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Abstract. We consider a free boundary formulation for the river formation giving rise to a
measure on the free boundary.

1 Introduction

We present here the main results of a recent work, in colitwor with A.C. Fowler, A. I.
Mufioz and E. Schiav[[1], concerning the deterministic iddr the river channel formation
introduced by A.C. Fowler, N. Kopteva and C. Oaklgy [3]. Thgriedients of a suitable model
are variables describing water flow and sediment transaod the mechanism of channel for-
mation arises through an instability, in which locally ieased flow causes increased erosion,
which in turn increases the flow depth and thus also the flovis pbsitive feedback induces
instability, as was shown by Smith and Bretherton [4]. Theytsg point was a coupled set
of partial differential equations describingr, y, ), the hillslope elevation, antl(x, y, t), the
water depth

V.(hu)=r, s,+V.q=1U, (1.1)
which represents conservation of mass of water and sedinfér@ mean water velocitu is
determined through a momentum balance equation, whiledtiiengnt fluxq is usually taken
as an empirically prescribed function of flow-induced beest and bed slope, the resulting
combination (the effective bed stress) being denatedhe source term represents rainfall,
while U represents tectonic uplift. The time derivative in the wab@ss equation is ignored.
We assume it has been written in dimensionless form, sotteatdriables ar@(1). One can
show that suitable models for the flow spaednd effective bed stressare

u="hr"Y4Vy"*n, T=ulu|l - FVs, (1.2)

Vi
N
represents the water surface elevation, and in dimens®téems is related to hillslope eleva-
tion s and water film thickness by n = s + dh. The parametef is very small, a typical

where typicallys = O(1), and the down-water slope normalis defined byn = —
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estimate being0~°. Finally, the sediment flux is taken to have the fogm= V' (7)N, where

. . T . . . .
7 = |r| and the down-sediment flow normidl is N = —. V' is an increasing function of,
T

with V' ~ 73/2 being a popular choice (this essentially stemming from tloeleh of Meyer-
Peter and Miller, 1948). Uniform overland flow is unstalde/+dependent perturbations of
small wavelength, and we can examine the nonlinear evolufahese by directly seeking
asymptotic expansions in terms®fTo do so, we firstly suppose that the channels which form
are aligned in theX direction, and (sensibly) that the perturbation to the wsieface is small,
comparable to the overland flow depth= 7, + §Z. We may then linearize the geometry of

: . 0Z,. .0 p : .
thesystem,toflndthatzl—TyJJr...,andN:l—g{Zy—mhy}JJr...,wherej

is the unit vector in the direction andS(X) = |n)(X)] is the unperturbed downhill slope. The
nonlinear channel evolution then arises from a rescalinp®hillslope evolution equation, in

which we puty = 6%y, h = t = 67/°T; after some algebra, we find the leading

i i o, 1/2 173/2 1/2 0 1/20H
order sediment transport equation takes the f%gfn_SS H=+ S Y% OH oy |
whereS’ = dS/dX.

It is important to realize that this equation arises throaghservation of sediment. Only
Y derivatives are present, because the lateral length scatemuch smaller than the downs-
lope one. The perturbatiod to the water surface is in fact then determined by quadrature
of the water conservation equation,otgut integration of #gsation in the across stream di-

rection yields the integral constrai H3?dy = where L is the spacing (on the

o S1/27
original hillslope length scale fay) between channels; the limits in the integral are, however,
infinite because the integral is with respect to the much lemahannel width length scale.
Suitable initial and boundary conditions for the channgdtbeare thatd — 0 as Y —
+oo, H = Hy(Y) at T = 0. The above equation, together with the integral constraint
and initial/boundary conditions, forms the basis of oudgtuWe will assume that’” > 0,

. . o . 6\"*
so that the nonlinear term in thé equation is a source. We defite = (B) (LrX)*u,

1/6 1/2
T= é ! -, Y = % x.
6 S1/28"(Lr X)1/3 35’

2 Mathematical analysis

We consider the problem obtained previously assuming dialithickness perturbation

uo(x) satisfying some natural physically based hypothesis, adounded and non negative
+o0

function with a compact and connected supgeff,, (] such that/ ug'(z)dr = M/2,

0
for m > 1 (so including the case ofi = 3/2 as before. For the sake of simplicity of the
exposition we also assume symmetric initial data. We shalkgpecially interested in the
guestion ofglobal solvability (in time) of the following problem: find a continuous curve
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¢: [0,4+00) — IRT and a function. : P — [0, +00) (regular enough) such that

(up = (U™ + U™, inD'(P),
u(x,0) = ug(x) a.e.x € Q,
(SL) u(z,t) >0, a.e.(z,t)€ P, andu(x,t) =0, ae.(zt)¢P
u(C(t),t) =0, (u™)(0,t)=0 a.e.t € (0,+00),
¢) M
\ C(0) =¢oand((t) >0 /0 u™(z,t)dr = > a.et € (0,+00).

whereQy = (0, (o), 2 = (0,¢(t)) x {t}, P = U=of%. Notice thatD’'(P) denotes the space
of distributionson P andP is the positivity subset of the solution. Later on we shall make
more precise the (minimal) regularity of the solution. Thadtion((¢) is calledthe interface
separating the (connected) region whefe,t) > 0 from the region wherei(x,t) = 0. It

is unknown and it is usually called tHeee or moving boundary of the problem. Due to the
free boundary we shall refer to the strong formulatiéfl) as thestrong-local formulation.
We emphasize that the mass conservation constraint givesiZiin prevents possible blow-up
phenomena which could arise (without this condition) dugh®presence of the source term
u™ in the equation.

