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AbstractWe consider the complex Ginzburg-Landau equation with feedback
control given by some delayed linear terms (possibly dependent of the past
spatial average of the solution). We prove several bifurcation results by using
the delay as parameter. We start by considering the case of the whole space
and later of a bounded domain with periodicity conditions. A linear stability
analysis is made with the help of computational arguments (showing evidence
of the fulfillment of the delicate transversality condition). In the last section
the bifurcation takes place starting from an uniform oscillation and originates
a path over a torus. This is obtained by the application of an abstract result
over suitable functional spaces.
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1 Introduction

1.1 Reaction-diffusion equations and the complex
Ginzburg-Landau equation

The evolution of a chemical system consisting of n species which are react-
ing with each other and allowed to diffuse in a spatially extended medium,
is generally described by a n-component reaction-diffusion equation for the
n−concentrations c(x, t)

∂tc = F(c; p) +D∆c, (1)

where F denotes the typically nonlinear reaction term representing chemical
kinetics, D∆c the diffusion term (being D the diffusion matrix) and p a
scalar control parameter. We assume that this system has a homogeneous,
stationary solution cs which undergoes a Hopf bifurcation at p = p0: i.e., for
p ∈ (p0, p0 + ε) the stationary solution cs becomes a time periodic solution,
at least for ε > 0 small enough.

It has been shown by Kuramoto and others that the dynamics of any
reaction-diffusion system (1) in the vicinity of a Hopf bifurcation is de-
scribed, by means of suitable parametrizations, by a nonlinear parabolic
equation with complex coefficients, the so-called complex Ginzburg-Landau
equation (CGLE), see, e.g., [13, 9]. The relation between reaction-diffusion
systems and the CGLE has been treated in many texts, here we will follow
the presentation of [11].

After a convenient choice of variables X = c− cs (the concentration devi-
ations) and ϵ = p− p0, the system can be reformulated as

∂tX = JX+ f(x, ϵ) +D∆X,

where J is the Jacobian matrix for the homogeneous system evaluated at
Xs = 0, i.e. F(c; p) − F(cs; p0) = JX + f(x, ϵ). At the bifurcation point , J
has two imaginary eigenvalues ±iω0, being ω0 the so-called Hopf frequency .
The corresponding right eigenvectors e1 and e2 = ē1 (normalized with left
eigenvectors e+i according to e+i ej = δij) span the center subspace Ec of the
homogeneous solution. The center manifold W c is tangent to Ec at X = 0,
ϵ = 0. The other n− 2 eigenvalues are all assumed to be large and negative.
This assures that a homogeneous solution converges fast toward W c provided
that X and ϵ are sufficiently small (for details and further references see [11]).

This allows us to express the concentration deviations X in terms of am-
plitude coordinates Y ∈ Ec by

X = Y + h(Y, ϵ).
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This equation describes a mapping from coordinates in the center subspace
Ec onto the center manifold W c. The function h(Y, ϵ) is selected in such a
way to successively eliminate as many nonlinear terms as possible from the
kinetic equations starting from the lowest order [11]. Each kind of bifurcation
is characterized by the specific terms which cannot be eliminated (the so-
called resonant terms). In this way we obtain a general equation valid for
all reaction-diffusion equations undergoing a given bifurcation. In the case of
the Hopf bifurcation, neglecting the diffusion term, to third order we obtain
the so-called Stuart-Landau equation

dY

dt
= (iω0 + σ1ϵ)Y − g|Y |2Y,

where Y is a complex amplitude given by Y = Y e1+Y e2. The parameters σ1

and g are complex and given by solutions of lengthy equations given in [11].
The Stuart-Landau equation represents the normal form of a homogeneous
system close to a Hopf bifurcation. See [8] for a recent bifurcation result.
Performing a similar derivation, but including diffusion, we arrive at

∂tY = (iω0 + σ1ϵ)Y − g|Y |2Y + d∆Y,

with d = e+1 ·De1. After rescaling of space, time, and introducing A for Y ,
we finally arrive at the rescaled complex Ginzburg-Landau equation

∂tA = (1− iω)A− (1 + iα)|A|2A+ (1 + iβ)∆A, (2)

where A is the complex oscillation amplitude, ω the linear frequency param-
eter , α the nonlinear frequency parameter , and β the linear dispersion coef-
ficient . All reaction-diffusion systems sufficiently close to a Hopf bifurcation
are described by the complex Ginzburg-Landau equation. The specific details
of the original system are incorporated in the parameter values. If one wishes
to express the solution of the CGLE in the original variables, to first order
the concentrations of the chemical species are expressed by

c = cs +
√
ϵ(Y (x, t)e1 + Y (x, t)e2).

