
La extinción en tiempo finito de la solución de una clase 
de EDPs no lineales es más lenta si la derivada temporal 

es fraccionaria

Extinction in finite time for some fractional nonlinear evolution problems
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General assumptions

Let us present the mathematical treatment of a model

I arising in the theory of unsaturated filtration flow in a porous
medium

I under the absorption action of some plants

I and when the constitutive law on the porosity of the medium
is formulated in terms of a fractional time derivative

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Let QT = Ω× (0,T ), Ω = (−L, L) be a general real open set,
T ∈ R+. Let v(x , t) ∈ [0, 1] represent the humidity of the soil.
Then our model initial-boundary value problem for a nonlinear
degenerate parabolic equation with a single space variable is
formulated as follows:

{
a1

∂
∂t v + aα

∂α

∂tα v − (γ1−p|v |m−1|vx |p−2vx)x + λv |v |q−1 = f (x , t) in QT

v(±L, t) = 0 t ∈ (0, T ); v(x , 0) = v0(x) in Ω
(1)

I λ > 0, 0 < γ < ∞, 1 < p < ∞, m > 0, q > 0, a1 ≥ 0,
aα > 0, α ∈ (0, 1)

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Let QT = Ω× (0,T ), Ω = (−L, L) be a general real open set,
T ∈ R+. Let v(x , t) ∈ [0, 1] represent the humidity of the soil.
Then our model initial-boundary value problem for a nonlinear
degenerate parabolic equation with a single space variable is
formulated as follows:

{
a1

∂
∂t v + aα

∂α

∂tα v − (γ1−p|v |m−1|vx |p−2vx)x + λv |v |q−1 = f (x , t) in QT

v(±L, t) = 0 t ∈ (0, T ); v(x , 0) = v0(x) in Ω
(1)

I ∂α/∂tα is the Riemann-Liouville fractional derivative:

∂

∂tα
u(x , t) =

∂

∂t

1

Γ(1− α)

t∫

0

u(x , τ)

(t − τ)α
dτ
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Let QT = Ω× (0,T ), Ω = (−L, L) be a general real open set,
T ∈ R+. Let v(x , t) ∈ [0, 1] represent the humidity of the soil.
Then our model initial-boundary value problem for a nonlinear
degenerate parabolic equation with a single space variable is
formulated as follows:

{
a1

∂
∂t v + aα

∂α

∂tα v − (γ1−p|v |m−1|vx |p−2vx)x + λv |v |q−1 = f (x , t) in QT

v(±L, t) = 0 t ∈ (0, T ); v(x , 0) = v0(x) in Ω
(1)

I if a1 = 0 the initial condition must be understood as follows:
lim
t→0

Γ(α)t1−αu(x , t) = u0(x)

I Equation (1) with α = 1 is usually referred to as the nonlinear
heat equation with absorption
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Constitutive Terms

I accumulation term: it is usually described by the term

a1(x , t)
∂

∂t
v

where a1(x , t) depends on the characteristics of the porous
medium.

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil



Outline
Physical Motivation

The main results
Conclusions

Mathematical Model
Constitutive Terms
Extinction in finite time
Aims of the work

Constitutive Terms

I accumulation term: here it is replaced by a

a1
∂

∂t
v + aα

∂α

∂tα
v .

The non locality of the fractional derivative operator tries to
reproduce the complexity of the medium.

aC. M. Case. Physical Principles of Flow in Unsaturated Porous Media.
Clarendon Press, Oxford, 1994.
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Constitutive Terms

I diffusion: it is usually expressed by the term

−div (K (x , t)∇ϕ(v))

I where K (x , t) is the tensor of absolute permeability and
characterizes the porous medium. Here we assume, for
simplicity, K = Identity .
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Constitutive Terms

I diffusion: it is usually expressed by the term

−div (K (x , t)∇ϕ(v))

I when the velocity of the propagation of the flow trough the
porous media is slow, then ϕ(v) = v2 (and m = p = 2 in our
model).

