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Abstract

Many volcanic constructs have geometric different shapes depending on different
phenomena as parasitic cones, erosion or coral growth. In Lacey, Ockendon and Tur-
cotte [11] the authors proposed a nonlinear model proving that the shape of volcanoes
is determined by the hydraulic resistance to the flow of magma, from a line source,
through the porous edifice. This model was later extended in Angevine, Turcotte and
Ockendon [2] to include the shape of aseismic, submarine ridges. In this communica-
tion we propose a modification of the above mentioned models in order to simulate
the more realistic case of volcanoes with a limited base.

We start by proving that the free boundary (the volcano base) associated to the
models described in the above mentioned references is not bounded as t → +∞ (even
if it is assumed that the flux generated by the magma supply Q0(t) in the line source
is a bounded function). As said before, this unrealistic fact (specially in the case
of volcanoes located in islands) is the main reason to propose a modification of the
involved nonlinear equations in order to obtain a new model giving rise to a bounded
free boundary (even if t → +∞). By using some suitable variations of the modelling
arguments of Angevine, Turcotte and Ockendon [2] and Lacey, Ockendon and Turcotte
[11] we propose the new model,

∂H
∂t = K ∂2H2

∂x2 + µx
|x|

∂Hλ

∂x , x ∈ R− {0}, t > 0

−K ∂H2

∂x (0, t) = Q0(t), t > 0,
H(0, x) = H0(x), x ∈ R− {0}.

(1)

Here we assume known the constants K, µ, λ > 0 (which depend on the constitutive
porous material) and that Q0(t) ≥ 0, H0(x) ≥ 0 and H0 has compact support in
R − {0}. The models proposed in Angevine, Turcotte and Ockendon [2] and Lacey,
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Ockendon and Turcotte [11] correspond to the case of µ = 0. We prove that when
λ ∈ (0, 2) and Q0(t) is a bounded function (as it corresponds to the more important
examples) then, if we denote by ξ±(t) the free boundary (formed by two curves) given
by support of H(t; ·), i.e. supp H(t; ·) = [ξ−(t), 0]∪ [0, ξ+(t)], necessarily |ξ±(t)| < ξ∞
for any t > 0, for some ξ∞ < +∞. This conclusion leads to a better comparison
between the bathymetric and theoretical profiles of many volcanoes.

1 Introduction

Let the governing equations for two-dimensional flow of uniform incompressible fluid
through a rigid, isotropic porous medium were used in [2] to derive the geometrical form
of aseismic volcanoes. They started from the basic equations

∂u

∂x
+

∂w

∂z
= 0,

u = − k

µφ

∂p

∂x
,

w = − k

µφ

(
∂p

∂z
+ ρmg

)
,

(2)

where u and w are the velocities in the x and z directions of the flow, k is permeability,
µ is dynamic viscosity, φ is porosity, p is pressure, ρm is magma density, and g is the
gravitational acceleration. These equations are combined to get

∂2p

∂x2
+

∂2p

∂z2
= 0. (3)

The boundary conditions considered in [2] let the following:
z = h, p = ρmg(d− h), pressure due to the overlying seawater,

z = h, w =
∂h

∂t
+ u

∂h

∂x
, kinematic constraint on the upper surface,

z = 0,
∂p

∂z
= −ρmg, on the base of the ridges,

(4)

where d is the depth of the ocean floor and z = h(x, t). We also recall that the magma
supply requires the additional condition

uh → Q0

2φ
as x → 0. (5)

By introducing the small aspect ratio, a rescale is introduced originating the new terms;
Z = z/ε,H = h/ε, D = d/ε and T = tε, with ε << 1. Equations (3) and (4) become:

ε2
∂2p

∂x2
+

∂2p

∂Z2
= 0,

Z = H, p = ερmg(D −H),

Z = H, w = ε2
∂H

∂T
+ εu

∂H

∂x
,

Z = 0,
∂p

∂Z
= −ερmg,

(6)

2



Geometric form of volcanoes with a limited based

Finally, after rescaling (2) and by using an expansion in the form

p = εp0 + ε3p1 + ...

it was proved in [2] that the velocities at Z = H must be given by
u = −ε

k(ρm − ρw)g
µφ

∂H

∂x
,

w = ε2
k(ρm − ρw)g

µφ
H

∂2H

∂x2
.

(7)

Substituting these velocities into third equation of (6) they arrive to the degenerate quasi-
linear equation of Boussinesq type

∂H

∂T
=

k(ρm − ρw)g
µφ

(
H

∂H

∂x

)
x

. (8)

The solution of this equation, satisfying the associated boundary conditions to (4) and
(5) were studied in [2] by using their self-similar structure. Here we shall see (Theorem 1)
that if we call as ξ(t) to the free boundary given by support of H(t,·) = [−ξ(t), 0)∪(0, ξ(t)],
for any t > 0, then necessarily ξ(t) −→ +∞ as t −→ +∞, which does not seems to be
very realistic. So, if we assume symmetry conditions on the initial data H0(x), to improve
the model, avowing such conclusion, we consider the system

P (µ,Q0) ≡


∂H

∂T
= K

∂2H2

∂x2
+ µ

∂Hλ

∂x
x ∈ (0,+∞), t > 0,

−KH
∂H

∂x
(0, t) = Q0(t) t > 0,

H(0, x) = H0(x) x ∈ (0,+∞).

