open
bounded set of RN allowing to get, as applications the case of quasilinear or fully
nonlinear parabolic equations. It is also applicable to some multivalued equa-
tions, as the obstacle problem (something proposed in Laksmikantham [25]).
Notice that, the above system of uncoupled equations replace the nonlinear
term F (u(t)) by linear (zero order terms) as [(fkcv)u(uk) + (f

k
cn)u(uk)]uk+1 and

[(fkcv)u(uk)+ (f
k
cn)u(uk)]uk+1.As a matter of fact the quasilinearization method

was introduced by R. Bellman and collaborators ([8]) in order to get the ap-
proximation of the solution of semilinear equations by means of a quadratic
(sometimes called as rapid) convergence. We can prove something similar for
concrete quasilinear equations as we explain at the end of Section 2.

The second method which keeps the main idea of simplify the initial non-
linear PDE is a principle, introduced by the authors in Casal -Díaz [16], and
generalizes the classical linearization principle. We consider, this time, some
abstract problems of the type(

du
dt (t) +Au(t) +Bu(t) 3 F (ut(:)) in X;

u(s) = u0(s) s 2 [�� ; 0]:
(2)

on a Banach space X, where ut(�) = u(t+ �); � 2 [�� ; 0] :We want to study the
convergence, as t ! 1, to the associated equilibria: w 2 D(A) � D(B) � X
such that

Aw +Bw 3 F ( bw(:));
where bw 2 C := C ([�� ; 0] : X) is the function which takes constant values equal
to w. Our main goal is to extend, to a broad class of nonlinear operators A; the
usual linearized stability principle saying, roughly speaking, that for the special
case of A linear (single valued) and B and F are di¤erentiable, the asymptotic
stability of the zero solution of the linearized equation,(

dv
dt (t) +Av(t) + DB(w)v(t) = DF ( bw)vt(:) in X;

v(s) = u0(s) s 2 [�� ; 0]:
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implies that u(t : u0) ! w as t ! 1, at least if u0(:) is close enough to bw:
We point out that our results seem to be new even without the delayed and
nonlocal term (i.e. for F � 0). Our generalization is motivated by the fact that
quite often the nonlinear operator A is not di¤erentiable near some equilibrium
points and so the classical linearization principle is not applicable.
The main motivation to keep A nonlinear after the process of linearization

in the above papers was the study the stabilization of the uniform oscillations
for the complex Ginzburg-Landau equation by means of some global delayed
feedback. In fact, due to the important role of a controlling term, we consider
in this section the case in which F depends of some delayed term ut(�) = u(t+�);
� 2 [�� ; 0] for some � > 0. It is a curious fact that even if the complex Ginzburg-
Landau equation is formulated in terms of a linear (vectorial) di¤usion operator
A the usual representation for the unknown as z(x; t) = �(x; t)ei�(x;t) leads the
original system to a coupled nonlinear system of equations for � and � which
can be formulated again in the form dz

dt (t) +
eAz 3 eF (z) but with a nonlinear

(and not everywhere di¤erentiable) operator eA:
Many other examples can be appealed to justify the philosophy of keeping A

non-linear after linearizing the rest of the terms of the equation. For instance,
this is the case when A is multivalued, or nondi¤erentiable or a degenerate
quasilinear operator. We point out that some relevant examples of nonlinear
equations arise in the most di¤erent contexts (see, for instance, Díaz and Hetzer
[20] for one example in Climatology).
The main conclusion of the pseudolinearization principle was formulated

in terms of the condition that the operator y ! Ay � DF (w)y belongs to
A(!� : X), for some !� 2 C with Re!� = 
� < 0 where the class of operators
A(! : X) = fA : DX(A) � X ! P(X);such that A + !I is a m-accretive
operator} (see Brézis [10] for the case of X = H a Hilbert space and Bénilan,
Crandal and Pazy [9], Vrabie [32] for the case of a general Banach space).

2 Abstract Quasilinearization Principle

Given 
;a regular open bounded set of RN , we shall consider the abstract
Cauchy problem (ACP ) in the Banach lattice X = Lp(
) for some p 2 [1;+1]
or X = C(
): Several de�nitions are in order �rst.

De�nition 1 An operator A : D(A) � X �! 2X is called m-accretive if it is
accretive and, in addition, R (I + �A) = X, for each � > 0

The structural assumptions on the operators we shall assume in this section
are the following

(H1): A 2 A+(! : X), for some ! 2 C, with A+(! : X) = fA : D(A) � X !
P(X);such that A+!I is a m-T-accretive operator}. Moreover A satis�es
the property (M ) of Bénilan [9].