Different scalings of the CGLE are considered in the literature [3]. Here, we
assume that the Hopf frequency is not scaled out, and hence contributes to
ω in Eq. (2). We also send the reader to Appendix B of [13] for the detailed
derivation of the CGLE associated to the Brusselator model.

1.2 On feedback control using delayed terms

Over the decades, the complex Ginzburg-Landau equation has been studied
intensively because of its frequent appearance in different contexts of science,
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and its rich repertoire of different spatio-temporal wave patterns like plane
waves, spiral waves, or localized hole solutions [3]. Remarkable, even if the
Hopf bifurcation is supercritical, and hence the limit cycle a stable solution of
the Stuart-Landau equation, the oscillations in the spatially-extended system
may be unstable. The resulting states of spatiotemporal chaos appear if the
Benjamin-Feir-Newell criterion 1 + αβ < 0 is fulfilled, a phenomenon that is
induced by the diffusive coupling and that is therefore genuine to a system
with spatial degrees of freedom.

Considerable efforts have been made to understand this type of chaotic
behavior and to apply methods to suppress this kind of turbulence and replace
it by regular dynamics. In the context of the reaction-diffusion systems, the
introduction of forcing terms or global feedback terms have been shown to be
efficient ways to control turbulence [14, 12]. Still, control of chaotic states in
nonlinear systems is a wide field of research that we cannot review here [16].

Global feedback methods, where a spatially independent quantity (or, e.g.,
a spatial average of a space-dependent quantity) is coupled back to the system
dynamics, have attracted much attention since in many cases the models
are simpler and easier to be carried out experimentally. Nevertheless, local
methods have gained interest in recent years since they allow to access other
solutions of the systems and may also be implemented, such as in the light-
sensitive BZ reaction or in neurophysiological experiments [14].

Feedback methods with an explicit time delay amplify the range of possi-
bilities of control that can be applied to the system and provide the researcher
with an additional adjustable parameter. On the level of the mathematical
description, the model equations become delay differential equations [10, 4].
Obviously, time delay feedback can be applied to any solution of the dynam-
ics, not necessarily to a chaotic one.

1.3 Main results

In this paper we analyze several bifurcation effects produced by the delay
time in the behavior of solutions of the complex Ginzburg-Landau equation
with this type of feedback.

In Section 2 we prove a Hopf bifurcation result for the equation in the
case of the whole space, and later on a bounded domain with periodicity
conditions (Section 3).

In the case in which the space is the whole R (we consider here the one-
dimensional case) we performed a linear stability analysis of uniform oscilla-
tions with respect to spatiotemporal perturbations following the treatment
made in [17]: we express the complex oscillation amplitude A as the super-
position of a homogeneous mode H (corresponding to uniform oscillations)
with spatially inhomogeneous perturbations,
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A(x, t) = H(t) +A+(t)e
iκx +A−(t)e

−iκx .

With the help of computational arguments we can get several bifurcation
diagrams where, besides the delay time it is possible to use the feedback
magnitude term. Among many other detailed informations, we can also obtain
numerical evidence of the fulfillment of the delicate transversality condition.

The paper ends by analyzing the case in which the bifurcation takes place
starting from an uniform oscillation and originating a path over a torus. This
time the study is carried out in two spatial dimensions over a rectangle in
which we impose periodic boundary conditions. We show the applicability
of an abstract result ([23]) to our formulation thanks to a suitable choice of
the involved functional spaces. In this way, the spatial perturbations can be
considered in their greatest generality.

2 Hopf bifurcation for the complex Ginzburg-Landau
equation on the whole space and with delayed time
feedback

We come back to the consideration of the complex Ginzburg-Landau equation
subjected to a time-delay feedback with local and global terms but now for
the case of a spatial domain given by the whole space:

∂tA = (1− iω)A− (1 + iα)|A|2A+ (1 + iβ)∂xxA+ F,

F = µeiξ [m1A+m2⟨A⟩+m3A(t− τ) +m4⟨A(t− τ)⟩] ,
(3)

where

⟨A⟩ = 1

L

∫ L

0

A(x, t) dx

denotes the spatial average of A over a one-dimensional medium of length L.
There are many previous works in the literature dealing with such type of
formulations: [6, 7, 18, 17].

