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1. Introduction

This work is an extension, to two-dimensional domains, of a previous work [14] deal-
ing with the stabilization of the uniform oscillations for the complex Ginzburg-Landau
equation. This stabilization will take place by means of some global delayed feedback.We
consider the case in which the domain is Ω = (0, L1) × (0, L2) with periodic boundary
conditions. We define the faces of the boundary.and the problem as follows

Γj = ∂Ω ∩ {xj = 0} ,Γj+2 = ∂Ω ∩ {xj = Lj} , j = 1, 2,

(P1)


∂u
∂t
− (1+ iε)∆u = (1− iω)u− (1+ iβ) |u|2 u+µeiχ0F(u, t, τ ) Ω× (0,+∞),

u|Γj
= u|Γj+2

,
³
− ∂u

∂−→n
¯̄
Γj
=
´

∂u
∂xj

¯̄̄
Γj

= ∂u
∂xj

¯̄̄
Γj+2

³
= ∂u

∂−→n
¯̄
Γj+2

´
, ∂Ω× (0,+∞),

u(x,s) = u0(x, s) Ω× [−τ, 0],
where −→n is the outpointing normal unit vector,and

F(u, t, τ) = [m1u(t)+m2u(t)+m3u(t− τ, x)+m4u(t− τ )] with u(s) =
1

|Ω|
Z
Ω

u(s, x)dx.

Here the parameters ε, β, ω, µ, χ0, mi and τ are real numbers, in contrast with the solution
u(x, t)=u1(x, t) + iu2(x, t). We point out that most of our results remain true for N-
dimensional domains (with N > 2) as well as for Neumann boundary conditions.
This type of equations (called as of Stuart-Landau in absence of the diffusion term) arise

in the study of the stability of reaction diffusion equations such as ∂X
∂t
−D∆X = f(X :η)

where X : Ω× (0,+∞)→ Rn and η is a real scalar parameter when the deviation v from
the uniform state solutionX∞ is developed asymptotically in terms of some multiple scales
(see [20]). Coefficient ε measures the degree to which the diffusion matrixD deviates from
a scalar.
Notice that the presence of complex coefficients introduces important differences with

the classical Ginzburg-Landau equations arising in superconductivity [9].
With the basis of a sound experimental work, many recent studies of a more descriptive

nature, but of a great originality and interest have been written. In those studies the
delay term F(u, t, τ) has been taken corresponding to m4 = 1, mi = 0 for i = 1, 2, 3 and
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introduced as a control mechanism (see [6], [22]). Our main goal is to carry out a rigorous
analysis of those studies We also want to investigate the possibility of controlling the
turbulence by using other terms (see Remark 4). In particular our treatement does not
use the Fourier transform, apparently hard to be rigourously justified in this setting.
We focus our attention on the so called slowly varying complex amplitudes defined by

u(x, t) = v(x, t)e−iωt. Thus, v satisfy

(P2)


∂v
∂t
− (1+ iε)∆v = v−(1+ iβ)|v|2 v+

+µeiχ0 [m1v+m2v+e
iωτ(m3v(t− τ, x)+m4v(t− τ ))]

in Ω× (0,+∞),
v|Γj

= v|Γj+2
,
³
− ∂v

∂−→n
¯̄
Γj
=
´

∂v
∂xj

¯̄̄
Γj

= ∂v
∂xj

¯̄̄
Γj+2

³
= ∂v

∂−→n
¯̄
Γj+2

´
, on ∂Ω× (0,+∞),

v(x,s) = u0(x, s)e
iωs on Ω× [−τ, 0].

(1)

We study the stability of uniform oscillations, i.e., special solutions of (P2) of the form
vuosc(x, t) = ρ0e

−iθt which determines completely ρ0 and θ. As we shall see, the only effect
of the delay τ is that it controls the effective phase shift χ(τ ).
In absence of delay (τ = 0), and for |Ω| = +∞ and µ = 0, it is known (see [20] and

[22]) that the Benjamin-Feir condition β < −1
ε
implies the instability of such uniform

oscillations. Here we shall assume merely that

β ≤ 0 and ε ≥ 0 (2)

and we shall prove that this instability holds, in absence of delay, for L < +∞ once
χ0 ∈ (π2 , 3π2 ) and µ > 1

|cosχ0| . Moreover, we shall also prove that when τ > 0 is suitably
chosen then the uniform oscillation becomes linearly stable. We point out that the above
stabilization phenomenon requires a non zero complex component perturbation (notice
that χ0 can not be zero) and that it applies to the case of µ > 0 and ε = β = ω = 0.
We start by pointing out that the existence and uniqueness of a solution of (P1) can be

proven once we assume that u0∈ C([− τ, 0] : L2(Ω)) (see [17]).
We are interested in the stability analysis of the time-periodical function vuosc(x, t) =

ρ0e
−iθt. In order to avoid the application of techniques for the study of the stability of

periodic solutions we can reduce the study to the stability of stationary solutions of some
auxiliary problem by introducing the change of unknown z(x, t) = v(x, t)eiθt where v(x, t)
is a solution of (P2). Thus z(x, t) satisfies

(P3)


∂z
∂t
− (1+ iε)∆z = (1+ iθ)z−(1+ iβ) |z|2 z+

+µeiχ0
£
m1z+m2z+e

i(ω+θ)τ(m3z(t− τ, x)+m4z(t− τ ))
¤ in Ω× (0,+∞),

z|Γj
= z|Γj+2

,
³
− ∂z

∂−→n
¯̄
Γj
=
´

∂z
∂xj

¯̄̄
Γj

= ∂z
∂xj

¯̄̄
Γj+2

³
= ∂z

∂−→n
¯̄
Γj+2

´
, on ∂Ω× (0,+∞),

z(x,s) = u0(x, s)e
i(ω−θ)s on Ω× [−τ, 0].