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Constitutive Terms

I diffusion: it is usually expressed by the term

−div (K (x , t)∇ϕ(v))

I when such a flux is turbulent a, then the diffusion term is
replaced by the p-Laplacian:

−div (K (x , t)|v |m−1|∇v |p−2∇v)

where it is generally assumed that m > 0 and p > 1.

aJ.I. D́ıaz, F. De Thelin, On a nonlinear parabolic problem arising in some
models related to turbulent flows, SIAM J. Math. Anal. Vol.25, No. 4,
1085-1111, 1994
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Constitutive Terms

I convection: is the effect of the gravity on the penetration of
the flow trough the media and it is described by a derivative
term of the first order along the the vertical direction z

∂

∂z
ψ(v)

Here this term is omitted as we are restricted to consider just
the ground layer (e.g., of an agricultural surface).
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Constitutive Terms

I absorption: here the term λv |v |q−1, q > 0, represents the
absorption phenomenon due to the plants on the ground
layera. It is a mechanism which reduces the humidity in the
soil.

aG.Gonzalo, J. Velasco A dynamic boundary value problem arising in the
ecology of mangroves, Nonlinear Analysis: Real World Applications, Vol. 7 (5),
1129-1144, 2006. D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Constitutive Terms

I absorption: here the term λv |v |q−1, q > 0, represents the
absorption phenomenon due to the plants on the ground layer.
It is a mechanism which reduces the humidity in the soil.
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Constitutive Terms

I external source: the term f (x , t) models an external source or
sink of fluid. For example, the rain or the irrigation.

Remark
In our modelization, we include all the key elements of an unsatu-
rated filtration flow process in a porous medium, with some modifi-
cations/generalizations which can all be justified by previous works
appeared in the literature.
However, no concrete experimental model corresponds, as far as we
know, to such a formulation.
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The general fractional evolution boundary value problem

Let Ω ⊂ RN , N ≥ 1, be a general open set.
Let Q∞ = Ω× (0, +∞), Σ∞ = ∂Ω× (0, +∞), and consider a
fractional evolution boundary value problem formulated as follows:





a1
∂u
∂t + aα

∂αu
∂tα + Au = f (x , t) in Q∞,

Bu = g(x , t) onΣ∞,
u(x , 0) = u0(x) in Ω.

(2)

I a1 ≥ 0, aα > 0, α ∈ (0, 1)

I ∂α/∂tα is the Riemann-Liouville fractional derivative:

∂

∂tα
u(x , t) =

∂

∂t

1

Γ(1− α)

t∫

0

u(x , τ)

(t − τ)α
dτ
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The general fractional evolution boundary value problem

Let Ω ⊂ RN , N ≥ 1, be a general open set.
Let Q∞ = Ω× (0, +∞), Σ∞ = ∂Ω× (0, +∞), and consider a
fractional evolution boundary value problem formulated as follows:





a1
∂u
∂t + aα

∂αu
∂tα + Au = f (x , t) in Q∞,

Bu = g(x , t) onΣ∞,
u(x , 0) = u0(x) in Ω.

(2)

I Au denotes a nonlinear operator (usually in terms of u and
the partial differentials of u),

I Bu denotes a boundary operator

I the data f (x , t), g(x , t) and u0(x) are given functions

I for simplicity, A and B are assumed to be autonomous
operators, i.e., with time independent coefficients.
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Stabilization of a solution: main task

In the study of the stabilization of solutions:
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Stabilization of a solution: main task

In the study of the stabilization of solutions:

I it is usually assumed that:

f (x , t) → f∞(x) and g(x , t) → g∞(x) as t → +∞,

in some functional spaces

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Stabilization of a solution: main task

In the study of the stabilization of solutions:

I the main task is to prove that

u(x , t) → u∞(x) as t → +∞,

in some topology of a suitable functional space, with u∞(x)
solution of {

Au∞ = f∞(x) in Ω,
Bu∞ = g∞(x) on ∂Ω.