Extensive simulations [18] and an analytical stability analysis [17] for a
special case representing a Pyragas-type feedback [15] (m3 = −m1 = ml,
m4 = −m2 = mg) showed the range of patterns that can be stabilized as
function of the local and global feedback terms. If the feedback is global,
uniform oscillations can be stabilized for a large range of feedback param-
eters, while as the contribution of the local feedback term becomes larger,
the parameter regions increase where the homogeneous fixed point solution,
standing waves and traveling waves are found.

Uniform oscillations A(t) = ρ0 exp(−iθt) are a solution of Eqs. (3) with
amplitude and frequency given by
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ρ0 =
√
1 + µ(mg +ml)(cos(ξ + θτ)− cos ξ),

θ = ω + α+ µ(mg +ml) [α(cos(ξ + θτ)− cos ξ)− (sin(ξ + θτ)− sin ξ)] .

In [17], we performed a linear stability analysis of uniform oscillations with
respect to spatiotemporal perturbations. There, we expressed the complex
oscillation amplitude A as the superposition of a homogeneous mode H (cor-
responding to uniform oscillations) with spatially inhomogeneous perturba-
tions,

A(x, t) = H(t) +A+(t)e
iκx +A−(t)e

−iκx . (4)

Notice that here we are using the fact that the equation takes place on the
whole space, which allows the justifiction of the spatially inhomogeneous per-
turbations of the form A+(t)e

iκx+A−(t)e
−iκx. Inserting Eq. (4) into Eq. (3),

and assuming that the amplitudes A± are small, we obtain a set of equations
for H, A+, and A∗

− (see [17] for details of this derivation). To investigate
linear stability of uniform oscillations with respect to spatiotemporal pertur-
bations, we make the ansatz

A+ = A0
+ exp(−iθt) exp(λt),

A∗
− = A∗0

− exp(iθt) exp(λt),
(5)

where λ = λ1 + iλ2 is a complex eigenvalue. Using ansatz (5), we arrive at
the following eigenvalue equation:

F = (A+ iB − iλ2 +D1 + iD2)(A− iB − iλ2 + C1 + iC2), (6)

where we have defined

F = (1 + α2)ρ40,

A = 1− λ1 − 2ρ20 − κ2,

B = θ − ω − 2αρ20 − βκ2,

C1 = µmle
−λ1τ cos(ξ + θτ + λ2τ)− µml cos ξ,

C2 = −µmle
−λ1τ sin(ξ + θτ + λ2τ) + µml sin ξ,

D1 = µmle
−λ1τ cos(ξ + θτ − λ2τ)− µml cos ξ,

D2 = µmle
−λ1τ sin(ξ + θτ − λ2τ)− µml sin ξ.

We point out that the above eigenvalue equation can be obtained also by a
formal linearization argument involving the Fréchet derivatives as in the next
section. There is no general analytic solution to Eq. (6) for λ1,2. Thus, Eq. (6)
must be solved numerically for a given set of parameters. We keep the CGLE
parameters α, β, ω and the feedback parameters ml, mg, and ξ constant and
solve Eq. (6) with the FindRoot routine of the Mathematica package [22].
We then find, for each point in the (τ, µ)-space, the functional dependence
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of λ1 and λ2 on κ. Due to the natural lack of space, we give elsewhere ( [8])
the numerical and graphical results of this study

3 Hopf bifurcation for the delayed CGLE in a bounded
domain

In this section we consider the case of two spatial dimensions varying on the
domain Ω = (0, L1) × (0, L2) (note a slight change of notation with respect
to Sect. 2). Our goal is to show a bifurcation phenomenon near uniform
oscillations for the CGLE in terms of the delay term as parameter. We define
the faces of the boundary

Γj = ∂Ω ∩ {xj = 0} , Γj+2 = ∂Ω ∩ {xj = Lj} , j = 1, 2,

on which we assume periodic boundary conditions and, hence, the problem
under study can be formulated as

(P1)



∂tu− (1 + iβ)∆u = (1− iω)u− (1 + iα)|u|2u
+µeiξF(u, t, τ)

Ω × (0,∞),

u|Γj
= u|Γj+2

,(
− ∂u

∂n

∣∣
Γj

=
)

∂u
∂xj

∣∣∣
Γj

= ∂u
∂xj

∣∣∣
Γj+2

(
= ∂u

∂n

∣∣
Γj+2

) ∂Ω × (0,∞),

u(x, s) = u0(x, s) Ω × [−τ, 0],

where n is the outpointing normal unit vector, and

F(u, t, τ) = [m1u(x, t) +m2⟨u(t)⟩+m3u(x, t− τ) +m4⟨u(t− τ)⟩]

with

⟨u(s)⟩ = 1

|Ω|

∫
Ω

u(x, s)dx.