(3)

Now, vuosc(x, t) = ρ0e
−iθt is an uniform oscillation if and only if z(x, t) = vuosc(x, t)eiθt =

z∞ = ρ0 is an stationary solution of (P3): i.e.

0 = (1+ iθ)z∞ − (1+ iβ) |z∞|2 z∞+µeiχ0
£
m1+m2+e

i(ω+θ)τ(m3+m4)
¤
z∞. (4)
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In order to keep some resemblance with [6] we shall assume that

m1+m2 = 0 and m3+m4 = 1 (5)

Then we get the expressions ρ0(τ) = (1 + µ cosχ(τ ))1/2, where χ(τ ) = χ0 + (ω + θ(τ ))τ
and with θ(τ ) given as the solution of the implicit equation

θ = β − µ(sin (χ0 + (ω + θ) τ)− β cos (χ0 + (ω + θ) τ )). (6)

Notice that if µ = 0 we deduce that ρ0(τ ) = 1 and that θ(τ ) = β for any τ and that
ρ0(0) = (1 + µ cosχ0)

1/2, θ(0) = β − µ(sinχ0 − β cosχ0). It is not difficult to prove (see
below) the existence and uniqueness of such a function θ(τ ) and that θ ∈ C1.

2. Main result

Theorem 1 Assume (2), (5), χ0 ∈ (π, 3π2 ),

3−m1 − 2m3 ≥ 0, m1 +m3 ≥ 0, 3 + 2m3 > 0, (7)

µ > max{ 1

|cosχ0| ,
3β − ω + 3(ω + β) sinχ0 + cosχ0

5(−β) sinχ0 cosχ0 + 1
,

m3(3β − ω − επ
2

L2
) + 3(ω + β) sinχ0 + (m1 +m3) cosχ0

(3−m1 − 2m3) sin
2 χ0 + (m1 +m3) cos2 χ0 + (−β)(3 + 2m3) sinχ0 cosχ0

}.

Then there exists some τ0 ∈ (0, 1) such that if we assume τ ∈ (τ0, 1) we get that

|v(x, t)− ρ0| ≤Me−αt
°°u0(·, ·)eiω. − ρ0

°° .
For the proof we shall first introduce a new and quite general pseudo-linearization

principle. Then, we shall show the applicability of it to the delayed problem and, at the
end, we shall study the eigenvalues of the linear part to find the range of parameters for
the stability of the linear part.

2.1. A pseudo-linearization principle
We are interested in the study of the stabilization, as t → ∞, of the solutions of the

nonlinear abstract functional differential equation½
du
dt
(t) +Au(t) +Bu(t) 3 F (ut(.)) in X,

u(s) = u0(s) s ∈ [−τ, 0]. (8)

on a Banach space X, where

ut(θ) = u(t + θ), θ ∈ [−τ, 0] ,

to the associated equilibria: w ∈ D(A) ⊂ D(B) ⊂ X such that

Aw +Bw 3 F ( bw(.)),
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where bw ∈ C := C ([−τ, 0] : X) is the function which takes constant values equal to w.
Our main goal is to extend, to a broad class of nonlinear operators A, the usual linearized
stability principle saying, roughly speaking, that for the special case of A linear (single
valued) and B and F are differentiable, the asymptotic stability of the zero solution of
the linearized equation,

½
dv
dt
(t) +Av(t) + DB(w)v(t) = DF ( bw)vt(.) in X,

v(s) = u0(s) s ∈ [−τ, 0]. (9)

implies that u(t : u0) → w as t → ∞, at least if u0(.) is close enough to bw. We point
out that our results seem to be new even without the delayed and nonlocal term (i.e. for
F ≡ 0).
The motivation to keep A nonlinear after the process of linearization (reason why

we used the term of pseudo-linearization principle) comes from the fact that if we use
the representation for the unknown of the delayed nonlinear equation (P3) as z(x, t) =
ρ(x, t)eiφ(x,t) then we arrive to a coupled nonlinear system of delayed equations for ρ
and φ which can be described in terms of the representation operator given by P :
R2 → C, P(ρ,φ) = ρeiφ. Indeed, notice that P is nonlinear and that if q = (ρ,φ) then
z(x, t) = P(q(x, t)) and the (P3) can be formulated as

dP(q(·,t))
dt

+AP(q(·, t))+BP(q(·, t)) =
F (P(q(·))t). By using that the matrix C(q(·, t))=gradP(q(·, t)) is not singular, we can
arrive to the simpler formulation

dq

dt
(·, t) +C(q(·,t))−1[AP(q(·, t))+BP(q(·, t))] = C(q(·,t))−1F (P(q(·))t). (10)

