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Abstract

In this communication we consider the stationary problem of a non-
linear parabolic system of partial differential equations, which arises in
the context of Dryland Vegetation. In the first part we present some
multiplicity properties for a localized simplification of the system leading
to an S-shaped bifurcation diagram in terms of the precipitation rate
parameter. In the second part we consider the case of an idealized “oasis”,
ω ⊂⊂ Ω, where we study the transition of the surface-water height in a
neighborhood of the set ω.

1 A multiplicity result

We consider a system of elliptic equations which is the stationary version of a
dryland vegetation model proposed by Gilad et al. [6]. Motivated by the bifur-
cation diagram obtained in [6] for the uniform vegetation states of the system,
here we are interested in the multiplicity properties of stationary solutions of
some related problem in a more general framework of weak solutions (not nec-
essarily spatially uniform). To be more precise, we study the following elliptic
problem 





−δb∆b = −b+Gbb(1− b) in Ω,

−δw∆w = −Gww − Ebw + Ibh in Ω,

−δh∆h
2 = −Ibh+ p in Ω,

∂b

∂n
= ∂w

∂n
= ∂h

∂n
= 0 on ∂Ω,

(1)

where Ω ⊂ R2 is a bounded domain with C
1 boundary and n denotes the

outward pointing unit normal vector field on ∂Ω.
Here, b represents the biomass, w the soil-water content and h the surface-

water height after suitable non-dimensionalization. The growth rate Gb and the
water uptake rate Gw are non-local terms given by

Gb(b, w) = ν

�

Ω
g(x, y)w(y) dy and Gw(b) = γ

�

Ω
g(y, x)b(y) dy

where g(x, y) = 1
2π exp

�
− |x− y|
2(1 + ηb)2

�
for x, y ∈ Ω. Moreover, Ib(b) = α

b+ q/c

b+ q

represents the infiltration rate, and Eb(b) =
ν

1 + ρb
represents the evaporation



rate. In the third equation the key parameter, p > 0, represents the precipita-
tion rate. The rest of the parameters are positive, where in fact c > 1 and we
also assume that ρ < 1 (see [6, 8] for more information about the modeling).

Our goal is to obtain some rigorous multiplicity properties for the component
b. In order to do that we consider a simplified localized system by replacing the
non-local terms Gb and Gw in (1), respectively, by

νψ(x)w exp
�
− 1

2(1 + ηb)2
�

and

γψ(x)b exp
�
− 1

2(1 + ηb)2
�
,

where ψ(x) is a continuous function such that ψ1 ≤ ψ(x) ≤ ψ2 for some con-
stants ψ1, ψ2 > 0.

Remark 1. The above simplification relies on the fact that, for instance, the

function z(y) = −|x−y|
2(1+ηb)2 , that appears in Gb, attains its maximum at x. There-

fore, the main contribution of w in the integral occurs around the point x. Us-

ing the same idea we may also simplify the term Gw. Finally, we note that

g(x, y) �= g(y, x), however, since this does not affect our result, for convenience

in the exposition, we suppose that these terms are equal.

Now, letting δw = δh = 0, and adding the second and third equation of the
simplified system we may solve the resulting equation with respect to w. We
substitute w in the first equation arriving to the following elliptic problem :






−∆b+ b = pf(x, b) in Ω,

∂b

∂n
= 0 on ∂Ω,

(Pp)

for

f(x, b) =
νψ(x)b(1− b)(1 + ρb)

γψ(x)b(1 + ρb) + ν exp[ 1
2(1+ηb)2 ]

,

where without loss of generality we have taken δb = 1 (if this is not the case
we change coordinates and rescale the domain by a factor 1/

√
δb). Clearly, the

function
f(x, ·) ∈ C

1(R+)

for every fixed x ∈ Ω. In fact, f(x, s) = 0 for s ∈ R+ if and only if s = 0 or
s = 1. Finally, using the upper bound of ψ(x) we also have that

0 ≤ f(x, s) ≤ M for all s ∈ [0, 1] and x ∈ Ω.

We shall study (Pp) seeking for multiplicity properties of non-negative weak
solutions depending on the parameter p. Before, starting looking for solutions
in the general framework of weak solutions we shall first consider a subclass of



weak solutions, namely, the so-called variational solutions. So, let us consider
the set

K = {v ∈ H
1(Ω) | 0 ≤ u ≤ 1 inΩ}

and let

Fp(x, v) = p

�
v

0
f(x, s) ds .