Again, the parameters α, β, ω, µ, ξ,mi and τ are real, while u(x, t) = u1(x, t)+
iu2(x, t) is complex.

We study the stability of uniform oscillations, i.e., solutions of (P1) of
the form vuo(t) = ρ0e

−iθt which determines completely ρ0 and θ. We are
interested in the Hopf bifurcation close to vuo(t) which gives rise to some
paths on a suitable torus (for a different study dealing with invariant tori
see [19]).

In order to avoid the application of very sophisticated techniques (dealing
with periodic solutions), we can reduce the study to the Hopf bifurcation near
a stationary solution of some auxiliary problem by introducing the change of
unknown z(x, t) = v(x, t)eiθt where v(x, t) is a solution of (P1). Thus, z(x, t)
satisfies
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(P2)



∂tz− (1 + iβ)∆z = (1 + iθ)z− (1 + iα)|z|2z+ µeiξ×
×[m1z+m2⟨z⟩+ ei(ω+θ)τ (m3z(t− τ) +m4⟨z(t− τ)⟩)] Ω × (0,∞),

z|Γj
= z|Γj+2

,(
− ∂z

∂n

∣∣
Γj

=
)

∂z
∂xj

∣∣∣
Γj

= ∂z
∂xj

∣∣∣
Γj+2

(
= ∂z

∂n

∣∣
Γj+2

) ∂Ω × (0,∞),

z(x, s) = u0(x, s)e
i(ω−θ)s Ω × [−τ, 0].

Now, vuo(t) = ρ0e
−iθt is an uniform oscillation if and only if z(x, t) =

vuo(t)e
iθt = z∞ = ρ0 is an stationary solution of (P2), i.e.,

0 = (1+iθ)z∞−(1+iα) |z∞|2 z∞+µeiξ
[
m1 +m2 + ei(ω+θ)τ (m3 +m4)

]
z∞.

3.1 The abstract Hopf bifurcation theorem for
semilinear functional equations

We shall apply to our setting an abstract result due to J. Wu (see [23],
Theorem 2.1) stated for problems of the type{

du
dt (t) +Au(t) = L(µ, ut(.)) + g(ut(.)) in X,
u(s) = u0(s) s ∈ [−τ, 0].

on a Banach space X, where ut : [−τ, 0] → X, under the following list of
conditions:

(H1) A generates an analytic compact semigroup {T (t)}t≥0;
(H2) The point spectrum of A consists of a sequence of real number

{µk}k≥1 with the corresponding eigenspace Mk and the projection Pk : X →
Mk. Moreover, if

∑∞
k=1 xk = 0 for xk ∈ Mk then each xk must be zero;

(H3) Every x ∈ D(A) has a unique expression x =
∑∞

k=1 Pkx and Ax =∑∞
k=1 µkPkx;
(H4) The mapping L : R × C → X (with C := C ([−τ, 0] : X)) is Ck-

smooth (k ≥ 4) and is given by

L(µ, ϕ) =

∫ 0

−τ

ϕ(θ)dη(µ, θ)

for any (µ, ϕ) ∈ R× C, for a function η(µ, .): [−τ, 0] → B(X,X) of bounded
variation. Moreover, L(µ, Pkϕ) ∈ Mk, k ≥ 1, ϕ ∈ C and L(µ,

∑∞
k=1 Pkϕ) =∑∞

k=1 L(µ, Pkϕ) for any ϕ ∈ C such that
∑∞

k=1 Pkϕ ∈ C, where Pkϕ is defined
by (Pkϕ)(θ) = Pkϕ(θ) for θ ∈ [−τ, 0];

(H5) g : R×C → X has k-th-continuous Fréchet derivatives with g(µ, 0) =
0 and Dg(µ, 0) = 0 for µ ∈ R;

(H6) There exists µ0 ∈ R and ω0 > 0 such that ±iω0 are simple charac-
teristic values of the linear equation
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·
u(t) +Au(t) = L(µ0, ut(.)) (8)

and all other characteristic values have negative real parts;
(H7) Transversality condition. If µ is near µ0 the eigenvalues of the corre-

sponding problem (8) are given by λ(µ) = α(µ) + iω(µ), λ(µ0) = iω0, λ(µ) is
Ck-smooth in µ and

α′(µ0) ̸= 0.