Notice that, although this delayed system can be also (formally) linearized (this is
the procedure followed in Battogtokh and Mikhailov [6] and Mertens et al. [22] the
above diffusion operator C(q(·,t))−1AP(q(·,t)) becomes now quasilinear on q and thus
the mathematical justification is much more delicate.
There are some others linearization principles in the literature. Their motivation is

usually a particular problem, but its applicability is wider. Close to ours we can mention
that of W. M. Ruess [25], although the formulation, scope and proof are different. Besides
its applicability to the problem in this work, ours can be also applied to the case in which
A is nondifferentiable and nonlinear, among many others (see A. C. Casal and J. I. Díaz
[13]).
We point out that some relevant examples of nonlinear functional equations arise in

the most different contexts (see, for instance, Díaz and Hetzer [16] for one example in
Climatology, Chukwu [15] for a family of examples dealing with the wealth of nations and
the general exposition made in Hale [18]).
Coming back to the abstract formulation, the structural assumptions we shall assume

in this paper are the following

(H1): A ∈ A(ω : X), for some ω ∈ C, with
A(ω : X) = {A : DX(A) ⊂ X → P(X) such that A+ωI is a m-accretive operator},
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(see Brezis [11] for the case of X = H a Hilbert space and the works by Benilan, Crandall,
Pazy and others for the case of a general Banach space: see the monographs [8] and [27]),

(H2): the operators semigroup T (t) : Dx(A)
X → X, t ≥ 0, generated by A, is compact

(see Vrabie [27]),

(H3): B ∈ A(0 : X), B is single valued, Fréchet differentiable, and B is dominated by
A; i.e.

DX(A) ⊂ DX(B) and |Bu| ≤ k |A0u|+ σ(|u|)
for any u ∈ DX(A) and for some k < 1 and some continuos function σ : R→ R,

(11)

where, here and in what follows, |.| denotes the norm in the space X (in contrast with the
norm in space C which will be denoted by k.k if there is no ambiguity, when handling two
spaces X and Y the corresponding norms will be indicated), |A0u| := inf{|ξ| : ξ ∈ Au}
for u ∈ DX(A),
(H4): F : C → X satisfies a local Lipschitz condition, i.e.,

½
for any R > 0 there exists L (R) > 0 such that
|F (φ)− F (ψ)| ≤ L (R) kφ− ψk for any φ, ψ ∈ C and kφk , kψk ≤ R.

(12)

(H5): there exists δF > 0 such that F : BXδF ( bw) → X is Fréchet differentiable with
the Fréchet derivative DF (bw) given by D(F (bw))φ =

R 0
−τ dη(θ)φ(θ), φ ∈ C, for

η : [−τ, 0] → B(X,X) of bounded variation and the Fréchet derivative is locally
Lipschitz continuous, where BXδF (bw) = ©φ ∈ C; kφ− bxk < δF

ª
,

We further assume the main condition of our arguments:

(H6): the operator y → Ay + By − DF ( bw) (eω·y) belongs to A(ω : X), for some ω ∈ C
with Reω = γ < 0 where eω.v ∈ C is defined by

(eω·v)(s) = eωsbv(s), with bv(s) = v, for any s ∈ [−τ, 0], for v ∈ X. (13)

In order to treat the case in which B is differentiable we introduce the conditions

(H7): there exists a Banach space Y and there exists δB > 0 such that B is Fréchet
differentiable as function from BδB(w) =

©
z ∈ D(B); |w − z| < δB

ª
into Y , with

the Fréchet derivative DB(w) locally Lipschitz continuous,

and

(H8) the operator y → Ay + DB(w)y − DF ( bw) ¡eω∗·y¢ belongs to A(ω∗ : Y ), for some
ω∗ ∈ C with Reω∗ = γ∗ < 0.
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2.2. The abstract result
Theorem 2 Assume (H1)-(H6). Then there exists α > 0, ε > 0 and M ≥ 1 such that if
u0 ∈ BXε ( bw), u0(s) ∈ DX(B) for any s ∈ [−τ, 0] then the solution u(· : u0) of (8) exists
on [−τ,+∞) and

|u(t : u0)− w| ≤Me−αt ku0 − bwk , for any t > 0. (14)

Moreover, if we also assume (H7), that (H1)-(H5) holds on the space Y and (H8) then
there exists α∗ > 0, ε∗ ∈ (0, ε] and M∗ ≥ 1 such that if u0 ∈ BX∩Yε∗ (bw), u0(s) ∈ DX(B)∩
DY (B) for any s ∈ [−τ, 0] then

|u(t : u0)− w|X+ |u(t : u0)− w|Y ≤M∗e−α
∗t(ku0 − bwkX+ku0 − bwkY ), for any t > 0.