(H2): The operator semigroup T (t) : D(A) ! X; t � 0; generated by A, is
compact. (see Vrabie [32]).
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(H3): u0 2 D(A) \ L1(
):

We shall assume that the nonlinear term F (u) is generated through a con-
tinuous real function f : R! R satisfying that

(H4): f = fcv + fcn with fcv convex and fcn concave

Notice that, in contrast with previous works on the quasilinearization process,
we do not require any assumption on the linearity of operator A neither on the
di¤erentiability of f (in the classical sense).
We de�ne the notion of sub and supersolution of the original abstract Cauchy

problem (ACP ) : A couple of functions u; u 2 C([0; T ] : X) \ L1((0; T ) � 
)
are called sub (respect.) supersolutions of (ACP ) if there exists g (respectively
g) in L1(0; T : L1(
)) with g � 0 (respectivelyg � 0) such that u; u are mild
solutions of the problem8<:

du
dt (t) +Au(t) 3 f(u) + g in X;

u(0) = u0;

(respectively 8<:
du
dt (t) +Au(t) 3 f(u) + g in X;

u(0) = u0

in the case of u). Notice that here we are identifying the operator F (u) associ-
ated to f with the own function f(u):We shall assume

(H5): there exists u; u sub and super solutions of (ACP ):

Finally, as we shall combine some ordering and some approximation argu-
ments we shall need

(H6): the subdi¤erential operators @fcv and @(�fcv) are bounded on the set
I := [inf esst2[0;T ];x2
u(t; x), sup esst2[0;T ];x2
u(t; x)], i.e., jbj � M for
any b 2 @fcv(r) or b 2 @(�fcn)(r); for any r 2 I.

Remark. Since u; u are bounded functions then I is a compact interval of
R. Moreover, by using some well known results (see, e.g. Brézis [10]) it shown
that assumption (H6) implies the existence of a sequence of auxiliary functions
fk 2 C2(R) such that fk = fkcv + f

k
cn with f

k
cv; f

k
cn 2 C2(R), fkcv convex and fkcn

concave for any k 2 N; such that�
fkcv % fcv; as k !1; uniformly on any compact interval of I;
fkcn & fcn; as k !1, uniformly on any compact interval of I;

(3)

Moreover


(fkcv)u(�); (fkcn)u(�)

L1(0;T :X0)

� Mk � M , for the same M > 0

given in (H6), for any � 2 C([0; T ] : X) such that u � � � u:
Finally, since the main goal is the approximation of the solution we can

consider the uniqueness of solution question as an independent goal. So, we
shall assume that
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(H7): Problem (ACP ) has at most one mild solution.

Remark. This can be proved once we assume (H1) and some extra condition
on f such as, f is (globally) Lipschitz continuous.
In order to construct the iterative scheme we de�ne the pseudo linearized

(approximated) abstract Cauchy system

(PLACS)k

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

duk+1
dt +Auk+1 3

fk(uk) + (f
k
cv)u(uk)(uk+1 � uk)

+(fkcn)u(uk)(uk+1 � uk) in X;

duk+1
dt +Auk+1 3

fk(uk) + (f
k
cv)u(uk)(uk+1 � uk)

+(fkcn)u(uk)(uk+1 � uk) in X;

uk+1(0) = u0; uk+1(0) = u0:

Theorem 2 Assume (H1)-(H7): Then, for any k 2 N there exists (uk; uk) 2
L1((0; T ) � 
)2 mild solutions of the system (PLACS) and with (u1; u1) =
(u; u). Moreover,the sequences fukg; fukg converge in C([0; T ] : X) to u 2
L1((0; T )� 
) (unique) mild solution of (ACP ) and we have that u � u � u:

We shall prove the result in several steps.
i) Existence of (u2; u2):The (PLACS)2 is given by

(PLACS)2

8>>>>>>>><>>>>>>>>:

du2
dt +Au2 3 f

1(u)

+(f1cv)u(u)(u2 � u) + (f1cn)u(u)(u2 � u) in X;

du2
dt +Au2 3 f

1(u)

+(f1cv)u(u)(u2 � u) + (f1cn)u(u)(u2 � u) in X;

u2(0) = u0; u2(0) = u0:

The existence (and uniqueness) of solution of this uncoupled system comes from
the fact that A 2 A+(! : X), and that f1(u)� (f1cv)u(u)u� (f1cn)u(u)u, f1(u)�
(f1cv)u(u)u � (f1cn)u(u)u 2 L1(0; T : X) (recall that u; u are bounded and that
f1 is continuous in R).
ii) Estimates on [u2 � u]+ and [u� u2]+ : By construction we get that

d(u2 � u)
dt

+Au2 �Au 3 a1(t; x)(u2 � u)� g + f1(u)� f(u)
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where a1(t; x) = (f1cv)u(u(t; x))+ (f
1
cn)u(u(t; x)) and so, ka1kL1((0;T )�
) �M1:

Since g � 0 and A+ !I is a T-accretive operator we get the estimates

maxt2[0;T ]


[u2(t; :)� u(t; :)]+

L1(
) � e(!+M1)TT j
j




�f1 � f�+


C(I) ;
maxt2[0;T ]



