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Resumen
We study the so-called Oswald ripening in reactive batch crystallizer by means of

the mathematical models proposed in by N.S. Tavare in 1985. Such a model takes into
account not only crystal growth but also the decrease of crystals when they have small
dimensions. The model can be stated in terms of a nonlocal and nonlinear conserva-
tion law. Besides its relevance in the applications, which made specially interesting
such a problem, from the mathematical point of view, is that it can be proved that
when the initial datum is a measure (for instance, the addition of a finite number of
“Dirac deltas” located in some points {xi}i=1,..,m) then the corresponding solution
is not a L1-valued function but a measure-valued function n(·, t).The main goal of
this communication is to present some improvements on the previous mathematical
treatment made by A. Friedman, B. Ou and D.S. Ross in 1989 (see also the treatment
made on photographic films in the book by A. Friedman and W. Littman of 1994).

1. Introduction

The study of crystal precipitation attracted the attention of many specialists since the
XIX century. Phenomena as the so-called Oswald ripening in reactive batch crystallizer
was the main object of some mathematical models (Tavare [11]) since they have a great
relevance in many different contexts (see the treatment made on photographic films in the
book by Friedman and Littman [9]). The Tavare’s model take into account not only crystal
growth but also the decrease of crystal when they have small dimensions (in fact, it does
not consider the ”nucleation process̈ın order to simplify the formulation). The model can
be stated in terms of a conservation law{

∂n
∂t + ∂

∂x(Gn) = 0 x > 0, t > 0,
n(x, 0) = n0(x) x > 0,
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where G denotes a suitable nonlocal term (depending on n) which will be detailed at
the presentation.Besides its relevance in the applications, which made specially interesting
such a problem, from the mathematical point of view, is that it can be proved that when
n0(x) is a measure (for instance, the addition of a finite number of “Dirac deltas” located
in some points {xi}i=1,..,m) then the corresponding solution is not a L1-valued function but
a measure-valued function n(·, t).The main goal of this communication is to present some
improvements on the previous mathematical treatment made in [8]. In particular, we prove
that such type of solution satisfies the equation in a suitable weak sense and prove that,
under suitable additional conditions on G, the Oswald ripening phenomenon (persistency
of a single crystal size for very large values of time) takes play not only asymptotically
(when t → +∞) but in a finite time.

We follows the formulation introduced in [8] but in a more general framework which
allow us to prove the finite time Oswald ripening phenomena. So, our problem can be
stated in the following terms: Find a function u(x, t) satisfying the nonlinear and nonlocal
problem {

∂n
∂t + ∂

∂x(Gn) = 0 x > 0, t > 0,
n(x, 0) = n0(x) x > 0,

(1)

where

G(x, t) =
{

kγ(c(t)− c∗eΓ/x)γ if x > x∗(t),
−kδ(c∗eΓ/x − c(t))δ if x < x∗(t),

(2)

x∗(t) =
Γ

log(c(t)/c∗)
(3)

c(t) = c0 + β

∫ +∞

0
x3n0(x)dx− β

∫ +∞

0
x3n(x, t)dx, (4)

where the main changes, with respect to the formulation proposed in [8], concerns the
assumptions

γ > 0 and δ > 0 (5)

instead to impose
γ ≥ 1and δ ≥ 1 (6)

as done in [8]. We mention that it is well known (see, e.g. Aris [2] ) that in many chemical
reactions the kinetics leads to exponents γ ∈ (0, 1) and δ ∈ (0, 1). As a matter of fact, the
limit cases γ = 0 and δ = 0 are also relevant in the applications (Aris) but they must be
suitably formulated in terms of multivalued functions (Diaz [3]) and we shall not discus
them in this communication. On the rest of parameters we assume that kγ , kδ, Γ, c0, c∗

and β are given positive numbers , with

c0 > c∗.

Which made specially interesting the problem from the mathematical point of view is that
the natural modelling of the problem leads to the assumption

n0(x) =
N∑

m=1

µmδ(x− xm,0) (7)
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where µm are given positive constants, δ(x) denotes the Dirac measure with unit mass at
x = 0 and the values

0 < x1,0 < x2,0 < ... < xN,0 < ∞,

are N given positive numbers representing the sizes of the initial crystals. We mention
that the case in which n0(x) is a continuous nonnegative function with compact support
was considered in [7] but it looks less realist from the point of view of applications (see
[11]).