(15)

Proof. From assumptions (H4) and (H5)

F (φ) = F (bw) + DF ( bw) (φ− bw) +GF (bw, φ), for any φ ∈ BXδF ( bw).
Moreover since DF (bw) is locally Lipschitz continuous, there exists a continuous increasing
functions bFX such that¯̄

GF ( bw, φ)¯̄ ≤ bFX(kφ− bwk) kφ− bwk , for any φ ∈ BXδF (bw). (16)

Then

du

dt
(t)− dw

dt
+Au(t)− Aw +Bu(t)−Bw −DF (bw)(ut − bw) 3 −GF ( bw, ut). (17)

We now use assumption (H6). We claim that we can find a constant constant K ≥ 1 and
such that

kut − bwk ≤ Keγt ku0 − bwk+ Z t

0

Keγ(t−s)
¯̄
GF (bw, us)¯̄ ds. (18)

Indeed, as u(t) and w are “integral solutions” in the sense of Benilan (see. e.g. [8]), then,
by (H6), if we multiply (17) by u(t) − w (by using the usual semi inner-braket [, ]: see,
for instance Benilan, Crandall and Pazy [8] or Vrabie [27] (Section 1.4)) we get that

|u(t)− w| ≤ Keγ(t−t0) |u(t0)− w|+
Z t

t0

Keγ(t−s)
¯̄
GF (bw, us)¯̄ ds (19)

for any t ≥ t0 ≥ 0 (see, for instance, Benilan, Crandall and Pazy [8] or Vrabie [27]
Theorem 1.7.5). Then,

|u(t)− w| ≤ Keγt ku0 − bwk+ Z t

0

Keγ(t−s)
¯̄
GF ( bw, us)¯̄ ds (20)

for any t ≥ 0. Finally, since (20) holds trivially for t ∈ [−τ, 0] we get (18) by taking the
maximum, in (19), on intervals of the form [t− τ, t] for any t ≥ 0.
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Now, let R ∈ (0, δF ) be chosen so that
bFX(R) < (−γ)/(4K). (21)

Define ε = min
©
R/(2K), δFX

ª
. Let us show that if u0 ∈ BXε ( bw) then the associated

solution u of (8) exists and kut − bwk < R for all t ≥ 0. Thanks to assumption (H2) we
can apply some maximal continuation results (see, for instance, Chapter 3 of Vrabie [27],
or Chapter 2 of Wu [28] when A is linear), it suffices to show that there exists no t1 > 0
so that kut1k = R and kutk < R for t ∈ [0, t1). By contradiction, if there exists such a
t1, then on [0, t1] we have

kut − bwk ≤ Keγt ku0 − bwk+ Z t

0

Keγ(t−s)
¯̄
GF (bw, us)¯̄ ds

≤ Keγt ku0 − bwk+ 2KbFX(R)

Z t

0

eγ(t−s) kus − bwk ds.
In particular, at t = t1 we have

kut1 − bwk ≤ Kε+
2KbFX(R)

(−γ) R ≤ R,

a contradiction to the choice of t1.
Finally, to end the proof, let u0 ∈ BXε (bw), u0(s) ∈ DX(B) for any s ∈ [−τ, 0] and let u
the associated solution of (8). Since we have shown that kut − bwk ≤ R for all t ≥ 0 we
get that

kut − bwk ≤ Keγt ku0 − bwk+KbFX(R)

Z t

0

eγ(t−s) kus − bwk ds (22)

holds for all t ≥ 0. Thus, by using the Gronwall’s inequality, we get
kut − bwk ≤ Ke[γ−Kb(R)]t ku0 − bwk

≤ Ke(γ/2)t ku0 − bwk , u0 ∈ BXε (bw)
which shows (14).
In order to show the decay estimate (15), we repeat the same arguments as before but
now on the space Y. Then, from assumptions (H3) on Y and (H7), there exist δFY and δ

B
X

such that

B(z) = B(w) + DB(w) (z − w) +GB(w, z), for any z ∈ BδB
X
(w),

F (φ) = F (bw) + DF ( bw) (φ− bw) +GF (bw, φ), for any φ ∈ BYδF
Y

( bw).
where nowBδB

X
(w) =

©
z ∈ DX(B) ∩DY (B); |w − z| < δBX

ª
, BδF

Y
( bw) = ©φ ∈ C; kφ− bxkY < δFY

ª
and, as before, k.kY denotes the norm on the space CY := C ([−τ, 0] : Y ). Moreover, there
exists two continuous increasing functions bBX and b

F
Y such that¯̄

GB(w, z)
¯̄
Y
≤ bBX(|w − z|) |w − z| , for any z ∈ BδB

X
(w), (23)¯̄

GF ( bw, φ)¯̄
Y
≤ bFY (kφ− bwkY ) kφ− bwkY , for any φ ∈ BδFY ( bw). (24)
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Now

du

dt
(t)− dw

dt
+Au(t)−Aw+DB(w)(u(t)−w)−DF ( bw)(ut− bw) 3 GB(w, u(t))−GF (bw, ut).