I This has been the most recurrent approach in the literature:
♠ Ph. Clément, R.C. MacCamy, J.A. Nohel, Asymptotic Properties of Solutions

of Nonlinear Abstract Volterra Equations, J. Int. Eq., 3, 185-216, 1981.
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A stronger property: extinction in finite time

I Starting by assuming that A0 = 0, B0 = 0 and

f (x , t) = 0 ∀ t ≥ Tf ,
g(x , t) = 0 ∀ t ≥ Tg ,

for some Tf < ∞ and Tg < ∞

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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A stronger property: extinction in finite time

I Starting by assuming that A0 = 0, B0 = 0 and

f (x , t) = 0 ∀ t ≥ Tf ,
g(x , t) = 0 ∀ t ≥ Tg ,

for some Tf < ∞ and Tg < ∞
I we want to arrive to the following natural phenomenon of the

extinction in finite time:

Definition
Let u be a solution of the evolution boundary value problem (2).
We will say that u(x , t) possesses the property of extinction in a
finite time if there exists t∗ < ∞ such that

u(x , t) ≡ 0 on Ω, ∀ t ≥ t∗.

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil



Outline
Physical Motivation

The main results
Conclusions

Mathematical Model
Constitutive Terms
Extinction in finite time
Aims of the work

Aims

Under suitable conditions, we shall prove that the solution to

{
a1

∂
∂t v + aα

∂α

∂tα v − (γ1−p|v |m−1|vx |p−2vx)x + λv |v |q−1 = f (x , t) in QT

v(±L, t) = 0 t ∈ (0, T ); v(x , 0) = v0(x) in Ω
(3)

when we assume that f (x , t) = 0 ∀t ≥ Tf for some Tf < ∞,
satisfies an integral energy inequality leading to its extinction in a
finite time.

Remark: In our modelization, the extinction of the solution of (3)
models as the soil drain away; in fact, it means that it becomes dry
in a finite time.

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Aims

Concretely:

I We will first prove the occurrence of the extinction in finite
time for the problem (3) with a1 > 0 and aα > 0.

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Aims

Concretely:

I We will first prove the occurrence of the extinction in finite
time for the problem (3) with a1 > 0 and aα > 0.

I Then, we will pass to consider the limit problem obtained
when a1 = 0 and aα > 0.

This is the most extraordinary case, since we prove that the
finite time extinction phenomenon still appears, even with a
non-smooth profile near the extinction time.
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Lemma1

Lemma
Let α ∈ (0, 1) and u ∈ C 0([0, T ] : R), u′ ∈ L1(0,T : R) and u
monotone. Then

2 u(t)
dαu

dtα
(t) ≥ dαu2

dtα
(t), a.e. t ∈ (0,T ]. (4)

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Lemma1

Lemma
Let α ∈ (0, 1) and u ∈ C 0([0, T ] : R), u′ ∈ L1(0,T : R) and u
monotone. Then

2 u(t)
dαu

dtα
(t) ≥ dαu2

dtα
(t), a.e. t ∈ (0,T ]. (4)

Remarks:

I the inequality (4) can be trivially checked if α = 1.

I we conjecture that inequality (4) still holds true under weaker
hypothesis on u (avoiding the monotonicity).
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I Inequality (4) allows to conclude the monotonicity (or
accretiveness) of the fractional differential operator in a very
direct way.
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I Inequality (4) allows to conclude the monotonicity (or
accretiveness) of the fractional differential operator in a very
direct way.