We define the variational functional

Jp(v) =
1

2

�

Ω

�
|∇v|2 + v

2
�
dx− Φp(v),

where

Φp(v) :=

�

Ω
Fp(x, v(x)) dx

Definition 1. We shall call a function u ∈ H
1(Ω) a variational solution of

(Pp), if u is a minimum of the functional Jp on the set K.

Remark 2. It can be easily verified that any variational solution is a weak

solution (it suffices to consider the Euler-Lagrance equation associated to the

functional Jp).

We have:

Theorem 1. For each p > 0, there exists at least one variational solution of

(Pp).

Proof. Since K is a convex and closed subset of H1(Ω), in order to show that
J attains a minimum (due to a version of the Weierstrass theorem), it suffices
to show that J is weakly lower semicontinuous and coercive defined on K.

(i) Jp is weakly lower semicontinuous. Indeed, the norm of H1(Ω) is weakly
lower semicontinuous. On the other hand, the embedding H

1(Ω) �→ L
q(Ω) is

compact for 1 ≤ q < ∞, since N = dim(Ω) = 2. Therefore, if vn is a sequence
in K that converges weakly in H

1(Ω) to a function v, we know that (up to a
subsequence) vn → v strongly in L

q(Ω). This actually implies that

Φp(vn) → Φp(v)

and so the map Φ : K ⊂ H
1(Ω) → R is weakly continuous. Thus Jp(u) is

weakly lower semicontinuous.
(ii) Jp is coercive. Indeed, for u ∈ K we have Φ(v) ≤ pM�v�L1(Ω) ≤ pM |Ω|

so for some constant C(p,Ω) > 0, J(v) ≥ 1

2
�v�2 − C(p,Ω) which implies that

J(u) → ∞ as �v� → ∞. This ends the proof of the Theorem 1. �

We now proceed to consider weak solutions of (Pp) which are not necessar-
ily variational solutions. Our study is inspired by a previous one arising in a



completely different context: some simple climate models(see [5] and [3]). Be-
fore stating our main result we need to introduce some auxiliary notation. In
particular, it is useful to consider the real valued functions

f1(s) =
νψ2s(1− s)(1 + ρs)

γψ1s(1 + ρs) + ν exp[ 1
2(1+ηs)2 ]

and

f2(s) =
νψ1s(1− s)(1 + ρs)

γψ2s(1 + ρs) + ν exp[ 1
2(1+ηs)2 ]

,

as well as the auxiliary algebraic equations

s = pf1(s), s ∈ R+
, (EM )

and

s = pf2(s), s ∈ R+
. (Em)

Obviously, s = 0 satisfies both equations for all p > 0. Moreover, each of
the functions, f1 and f2, has a unique positive critical point lying in (0, 1).
We shall denote by ΓM and Γm the (bifurcation) curves of nontrivial solutions
corresponding to the algebraic equations EM and Em, respectively. We define

Ti(p, s) = s− pfi(s).

We denote by (pf1 , 0) (respectively (pf2 , 0)) the point where ΓM (respectively
Γm) bifurcates from the line of trivial solutions. Thus, for i=1,2, pfi are such

that
∂

∂s
Ti(pfi , 0) = 0 (pf1 =

√
e/ψ2, pf2 =

√
e/ψ1).

Moreover, we shall need to assume some more specific properties about the
functions Ti(s) that we state below.

(P1) For i = 1, 2, the inequality
∂
2

∂s2
Ti(p, 0) < 0 holds, and so there exist

“turning points”(si, pi), for unique si, pi > 0 such that

Ti(pi, si) =
∂

∂s
Ti(pi, si) = 0 and

∂
2

∂s2
Ti(pi, si) > 0 .

(P2) The inequality 0 < p2 < pf1 holds.

Theorem 2. Let pf1 , pf2 be the bifurcation points of EM , Em and assume that

p1, p2 satisfy (P1). Then,

(i) if p ∈ (0, p1), the trivial solution b ≡ 0 is the only possible non-negative

solution of (Pp).

(ii) if we also assume (P2) then for any p ∈ (p2, pf1), (Pp) has at least two

positive weak solutions, besides the trivial solution b ≡ 0.