(25)

Thus, by using (H8) and arguing as in the first part we get that there exists a constant
constant K∗ ≥ 1 such that

kut − bwkY ≤ K∗eγ
∗t ku0 − bwkY +Z t

0

K∗eγ
∗(t−s)(

¯̄
GB(w, u(s))

¯̄
Y
+
¯̄
GF ( bw, us)¯̄Y )ds (26)

and then, by taking δ = min(δBX , δ
F
Y ) and R

∗ ∈ (0, δ) such that
max(bBX(R

∗), bFY (R
∗)) < (−γ)/(4K), (27)

we obtain that

kut − bwkY ≤ K∗eγ
∗t ku0 − bwkY+K∗

Z t

0

eγ
∗(t−s)(bBX(R

∗) kus − bwkX+bFY (R∗) kus − bwkY )ds.
(28)

We define eR = min(R,R∗), eK = max(K,K∗), eγ = max(γ, γ∗) < 0 and ε∗ = minneR/(2 eK), δo .
Then, if u0 ∈ BX∩Yε∗ (bw), u0(s) ∈ DX(B)∩ DY (B) for any s ∈ [−τ, 0] and we assume, for
instance, that eγ = γ, by adding (22) and (28) we deduce that

kut − bwkX + kut − bwkY ≤ eKeγ̃t(ku0 − bwkX + e(γ
∗−γ)t ku0 − bwkY )+

eK Z t

0

eγ̃(t−s)[(bFX( eR) + bBX( eR)e(γ∗−γ)t) kus − bwkX + bFY (R
∗)e(γ

∗−γ)t kus − bwkY ]ds.
and the estimate (15) follows, again, by Gronwall’s inequality.¥

Remark 3 It is not difficult to show that the assumption (H8) is implied (when A is
linear) by the condition: “if λ ∈ C is given so that there exists y ∈ D(B)\ {0} such that
Ay + DB(w)y − λy 3 DF ( bw) ¡eλ·y¢ then Reλ > 0”. This allow to see Theorem 4.1 of
Wu [28] (see also Parrot [23] and its references) as an special case of our abstract result
with B = 0. In that case the “variation of the constants formula” can be used to get a
different proof of the theorem since A is linear. Notice that if B 6= 0 and D(B) Ã X then
the arguments of the proof of Wu [28] do not work (in spite of the claimed in the Example
4.8 given there).

Remark 4 When A is linear, as in the case without delay, assumption (H7) implies that
the zero solution of the linearized problem dU

dt
(t) + AU(t) + DB(w)U(t)-DF (bw)Ut(.) =

0 in X, is locally asymptotically stable (Wu [28]).

Remark 5 It is possible to prove the existence of global solutions for a general class of
initial data (not necessarily near bw) by using that A + B ∈ A(ω : X), for some ω ∈ C,
some truncation of the nonlocal term F (ut) and passing to the limit by the compactness
of the semigroup generated by A (see Vrabie [27] for some related results).
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An easy adaptation of the above proof leads to the following linearization result (now
on a possibly smaller neighborhood of w) when A is differentiable

Theorem 6 The conclusion of the above result remains true if we assume, additionally,
that condition (H7) also holds for A and we replace condition (H8) by

(H9): the operator y → DA(w)y + DB(w)y − DF (bw) (eω·y) belongs to A(ω), for some
ω ∈ C with Reω = γ < 0 ¥

Remark 7 We claim that our arguments keeping A nonlinear after linearizing the rest
of the terms (and in particular the way in which we apply Gronwall inequality) allow to
extend, to the case of quasilinear equations, the so called “method of quasilinearization”
which, introduced by Bellman and Kalaba [7], we used to find solutions of a parabolic
semilinear problem trough the iteration of solutions of the linearized equation when starting
in a super and a subsolution of the original semilinear problem (see, e.g., Lakshmikantham
and Leela [21], Carl and Lakshmikantham [12] and their references). This will be the
subject of a future work by the authors.

3. The complex Ginzburg-Landau equation

3.1. Applications of the abstract results
Motivated by the special form of the nonlinear term of the equation in (P3) we shall take

X = L4(Ω) and Y = L4/3(Ω) (notice that, in contrast with the case of scalar equations
(see Parrot [23]) the space L∞(Ω) is not suitable space to check assumption (H1): see [5].
A detailed analysis of the associated diffusion operator is consequence of some previous
results in the literature: see, for instance, Amann [3]. Notice that the operator Au can
be formulated matricially asµ

u1
u2

¶
→
µ

∆ −ε∆
ε∆ ∆

¶µ
u1
u2

¶
.

