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Abstract. We consider a free boundary formulation for the river formation giving rise to a
measure on the free boundary.

1 Introduction
We present here the main results of a recent work, in collaboration with A.C. Fowler, A. I.

Muñoz and E. Schiavi [1], concerning the deterministic model for the river channel formation
introduced by A.C. Fowler, N. Kopteva and C. Oakley [3]. The ingredients of a suitable model
are variables describing water flow and sediment transport,and the mechanism of channel for-
mation arises through an instability, in which locally increased flow causes increased erosion,
which in turn increases the flow depth and thus also the flow. This positive feedback induces
instability, as was shown by Smith and Bretherton [4]. They starting point was a coupled set
of partial differential equations describings(x, y, t), the hillslope elevation, andh(x, y, t), the
water depth

∇. (hu) = r, st + ∇.q = U, (1.1)

which represents conservation of mass of water and sediment. The mean water velocityu is
determined through a momentum balance equation, while the sediment fluxq is usually taken
as an empirically prescribed function of flow-induced bed stress and bed slope, the resulting
combination (the effective bed stress) being denotedτ . The source termr represents rainfall,
while U represents tectonic uplift. The time derivative in the water mass equation is ignored.
We assume it has been written in dimensionless form, so that the variables areO(1). One can
show that suitable models for the flow speedu and effective bed stressτ are

u = h1/2|∇η|1/2n, τ = u|u| − β∇s, (1.2)

where typicallyβ = O(1), and the down-water slope normaln is defined byn = −
∇η

|∇η|
, η

represents the water surface elevation, and in dimensionless terms is related to hillslope eleva-
tion s and water film thicknessh by η = s + δh. The parameterδ is very small, a typical
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estimate being10−5. Finally, the sediment flux is taken to have the formq = V (τ)N, where

τ = |τ | and the down-sediment flow normalN is N =
τ

τ
. V is an increasing function ofτ ,

with V ≈ τ 3/2 being a popular choice (this essentially stemming from the model of Meyer-
Peter and Müller, 1948). Uniform overland flow is unstable to y–dependent perturbations of
small wavelength, and we can examine the nonlinear evolution of these by directly seeking
asymptotic expansions in terms ofδ. To do so, we firstly suppose that the channels which form
are aligned in theX direction, and (sensibly) that the perturbation to the water surface is small,
comparable to the overland flow depth:η = η0 + δZ. We may then linearize the geometry of

the system, to find thatn = i−
δZy

S
j + . . . , andN = i−

δ

S

{

Zy −
β

h + β
hy

}

j + . . ., wherej

is the unit vector in they direction andS(X) = |η′
0(X)| is the unperturbed downhill slope. The

nonlinear channel evolution then arises from a rescaling ofthe hillslope evolution equation, in

which we puty = δ1/2Y, h =
H

δ1/3
, t = δ7/6T ; after some algebra, we find the leading

order sediment transport equation takes the form
∂H

∂T
= S ′S1/2H3/2 + S1/2 ∂

∂Y

[

βH1/2∂H

∂Y

]

,

whereS ′ = dS/dX.

It is important to realize that this equation arises throughconservation of sediment. Only
Y derivatives are present, because the lateral length scale is so much smaller than the downs-
lope one. The perturbationZ to the water surface is in fact then determined by quadrature
of the water conservation equation, but integration of thisequation in the across stream di-

rection yields the integral constraint
∫ ∞

−∞

H3/2 dY =
2LrX

S1/2
, whereL is the spacing (on the

original hillslope length scale fory) between channels; the limits in the integral are, however,
infinite because the integral is with respect to the much smaller channel width length scale.
Suitable initial and boundary conditions for the channel depth are thatH → 0 as Y →
±∞, H = H0(Y ) at T = 0. The above equation, together with the integral constraint
and initial/boundary conditions, forms the basis of our study. We will assume thatS ′ > 0,

so that the nonlinear term in theH equation is a source. We defineH =

(

6

β

)1/3

(LrX)2/3u,

T =

(

β

6

)1/6
t

S1/2S ′(LrX)1/3
, Y =

(

2β

3S ′

)1/2

x.

2 Mathematical analysis

We consider the problem obtained previously assuming an initial thickness perturbation
u0(x) satisfying some natural physically based hypothesis, i.e., a bounded and non negative

function with a compact and connected support[−ζ0, ζ0] such that
∫ +∞

0

um
0 (x)dx = M/2,

for m > 1 (so including the case ofm = 3/2 as before. For the sake of simplicity of the
exposition we also assume symmetric initial data. We shall be especially interested in the
question ofglobal solvability (in time) of the following problem: find a continuous curve
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ζ : [0, +∞) → IR+ and a functionu : P → [0, +∞) (regular enough) such that

(SL)











































ut = (um)xx + um, in D′(P),

u(x, 0) = u0(x) a.e.x ∈ Ω0,

u(x, t) > 0, a.e.(x, t) ∈ P, andu(x, t) ≡ 0, a.e.(x, t) /∈ P

u(ζ(t), t) = 0, (um)x(0, t) = 0 a.e. t ∈ (0, +∞),

ζ(0) = ζ0 andζ(t) > 0

∫ ζ(t)

0

um(x, t)dx =
M

2
a.e.t ∈ (0, +∞).

whereΩ0 = (0, ζ0), Ωt = (0, ζ(t)) × {t} , P = ∪t>0Ωt. Notice thatD′(P) denotes the space
of distributions on P andP is thepositivity subset of the solution. Later on we shall make
more precise the (minimal) regularity of the solution. The functionζ(t) is calledthe interface
separating the (connected) region whereu(x, t) > 0 from the region whereu(x, t) = 0. It
is unknown and it is usually called thefree or moving boundary of the problem. Due to the
free boundary we shall refer to the strong formulation(SL) as thestrong-local formulation.
We emphasize that the mass conservation constraint given in(SL) prevents possible blow-up
phenomena which could arise (without this condition) due tothe presence of the source term
um in the equation.