2. On measure-valued solutions of the nonlocal and nonlin-
ear conservation law

As mentioned, our approach follows closely the pioneering paper by A. Friedman, B.
Ou and D.S. Ross [8] (see also the simplified exposition made in [9]). In this section we
extend the results of [8] proving the existence and uniqueness of a solution of problem 1,
2, 3, 4, for the initial datum 7 under the general assumption 5.

Theorem 1. Assume 5. Then, given n0(x) defined by (7), there exists a unique entropy
solution n(x, t) of problem 1, 2, 3, 4, n ∈ C([0,+∞) : M(0,+∞)). More precisely, we have
the representation formula

n(x, t) =
N∑

m=1

µmδ(x− xm(t)) (8)

for some functions xm(t) satisfying that xm(0) = xm,0.

As it is natural, we start by approximating the initial datum by

n0,j(x) =
N∑

m=1

µmρj(x− xm,0)

where ρj(x) is a smooth function such that

ρj ≥ 0, ρj(x) = 0 if |x| > 1
j

and
∫ +∞

−∞
ρj(x)dx = 1.

The existence of a solution (nj(x, t), cj(t)) for this class of initial datum is an easy
modification of the arguments of [7] since the local existence is built through the solution
of the ordinary differential equation

{
dx
dt = Gj(x, t) t > 0,
x(0) = x0.

It is clear that under assumption 5 function G is not globally Lipschitz continuous but it
is locally Lipschitz continuous and monotone near the singular points. So, by well known
results (see, e.g. [5]) we know the existence of a global solution x(t). Then, as in [7],

d

dt
nj(xj(t), t) = −∂Gj(xj(t), t)

∂x
nj(xj(t), t)
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and thus
nj(xj(t), t) = n0,j(x)e−

∫ t
0

∂Gj(xj(s),s)

∂x
ds.

The rest of the arguments remain unchanged. Then we get that

cj(t) = c1,j − β

∫ +∞

0
x3nj(x, t)dx,

dcj(t)
dt

= −3β

∫ +∞

0
x3nj(x, t)Ĝj(x, t)dx,

where

Ĝj(x, t) =

{
kγ(cj(t)− c∗eΓ/x)γ if x > x∗j (t),
−kδ(c∗eΓ/x − cj(t))δ if x < x∗j (t),

with
x∗j (t) =

Γ
log(cj(t)/c∗)

.

If we denote by xj(t) ≡ xj(t; x) the solution of
{ dxj

dt = Ĝj(x, t) t > 0,
xj(0) = x0.

(9)

we obtain that xj(t) is well defined (even under 5) and that

Ĝj(x, t) ≤ C,
dxj

dt
≤ C and

∫ +∞

0
nj(x, t)dx ≤

∫ +∞

0
n0,j(x)dx ≤ C,

for a suitable positive constant C. Then we can extract a subsequence cj(t), xj(t) and
nj(x, t) which are pointwise convergent to the searched solution satisfying the represen-
tation formula (8). Once more, the uniqueness of such a solution is consequence of the
uniqueness of solution of the Cauchy problem obtaines passing to the limit in (9). The
details will be given in [4].

Remark. It is possible to prove (see [4]) something which is not analyzed in [8] and it
is the fact that the obtained solution n(x, t) satisfies the hyperbolic equation in the weak
entropy sense, n ∈ C([0, +∞) : M(0,+∞)) as introduced by R. Di Perna [6] (see also,
e.g., the exposition made in [10]) but here on the measure space M(0, +∞) the bounded
Radon measure space on the domain (0,+∞).

3. The extinction in finite time of all, except one, crystal
sizes

Thanks to an extra assumption, we can prove that the Oswald ripening phenomenon
(persistency of a single crystal size for very large values of time) takes play not only
asymptotically (when t → +∞) but in a finite time.

Theorem 2. Assume that

γ ∈ (0, 1) and δ ∈ (0, 1). (10)
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Then there exts t̂ > 0 such that n(x, t) = µNδ(x − xN (t)) for any t > t̂. Moreover,
n(x, t) → µNδ(x − ξ2) as t → +∞, where ξ2 is one of the zeros of the trascendental
equation

βµNξ3 + c∗eΓ/ξ = c0 + β
N∑

m=1

µmx3
m ≡ c1.

Idea of the proof. We use an energy method, similar to Lemma 2.2 of Chapter 1 of [1] to
show that the solutions of the limit problem associated to (9) wanishes in a finite time
(except for the last size xN ), thanks to the condition 10. The asymptotic behaviour follows
similar arguments to the ones introduced in [8] (see also the simplified presentation made
in [9])). The details will be given in [4].
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