So, if ε 6= 0 the diffusion matrix has a non zero antisymmetric part. In particular, A
is the generator of a semigroup of contractions {T (t)}t≥0 on X and the compactness of
the semigroup is consequence of the compactness of the inclusion D(A) ⊂ X (notice
that, since N = 2, W1,4(Ω) ⊂ W1,4/3(Ω) ⊂ C(Ω) with compact imbedding) and some
regularity results for nonsymmetric systems.
Concerning the rest of the terms of the equation in (P3), we define Bu = (1+ iβ) |u|2 u

with D(B) = L12(Ω). By using the characterizarion of the semi inner-braket [, ] for
the spaces Lp(Ω) (see, for instance Benilan, Crandall and Pazy [8] it is easy to see that
B verifies (H3). Moreover, by the results on the Frechet differentiability of Nemitsky
operators (see Theorem 2.6 (with p = 4) of Ambrosetti and Prodi [4] we get that (H7)
holds, with DB(y)v = 3(1 + iβ) |y|2 v, if we take Y = L4/3(Ω). It can be found in the
above mentioned reference that assumption (H7) does not hold if we takeX = Y = L2(Ω).
The nonlocal term is defined by

F (ut) = (1+ iθ)u(t) + µeiχ0
£
m1u(t)+m2u(t) + ei(ω+θ)τ(m3u(t− τ )+m4u(t− τ ))

¤
,
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is locally Lipschitz continuous and its Frechet derivative is given by

DF (by)v(t) = −(1+iθ)v(t)−µeiχ0 £m1v(t)+m2v(t)−ei(ω+θ)τ(m3v(t− τ)−m4v(t− τ ))
¤

(29)

since for any φ ∈ C, the non-local operator φ → 1
|Ω|
R
Ω
φ(s)dx is linear and we can write

DF (by)φ = R 0−τ dη(s)φ(s), with
dη(s)v(s) = δ0(s)(1+iθ)v(s)+µe

iχ0
h
δ0(s)(m1v(s)+m2v(s))+e

i(ω+θ)τδ−τ (s)(m3v(s)+m4v(s))
i

(30)

for any v ∈C([−τ,∞): L4(Ω)) and any s ∈ [−τ,∞), where δ0(s), δ−τ(s) denote the Dirac
delta at the points s = 0 and s = −τ respectively. By well-known results, we have that
η : [−τ, 0] → B(X,X) has a bounded variation and so, conditions (H4) and (H5) hold
(and analougouly replacing X by Y ).
Finally, assumption (H6) can be read as a condition on the stationary state y (a study

of the eigenvalue of operator A can be found, for instance, in Temam [26].

Remark 8 By introducing the representation operator P : R2 → C, P(ρ,φ) = ρeiφ it
is clear that the quasilinear operator AP(q) obtained from the operator Au=-(1 + iε)∆u
satisfies also condition A ∈ A(ω) (since P is merely a change of variables). We point out
that,

AP(q)=− (1+ iε)[∆ρ− ρ |∇φ|2 + i(2∇ρ·∇φ+ ρ∆φ)]eiφ.

Then, the “formal linearization” of the operator E(q) := AP(q) at q∗(x, y) := y ≡ ρ0
becomes

DE(q∗)(ρeiφ) = −(1+ iε)[∆ρ + iρ0∆φ]e
iφ.

Notice that the linearization of C(q)−1AP(q) needs a slight modification of the above
linear expression.¥

3.2. Study of the eigenvalues of the linearized problem
In this section we shall study the eigenvalues λ ∈ C, λ = a+ ib of the linearized problem

and, which is crucial, we look for½
any λ ∈ C such that ∃ v ∈ D(A), v 6= 0, such that
0 = λv +Av +DB(w)v −DF ( bw)(eλ.v), and Reλ < 0,

(31)

where eλ.v ∈ C is defined by

(eλ.v)(s) = eλsbv(s), with bv(s) = v, for any s ∈ [−τ, 0]. (32)

As in the case without delay, (31) implies that the zero solution of the linearized problem
dU
dt
(t)+AU(t)+DB(w)U(t)-DF ( bw)Ut(.) = 0 in X, is locally asymptotically stable ([28]).



11

We go back now to the problems 1 and 3, and recall the expresions 4, 5 and 6

θ = β − µ(sin (χ0 + (ω + θ) τ)− β cos (χ0 + (ω + θ) τ )). (33)

Notice that if µ = 0 we deduce that ρ0(τ ) = 1 and that θ(τ ) = β for any τ and that
ρ0(0) = (1 + µ cosχ0)

1/2, θ(0) = β − µ(sinχ0 − β cosχ0). It is not difficult to prove (see
the following Proposition) the existence and uniqueness of such a function θ(τ) and that
θ ∈ C1.

Proposition 9 There exists a unique function θ(τ ) such that

θ(τ )− β + µ(sin (χ0 + (ω + θ(τ)) τ)− β cos (χ0 + (ω + θ(τ )) τ )) = 0

for any τ ∈ [0, 1]. Moreover θ ∈ C1.

Proof. It is enough to see, by the implicit function theorem, that θ(τ) is characterized as
the (unique) solution of the Cauchy problem associated to the ODE

dθ

dτ
(τ) =

−[µ(cos (χ0 + (ω + θ(τ)) τ) (ω + θ) + β sin (χ0 + (ω + θ(τ )) τ ))] (ω + θ(τ))

1+ µ(cos (χ0 + (ω + θ(τ )) τ ) τ + β sin (χ0 + (ω + θ(τ)) τ))τ
.