An important difficulty, in order to get a global formulatidhe. extended to the whole
domain(x,t) € (0,+00) x (0,+00), and not only onz, ¢) € P), is the necessity to provide
a suitable description of the flux(u™).({(t),t) at the free boundary. This leads to a new
constrained global formulation suitable for mathematmalysis and numerical resolution.
Problems of this type arise in fluid mechanics (problems efBkrnoulli type), in combustion
and in plasma physics (see, e.g., Diaz et al., 2007 [2] anéfierences).

To prove the existence we shall use an auxiliary global féatimn on the whole domain
IR™ x [0,T]. To be precise we introduce the notatié, o) to design the Dirac delta
distribution located at the interfaae= ((t) for eacht € (0,7") (i.€. dagur, )0} = d(c(t).0))-

The reformulation of the mass constraint requires the "aatiad measure” condition. So, the
global formulation is:

( M
U = (U")aa + U™ = -Op{ue.)=0}, D'(R* x (0,7)),
u(z,0) = uo() a.e.r € (0,4+00),
(P) u,(0,t) = 0, u(z,t) — 0 asr — +oo a.e.tc(0,7T), (2.3)
+00
p(t, ) = u(t, ) — (u™)eu(t, ) and/ du(t,)) =0, a.ete (0,T).
0

\

We use a two steps iterative approximation. The main idea isohstruct the sequence
{ugny1 : m=0,1,2...} as solutions of the problems

_ M
(u2n+1)t = (u2n+1)m)rr + (u2n)m 1(u2n+1) - 758{(u2n+1)(t,-)20}7 D/(B+ X (Oa T))a

(Pan+1) § (ugns1)(z,0) = ug(z) a.e.x € (0,+00),
(u2n+1)2(0,%) = 0, (uzpt1)(z,t) — 0 @ST — +00 a.e.te(0,7),

(where forn = 0 we use asiy, the initial conditionug) and then{us, : n = 1,2...} by
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Ugn(x,t) = Cop(t)uoy_1(x,t) fora.e. (x,t) € R™ x (0,7),

P e ) s )b = 5 forae.te (0.7),

for someCy,(t) > 0. For the detailed proof of the convergence of the algorithenBi@z et al.
Theorem There exists a function C*(¢t) > 0, C* € L*>(0,7T) and a functionu € C([0,7] :
L'(IRT)) such that

Up = (um)zm + C*(t)m_lum — %53@(@.):0}, D/(R+ X (O,T)),

u(z,0) = ug(x) ae x € (0,+00),
uz(0,t) = 0, u(x,t) — 0asx — +oo ae te (0,7,
+00 M
and C*(t)™! / u(z, t)"de = -

Concerningothe numerical resolution of the probleéR), for each initial conditiorf,, we
compute its mass, say//2, and the associated stationary solutidm) to which the solution
should converge wheh — +oo, see Fowler et al., 2007[([3]). In order to discretize with
respect to the coordinate at each time level - dt, we will employ piecewise linear finite
elementd.; ; := {¢ € C°([0, +o0)) : ¢|E € Py, VE € Ty} in a uniform grid, T, ;, of stepk.
Also, B, := {¢;} is a base of finite linear elements in;. Then, the discretized problem is
formulated as followsFind (w;11), € Lix, (w41), = Zj (u151)7.¢4, such that

3dt 1
/ (Ur1),Qide = / (wr),pidw — > (Uns1) ((Ur41)y)2ipda
Tk Tk Ty k
3 M
+ dt/ ('LLH_l)]quidQE — dt/ —5(ul)¢ldas, ngz - BLk- (24)
Tk Tk 2

In order to deal with the nonlinearities, we consider theaiige scheme: for p=2n+1 from 1 to
N,n =0,1,2...,andN an odd number to be fixed, we consider the problem,

3dt 1
/ (Ui41,2n41) , Gid :/ (), Pidr — > (i41,2n) ¢ ((Wi1,2041) ) o Pigdx
Tk Tk Tk
1 M
+ dt/ (ul+1,2n),§ (ul+1,2n+1)k¢idx — dt/ —5(ul)¢,dx, V¢Z c Bl,k? (25)
Tk Tk 2
. 3 M
where,(u;41.2,), has been rescaled before being introduc&id (2.5) sofi‘(atmgn),g =5

according to (B,), i.e., (wi41.20), = Cig1,20(Ui11,20-1),. The resulting system of equations
for the nodal values at th@n + 1)th-step is solved with the Gauss Seidel method. In order
to initiate the iterative scheme, one can tak€:as; ,—;), the values obtained in the previous
time step, that is to sayu1,-1), = w. The scheme finishes assuming the values for the
(I + 1)-time level given byui1 = (uig1,p=n), -
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