[u2(t; :)� u(t; :)]�

L1(
) �
e(!+M1)T (T j
j




�f1 � f��


C(I) + kgkL1(0;T :L1(
))):
The proof of the existence of u2 is analogous. In that case we get the estimates

maxt2[0;T ]


[u(t; :)� u2(t; :)]+

L1(
) � e(!+M1)TT j
j




�f � f1�+


C(I) ;
maxt2[0;T ]



[u(t; :)� u2(t; :)]�

L1(
) �
e(!+M1)T (T j
j




�f1 � f��


C(I) + 

g

L1(0;T :L1(
))):
Remark. If no regularization is needed and so fk = f then we get that u � u2
and u2 � u.
iii) Proof of the inequality u2 � u2: We have that

d(u2 � u2)
dt

+Au2 �Au2 3 [(f1cv)u(u) + (f1cn)u(u)](u2 � u2)� F1

with F1 = f1(u) � f1(u) + (f1cv)u(u)(u � u) + (f1cn)u(u)(u � u). But, from the
convexity of f1cv we get that for any u; v 2 I, f1cv(u) � f1cv(v) + (f

1
cv)u(v)(u �

v). Analogously, the concavity of f1cn implies, for any u; v 2 I, that f1cn(u) �
f1cn(v) + (f

1
cn)u(u)(u � v): Both properties imply that F1 � 0 and so, by the

T-accretiveness we get the conclusion.
iv) Existence of (uk; uk) for k 2 N, k > 1: It is analogous to the above step. For
instance, the forcing term (independent on uk+1) is now fk(uk)�(fkcv)u(uk)uk�
(fkcn)u(uk)uk which, again, is in L

1((0; T )� 
):
v) Estimates on [uk+1 � uk]+ and

�
uk � uk+1

�
+
: By construction and (H6) we

get that

d(uk+1 � uk)
dt

+Auk+1 �Auk 3 ak(t; x)(uk+1 � uk) + Fk

with ak(t; x) = (fkcv)u(uk) + (f
k
cn)u(uk) (and so kakkL1((0;T )�
) � Mk) and

Fk = fk(uk) � fk�1(uk�1) + ak�1(t; x)(uk � uk�1): So, using the convexity of
fkcv and the concavity of f

k
cn we get that Fk � fk(uk)� fk�1(uk): Thus, by the

T-accretiveness of A we get that

maxt2[0;T ]


[uk+1(t; :)� uk(t; :)]+

L1(
) �

e(!+M1)TT j
j



�fk � fk�1�+


C(I) ;

maxt2[0;T ]




�uk(t; :)� uk+1(t; :)�+


L1(
) �
e(!+M1)TT j
j




�fk�1 � fk�+


C(I) :
6



Remark. If no regularization is needed and so fk = fk�1 then we get that
uk � uk+1 and that uk � uk+1.
vi) Proof of the inequality uk+1 � uk+1: As in step iii) we have

d(uk+1�uk+1)
dt +Auk+1 �Auk+1 3

[(fkcv)u(uk) + (f
k
cn)u(uk)](uk+1 � uk+1)� Fk;

Fk = fk(uk)� fk(uk) + [(fkcv)u(uk�1) + (f1cn)u(uk�1)](uk � uk�1):

Using the convexity of fkcv and the concavity of f
k
cn we have that Fk � 0 and

so, by the T-accretiveness we get the wanted comparison.
End of the proof of Theorem 1. The sequences fukg and fukg are uniformly
bounded in L1((0; T ) � 
). In consequence, using assumption (H.6), the se-
quences ffk(uk)+(fkcv)u(uk)(uk+1�uk)+(fkcn)u(uk)(uk+1�uk)g and ffk(uk)+
(fkcv)u(uk)(uk+1 � uk) + (fkcn)u(uk)(uk+1 � uk)g are also uniformly bounded in
L1((0; T ) � 
). Thus, by the assumption (H2) there exists U;U such that
fukg ! U and fukg ! U (strongly) in C([0; T ] : X) (and, at least, weakly in
L1((0; T )�
)). Finally, ffk(uk) + (fkcv)u(uk)(uk+1� uk) + (fkcn)u(uk)(uk+1�
uk)g ! f(U) and ffk(uk) + (fkcv)u(uk)(uk+1� uk) + (fkcn)u(uk)(uk+1� uk)g !
f(U) and so U;U 2 L1((0; T ) � 
)2 are mild solutions of (ACP ) which must
coincide due the assumption (H7). From steps i)-vi), passing to the limit, we
get that u � u � u:�
Remark. If no regularization is needed and fk = f then it is easy to see that
u � u2 �...� uk �...� u �...� uk � u2 � u.
Remark. Some abstract results of a di¤erence nature (in which A is a regular
function, and so, of di¢ cult application to PDEs) can be found in Section 4.6
of the book [27] (see also the references cited there).
Remark. More general functions f(t; x; u) can be also considered. For instance,
it is possible to improve Theorem 1 by assuming the existence of � convex and
 concave such that f = fcv + fcn with fcv +� convex and fcn + concave. In
that case, we assume merely that A+ �+  is a m-T-accretive operator on X:
The method can be applied to systems of nonlinear pdes as well as to pdes with
some delayed terms (see some iterative schemes in [29], [18] and [?]).
Many di¤erent examples are possible. For instance, we can consider
Example. A : D(A)! P(L1(
)) given byAu = �div(jr�(u)jp�2r�(u))+