Remark 1. A careful reading of the proof of Theorem 2.1 of [23] allows to see
that the use of the same notation ut in the terms L(µ, ut(.)) and g(ut(.)) does
not needs that the kernels envolved in each of the possible nonlocal terms be
exactly the same. So, in particular, the conclusion remains valid in the special
case in which g(ut(.)) = g(u(.)), i.e., without delay or neutral term.

3.2 Applications of the abstract result to the delayed
CGLE on a bounded domain

Motivated by the special form of the nonlinear term of the equation in (P2)
we shall take X = L4(Ω) and Y = L4/3(Ω). A detailed analysis of the
associated diffusion operator is consequence of some previous results in the
literature: see, e.g., Amann [1]. Notice that the operatorAu can be formulated
matricially as (

u1

u2

)
→
(

∆ −β∆
β∆ ∆

)(
u1

u2

)
.

So, if β ̸= 0 the diffusion matrix has a nonzero antisymmetric part. In particu-
lar, A is the generator of a semigroup of contractions {T (t)}t≥0 on X and the
compactness of the semigroup is consequence of the compactness of the in-
clusion D(A) ⊂ X (notice that, since N = 2, W1,4(Ω) ⊂ W1,4/3(Ω) ⊂ C(Ω)
with compact imbedding) and some regularity results for nonsymmetric sys-
tems. A study of the eigenvalues of A can be found, e.g., in Temam [20].

Concerning the rest of the terms of the equation in (P2), we define g(u) =

−(1 + iα) |u|2 u with D(g) = L12(Ω). By using the characterization of the
semi inner-braket [, ] for the spaces Lp(Ω) (see, e.g., Benilan, Crandall and
Pazy [5]) it is easy to see that B = −g is an accretive operator on X, which
is dominated by A; i.e.,

DX(A) ⊂ DX(B) and |Bu| ≤ k
∣∣A0u

∣∣+ σ(|u|)

for any u ∈ DX(A), some k < 1 and some continuous function σ : R → R.
Here and in what follows, |.| denotes the norm in the space X (in contrast

to the norm in space C which will be denoted by ∥.∥ if there is no ambiguity,
when handling two spaces X and Y the corresponding norms will be indi-
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cated),
∣∣A0u

∣∣ := inf{|ξ| : ξ ∈ Au} for u ∈ DX(A). In particular, the operator
A+B is also an accretive operator on X.

In order to calculate the Fréchet differential of Nemitsky operator g(u), it
is useful to start analyzing the Gateaux derivative of the complex function
h(z) := ∥z∥2 z in the direction of an arbitrary vector v of C

lim
β∈R
|β|→0

h(z0 + βv)− h(z0)

|β|
= z20v + 2 ∥z0∥2 v.

Then, we identify the Fréchet differential of operator g(u) as

DB(y)v = (1 + iα)[y2v + 2 ∥y∥2 v]. (9)

Since we have ∥DB(y)∥ ≤ c ∥y∥2 , by the results on the Fréchet differ-
entiability of Nemitsky operators (see Theorem 2.6 (with p = 4) of Am-
brosetti and Prodi [2]) we get that, if we take Y = L4/3(Ω), then exists
δB > 0 such that B is Fréchet differentiable as function from BδB (w) ={
z ∈ D(B); |w − z| < δB

}
into Y , and that the Fréchet derivative is locally

Lipschitz continuous.
The nonlocal term is defined by

F (ut) = (1 + iθ)u(t)

+ µeiξ
[
m1u(t) +m2⟨u(t)⟩+ ei(ω+θ)τ (m3u(t− τ) +m4⟨u(t− τ)⟩)

]
,

is locally Lipschitz continuous and its Fréchet derivative is given by

DF (ŷ) v(t) = −(1 + iθ)v(t)

− µeiξ
[
m1v(t)+m2⟨v(t)⟩ − ei(ω+θ)τ (m3v(t− τ)−m4⟨v(t− τ)⟩)

]
.