We recall that in our case, z∞ = ρ0 and so we can arrive to the linear problem

(P4)


−(1+ iε)∆z = −(a + ib)z+ [(1+ iθ)−3(1+ iβ)ρ20)]z

+µeiχ0
£
m1z+m2z+e

−aτ+i(ω+θ−b)τ(m3z+m4z)
¤

in Ω,
∂z

∂−→n = 0 on ∂Ω.

As usual, the linear structure of the equation leads to the search of nontrivial solutions
z(x) of the form Akw

j
k(x), with j = 1, 2, where wjk(x) are the eigenfunctions for the

usual Laplacian operator ∆ with periodic boundary conditions on Ω = (0, L1) × (0, L2)
We recall that the eigenvalues of this problem are given by

λ00 = 0, λ
0
k = 4π

µ
k21
L21
+

k22
L22

¶
; k1, k2 ∈ N

with the associate eigenfunctions

w0 =
1p|Ω| , w1k =

s
2

|Ω| cos 2πkx, w
2
k =

s
2

|Ω| sin 2πkx, with |Ω| = L1L2,

where we have written kx :=
³
k1
L1
x1 +

k2
L2
x2

´
(see, e.g., Temam [26]).

The following general Lemma will be used in the study of z(x)

Lemma 10 Let A be a selfadjoint operator on L2(Ω) and let {ϕn} be a family of eigen-
functions associated to the different eigenvalues {λ0n}. Assume that λ00 = 0 is an eigenvalue
and that ϕ0 = 1 is an eigenfunction associated to λ0. ThenZ

Ω

ϕn = 0 for any n 6= 0.
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It is enough to recall that
R
Ω
ϕnϕm = 0 for any n 6= m since λ0n 6= λ0m

λ0n

Z
Ω

ϕnϕm =

Z
Ω

Aϕnϕm =

Z
Ω

ϕnAϕm = λ0m

Z
Ω

ϕnϕm.

Then taking m = 0 we get the conclusion.¥
In order to keep a coherent notation with the one used in [6] we introduce the notation

λk = ak+ ibk for the real and imaginary parts of the eigenvalues of the problem stated in
(H8). Notice that, by the previous Lemma,

R
Ω
wjk = 0 for any k 6= 0 and j = 1, 2. Then

we get that

(ak + ibk)− (1 + iε) (−λk) = (1 + iθ)−3(1 + iβ)ρ20

+µeiχ0
h
m1+m2δ0k+e

−aτ+i(ω+θ−b)τ (m3+m4δ0k)
i

where δ0k denotes the Kronecker delta function. We arrive to
ak = −λ0k − 2− 3µ cosχ(τ) + µ(m1+m2δ0k) cosχ0+

+µe−akτ(m3+m4δ0k) cos(χ0 + (ω + θ − bk)τ),
bk = θ − ελ0k − 3β(1+ µ cosχ) + µ(m1+m2δ0k) sinχ0+

+µe−akτ(m3+m4δ0k) sin(χ0 + (ω + θ − bk)τ).

(34)

The previous equations are transcendent and we cannot get an explicit expression for
the real and imaginary part of the eigenvalues (for some similar transcendent equations
arising in delayed ODEs see [18]).
Now, we focus our attention in the dependence of ak and bk with respect to τ . So, by

the regularity of the involved functions we can assume

ak = ak0 + ak1τ + o(τ), bk = bk0 + bk1τ + o(τ),

as we get, for instance, by a “formal” series development in powers of τ argument. Here
we used the Landau notation (f(τ) = o(τ ) means that f(τ)

τ
→ 0 when τ → 0).

The terms of order zero in τ are obtained by making τ = 0 in (34)½
ak0 = − (2 + λ0k) + µ cosχ0(m1+m2δ0k+m3+m4δ0k)

bk0 = 4β − ελ0k + 3µβ cosχ0 + µ sinχ0(m1+m2δ0k +m3+m4δ0k).
(35)

So, we can state a first result concerning the case without any delay

Proposition 11 Assume τ = 0, χ0 ∈ (π2 , 3π2 ), and µ > 1
|cosχ0| . Then the uniform oscilla-

tion vuosc(x, t) = ρ0e
−iθt is linearly unstable.

From (35) we see that a00 > 0 and since τ = 0 we get the existence of at least one
eigenvalue λ of the linearized problem with Re(λ) > 0 which implies the result.
The first order terms in τ are calculated below

Lemma 12 We have

ak1 =
h
dak
dτ

i
τ=0

=
¡
2 + λ0k

¢
+ µ

£
3 (ω + β) sinχ0 + (m3+m4δ0k)

¡
3β − ελ0k − ω

¢¤
+µ2{−3 sin2 χ0 + 3β sinχ0 cosχ0+

+(m3+m4δ0k)
£
sin2 χ0 + 2β sinχ0 cosχ0+

+(m1+m2δ0k+m3+m4δ0k)] (sin
2 χ0 − cos2 χ0)}.