I The proof of the monotonicity has been already provided in
the literature by means of very sophisticated arguments. See
e.g:

♠ G. Gripenber, Volterra integro-differential equations with accrettive
nonlinearity, J. Differential Eqs., 60, 57-79, 1985

♠ PH. Clément and J. Prüss, Completely positive measures and Feller
semigroups, Math. Ann.,287, 73-105, 1990

♠ PH. Clément and S.O. Londen, On the sum of fractional derivatives and
m-accretive operators, in Partial Differential Equation Models in Physics
and Biology, Vol.82, G. Lumer and S. Nicaise and B.W. Schulze (Eds.),
Akademie Verlag, 91-100, 1994
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Lemma2: a more general version of Lemma 1

Lemma
Given the Hilbert space H, let α ∈ (0, 1) and u ∈ L∞(0, T : H)
such that dα

dtα u ∈ L1(0, T : H). Assume that ‖u(·)‖H is
non-increasing (i.e. ‖u(t2)‖H ≤ ‖u(t1)‖H for a.e. t1, t2 ∈ (0, T )
such that t1 ≤ t2). Then, there exists k(α) > 0 such that for
almost every t ∈ (0, T ) we have that

(
u(t),

dα

dtα
u(t)

)

H

≥ k(α)
dα

dtα
‖u(t)‖2

H . (5)

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Lemma2: a more general version of Lemma 1

I Inequality (5) directly implies dα

dtα ‖u(t)‖2
H ∈ L1(0,+∞),

which is not straightforward to see.
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Lemma2: a more general version of Lemma 1

I Inequality (5) directly implies dα

dtα ‖u(t)‖2
H ∈ L1(0,+∞),

which is not straightforward to see.

I Alternately, the following inequality had already been proved
(by many authors) in the literature:

∫ t

0
u(t)

dα

dtα
u(t)dt ≥

∫ t

0
|u(t)|2dt

♠ Ph. Clément, R.C. MacCamy, J.A. Nohel, Asymptotic Properties of

Solutions of Nonlinear Abstract Volterra Equations, J. Int. Eq., 3,

185-216, 1981.

I This inequality does not depend on α in the right term.
This is the weakness of this formula.
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The main Theorem: extinction in finite time

Theorem
For any f ∈ L1

loc(0, +∞ : L1(Ω)) and u0 ∈ L1(Ω), there exists a
weak solution of the problem (3).
Assume also that either p < 2 and q > 0 arbitrary, or q < 1 and
p > 1 arbitrary, and f satisfying that ∃tf ≥ 0 such that f (x , t) ≡ 0
a.e. x ∈ Ω and a.e. t > tf .
Then, there exists t0 ≥ tf ≥ 0 such that v(x , t) ≡ 0 for a.e. x ∈ Ω
and for any t ≥ t0.

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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Proof of the existence

I The existence of a weak solution v ∈ C ([0, +∞) : L1(Ω)) can
be deduced from the abstract results on Volterra
intregro-differential equations with accretive operators.
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Proof of the existence

I The existence of a weak solution v ∈ C ([0, +∞) : L1(Ω)) can
be deduced from the abstract results on Volterra
intregro-differential equations with accretive operators.

♠ A. Friedman, On integral equations of the Volterra type, J. Analyse
Math., 11, 381-413, 1963.

♠
...

♠ S. Bonaccorsi and M. Fantozzi, Volterra integro-differential equations
with accretive operators and non-autonomous perturbations, Journal of
Integral Equations and Applications, 18, 437-470, 2006
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Proof of the existence

I The existence of a weak solution v ∈ C ([0, +∞) : L1(Ω)) can
be deduced from the abstract results on Volterra
intregro-differential equations with accretive operators.

I The operator G (v(t)) = −(γ1−p|v |m−1|vx |p−2vx)x + λv |v |q−1

is m-accretive (or, equivalently, maximal monotone) in
H = L1(Ω), as it is already known in the literature.
♠ J.I. D́ıaz, Nonlinear Partial Differential Equations and Free Boundaries.

Elliptic equations, Research Notes in Mathematics N.106, Vol.1, Pitman,
London, 1985.
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An Energy Method

To prove the occurrence of the extinction, we write problem (3) in
an equivalent way. Indeed, the change of the unknown function
v = u|u|γ−1 with the parameters m = 1 + (1−γ)(p−1)

γ and q = σ
γ

leads to the following formulation:

{
a1

∂
∂t

(
u|u|γ−1

)
+ aα

∂α

∂tα

(
u|u|γ−1

)− (|ux |p−2ux

)
x

+ λu|u|σ−1 = f in QT

u(±L, t) = 0 t ∈ (0, T ); u(x , 0) = u0(x) in Ω
(6)

where a1 ≥ 0, aα > 0, α ∈ (0, 1), λ > 0, 0 < γ < ∞, 1 < p < ∞
and σ > 0.