In consequence, the operator y → Ay+DB(w)y−DF (ŵ)
(
eω

∗·y
)
belongs

to A(ω∗ : Y ), for some ω∗ ∈ C with Reω∗ = γ∗ < 0. This means that
the operator y → Ay + DB(w)y − DF (ŵ)

(
eω

∗·y
)
+ ω∗y is accretive in Y =

L4/3(Ω). We recall (see Ambrosetti and Prodi [2]) that this differentiability
of B does not hold if we take X = Y = L2(Ω).

We also recall that in [6] the existence (and uniqueness) of a mild solution
of problem (P2) was obtained through a pseudolinearization argument near
a stationary solution ŵ:

Theorem 1 ([6]). Assume (H1)− (H7). Then there exists α > 0, β > 0 and
M ≥ 1 such that if u0 ∈ BX

β (ŵ), u0(s) ∈ DX(B) for any s ∈ [−τ, 0] then the
solution u(· : u0) of (8) exists on [−τ,+∞) and

|u(t : u0)− w| ≤ Me−αt ∥u0 − ŵ∥ , for any t > 0.
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Moreover, there exists α∗ > 0, β∗ ∈ (0, β] and M∗ ≥ 1 such that if u0 ∈
BX∩Y

β∗ (ŵ), u0(s) ∈ DX(B)∩ DY (B) for any s ∈ [−τ, 0] then, for any t > 0,

|u(t : u0)− w|X + |u(t : u0)− w|Y ≤ M∗e−α∗t(∥u0 − ŵ∥X + ∥u0 − ŵ∥Y ).

We can get better a priori estimates on the sup norm of the solution u
if we assume more regular initial data in such a way that u0 ∈ BX∩Y

β∗ (ŵ),
u0(s) ∈ D(A) ∩ DX(B)∩ DY (B) for any s ∈ [−τ, 0] . Indeed, the solution
can be found (after technical arguments) as a fixed point for the application
f → Q1(Q2(f)), with w = Q2f (for f ∈ W 1,1(0, T : X), for any arbitrary
T > 0) being the solution of the problem{

dw
dt (t) +Aw(t) +B(w(t)) = f(t) in X,
w(0) = w0,

and Q1 a suitable operator (see [21], Theorem 5.3.1). Since X is a reflexive
Banach space, we know (see, e.g., [5], Lemma 7.8) that w0 ∈ D(A)∩DX(B)
implies that w(t) ∈ D(A) ∩DX(B) for a.e. t ∈ (0, T ) and that

∥Aw(t)∥X ≤ C(∥Aw0∥X + ∥B(w0)∥X , ∥f∥W 1,1(0,T :X)).

Thus, by the Sobolev imbedding theorems we know that

∥w(t)∥C(Ω) ≤ M

for a.e. t ∈ (0, T ) withM = M(∥Aw0∥X+∥B(w0)∥X , ∥f∥W 1,1(0,T :X)). In par-

ticular, this property remains true for the fixed point of Q1(Q2(f)) (see [21],
Theorem 5.3.1) and thus

∥u(t)∥C(Ω) ≤ M∗

for a suitable M∗ = M ∗ (∥Au0∥C([−τ,0];X) + ∥B(w0)∥C([−τ,0];X) , F ). In con-
sequence, without any loss of generality we can replace function g by the
truncated one gM∗(u):

gM∗(u) =

 −(1 + iα) |u|2 u if |u| ≤ M∗,

−2(1 + iα) (2M∗)
2
u if |u| ≥ M∗,

and with gM∗(u) a Ck-smooth function generating an accretive operator
BM∗= −gM∗ on X dominated by A as before. This proves that, at least for
regular initial data, u coincides with the solution of{

du
dt (t) +Au(t) = L(µ, ut(.)) + gM∗(ut(.)) in X,
u(s) = u0(s) s ∈ [−τ, 0].

Thanks to this argument we can verify now the assumption (H5) since by the
results of Ambrosetti and Prodi (see [2], Sect. 3, Chap. 1) we know that the
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Nemitsky operator associated to gM∗ has k-th-continuous Fréchet derivatives
on any Lp(Ω), p > 1.