(iii) if p ∈ (pf2 ,∞) then, besides the trivial solution, (Pp) has at least one

positive weak solution. In fact, for p large enough there exist ξ ∈ (0, 1)
and a unique non-trivial solution of (Pp) satisfying that ξ ≤ b(x) < 1 in

Ω. Moreover, this unique solution is also a variational solution of (Pp).

Remark 3. The property (P1) is satisfied when
√
e(ρ+ η − 1) ν

γ
> ψ2 holds.

Remark 4. For the given functions f1, f2, the property (P2) is satisfied when

the distance between ψ1 and ψ2 is sufficiently small.

Proof. (i) By (P1) there exists a unique pair (p1, s1) ∈ ΓM such that f �
1(s1) =

1
p1

> 0. In fact, f1(s) ≤ sf
�
1(s1) for all s > 0 and since also f(x, s) < 0 for all

s > 1 and x ∈ Ω, we have that f(x, s) ≤ sf
�
1(s1) for all s ≥ 0. Therefore, if u ∈

H
1(Ω) is a non-negative solution of (Pp), by multiplying by u and integrating

over Ω we have that
�

Ω

�
|∇u|2 + u

2
�
dx ≤ p/p1

�

Ω
u
2
dx

or
�

Ω

�
|∇u|2 + (1− p/p1)u

2
�
dx ≤ 0.

So, for all 0 < p < p1, the left hand side of the above inequality is also greater
than or equal to zero, which implies �u�H1 = 0 and so u = 0.
In order to obtain (ii) and (iii), we now focus on positive constant super and
sub-solutions of (Pp). We observe that for any p > 0, any positive constant
solution of EM and Em is strictly smaller than one. Moreover, letting fM (s) =
max{f1(s), f2(s)} and fm(s) = min{f1(s), f2(s)} we have that

fm(s) ≤ f(x, s) ≤ fM (s) for all s ≥ 0.

Then clearly for p > 0 any positive solutions of the following problems






−∆Up + Up = pfM (Up) in Ω,

∂Up

∂n
≥ 0 on ∂Ω,

and 




−∆Vp + Vp = pfm(Vp) in Ω,

∂Vp

∂n
≤ 0 on ∂Ω,

is respectively, a sup or sub-solutions of Pp. So, for every p > 0 solutions of
EM and Em form two families of positive constant super and sub-solutions of
(Pp)

�
solutions of s = pf1(s)(respectively s = pf2(s)) coincide with those of

s = pfM (s) (respectively s = pfm(s))
�
.



(ii) By (P1) and (P2), for each p ∈ (p2, pf1), there exist two constant sup-
solutions U1

p
, U

2
p
, and a constant sub-solution Vp of Pp such that 0 < U

1
p
< Vp <

U
2
p
< 1. Now, we denote I = [0, 1] and

DI = {u ∈ L
∞(Ω) : u(x) ∈ I for almost every x ∈ Ω},

which is an ordered convex subset of L∞(Ω). Moreover, for p ∈ R+ and any
positive real number m0, we define

fµ0(x, s) := pf(x, s) + µ0s

Thus, we define the continuous map:

G : DI ⊂ L
∞(Ω) → L

2(Ω)

given by G(u)(x) = fµ0(p, x, u(x)) for u ∈ DI . Since, there exist positive
constant µ such that f(x, s1)− f(x, s2) > −µ(s1 − s2) for all s1, s2 ∈ [0, 1] such
that s1 > s2, it follows that, for any fixed p0 > 0 letting µ0 = p0µ, the map
G : DI → L

2(Ω) is also strictly increasing and continuous for all p ∈ (0, p0).
Now, we denote byKµ0 the inverse operator of the elliptic operator −∆+(µ0+1)
for the homogeneous Neumman boundary conditions. Then, it is well known
that Kµ0 is positive compact linear operator from L

2(Ω) to L
∞(Ω). So, for the

ordered interval [0, U2
p
] ⊂ DI we define the composition

F := Kµ0 ◦G : [0, U2
p
] → L

∞(Ω)

which is also a compact operator and in fact a strongly increasing operator.
Finally, by the comparison principle F(U1

p
) < U

1
p
, F(Vp) > Vp, F(U2

p
) < U

2
p

and (ii) follows from the results in [1].
(iii) For each p ∈ (p2,∞) there exist a constant sup-solution Vp and a con-

stant sub-solution Up of (Pp) such that Vp < Up. It is easy to check that the
conditions of the results in [1] hold true and so there exist at least one positive
weak solution up such that Vp < up < Up. Moreover, for p large enough any
such positive weak solution takes values in an interval [ξ, 1) where f(x, ·) is
decreasing which implies the uniqueness of any possible weak solution taking
values in that interval. Finally, the energy of such weak solution is less than
zero. Therefore, we deduce that for p large enough up is also a variational
solution of (Pp). �

2 Estimate on the location of the null set of the

surface water height solution

In this section we study the last equation of the original system, but assuming
that δh > 0 and that p is not completely constant in Ω but only on a closed
subset ω ⊂⊂ Ω and so that p vanishes outside ω. In that case we can think of
p as a distributed water resource (p(x) = pχω(x) on Ω) which is limited to be



non neglected on a sub-region ω of the domain Ω. We recall that the non-linear
term of the equation involves the so called infiltration contrast parameter c > 1.

Now, supposing that b is a given non-negative solution of the corresponding
equation of the system (1), for the given boundary conditions, we set

θ(x) := α
b(x) + q/c

b(x) + q
in Ω,

and obviously we have that α

c
≤ θ(x) ≤ α on Ω. On the other hand letting

h̃ = h
2, if h ≥ 0 and δh > 0, then the third equation can be written as






−∆h̃+
θ(x)

δh

�
h̃ = φ(x) in Ω,

∂h̃

∂n
= 0 on ∂Ω,

(2)

with φ(x) :=
p

δh
χω(x), where χω(x) is the indicator function of the subset ω.

We point out that, in general, we cannot ensure the uniqueness of function
h̃ (in fact, in the preceding section we exhibit a case of multiplicity of b and
so of h). Nevertheless, by the maximum principle we know that any possible
solution h̃ must satisfy that

�h̃�L∞(Ω) ≤
�
pc

α

�2
.

The following theorem provides an estimate on the location of the null set
of a solution h. This will depend on c, α, δh and p.

Theorem 3. Let h be the third component of any solution of the system (1).
Then, necessarily, h(x) = 0 for any x ∈ Ω− ω such that

d(x, ∂Ω ∪ ∂ω) > 4
√
p
c
√
δh

α
.

In fact, at least one of those possible solutions verifies that h(x) = 0 for any

x ∈ Ω− ω such that d(x, ∂ω) > 4
√
p
c
√
δh

α
.

Proof. We set m =
α/c

δh
. Following [4] we look for a local comparison function

h̃m such that h̃ ≤ h̃m on the ball BR(x0) and h̃m(x0) = 0 , where R ≥ 4
√
p
c
√
δh

α

so that BR(x0) ⊂ Ω − ω. Then, since h̃ ≥ 0 clearly h̃(x0) = 0 (and in a weak
sense if h̃ is not continuous). In fact, if h̃m ∈ H

1(Ω) satisfies

−∆h̃m +m

�
h̃m ≥ 0 in BR(x0), (3)

h̃m ≥
�
pc

α

�2
on∂BR(x0), (4)



then, since

−∆h̃+m

�
h̃ =

�
m− θ(x)

δh

��
h̃ ≤ 0 ≤ −∆h̃m +m

�
h̃m in BR(x0),

by the comparison principle, we have that h̃ ≤ h̃m.
Now, for such x0 ∈ Ω−ω, we consider the function h̃m(x) = Cm|x−x0|4 where

Cm =
�
m

16

�2
. Then it is not difficult to check (see [4]) that

−∆h̃m +m

�
h̃m ≥ 0 in BR(x0)

and so the first conclusion holds. The second assertion holds merely by ex-
tending by zero some of those solution on the set of x ∈ Ω − ω such that

d(x, ∂ω) > 4
√
p
c
√
δh

α
(since, obviously it also satisfies the Neumann boundary

condition). �

Remark 5. In fact it is possible to give a sharper estimate (near ∂Ω) depending
on the geometry of the domain Ω (see Chapter 2 in [4]) but we shall not detail

it here.

Remark 6. From the estimate of the preceding theorem we deduce that the

distance of the free boundary from the “oasis”set ω increases when one of the

parameters p, δh or c increases or when α decreases. Moreover, the same answer

remains true when the variation of the parameters is not necessarily monotone

in each of them but the combination of them given by the expression

√
pc

√
δh

α

increases.
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