�(u) with D(A) = f�(u) 2 W 1;1(
); u(x) 2 D(�); a.e. x 2 
; Au 2 L1(
);

�
���@�(u)@n

���p�2 @�(u)@n 2 
(�(u)) on @
g where p > 1; � is continuous and increas-
ing, and �; 
 are maximal monotone graphs of R2 (not necessarily associated to
di¤erentiable functions).
One of the reasons argued by Bellman to introducing this method for semi-

linear equations is the quadratic (sometimes called as rapid) convergence. We
can prove something similar for concrete quasilinear equations:

Theorem 3 ([?]). Let A as in the example with p � 2; �(u) = u; � = 0 and 
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corresponding to Dirichlet boundary conditions and assume (H3)-(H7). Then8>>>>>>>>><>>>>>>>>>:

maxt2[0:T ] ku(t)� uk(t)k2L2(
) + ku� ukk
p

Lp(0;T :W 1;p
0 (
)

�

C(ku� uk�1k2L2((0;T )�
) +


u� uk�1

2L2((0;T )�
));

maxt2[0:T ] ku(t)� uk(t)k
2
L2(
) + ku� ukk

p

Lp(0;T :W 1;p
0 (
)

�

C(ku� uk�1k2L2((0;T )�
) +


u� uk�1

2L2((0;T )�
)):

3 Abstract Pseudolinearization Principle

As said at the Introduction, our main motivation to generalize the linearization
principle comes from some previous works by the authors and collaborators
([?], [1]), [?]) dealing with the stabilization of the uniform oscillations for the
complex Ginzburg-Landau equation. This stabilization takes place by means of
some global delayed feedback. If, for instance,we consider the case in which the
domain is 
 = (0; L1)� (0; L2) with periodic boundary conditions, and de�ne
the faces of the boundary

�j = @
 \ fxj = 0g ;�j+2 = @
 \ fxj = Ljg ; j = 1; 2;

this problem can be stated as follows

(P1)

8>>>>>>>>><>>>>>>>>>:

@u
@t � (1 + i�)�u = (1� i!)u� (1 + i�) juj

2
u

+�ei�0F(u; t; �) 
� (0;+1);

uj�j = uj�j+2 ;�
� @u

@n

��
�j
=
�

@u
@xj

���
�j
= @u

@xj

���
�j+2

�
= @u

@n

��
�j+2

�
@
� (0;+1);

u(x;s) = u0(x; s) 
� [�� ; 0];

where n is the outpointing normal unit vector and

F(u; t; �) = [m1u(t)+m2u(t)+m3u(t� � ; x)+m4u(t� �)] ;

with u(s) =
1

j
j

Z



u(s; x)dx:

Here the parameters �; �; !; �; �0;mi and � are real numbers, in contrast with
the solution u(x; t)=u1(x; t) + iu2(x; t):
This type of equations (called as of Stuart-Landau in absence of the dif-

fusion term) arise in the study of the stability of reaction di¤usion equations
such as @X

@t � D�X = f(X :�) where X : 
 � (0;+1) ! Rn and � is a real
scalar parameter when the deviation v from the uniform state solution X1 is
developed asymptotically in terms of some multiple scales (see Kuramoto [23]).

8



Coe¢ cient " measures the degree to which the di¤usion matrix D deviates from
a scalar. With the basis of a sound experimental work, many recent studies
of a more descriptive nature, but of a great originality and interest, have been
written. In those studies the delay term F(u; t; �) has been taken corresponding
to m4 = 1;mi = 0 for i = 1; 2; 3 and introduced as a control mechanism (see
Battogtokh and Mikhailov[7], Mertens et al. [28]).
If we focus our attention on the so called slowly varying complex amplitudes

de�ned by u(x; t) = v(x; t)e�i!t, thus, v satisfy

(P2)

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

@v
@t � (1 + i�)�v = v�(1 + i�)jvj

2
v

+�ei�0 [m1v+m2v

+ei!� (m3v(t� � ; x)+m4v(t� �))
�


� (0;+1);

vj�j = vj�j+2 ;�
� @v

@n

��
�j
=
�

@v
@xj

���
�j
= @v

@xj

���
�j+2

�
= @v

@n

��
�j+2

�
@
� (0;+1);

v(x;s) = u0(x; s)e
i!s 
� [�� ; 0]:

The existence and uniqueness of a solution of (P1) can be proven once we
assume, for instance, that u02 C([ � � ; 0] : L

2
(
)). In the mentioned refer-

ences we were interested in the stability analysis of the time-periodical function
vuosc(x; t) = �0e

�i�t. We can reduce the study to the stability of station-
ary solutions of some auxiliary problem by introducing the change of unknown
z(x; t) = v(x; t)ei�t where v(x; t) is a solution of (P2). Thus z(x; t) satis�es

(P3)

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

@z
@t � (1 + i�)�z = (1 + i�)z�(1 + i�) jzj

2
z

+�ei�0 [m1z+m2z

+ ei(!+�)� (m3z(t� � ; x)+m4z(t� �))
�


� (0;+1);
zj�j = zj�j+2 ;�

� @z
@�!n
��
�j
=
�

@z
@xj

���
�j
= @z

@xj

���
�j+2

�
= @z

@�!n
��
�j+2

�
@
� (0;+1);

z(x;s) = u0(x; s)e
i(!��)s 
� [�� ; 0]:

Notice that now, vuosc(x; t) = �0e
�i�t is an uniform oscillation if and only

if z(x; t) = vuosc(x; t)e
i�t = y = �0 is an stationary solution of (P3): i.e.

0 = (1 + i�)y � (1 + i�) jyj2 y+�ei�0
�
m1+m2+e

i(!+�)� (m3+m4)
�
y:

The motivation to keep A nonlinear after the process of linearization (reason
why we used the term of pseudo-linearization principle) comes from the fact
that if we use the representation for the unknown of the delayed nonlinear
equation (P3) as z(x; t) = �(x; t)ei�(x;t) then we arrive to a coupled nonlinear
system of delayed equations for � and � which can be described in terms of the
representation operator given by P : R2 ! C, P(�,�) = �ei�: Indeed, notice
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that P is nonlinear and that if q = (�,�) then z(x; t) = P(q(x; t)) and the
(P3) can be formulated as

dP(q(�;t))
dt + AP(q(�; t))+BP(q(�; t)) = F (P(q(�))t):

By using that the matrix C(q(�; t))=gradP(q(�; t)) is not singular, we can arrive
to the simpler formulation

dq

dt
(�; t) +C(q(�;t))�1[AP(q(�; t))+BP(q(�; t))] = C(q(�;t))�1F (P(q(�))t): (4)

Notice that, although this delayed system can be also (formally) linearized
(this is the procedure followed in Battogtokh and Mikhailov [7] and Mertens
et al. [28]) the above di¤usion operator C(q(�;t))�1AP(q(�;t)) becomes now
quasilinear on q and thus the mathematical justi�cation is much more delicate.
Other examples, given in Section 3, justify also the philosophy of keeping A

non-linear after linearizing the rest of the terms of the equation. For instance,
this is the case when A is multivalued, or nondi¤erentiable or a degenerate
quasilinear operator. We point out that some relevant examples of nonlinear
functional equations arise in the most di¤erent contexts (see, for instance, Díaz
and Hetzer [20] for one example in Climatology, Chukwu [19] for a family of
examples dealing with the wealth of nations and the general exposition made in
Hale [22]).
Coming back to the abstract formulation, the structural assumptions we

shall assume in this paper are the following

(H1): A 2 A(! : X), for some ! 2 C, with

A(! : X) = fA : DX(A) � X ! P(X);
such that A+ !I is a m� accretive operatorg ;

(see Brezis [10] for the case of X = H a Hilbert space and the works by
Benilan, Crandall, Pazy and others for the case of a general Banach space: see
the monographs [9] and [32]),

(H2)�(H2): the operators semigroup T (t) : DX(A)
X ! X; t � 0; generated

by A, is compact

(H3): B 2 A(0 : X), B is single valued, Fréchet di¤erentiable, and B is domi-
nated by A; i.e.

DX(A) � DX(B) and jBuj � k
��A0u��+ �(juj) (5)

for any u 2 DX(A) and for some k < 1 and some continuos function
� : R! R; where, here and in what follows, j:j denotes the norm in the
space X (in contrast with the norm in space C which will be denoted
by k:k if there is no ambiguity, when handling two spaces X and Y the
corresponding norms will be indicated),

��A0u�� := inffj�j : � 2 Aug for
u 2 DX(A);
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(H4): F : C ! X satis�es a local Lipschitz condition, i.e., for any R > 0 there
exists L (R) > 0 such that

jF (�)� F ( )j � L (R) k��  k for any �;  2 C and k�k ; k k � R:
(6)

(H5): there exists �F > 0 such that F : BX
�F
( bw)! X is Fréchet di¤erentiable

with the Fréchet derivativeDF ( bw) given byD(F ( bw))� = R 0�� d�(�)�(�); � 2
C; for � : [�� ; 0]! B(X;X) of bounded variation and the Fréchet deriv-
ative is locally Lipschitz continuous, where