Remark 2. By introducing the representation operator P : R2 → C, P(ρ,ϕ) =
ρeiϕ it is clear that the quasilinear operatorAP(q) obtained from the operator
Au=-(1+iβ)∆u satisfies also condition A ∈ A(ω) (since P is merely a change
of variables). We point out that

AP(q) = −(1 + iβ)[∆ρ− ρ |∇ϕ|2 + i(2∇ρ · ∇ϕ+ ρ∆ϕ)]eiϕ.

Then, the formal linearization of the operator E(q) := AP(q) at q∗(x, y) :=
y ≡ ρ0 becomes

DE(q∗)(ρeiϕ) = −(1 + iβ)[∆ρ+ iρ0∆ϕ]eiϕ.

Notice that the linearization of C(q)−1AP(q) needs a slight modification
of the above linear expression. Nevertheless by applying the representation
operator P, after the linearization used in the abstract theorem, we get a
curious result relating two nonlinear problems which are closed (in some
sense) in the same spirit as the pseudo-linearization principle obtained in [6].

3.3 Some comments on the associated transversality
assumption

Concerning problem (P2), we give an outline of the study of eigenvalues and
its implications on the associated transversality condition. The eigenvalue
equation can be obtained by a linearization argument involving the Fréchet
derivative of the nonlinear part, as in the preceding section.

As usual, the linear structure of the equation leads to the search of non-
trivial solutions z(x) of the form Akw

j
k(x), with j = 1, 2, where wj

k(x) are
the eigenfunctions for the usual Laplacian operator ∆ with periodic bound-
ary conditions on Ω = (0, L1)× (0, L2). The eigenvalues of this problem are
given by

λ0
0 = 0, λ0

k = 4π

(
k21
L2
1

+
k22
L2
2

)
; k1, k2 ∈ N

with the associate eigenfunctions

w0 =
1√
|Ω|

, w1
k =

√
2

|Ω|
cos 2πkx, w2

k =

√
2

|Ω|
sin 2πkx, with |Ω| = L1L2,

where we have written kx :=
(

k1

L1
x1 +

k2

L2
x2

)
. This study can be found in

Temam [20]. We introduce the notation λk = ak+ibk for the real and imagi-
nary parts of the eigenvalues of the problem, and taking into account Fréchet
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derivative of the nonlinear part (9), the eigenvalue equations for the prob-
lem (P2) are

(ak + ibk)[vr + ivi]− (1 + iβ)(−λk)[vr + ivi] =

(1 + iθ)[vr + ivi]− (1 + iα)[3ρ20vr + iρ20vi]+

µeiξ
[
m1 +m2δ0k + e−aτ+i(ω+θ−b)τ (m3 +m4δ0k)

]
[vr + ivi],

where vr and vi are the real and imaginary parts of the linearization v, and
δ0k denotes the Kronecker delta function. We arrive at

akvr − bkvi = −λ0
kvr + βλ0

kvi +
([
1− 3ρ20

]
vr +

[
αρ20 − θ

]
vi
)
+

µ(m1 +m2δ0k) [vr cos ξ − vi sin ξ] + {µe−akτ (m3 +m4δ0k)

[cos(ξ + (ω + θ − bk)τ)vr − sin(ξ + (ω + θ − bk)τ)vi]} ,

bkvr + akvi = −βλ0
kvr + λ0

kvi + (vi + θvr)−
[
ρ20vi − 3αρ20vr

]
+

µ(m1 +m2δ0k) [vr sin ξ + vi cos ξ] + {µe−akτ (m3 +m4δ0k)

[sin(ξ + (ω + θ − bk)τ)vr + cos(ξ + (ω + θ − bk)τ)vi]}

To show the procedure, without loss of generality, we consider the case

m3 +m4δ0k = 0. (10)