Notice that P (0, Q0) corresponds to the Boussinesq type equation (8). Here we assume
a renormalization of the constants K, µ > 0 and that H0(x) ≥ 0 has a compact support.
We point out that a more general framework is possible (we can detail it in a subsequent
draft of the paper which would contain as well the exact definition of weak solution, and
other details). The main result for the new model is given in Theorem 2 and shows that if

0 < λ < 2,

and
0 ≤ Q0(t) ≤ Q0,∞ for any t > 0.

then the support of H(t,·) = [−ξ(t), 0) ∪ (0, ξ(t)], for any t > 0, but it has a limited
penetration in the sense that

|ξ(t)| ≤ ξ∞ for any t ≥ 0,

for some finite ξ∞ < ∞ depending on λ, K, µ,Q0,∞ and H0(x). We mention that without
the symmetry assumption on H0(x) we must work on the spatial domain R− {0} and by
replacing the nonlinear pde by

∂H

∂T
= K

∂2H2

∂x2
+

µx

|x|
∂Hλ

∂x
.
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The new modelling argument consists in introducing the new velocities:

u = ε
k(ρm − ρw)g

µφ

∂H

∂x
− ν(ε)(

ρm − ρw

µφ
)gλHλ−1,

w = ε2
k(ρm − ρw)g

µφ
H

∂2H

∂x2
,

(9)

for some 0 < λ < 2 (the justification of this new exponent λ may come from some other
terms in the asymptotic expansion or from other form of the boundary conditions). Notice
also that if λ ∈ (1, 2) the new term is small for H ∈ (0,H0), if λ ∈ (0, 1) the new term is
very big if H ∈ (0,H0) and, which is more useful, when λ = 1 the new term is a constant.
We also point out that

ε2
∂H

∂t
= w − εu

∂H

∂x
= ε2

k(ρm − ρw)g
µφ

H
∂2H

∂x2
+ ε2

k(ρm − ρw)g
µφ

(
∂H

∂x

)2

+ν(ε)ε(
ρm − ρw

µφ
)g

Hλ−1

λ

∂H

∂x
.

(10)

So,

ε2
∂H

∂t
= ε2

k(ρm − ρw)g
µφ

∂

∂x

(
H

∂H

∂x

)
+ ν(ε)ε

(
ρm − ρw

µφ

)
g

∂

∂x
(Hλ), (11)

and then, we must assume that ν(ε) = ε.

2 Unlimited volcanoes base according the previous model
(µ = 0).

We are going to prove that the free boundary is not bounded as t −→ +∞, for this we are
going to prove next theorem.

Theorem 1 Let ζ(t) the free boundary of the problem P (0, Q0), then ζ(t) −→ +∞ if
t −→ +∞.

We shall built the proof in two different steps. In a first one, we shall prove that if
U(t, x) and H(t, x) are solutions of the respective problems P (0, Q0) and P (0, 0) with the
same initial data then, we have U ≤ H.

In a second step, we shall prove that if ζ(t) and ξ(t) are the free boundaries of the
problems P (0, Q0) and P (0, 0), with the same initial data, then ζ(t) −→ +∞ as t −→ +∞.
This will conclude the proof since, the first step proves that 0 < ζ(t) ≤ ξ(t), and thus,
necessarily, ξ(t) −→ +∞ if t −→ +∞.

The first step is a special conclusion of a more general statement:

Proposition 1 Let H1 and H2 be the solutions of P (µ,Q0) corresponding to µ ≥ 0, Q1,0,
Q2,0 and H1,0, H2,0 respectively. Then, for any t > 0 we have∫

Ω
(H1(t, x)−H2(t, x))+dx ≤

∫
Ω
(H1,0(x)−H2,0(x))+dx+

∫ t

0
(Q1,0(τ)−Q2,0(τ))+dτ (12)

where, we used the notation, a+(x) = max(0, a(x)), for any general function defined on
Ω.
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Notice that as a direct consequence of the Proposition 1, and of the fact that a+(x) = 0
implies that a(x) ≤ 0, we have

Corollary 1 Let H1 and H2 be the solutions of P (µ,Q0) corresponding to µ ≥ 0, Q1,0,
Q2,0 and H1,0, H2,0 respectively such that Q1,0(t) ≤ Q2,0(t) for any t > 0 and H1,0(x ) ≤H2,0(x )
for x ∈ Ω. Then H1(t, x) ≤ H2(t, x) for any t > 0 and for x ∈ Ω.

We also get from Proposition 1 a quantitative expression of the continuous dependence
of solution H of P (µ,Q0) with respect to the data Q0 and H0.

Corollary 2 Let H1 and H2 be the solutions of P (µ,Q0) corresponding to µ ≥ 0, Q1,0,
Q2,0 and H1,0, H2,0 respectively. Then for any t > 0∫

Ω
|H1(t, x)−H2(t, x)| dx ≤

∫
Ω
|H1,0(x)−H2,0(x)| dx +

∫ t

0
|(Q1,0(τ)−Q2,0(τ))| dτ.