BX�F ( bw) = n� 2 C; k�� bxk < �F
o
;

We further assume the main condition of our arguments:

(H6): the operator y ! Ay+By�DF ( bw) (e!�y) belongs to A(! : X), for some
! 2 C with Re! = 
 < 0 where e!:v 2 C is de�ned by

(e!�v)(s) = e!sbv(s); with bv(s) = v; for any s 2 [�� ; 0] for v 2 X: (7)

In order to treat the case in which B is di¤erentiable we introduce the
conditions

(H7): there exists a Banach space Y and there exists �B > 0 such that B is
Fréchet di¤erentiable as function from B�B (w) into Y , with the Fréchet
derivative DB(w) locally Lipschitz continuous, where

B�B (w) =
n
z 2 D(B); jw � zj < �B

o
;

(H8) the operator y ! Ay + DB(w)y � DF ( bw) �e!��y� belongs to A(!� : Y ),
for some !� 2 C with Re!� = 
� < 0:

Theorem 4 Assume (H1)-(H6). Then there exists � > 0; � > 0 and M � 1
such that if u0 2 BX� ( bw), u0(s) 2 DX(B) for any s 2 [�� ; 0] then the solution
u(� : u0) of (1) exists on [�� ;+1) and

ju(t : u0)� wj �Me��t ku0 � bwk ; for any t > 0: (8)

Moreover, if we also assume (H7), that (H1)-(H5) holds on the space Y and (H8)
then there exists �� > 0; �� 2 (0; �] and M� � 1 such that if u0 2 BX\Y�� ( bw),
u0(s) 2 DX(B)\ DY (B) for any s 2 [�� ; 0] and for any t > 0;then

ju(t : u0)� wjX + ju(t : u0)� wjY �M�e��
�t(ku0 � bwkX + ku0 � bwkY ): (9)

Proof. From assumptions (H4) and (H5)

F (�) = F ( bw) + DF ( bw) (�� bw) +GF ( bw; �); for any � 2 BX�F ( bw):
11



Moreover since DF ( bw) is locally Lipschitz continuous, there exists a continuous
increasing functions bFX such that��GF ( bw; �)�� � bFX(k�� bwk) k�� bwk ; for any � 2 BX�F ( bw): (10)

Then

du

dt
(t)� dw

dt
+Au(t)�Aw+Bu(t)�Bw�DF ( bw)(ut� bw) 3 �GF ( bw; ut): (11)

We now use assumption (H6). We claim that we can �nd a constant constant
K � 1 and such that

kut � bwk � Ke
t ku0 � bwk+ Z t

0

Ke
(t�s)
��GF ( bw; us)�� ds: (12)

Indeed, as u(t) and w are �integral solutions�in the sense of Benilan (see. e.g.
[9]), then, by (H6), if we multiply (11) by u(t) � w (by using the usual semi
inner-braket [; ]: see, for instance Benilan, Crandall and Pazy [9] or Vrabie [32]
(Section 1.4)) we get that

ju(t)� wj � Ke
(t�t0) ju(t0)� wj+
Z t

t0

Ke
(t�s)
��GF ( bw; us)�� ds (13)

for any t � t0 � 0 (see, for instance, Benilan, Crandall and Pazy [9] or Vrabie
[32] Theorem 1.7.5). Then,

ju(t)� wj � Ke
t ku0 � bwk+ Z t

0

Ke
(t�s)
��GF ( bw; us)�� ds (14)

for any t � 0: Finally, since (14) holds trivially for t 2 [�� ; 0] we get (12) by
taking the maximum, in (13), on intervals of the form [t� � ; t] for any t � 0:
Now, let R 2 (0; �F ) be chosen so that

bFX(R) < (�
)=(4K): (15)

De�ne � = min
n
R=(2K); �FX

o
. Let us show that if u0 2 BX� ( bw) then the

associated solution u of (1) exists and kut � bwk < R for all t � 0. Thanks
to assumption (H2) we can apply some maximal continuation results (see, for
instance, Chapter 3 of Vrabie [32], or Chapter 2 of Wu [33] when A is linear),
it su¢ ces to show that there exists no t1 > 0 so that kut1k = R and kutk < R
for t 2 [0; t1). By contradiction, if there exists such a t1, then on [0; t1] we have

kut � bwk � Ke
t ku0 � bwk+ Z t

0

Ke
(t�s)
��GF ( bw; us)�� ds

� Ke
t ku0 � bwk+ 2KbFX(R)Z t

0

e
(t�s) kus � bwk ds:
12



In particular, at t = t1 we have

kut1 � bwk � K�+
2KbFX(R)

