
Progress in Nonlinear Differential Equations
and Their Applications, Vol. 61, 1–14
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Abstract. We show how the action on two simultaneous effects (a suitable
coupling about velocity and temperature and a low range of temperature
but upper that the phase changing one) may be responsible of stopping a
viscous fluid without any changing phase. Our model involves a system, on
an unbounded pipe, given by the planar stationary Navier-Stokes equation
perturbed with a sublinear term f(x, θ,u) coupled with a stationary (and
possibly nonlinear) advection diffusion equation for the temperature θ.

After proving some results on the existence and uniqueness of weak
solutions we apply an energy method to show that the velocity u vanishes for
x large enough.
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1. Introduction

It is well known (see, for instance, [6, 8, 14]) that in phase changing flows (as the
Stefan problem) usually the solid region is assumed to remain static and so we can
understand the final situation in the following way: the thermal effect are able to
stop a viscous fluid.

The main contribution of this paper is to show how the action on two si-
multaneous effects (a suitable coupling about velocity and temperature and a low
range of temperature but upper the phase changing one) may be responsible of
stopping a viscous fluid without any changing phase. This philosophy could be
useful in the monitoring of many flows problems, specially in metallurgy.
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We shall consider a, non-standard, Boussinesq coupling among the temper-
ature θ and the velocity u. Motivated by our previous works (see [1, 2, 3, 4]), we
assume the body force field is given in a non-linear feedback form, f : Ω×R×R2 →
R2, f = (f1(x, θ,u), f2(x, θ,u)), where f is a Carathéodory function (i.e., contin-
uous on θ and u and measurable in x) such that, for every u ∈ R2, u = (u, v), for
any θ ∈ [m, M ], and for almost all x ∈ Ω

−f(x, θ,u) · u ≥ δ χf (x) |u|1+σ(θ) − g(x, θ) (1.1)

for some δ > 0, σ a Lipschitz continuous function such that

0 < σ− ≤ σ(θ) ≤ σ+ < 1, θ ∈ [m, M ], (1.2)

and

g ∈ L1 (Ωxg × R) , g ≥ 0, g(x, θ) = 0 a.e. in Ωxg for any θ ∈ [m, M ], (1.3)

for some xf , xg, with 0 ≤ xg < xf ≤ ∞ and xf large enough, where Ωxg = (0, xg)×
(0, L) and Ωxg = (xg,∞) × (0, L). The function χf denotes the characteristic
function of the interval (0, xf ), i.e., χf (x) = 1, if x ∈ (0, xf ) and χf (x) = 0,
if x /∈ (0, xf ). We shall not need any monotone dependence assumption on the
function σ(θ).

It seems interesting to notice that the term f(x, θ,u) plays a similar role to
the one in the penalized changing phase problems (see equation (3.13) of [14]),
although our formulation and our methods of proof are entirely different. We shall
prove that the fluid is stopped at a finite distance of the semi-infinite strip entrance
by reducing the nonlinear system to a fourth order non-linear scalar equation for
which the localization of solutions is obtained by means of a suitable energy method
(see [5]).

2. Statement of the problem

In the domain Ω = (0,∞)× (0, L), L > 0, we consider a planar stationary thermal
flow of a fluid governed by the following system

(u · ∇)u = ν�u −∇p + f(x, θ,u), (2.4)

divu = 0, (2.5)
u · ∇C(θ) = �ϕ(θ), (2.6)

where u = (u, v) is the vector velocity of the fluid, θ its absolute temperature, p
is the hydrostatic pressure, ν is the kinematics viscosity coefficient,

C(θ) :=
∫ θ

θ0

C(s) ds and ϕ(θ) :=
∫ θ

θ0

κ(s) ds,

with C(θ) and κ(θ) being the specific heat and the conductivity, respectively.
Assuming κ > 0 then ϕ is invertible and so θ = ϕ−1(θ) for some real argument θ.
Then we can define functions

C(θ) := C ◦ ϕ−1(θ), f(x, θ,u) := f ◦ ϕ−1(θ), µ(θ) := µ ◦ ϕ−1(θ).