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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An Energy Method. Case a1 > 0

I We define the energy functions

y(t) =

∫

Ω

|u(x , t)1+γ |dx =‖ u(·, t) ‖1+γ
L1+γ(Ω)

D(t) =

∫

Ω

|ux(x , t)p|dx =‖ u(·, t) ‖p
Lp(Ω)

A(t) =

∫

Ω

|u(x , t)1+σ|dx =‖ u(·, t) ‖1+σ
L1+σ(Ω)

which, are defined for almost all t ∈ (0,T ) and are in
L1(0, T ).

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil
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An Energy Method. Case a1 > 0

I multiplying by u and integrating on Ω the equation appearing
in (6), we get:

a1
γ

γ + 1

d

dt
y+aα

∫

Ω

u
∂α

∂tα

(
u|u|γ−1

)
dx+D(t)+λA(t) =

∫

Ω

fu dx

(7)
and it can be shown 1 how to pass, when α = 1 and
f (x , t) ≡ 0, from this to the following ordinary differential
inequality:

a1y
′ + Cyν ≤ 0, (8)

where C > 0 and 0 < ν < 1 and for a.e. t ∈ (tf , +∞).
1S.N. Antontsev, J.I. D́ıaz, S.I. Shmarev, Energy Methods for Free

Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics,
Birkhäuser, Boston, 2001.
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An Energy Method. Case a1 > 0

I Also, we know 2 that the operator:

u 7→ aα
∂αu

∂tα
(9)

generates contraction semigroups in E = Lr (0, +∞ : Lq(Ω)),
with 1 < r , q < ∞ which are positive with respect to the
usual cone E+ of positive functions.

2PH. Clément, J. Prüss, Completely positive measures and Feller
semigroups, Math. Ann. 287 (1990) 73-105.
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An Energy Method. Case a1 > 0

I So, since a1 > 0 we get that, for any t ≥ tf , the application

t 7→ y(t)

is non increasing, y ∈ C ([tf , +∞]) and dαy
dtα ∈ L1(tf ,T ).
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An Energy Method. Case a1 > 0

I So, since a1 > 0 we get that, for any t ≥ tf , the application

t 7→ y(t)

is non increasing, y ∈ C ([tf , +∞]) and dαy
dtα ∈ L1(tf ,T ).

I Therefore, we are in conditions as to apply Lemma 2, and we
get:

{
a1

dy
dt + aα

dαy
dtα (t) + C y(t)ν ≤ 0 on (tf , +∞)

y(tf ) = Y0.
(10)
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An Energy Method. Case a1 > 0

I Moreover, since the semigroup generated by the operator (9)
is positive [although it is non local] (Clement and Prüss,
1990), we have that:

0 ≤ y(t) ≤ Y (t) for any t ∈ [tf , +∞), (11)

where Y (t) is a supersolution, i.e, Y (t) satisfies the
inequality:

{
a1

dY
dt + aα

dαY
dtα (t) + C Y (t)ν ≥ 0 on (tf ,+∞)

Y (tf ) ≥ Y0.
(12)
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An Energy Method. Case a1 > 0

I Moreover, since the semigroup generated by the operator (9)
is positive [although it is non local] (Clement and Prüss,
1990), we have that:

0 ≤ y(t) ≤ Y (t) for any t ∈ [tf , +∞), (11)

where Y (t) is a supersolution, i.e, Y (t) satisfies the
inequality:

{
a1

dY
dt + aα

dαY
dtα (t) + C Y (t)ν ≥ 0 on (tf ,+∞)

Y (tf ) ≥ Y0.
(12)