This represents a special, and important, choice of the combination of instan-
taneous and delayed terms in the global feedback, none of them necessarily
zero. The equations for the eigenvalues become

akvr − bkvi = −λ0
kvr + βλ0

kvi +
([
1− 3ρ20

]
vr +

[
αρ20 − θ

]
vi
)
+

µ(m1+m2δ0k) cos ξvr − µ(m1+m2δ0k) sin ξvi

bkvr + akvi = −βλ0
kvr + λ0

kvi + (vi + θvr)−
[
ρ20vi − 3αρ20vr

]
+

µ(m1+m2δ0k) sin ξvr + µ(m1+m2δ0k) cos ξvi

If we call

C1

(
µ,m1,m2, ξ, λ

0
k

)
= 1− λ0

k − µ(m1 +m2δ0k) cos ξ,

C2

(
µ,m1,m2, ξ, λ

0
k

)
= 1 + λ0

k + µ(m1 +m2δ0k) cos ξ,

D
(
β, µ,m1,m2, ξ, λ

0
k

)
= −βλ0

k + µ(m1 +m2δ0k) sin ξ,

we obtain{ (
ak −

[
C1 − 3ρ20

])
vr −

(
bk +

[
αρ20 − θ −D

])
vi = 0(

bk −
[
−3αρ20 + θ +D

])
vr +

(
ak −

[
C2 − ρ20

])
vi = 0
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The compatibility of this system implies

det

(
ak −

[
C1 − 3ρ20

]
−bk −

[
αρ20 − θ −D

]
bk −

[
−3αρ20 + θ +D

]
ak −

[
C2 − ρ20

] )
= 0,

that is { (
ak −

[
C1 − 3ρ20

]) (
ak −

[
C2 − ρ20

])
=(

bk −
[
−3αρ20 + θ +D

]) (
bk +

[
αρ20 − θ −D

])
.

(11)

This expression is of the same type as (6) and, similarly, there is no general
analytic solution for ak and bk. Thus, Eq. (11) must also be solved numerically
for a given set of parameters, to find the numerical values of the eigenvalues as
in the equation (6). One of the relevant parameter spaces of the representation
is the one of (τ, µ) because they are the parameters of the perturbation.

Although the explicit analytical representation of the functions ak and
bk is not possible, we can still say something analytic in the study of the
transversality, already proved by the numerical computation of Sect. 3. From
the equation (11), it is possible to find the implicit derivative[

d

dτ
ak

]
ak=0

.

The analytic computation are rather involved. We show how to proceed in a
simpler, and still very important example

m1+m2δ0k = 0, (12)

where a remark similar as the one made for the expression (10) remains valid,
in this case for the local part of the perturbation. For the case (12), we have

C1

(
µ,m1,m2, ξ, λ

0
k

)
= 1− λ0

k,

C2

(
µ,m1,m2, ξ, λ

0
k

)
= 1 + λ0

k,

D
(
β, µ,m1,m2, ξ, λ

0
k

)
= −βλ0

k.

If we expand Eq. (11) for this case,{
a2k − 2

[
1− 2ρ20

]
ak +

([
1− λ0

k − 3ρ20
] [

1 + λ0
k − ρ20

])
=

−b2k + 2
[
−βλ0

k + αρ20 + θ
]
bk +

([
−βλ0

k + 3αρ20 + θ
] [
+βλ0

k + αρ20 − θ
])

,

and differentiate implicitly
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2ak
d
dτ ak − 2

[
1− 2ρ20

]
d
dτ ak − ak

d
dτ

(
2
[
1− 2ρ20

])
+

d
dτ

(
1−

(
λ0
k

)2 − 2
[
2 + λ0

k

]
ρ20 + 3ρ40

)
=

−2bk
d
dτ bk + 2

[
−βλ0

k + αρ20 + θ
]

d
dτ bk − bk

d
dτ

(
2
[
−βλ0

k + αρ20 + θ
])

+

d
dτ

([
−βλ0

k + 3αρ20 + θ
] [
+βλ0

k + αρ20 − θ
])

.

The derivative of the real part ak in the value ak = 0 can be written as

[
−2(1− 2ρ20)

d
dτ ak

]
ak=0

=[
− d

dτ

(
1−

(
λ0
k

)2 − 2
[
2 + λ0

k

]
ρ20 + 3ρ40

)]
ak=0

+2
[
−bk

d
dτ bk +

[
−βλ0

k + αρ20 + θ
]

d
dτ bk − bk

d
dτ

([
−βλ0

k + αρ20 + θ
])]

ak=0

+
[

d
dτ

([
−βλ0

k + 3αρ20 + θ
] [

+βλ0
k + αρ20 − θ

])]
ak=0

.

The coefficient of the derivative of ak,

−2(1− 2ρ20) = −2 [1− 2(1 + µ cos ξ)] = 2(1 + 2µ cos ξ)

does not vanish either for stability reasons as can be seen, e.g., in [6] and
references therein.
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