Proof of Corollary 2. It is enough to observe that, for any general function a(x) defined
on Ω we have that |a(x)| = a+(x) + a−(x) and that, if for fixed t > 0 we define a(x) =
H1(t, x)−H2(t, x) then a−(x) = −min(0, a(x)) = (H2(t, x)−H1(t, x))+. Since, the order
of H1 and H2, taken in Proposition 1, is arbitrary, by reversing the roles of H1 and H2,
we get that

∫
Ω
(H1(t, x)−H2(t, x))−dx ≤

∫
Ω
(H1,0(x)−H2,0(x))−dx+

∫ t

0
(Q1,0(τ)−Q2,0(τ))−dτ, (13)

which concludes the proof.
Proof of the Proposition 1. The main idea is to multiply the difference of the two equations
by a regular approximation pn(r), n ∈ N, of the Heaviside type function

sign+,0(r) = 0 if r ≤ 0 and sign+,0(r) = 1 if r > 0,

taking as r = (H2
1 (t, x)−H2

2 (t, x)). For instance, we can take pn

pn(r) =


0 if r ≤ − 1

n ,
nr if r ∈ [− 1

n , 1
n ],

1 if r > 1
n .

(14)

Then,∫
Ω
(
∂H1(t, x)

∂t
− ∂H2(t, x)

∂t
)pn(H2

1 (t, x)−H2
2 (t, x))dx = K

∫
Ω

∂

∂x
((

∂

∂x
H2

1 (t, x)−

∂

∂x
H2

2 (t, x))pn(H2
1 (t, x)−H2

2 (t, x))dx + µ

∫
Ω

∂

∂x
(Hλ

1 (t, x)−Hλ
2 (t, x))pn(H2

1 (t, x)−H2
2 (t, x))dx.

By the definition of weak solution (i.e., by integrating by parts) we get

∫
Ω
(
∂H1(t, x)

∂t
− ∂H2(t, x)

∂t
)pn(H2

1 (t, x)−H2
2 (t, x))dx + K

∫
Ω
(

∂

∂x
H2

1 (t, x)−

∂

∂x
H2

2 (t, x))2p′n(H2
1 (t, x)−H2

2 (t, x))dx = µ

∫
Ω

∂

∂x
(Hλ

1 (t, x)−Hλ
2 (t, x))pn(H2

1 (t, x)−H2
2 (t, x))dx+

K(
∂

∂x
H2

1 (t, 0)− ∂

∂x
H2

2 (t, 0))pn(H2
1 (t, 0)−H2

2 (t, 0)),
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where we used the facts that support of H2
1 (t, .)−H2

2 (t, .) is a compact set for any t ≥ 0.
Then, since 0 ≤ pn(r) ≤ 1 for any r, and passing to the limit, as n → +∞ we have that

sign+,0(H2
1 (t, x)−H2

2 (t, x)) = sign+,0(H1(t, x)−H2(t, x)) = sign+,0(Hλ
1 (t, x)−Hλ

2 (t, x)).

Finally, it is enough to remember that

∂H(t, x)
∂t

sign+,0(H(t, x)) =
∂[H(t, x)]+

∂t
and

∂H(t, x)
∂x

sign+,0(H(t, x)) =
∂[H(t, x)]+

∂x

for any general function H(t, x) and so the result follows by interating in t and using that
support of Hλ

1 (t, .)−Hλ
2 (t, .) is a compact set for any t ≥ 0 and that [Hλ

1 (t, 0)−Hλ
2 (t, 0)]+ ≥

0.

3 Limited volcanoes base for µ > 0.

Concerning the theory of existence and uniqueness of weak solutions we send the reader
to the works [1], [10], [6], [9], [8], [4] and their references.

Theorem 2 Assume H0(x) bounded and with compact support,

0 < λ < 2,

and let
0 ≤ Q0(t) ≤ Q0,∞, for any t > 0 (15)

for a suitable Q0,∞. Then the support H(t,·) = [−ξ(t), 0) ∪ (0, ξ(t)], for any t > 0,

|ξ(t)| ≤ ξ∞ for any t ≥ 0,

for some finite ξ∞ < ∞ depending on λ, K, µ, Q0,∞ and H0(x).

Proof. Thanks to Corollary 1 it is enough to construct a supersolution H2(t, x) with
a bounded support for any t ≥ 0. In fact, we can construct such a function as H2(t, x) =
U(x) solution of the ordinary differential equation{

K(U2)x + C1U
λ = 0 x ∈ (0,+∞),

U(0) = C2.

Using that λ < 2 the support of U is compact and since H(t, x ) is bounded we can choose
C1, C2 > 0 suitably as to have

Q1,0(t) ≤ C1C
λ
2 for any t > 0 and H1,0(x) ≤ U(x) for x ∈ Ω,

and the proof is complete.
Remark. Other supersolutions leading to other qualitative properties of the free

boundary can be found in the works [10], [6], [7], [8], [5] and [3].
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