(36)
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Differentiating in (34) we get that

ak1=
h
dak
dτ

i
τ=0

=
h
3µ sinχ(τ)dχdτ

i
τ=0
+[(−ak)µe−akτ (m3+m4δ0k) cos(χ0 + (ω + θ − bk)τ)]τ=0

− [µe−akτ (m3+m4δ0k) sin(χ0 + (ω + θ − bk)τ)]τ=0

h
d(ω+θ−bk)τ

dτ

i
τ=0

=

= (3µ sinχ0) (ω + β − µ(sinχ0 − β cosχ0))−
− ¡− ¡2 + λ0k

¢
+ µ cosχ0(m1+m2δ0k+m3+m4δ0k)

¢
µ(m3+m4δ0k) cosχ0−

−µ(m3+m4δ0k)(ω + β − µ(sinχ0 − β cosχ0)− bk) sinχ0.

Thus, by using the expression for bk (see (34)) we obtain that

ak1 = (3µ sinχ0) (ω + β − µ(sinχ0 − β cosχ0))−
− (− (2 + λ0k) + µ cosχ0(m1+m2δ0k+m3+m4δ0k))µ(m3+m4δ0k) cosχ0−

−µ(m3+m4δ0k)(ω + β − µ(sinχ0 − β cosχ0)) sinχ0
(3µ sinχ0) (ω + β − µ(sinχ0 − β cosχ0))−

− (− (2 + k2) + µ cosχ0(m1+m2δ0k+m3+m4δ0k))µ(m3+m4δ0k) cosχ0−
−µ(m3+m4δ0k)(ω + β − µ(sinχ0 − β cosχ0)) sinχ0

+µ(m3+m4δ0k)(4β − ελ0k + 3µβ cosχ0 + µ sinχ0(m1+m2δ0k +m3+m4δ0k)) sinχ0.

In consequence

ak1 =
¡
2 + λ0k

¢
+ µ

¡
3 (ω + β) sinχ0 − (m3+m4δ0k) (ω + β) +

¡
4β − ελ0k

¢
(m3+m4δ0k)

¢
−µ2 ¡3 sinχ0(sinχ0 − β cosχ0) + cos2 χ0(m1+m2δ0k+m3+m4δ0k)(m3+m4δ0k)

¢−
+µ2(m3+m4δ0k) [(sinχ0 − β cosχ0) sinχ0 + (3β cosχ0 + sinχ0(m1+m2δ0k +m3+m4δ0k)) sinχ0]

which proves the result.

Proposition 13 Assume (2), χ0 ∈ (π, 3π2 ), (5) and

µ > max{0, 3β − ω + 3(ω + β) sinχ0 + cosχ0
5(−β) sinχ0 cosχ0 + 1

}.

Then a00 + a01 < 0.

By using (35), (36), and (5) we get

a00 + a01 = µ[(3β − ω + 3(ω + β) sinχ0 + cosχ0)− µ(5(−β) sinχ0 cosχ0 + 1)].

Then, the assumptions imply the positivity of the coefficient of µ2 and the result holds.

Proposition 14 Assume (2), χ0 ∈ (π, 3π2 ), (7) and

µ > max{0,
m3(3β − ω − ε4π

³
1
L21
+ 1
L22

´
) + 3(ω + β) sinχ0 + (m1 +m3) cosχ0

(3−m1 − 2m3) sin
2 χ0 + (m1 +m3) cos2 χ0 + (−β)(3 + 2m3) sinχ0 cosχ0

}.

Then, for any k, ak0 + ak1 < 0. Moreover, for any k 6=0 and any τ ∈ (0, 1],
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ak(n)0 + ak(n)1τ < ak(1)0 + ak(1)1τ.
By using (35), (36) and that 0 < λ0(1,1) < λ0k for any k ∈N2, k 6=(1, 1), we obtain that

ak0 + ak1 = µ[(m3(3β − ω − ε4π
³
1
L21
+ 1
L22

´
) + 3(ω + β) sinχ0 + (m1 +m3) cosχ0)

−µ((3−m1 − 2m3) sin
2 χ0 + (m1 +m3) cos

2 χ0 + (−β)(3 + 2m3) sinχ0 cosχ0)].

Again, the assumptions made on the parameters imply the positivity of the coefficient of
µ2 and the result holds. Moreover

ak(n)0 − ak(1)0 + (ak(n)1 − ak(1)1)τ = −k(n)2 + k(1)2 − (m3εk(n)
2 −m3εk(1)

2)τ < 0.

The proof of Theorem1 is now complete since from Propositions 3 and 4 we deduce the
existence of some τ0 ∈ (0, 1) (independent of k ∈ N2) such that for any |k| ≥ 0 we have
ak0 + ak1τ < 0 for any τ ∈ (τ0, 1). This implies the hypothesis of the abstract result and
the conclusion follows.

Remark 15 Notice that Theorem 1 applies to the case m1 = m2 = m3 = 0 which
corresponds to a formulation similar to the one of [6]. Moreover, it also applies to the
choice m1 = κ,m2 = −1 − κ, m3 = 0 and m4 = 1, for any κ ∈ (0, 1) which corresponds
to a formulation quite close to the pioneering paper [24] (concerning chaotic ODEs).

Remark 16 Since the eigenvalue λ00 = 0, using Lemma it is possible to obtain the same
result for Neumann conditions.
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