(�
) R � R;

a contradiction to the choice of t1.
Finally, to end the proof, let u0 2 BX� ( bw), u0(s) 2 DX(B) for any s 2 [�� ; 0]
and let u the associated solution of (1). Since we have shown that kut � bwk � R
for all t � 0 we get that

kut � bwk � Ke
t ku0 � bwk+KbFX(R)Z t

0

e
(t�s) kus � bwk ds (16)

holds for all t � 0. Thus, by using the Gronwall�s inequality, we get

kut � bwk � Ke[
�Kb(R)]t ku0 � bwk � Ke(
=2)t ku0 � bwk ; u0 2 BX� ( bw)
which shows (8).
In order to show the decay estimate (9), we repeat the same arguments as before
but now on the space Y: Then, from assumptions (H3) on Y and (H7), there
exist �FY and �

B
X such that

B(z) = B(w) + DB(w) (z � w) +GB(w; z); for any z 2 B�BX (w);

F (�) = F ( bw) + DF ( bw) (�� bw) +GF ( bw; �); for any � 2 BY�FY ( bw):
where now

B�BX (w) =
n
z 2 DX(B) \DY (B); jw � zj < �BX

o
;

B�FY ( bw) = n� 2 C; k�� bxkY < �FY

o
;

and, as before, k:kY denotes the norm on the space CY := C ([�� ; 0] : Y ).
Moreover, there exists two continuous increasing functions bBX and b

F
Y such that��GB(w; z)��

Y
� bBX(jw � zj) jw � zj ; for any z 2 B�BX (w); (17)��GF ( bw; �)��

Y
� bFY (k�� bwkY ) k�� bwkY ; for any � 2 B�FY ( bw): (18)

Now

du

dt
(t)� dw

dt
+Au(t)�Aw +DB(w)(u(t)� w)�DF ( bw)(ut � bw) 3

GB(w; u(t))�GF ( bw; ut): (19)

Thus, by using (H8) and arguing as in the �rst part we get that there exists a
constant constant K� � 1 such that

kut � bwkY � K�e

�t ku0 � bwkY

+

Z t

0

K�e

�(t�s)(

��GB(w; u(s))��
Y
+
��GF ( bw; us)��Y )ds (20)
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and then, by taking � = min(�BX ; �
F
Y ) and R

� 2 (0; �) such that

max(bBX(R
�); bFY (R

�)) < (�
)=(4K); (21)

we obtain that
kut � bwkY � K�e


�t ku0 � bwkY
+K�

Z t

0

e

�(t�s)(bBX(R

�) kus � bwkX + bFY (R�) kus � bwkY )ds:
(22)

We de�ne eR = min(R;R�); eK = max(K;K�); e
 = max(
; 
�) < 0 and �� =

min
n eR=(2 eK); �o : Then, if u0 2 BX\Y�� ( bw), u0(s) 2 DX(B)\ DY (B) for any

s 2 [�� ; 0] and we assume, for instance, that e
 = 
, by adding (16) and (22) we
deduce that

kut � bwkX + kut � bwkY � eKee
t(ku0 � bwkX + e(
��
)t ku0 � bwkY )
+ eK Z t

0

ee
(t�s)[(bFX( eR)+bBX( eR)e(
��
)t) kus � bwkX
+bFY (R

�)e(

��
)t kus � bwkY ]ds: (23)

and the estimate (9) follows, again, by Gronwall�s inequality.�

Remark 5 It is not di¢ cult to show that the assumption (H8) is implied (when
A is linear) by the condition: �if � 2 C is given so that there exists y 2
D(B)n f0g such that Ay +DB(w)y � �y 3 DF ( bw) �e��y� then Re� > 0�. This
allow to see Theorem 4.1 of Wu [33] (see also Parrot [30] and its references) as
an special case of our abstract result with B = 0. In that case the �variation of
the constants formula� can be used to get a di¤erent proof of the theorem since
A is linear. Notice that if B 6= 0 and D(B)  X then the arguments of the
proof of Wu [33] do not work (in spite of the claimed in the Example 4.8 given
there).

Remark 6 When A is linear, as in the case without delay, assumption (H7) im-
plies that the zero solution of the linearized problem dU

dt (t)+AU(t)+DB(w)U(t)-
DF ( bw)Ut(:) = 0 in X; is locally asymptotically stable (Wu [33]).

Remark 7 It is possible to prove the existence of global solutions for a general
class of initial data (not necessarily near bw) by using that A + B 2 A(! : X),
for some ! 2 C, some truncation of the nonlocal term F (ut) and passing to the
limit by the compactness of the semigroup generated by A (see Vrabie [32] for
some related results).

