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The flow of a viscous fluid driven by buoyancy forces is governed by balance equations for momentum, mass, and internal
energy. Frequently, the Boussinesq approximation is employed to simplify the system, even in situations where dissipative
heating cannot be neglected. The resulting equations violate the principle of conservation of total energy, which causes
significant mathematical problems. We discuss these problems and possible remedies.
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The flow of a viscous fluid under gravity (or some other external force) is governed by balance equations for momentum, mass,
and internal energy; these can be expressed in terms of the fluid veloaitg the thermodynamic variablggpressure)p
(density), and) (temperature). The balance of momentum is given by

p(vi+ (v-V)v) = V-S(v,p) = pe, 1)

whereS(v, p) is the stress tensog the acceleration due to the external force. For simplicity, we assume the fluid to be
Newtonian, with a stress tensor of the fotv,p) = n(Vv + Vv'*) — (29 V - v 4 p) Z, where is the dynamic viscosity
andZ is the identity tensor, and suppose tgat —V ¢, for some potentiap. The balance of mass is given by

pt+ V- (pv) =0, (2)
the balance of internal energy by
plec + (v-V)e) = V- (kV0) = S(v,p)Vv, ()

wheree = C,(6) is the internal energy density, with! = ¢, the specific heat at constant volume andhe thermal
conductivity. Equations (1)—(3) must be supplemented by an equation of state, that is, a constitutive relation between the
thermodynamic variables p, and6.

Now suppose the fluid occupies a sufficiently regular bounded region of spagth fixed, mechanically impermeable,
and thermally insulated walls. Thenand6 satisfy the boundary conditions= 0 andVé-n = 0 on9f2, wheren denotes the
outward unit normal vector field. Integrating Equations (1)—(3) and using the boundary conditions, we obtain the following
expressions for the rates of change of kinetic, potential, and internal energy:

%fg %pv2 = —fQS(v,p)Vv+prg~v7 %fgqu: —prg-v, %fgpe: fQS(V,p)VV.

The three derivatives add up to zero, that is, total energy is conserved. Note that this is independent of the equation of state.
The simplest viable equation of statepis= py = const. Assuming) to be constant as well, Egs. (1)—(3) then simplify to

po(vi+ (v-V)V) —nAv+Vp=peg, V-v=0,

copo (0 4+ (v-V)0) =V - (kV0) = Z|Vv + VvIT|2,

that is, the classical Navier-Stokes equations, along with a semilinear heat equation. Note that the first two equations are
independent obf: since the density is constant, there is no buoyancy, and temperature fluctuations do not affect the fluid
motion. The quadratic source term on the right-hand side of the heat equation, which represents dissipative heating, cause:
major mathematical difficulties; but these have been addressed and overcome (see, for example, [12, Chapter 3.4]), even ir
the case of temperature-dependent viscosity (see [7, 15]).

To capture the effects of buoyangymust depend ofl. Provided that the temperature fluctuates in a fairly narrow range, it
is reasonable to assume thatecreases linearly with that is,p = po(1 — aa‘), whered = 6 — 6, is the temperature deviation
from a reference temperatufig, po = p(y) is the reference density, = —p’(6y)/p(6p) the thermal expansion coefficient.
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In the well-known Boussinesq approximation, this ansatzf used to compute the buoyancy forge on the right-hand
side of Eq. (1), but everywhere else in the equatianis, replaced by,. In other words, the fluid is considered “thermally
compressible, yet mechanically incompressible” (see [13, 17] for rigorous justifications of this procedure). Agguminhg
one obtains the equations

p()(Vt+(V'V)V) —nAv + Vp = po(1l — ab)g, V-v=0,

copo(by 4+ (v-V)0) = V- (kV0) = Z|Vv + VvT|2
This system, frequently used in the engineering literature, is energetically inconsistent; in fact, the production of kinetic energy
due to buoyancyozpo_[Q fg-v, is not balanced by a corresponding reduction in potential energy. Significant mathematical
difficulties ensue, and the well-posedness of the associated initial-boundary value problems, specifically the global-in-time
existence of any kind of weak solutions, is largely open. (The only result in this direction appears to be [10, Theorem 2.1],
where a two-dimensional@ard problem is treated.)

A possible (if not necessarily feasible) remedy is to neglect dissipative heating. This allows one to establish a-priori bounds
for 6, independent of-, and then the analysis parallels that of the classical Navier-Stokes equations without thermal coupling
(see [8,9,14]). Another approach is to rewrite the balance of internal energy, Eq. (3), in teryr(spécific heat at constant
pressure) instead @f,, using the thermodynamic relatie) = ¢, + 0‘7"%, and then replacg by the hydrostatic pressure
po = —po¢ (see [1] for a justification); this leads to the system

po(ve + (V- V)V) =nAv + Vp = po(1 - af)g, Vv =0,

cppo (0 + (v - V)0) — V- (kV0) = Z|Vv + V7|2 + apobg - v.
The additional source term on the right-hand side of the heat equation is referred to as “adiabatic heating” (see [11] and the
references therein); it formally restores the conservation of total energy. Even so, global existence results have been obtainec
only for a non-Newtonian model [16].
A third possibility, motivated by earlier work byiBz et al. [2, 6], is to use a Boussinesg-like ansatzfoot only in the
buoyancy force, but also in the rate of change of internal energy. Assymbe a given continuous function @f positive
and nonincreasing in a neighborho@d, 6-) of the reference temperatufg, and lettingoy := p(6y), we consider the system

po(vi+ (V- V)v) =nAv+Vp =p(f)g, V- v=0,
cop(0) (6 + (v - V)8) — V- (kV0) = Z|Vv + V|2,
subject to the constrairty, < 0 < 6. First results indicate that this system, under homogeneous Dirichlet and Neumann

boundary conditions fov and#, respectively, admits global-in-time solutions in a weak sense.
In [3, 4], we study a much simplified model problem that still captures the characteristic difficulties: the parabolic system

vi— Av = p(B), p(6)6; — A6 = [Vo?, )

for two scalar unknowns andé, satisfying homogeneous Dirichlet and Neumann boundary conditions, respectively, where
p € C(R) is positive and nonincreasing on a bounded intefvab). Given initial datavy, € Hi(Q2), o € HY(Q)

with a < 6y < b, and given anyl' € (0,00), we obtain functionsy € L2((0,7), H*(R2)) n C([0,T], H'(Q)) and

6 € L?((0,T), H () n C([0,T], L*(Q)) with a < 6 < b, satisfying the boundary and initial conditions, and satisfying
Egs. (4) in the weak sense, witlv|? replaced by some functio¥,, € L*((0,T), L*(2)) with |Vv|?x,_, < G, < |[Vv|%
Additional results concern the existenceregular solutiongwith 6 € L2((0,7), H*(Q)) N C([0, T], H'(Q2))), exact solu-

tions (with G, = |Vv|?), andstrong solutiongregular and exact). Uniqueness of strong solutions is proved in the spatially
two-dimensional case, for sufficiently regular intial data.
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