An important difficulty, in order to get a global formulation(i.e. extended to the whole
domain(x, t) ∈ (0, +∞) × (0, +∞), and not only on(x, t) ∈ P), is the necessity to provide
a suitable description of the flux−(um)x(ζ(t), t) at the free boundary. This leads to a new
constrained global formulation suitable for mathematicalanalysis and numerical resolution.
Problems of this type arise in fluid mechanics (problems of the Bernoulli type), in combustion
and in plasma physics (see, e.g., Dı́az et al., 2007 [2] and its references).

To prove the existence we shall use an auxiliary global formulation on the whole domain
IR+ × [0, T ]. To be precise we introduce the notationδ∂{u(t,·)=0} to design the Dirac delta
distribution located at the interfacex = ζ(t) for eacht ∈ (0, T ) (i.e. δ∂{u(t,·)=0} = δ(ζ(t),t)).

The reformulation of the mass constraint requires the ”zerototal measure” condition. So, the
global formulation is:

(P )



































ut = (um)xx + um −
M

2
δ∂{u(t,·)=0}, D′(IR+ × (0, T )),

u(x, 0) = u0(x) a.e.x ∈ (0, +∞),

ux(0, t) = 0, u(x, t) → 0 asx → +∞ a.e. t ∈ (0, T ),

µ(t, ·) := ut(t, ·) − (um)xx(t, ·) and
∫ +∞

0

dµ(t, ·) = 0, a.e. t ∈ (0, T ).

(2.3)

We use a two steps iterative approximation. The main idea is to construct the sequence
{u2n+1 : n = 0, 1, 2...} as solutions of the problems

(P2n+1)















(u2n+1)t = ((u2n+1)
m)xx + (u2n)m−1(u2n+1) −

M

2
δ∂{(u2n+1)(t,·)=0}, D′(IR+ × (0, T )),

(u2n+1)(x, 0) = u0(x) a.e.x ∈ (0, +∞),

(u2n+1)x(0, t) = 0, (u2n+1)(x, t) → 0 asx → +∞ a.e. t ∈ (0, T ),

(where forn = 0 we use asu2n the initial conditionu0) and then{u2n : n = 1, 2...} by
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(P2n)







u2n(x, t) = C2n(t)u2n−1(x, t) for a.e. (x, t) ∈ IR+ × (0, T ),
∫ +∞

0

((u2n(x, t))m−1(u2n−1(x, t))dx =
M

2
for a.e. t ∈ (0, T ),

for someC2n(t) > 0. For the detailed proof of the convergence of the algorithm see Dı́az et al.
Theorem There exists a function C∗(t) > 0, C∗ ∈ L∞(0, T ) and a function u ∈ C([0, T ] :

L1(IR+)) such that











ut = (um)xx + C∗(t)m−1um − M
2
δ∂{u(t,·)=0}, D′(IR+ × (0, T )),

u(x, 0) = u0(x) a.e. x ∈ (0, +∞),

ux(0, t) = 0, u(x, t) → 0 as x → +∞ a.e. t ∈ (0, T ),

and C∗(t)m−1

∫ +∞

0

u(x, t)mdx =
M

2
.

Concerning the numerical resolution of the problem(P ), for each initial conditionh0, we
compute its mass, sayM/2, and the associated stationary solutionv(x) to which the solution
should converge whent → +∞, see Fowler et al., 2007 ([3]). In order to discretize with
respect to the coordinatex, at each time levell · dt, we will employ piecewise linear finite
elementsLl,k := {φ ∈ C0([0, +∞)) : φ|E ∈ P1, ∀E ∈ Tl,k} in a uniform grid,Tl,k, of stepk.
Also, Bl,k := {φi} is a base of finite linear elements inLl,k. Then, the discretized problem is
formulated as follows:Find (ul+1)k ∈ Ll,k, (ul+1)k =

∑

j (ul+1)
j
kφj , such that

∫

Tl,k

(ul+1)kφidx =

∫

Tl,k

(ul)kφidx −
3dt

2

∫

Tl,k

(un+1)
1

2

k ((ul+1)k)xφixdx

+ dt

∫

Tl,k

(ul+1)
3

2

k φidx − dt

∫

Tl,k

M

2
δ(ul)φidx, ∀φi ∈ Bl,k. (2.4)

In order to deal with the nonlinearities, we consider the iterative scheme: for p=2n+1 from 1 to
N, n = 0, 1, 2..., andN an odd number to be fixed, we consider the problem,

∫

Tl,k

(ul+1,2n+1)kφidx =

∫

Tl,k

(ul)kφidx −
3dt

2

∫

Tl,k

(ul+1,2n)
1

2

k ((ul+1,2n+1)k)xφixdx

+ dt

∫

Tl,k

(ul+1,2n)
1

2

k (ul+1,2n+1)kφidx − dt

∫

Tl,k

M

2
δ(ul)φidx, ∀φi ∈ Bl,k, (2.5)

where,(ul+1,2n)k has been rescaled before being introduce in (2.5) so that
∫

(ul+1,2n)
3

2

k =
M

2
,

according to (P2n), i.e., (ul+1,2n)k = Cl+1,2n(ul+1,2n−1)k. The resulting system of equations
for the nodal values at the(2n + 1)th-step is solved with the Gauss Seidel method. In order
to initiate the iterative scheme, one can take as(ul+1,p=1)k the values obtained in the previous
time step, that is to say,(ul+1,p=1)k = ul. The scheme finishes assuming the values for the
(l + 1)-time level given byul+1 = (ul+1,p=N)k.
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