An easy adaptation of the above proof leads to the following linearization
result (now on a possibly smaller neighborhood of w) when A is di¤erentiable

Theorem 8 The conclusion of the above result remains true if we assume, ad-
ditionally, that condition (H7) also holds for A and we replace condition (H8)
by
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(H9): the operator y ! DA(w)y + DB(w)y � DF ( bw) (e!�y) belongs to A(!),
for some ! 2 C with Re! = 
 < 0 �

3.1 Example 1. The complex Ginzburg-Landau equation
with a global delayed mechanism

Motivated by the special form of the nonlinear term of the equation in (P3)
we shall take X = L4(
) and Y = L4=3(
) (notice that, in contrast with
the case of scalar equations (see Parrot [30]) the space L1(
) is not suitable
space to check assumption (H1): see [6]). A detailed analysis of the associated
di¤usion operator is consequence of some previous results in the literature: see,
for instance, Amann ([4])). Notice that the operator Au can be formulated
matricially as �

u1
u2

�
!
�
� ���
�� �

��
u1
u2

�
:

So, if � 6= 0 the di¤usion matrix has a non zero antisymmetric part. In particular,
A is the generator of a semigroup of contractions fT (t)gt�0 on X and the
compactness of the semigroup is consequence of the compactness of the inclusion
D(A) � X (notice that, since N = 2; W1;4(
) � W1;4=3(
) � C(
) with
compact imbedding) and some regularity results for nonsymmetric systems.
Concerning the rest of the terms of the equation in (P3), we de�ne Bu =

(1 + i�) juj2 u with D(B) = L12(
). By using the characterization of the semi
inner-braket [; ] for the spaces Lp(
) (see, for instance Benilan, Crandall and
Pazy [9]) it is easy to see that B veri�es (H3). Moreover, by the results on the
Frechet di¤erentiability of Nemitsky operators (see Theorem 2.6 (with p = 4)
of Ambrosetti and Prodi [5]) we get that (H7) holds, with DB(y)v = 3(1 +

i�) jyj2 v, if we take Y = L4=3(
): It can be found in the above mentioned
reference that assumption (H7) does not hold if we take X = Y = L2(
):
The nonlocal term is de�ned, by

F (ut) = (1+i�)u(t)+�e
i�0

h
m1u(t)+m2u(t) + e

i(!+�)� (m3u(t� �)+m4u(t� �))
i
;

is locally Lipschitz continuous and its Frechet derivative is given by

DF (by)v(t) = �(1 + i�)v(t)� �ei�0 [m1v(t)+m2v(t)

� ei(!+�)� (m3v(t� �)�m4v(t� �))
i

(24)

since for any � 2 C; the non-local operator � ! 1
j
j
R


�(s)dx is linear and we

can write DF (by)� = R 0�� d�(s)�(s); with
d�(s)v(s) = �0(s)(1 + i�)v(s) (25)

+�ei�0
h
�0(s)(m1v(s)+m2v(s))+e

i(!+�)���� (s)(m3v(s)+m4v(s))
i

for any v 2C([�� ;1): L4(
)) and any s 2 [�� ;1); where �0(s); ��� (s) denote
the Dirac delta at the points s = 0 and s = �� respectively. By well-known
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results, we have that � : [�� ; 0] ! B(X;X) has a bounded variation and so,
conditions (H4) and (H5) hold (and analogously replacing X by Y ).
Finally, assumption (H6) can be read as a condition on the stationary state

y (a study of the eigenvalue of operator A can be found, for instance, in Temam
[31]).

Remark 9 By introducing the representation operator P : R2 ! C, P(�,�) =
�ei� it is clear that the quasilinear operator AP(q) obtained from the operator
Au=-(1 + i�)�u satis�es also condition A 2 A(!) (since P is merely a change
of variables). We point out that,

AP(q)=� (1 + i�)[��� � jr�j2 + i(2r��r�+ ���)]ei�:

Then, the �formal linearization� of the operator E(q) := AP(q) at q�(x; y) :=
y � �0 becomes

DE(q�)(�ei�) = �(1 + i�)[��+ i�0��]ei�:

Notice that the linearization of C(q)�1AP(q) needs a slight modi�cation of the
above linear expression:�

3.2 Example 2. Case in which A is nonlinear and nondif-
ferentiable

It is not di¢ cult to adapt the results of the �rst example to the case in which
the vectorial operator is given by�

u1
u2

�
!
�
A1 ���
�� A2

��
u1
u2

�
(26)

with Ai : D(Ai) ! P(L4(
)) two (possibly di¤erent) m-accretive operators in
L4(
); as for instance,8<:

Aiu = �div(jrujpi�2ru) + �i(u)
D(Ai) = fu 2W 1;1(
) \ L4(
); u(x) 2 D(�) a.e. x 2 
; Aiu 2 L4(
)

and �
�� @u
@n

��pi�2 @u
@n 2 
i(u) on @
g

where pi 2 (1;+1) and �i; 
i are maximal monotone graphs of R2 (not neces-
sarily associated to di¤erentiable functions). We send the reader to Vrabie [32]
(and its references) for the study of the assumptions (H1) and (H2) for each
of the nonlinear operators Ai: We point out that the structure of the nonlin-
ear di¤usion operator (26) allows to guarantee that the di¤usion operator is
m-accretive in L4(
). The same holds also on L4=3(
):�
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