I Our conclusion comes from the fact that we can construct
Y (t) satisfying (12) and such that Y (t) ≡ 0 ∀ t ≥ tY , for
some tY > tf .
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An Energy Method. Case a1 > 0

I Moreover, since the semigroup generated by the operator (9)
is positive [although it is non local] (Clement and Prüss,
1990), we have that:

0 ≤ y(t) ≤ Y (t) for any t ∈ [tf , +∞), (11)

where Y (t) is a supersolution, i.e, Y (t) satisfies the
inequality:

{
a1

dY
dt + aα

dαY
dtα (t) + C Y (t)ν ≥ 0 on (tf ,+∞)

Y (tf ) ≥ Y0.
(12)

I For instance,

Y (t) = k (tY − t)
1

1−ν
+

for some tY > tf and some k > 0.
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An Energy Method. Case a1 = 0

I Let uε be the solution of (Pε) when a1 = ε, ε > 0.
I We can prove that:

uε → u∗ in L1(0, +∞ : L1(Ω)) when ε → 0,

I so the application

t 7→ y∗(t) := ‖u∗(·, t)‖1+γ
L1+γ(Ω)

is also decreasing.

D́ıaz,Pierantozzi,Vázquez A fractional model for water filtration through a porous soil



Outline
Physical Motivation

The main results
Conclusions

Some previous results on Fractional Calculus
The main Theorem
Sketch of the proof
Remarks

An Energy Method. Case a1 = 0

I Let uε be the solution of (Pε) when a1 = ε, ε > 0.
I We can prove that:

uε → u∗ in L1(0, +∞ : L1(Ω)) when ε → 0,

I so the application

t 7→ y∗(t) := ‖u∗(·, t)‖1+γ
L1+γ(Ω)

is also decreasing.

I Then, we can apply Lemma 2 and write for y∗:
{

aα
dαy∗
dtα (t) + C y∗(t)ν ≤ 0 on (tf , +∞)

y(tf ) = W0.
(13)
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An Energy Method. Case a1 = 0

I The conclusion, as before, comes now from the fact that we
can construct a supersolution W (t) satisfying:

{
aα

dαW
dtα (t) + C W (t)ν ≥ 0 on (tf , +∞)

W (tf ) = W0,
(14)

and such that W (t) ≡ 0 ∀ t ≥ tW , for some tW > tF .

I Indeed, let i.e. W (t) = h (tW − t)
α

1−ν for some tW > tf and
some h > 0.
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Remarks

I The decreasing behavior of the norm:

‖u(·, t)‖1+γ
L1+γ(Ω)

≤ k (tY − t)
1

1−ν
+ ∀ t ≥ tf , ν ∈ (0, 1)

(15)
when a1 > 0 is actually the same as when the fractional
derivative is not included in the problem (6).

I It has to be highlighted that when ν > 1 it is well-known that
the solution to problem (6) shows an exponential decay at
infinity. However our method allows to estimate trough (15)
the rate of this decay, which is impossible to achieve with the
stabilization methods.
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I What is more extraordinary is the decreasing behavior of the
norm:

‖u∗(·, t)‖1+γ
L1+γ(Ω)

≤ h (tW − t)
α

1−ν
+ ∀ t ≥ tf .

when a1 = 0 as we are dealing with a function W (t) such
that dαW

dtα (t) ∈ L∞(0,+∞) whereas W ′(t) /∈ L∞(0, +∞)
although W ′(t) ∈ L1(0, +∞).
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Conclusions

I This work extends the application of the very fine techniques
of nonlinear operators on Banach spaces to the case of
nonlinear fractional partial differential equations.
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Conclusions

I This work extends the application of the very fine techniques
of nonlinear operators on Banach spaces to the case of
nonlinear fractional partial differential equations.

I The finite time extinction phenomenon for certain
evolution boundary values problems are still valid when the
evolution in time is given by an ordinary derivative jointly with
a real order differential operator (which is compatible with
unbounded, but integrable, first time derivatives).
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Thank you for your kind attention!
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