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Mathematical Issues Concerning the Boussinesq Approximation
for Thermally Coupled Viscous Flows
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The flow of a viscous fluid driven by buoyancy forces is governed by balance equations for momentum, mass, and internal
energy. Frequently, the Boussinesq approximation is employed to simplify the system, even in situations where dissipative
heating cannot be neglected. The resulting equations violate the principle of conservation of total energy, which causes
significant mathematical problems. We discuss these problems and possible remedies.
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The flow of a viscous fluid under gravity (or some other external force) is governed by balance equations for momentum, mass,
and internal energy; these can be expressed in terms of the fluid velocityv and the thermodynamic variablesp (pressure),ρ
(density), andθ (temperature). The balance of momentum is given by

ρ
(
vt + (v · ∇)v

)
−∇ · S(v, p) = ρg, (1)

whereS(v, p) is the stress tensor,g the acceleration due to the external force. For simplicity, we assume the fluid to be
Newtonian, with a stress tensor of the formS(v, p) = η

(
∇v +∇vtr

)
−

(
2
3η∇ · v + p

)
I, whereη is the dynamic viscosity

andI is the identity tensor, and suppose thatg = −∇φ, for some potentialφ. The balance of mass is given by

ρt +∇ · (ρv) = 0, (2)

the balance of internal energy by

ρ
(
et + (v · ∇)e

)
−∇ · (κ∇θ) = S(v, p)∇v, (3)

wheree = Cv(θ) is the internal energy density, withC ′
v = cv the specific heat at constant volume andκ the thermal

conductivity. Equations (1)–(3) must be supplemented by an equation of state, that is, a constitutive relation between the
thermodynamic variablesp, ρ, andθ.

Now suppose the fluid occupies a sufficiently regular bounded region of spaceΩ with fixed, mechanically impermeable,
and thermally insulated walls. Thenv andθ satisfy the boundary conditionsv = 0 and∇θ ·n = 0 on∂Ω, wheren denotes the
outward unit normal vector field. Integrating Equations (1)–(3) and using the boundary conditions, we obtain the following
expressions for the rates of change of kinetic, potential, and internal energy:

d
dt

∫
Ω

1
2ρv2 = −

∫
Ω
S(v, p)∇v +

∫
Ω

ρg · v, d
dt

∫
Ω

ρφ = −
∫
Ω

ρg · v, d
dt

∫
Ω

ρe =
∫
Ω
S(v, p)∇v.

The three derivatives add up to zero, that is, total energy is conserved. Note that this is independent of the equation of state.
The simplest viable equation of state isρ = ρ0 = const. Assumingη to be constant as well, Eqs. (1)–(3) then simplify to

ρ0

(
vt + (v · ∇)v

)
− η∆v +∇p = ρ0g, ∇ · v = 0,

cvρ0

(
θt + (v · ∇)θ

)
−∇ · (κ∇θ) = η

2 |∇v +∇vtr|2,

that is, the classical Navier-Stokes equations, along with a semilinear heat equation. Note that the first two equations are
independent ofθ: since the density is constant, there is no buoyancy, and temperature fluctuations do not affect the fluid
motion. The quadratic source term on the right-hand side of the heat equation, which represents dissipative heating, causes
major mathematical difficulties; but these have been addressed and overcome (see, for example, [12, Chapter 3.4]), even in
the case of temperature-dependent viscosity (see [7,15]).

To capture the effects of buoyancy,ρ must depend onθ. Provided that the temperature fluctuates in a fairly narrow range, it
is reasonable to assume thatρ decreases linearly withθ; that is,ρ = ρ0(1−αθ̄), whereθ̄ = θ−θ0 is the temperature deviation
from a reference temperatureθ0, ρ0 = ρ(θ0) is the reference density,α = −ρ′(θ0)/ρ(θ0) the thermal expansion coefficient.
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In the well-known Boussinesq approximation, this ansatz forρ is used to compute the buoyancy forceρg on the right-hand
side of Eq. (1), but everywhere else in the equations,ρ is replaced byρ0. In other words, the fluid is considered “thermally
compressible, yet mechanically incompressible” (see [13,17] for rigorous justifications of this procedure). Assumingθ0 = 0,
one obtains the equations

ρ0

(
vt + (v · ∇)v

)
− η∆v +∇p = ρ0(1− αθ)g, ∇ · v = 0,

cvρ0

(
θt + (v · ∇)θ

)
−∇ · (κ∇θ) = η

2 |∇v +∇vtr|2.
This system, frequently used in the engineering literature, is energetically inconsistent; in fact, the production of kinetic energy
due to buoyancy,αρ0

∫
Ω

θg ·v, is not balanced by a corresponding reduction in potential energy. Significant mathematical
difficulties ensue, and the well-posedness of the associated initial-boundary value problems, specifically the global-in-time
existence of any kind of weak solutions, is largely open. (The only result in this direction appears to be [10, Theorem 2.1],
where a two-dimensional B́enard problem is treated.)

A possible (if not necessarily feasible) remedy is to neglect dissipative heating. This allows one to establish a-priori bounds
for θ, independent ofv, and then the analysis parallels that of the classical Navier-Stokes equations without thermal coupling
(see [8,9,14]). Another approach is to rewrite the balance of internal energy, Eq. (3), in terms ofcp (specific heat at constant
pressure) instead ofcv, using the thermodynamic relationcp = cv + αθ

ρ
∂p
∂θ , and then replacep by the hydrostatic pressure

p0 = −ρ0φ (see [1] for a justification); this leads to the system

ρ0

(
vt + (v · ∇)v

)
− η∆v +∇p = ρ0(1− αθ)g, ∇ · v = 0,

cpρ0

(
θt + (v · ∇)θ

)
−∇ · (κ∇θ) = η

2 |∇v +∇vtr|2 + αρ0θg · v.

The additional source term on the right-hand side of the heat equation is referred to as “adiabatic heating” (see [11] and the
references therein); it formally restores the conservation of total energy. Even so, global existence results have been obtained
only for a non-Newtonian model [16].

A third possibility, motivated by earlier work by Dı́az et al. [2, 6], is to use a Boussinesq-like ansatz forρ not only in the
buoyancy force, but also in the rate of change of internal energy. Assumingρ to be a given continuous function ofθ, positive
and nonincreasing in a neighborhood(θ1, θ2) of the reference temperatureθ0, and lettingρ0 := ρ(θ0), we consider the system

ρ0

(
vt + (v · ∇)v

)
− η∆v +∇p = ρ(θ)g, ∇ · v = 0,

cvρ(θ)
(
θt + (v · ∇)θ

)
−∇ · (κ∇θ) = η

2 |∇v +∇vtr|2,
subject to the constraintθ1 ≤ θ ≤ θ2. First results indicate that this system, under homogeneous Dirichlet and Neumann
boundary conditions forv andθ, respectively, admits global-in-time solutions in a weak sense.

In [3,4], we study a much simplified model problem that still captures the characteristic difficulties: the parabolic system

vt −∆v = ρ(θ), ρ(θ)θt −∆θ = |∇v|2, (4)

for two scalar unknownsv andθ, satisfying homogeneous Dirichlet and Neumann boundary conditions, respectively, where
ρ ∈ C(R) is positive and nonincreasing on a bounded interval(a, b). Given initial datav0 ∈ H1

0 (Ω), θ0 ∈ H1(Ω)
with a ≤ θ0 ≤ b, and given anyT ∈ (0,∞), we obtain functionsv ∈ L2((0, T ),H2(Ω)) ∩ C([0, T ],H1(Ω)) and
θ ∈ L2((0, T ),H1(Ω)) ∩ C([0, T ], L2(Ω)) with a ≤ θ ≤ b, satisfying the boundary and initial conditions, and satisfying
Eqs. (4) in the weak sense, with|∇v|2 replaced by some functionGv ∈ L1((0, T ), L1(Ω)) with |∇v|2χ

θ<1 ≤ Gv ≤ |∇v|2.
Additional results concern the existence ofregular solutions(with θ ∈ L2((0, T ),H2(Ω)) ∩ C([0, T ],H1(Ω))), exact solu-
tions (with Gv = |∇v|2), andstrong solutions(regular and exact). Uniqueness of strong solutions is proved in the spatially
two-dimensional case, for sufficiently regular intial data.
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