Mathematics for the
Torroja's shell roofs of the
Zarzuela Racecourse

Matematicas de la cornisa del

Hipodromo de la Zarzuela de E. Torroja

J.l. Diaz
Departamento de Matematica Aplicada, UCM

Primer Congreso Internacional de

Matematicas en Ingenieriay Arquitectura
E. T. S. I. Caminos, Canales y Puertos, June, 2, 2007

Area tematica: Desarrollos tedricos de la Matematica Aplicada

Referencia 7001 (pp. 445-455)



1. Introduction

The shell roofs of the Madrid Racecourse (1935) are a brilliant result of the forms of
the reinforced concrete consisting of a system of portal frames, spread at5 m
intervals and connected longitudinally by small reinforced concrete double
curvature vaults.

HIPODROMO DE LA ZARZUELA. MADRID, 1935.

C. Arniches, L. Dominguez y Eduardo Torroja. Con la empresa
constructora Agroman E.C.
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The experience shows that when considering a slender or shell a small
curvature in the transversal direction to the main length supply an extra
rigidification with respect to the planar case:

* flexible steel retractable meter tape measure, ...,

We shall carry out the study of the asymptotic modelling of such kind of shell

structures T % /:-c_-

X

(1.0
We also will consider more sophisticated structures formed by
coupling two of such basic shells by means of an edge with slight
folding




as well as the case of an infinity set of shells obtained by the
periodic repetition of the basic structure

The consideration of this type of periodic structures is motivated by
some of the structures designed by the outstanding engineer Eduardo
Torroja (Madrid, 1899-1961).




5 m intervals and connected longitudinally by small reinforced concrete double
curvature vaults. The cantilever roof, with a minimum thickness of 5 cm, overhangs

to a distance of 12,8 m.




Although Torroja also produced many theoretical works (...) the mentioned
structure was “calculated” (??) so as to find out the directions and strengths of
the stresses that would occur.
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Later on, tests were carried out on a full scale module of the roof (quite
similar to the coupled shell considered here in Figure 2) and it was loaded to

breaking point.

In fact, in his book, E. Torroja, The
Structures of Eduardo Torroja, F. W. Dodge
Corporation, New York, 1958 (Ministerio de
Fomento, Madrid, 1999) he writes (p. 12):




La teorfa de la elasticidad no ha desarrollado atin procesos matemdti-
cos adecuados para el andlisis de esfuerzos en una estructura de este tipo,
pero a pesar de ello y aunque no se cuente con un andlisis de gran preci-
sién, se sabe que poseen buenas propiedades estructurales en el espacio.
Para el edificio que nos ocupa, se realizaron varias pruebas con el tnico
propésito de estimar la direccién e intensidad de los esfuerzos mds proba-
bles (véase el diagrama anterior).

The present talk, based on my joint paper (to appear in Asymptotic Analysis,
2007) with

E. Sanchez-Palencia,

Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie,
and Academie des Sciences,

try to carry out a mathematical study of such type structures which, with
difficulty, would be available in the first half of the last century.



Another example is the "pedestrian access shell in the southwestern side of the UNESCO building (Paris,
1953-58) due to Marcel Breuer and Bernard Zehrfuss with the collaboration of Antonio and Pier Luigi
Nervi




2. The basic problem.

We consider a slender cylindrical shell

Xz

According to standard notations in cylindrical shell theory  the “plane of

parameters ry,rs” 12 merely the middle surface (cylinder) of the shell developed into a plane. We chose
1 in the direction of the generators and xs normal to them, so that the principal curvatures are zero in

the direction 1 and b = 1/R In the direction x3, where R denotes the radius of the cross section



“ rU] X,

Accordingly, the second fundamental form of the surface has components b1; = b1 = 0 and bgs = b,

Moreover, the Christoffel symbols of the surface vanish identically, so that covariant and classical

differentiation coincide. Since b4, — by1bgs = 0 the surface is parabolic, i.e. the

directions of the principal curvatures coincide

Remark  As a matter of fact, the Torroja’s structure mentioned at the introduction was not composed

by cylindrical elements but by slightly hyperbolic ones. Nevertheless, the curvature in the longitudinal
direction was much smaller (and even it vanished in early projects by Torroja: see [36] Chapter 1) than
in the transversal direction, so that our model with zero longitudinal curvature may be considered as a
first approximation.






Let = be a small parameter, the relative thickness of the plate. Let 1 = n(=) be a new small parameter
satistying
3,

the typical example will be n = =%, Tt us denote the shell domain by Q. = (0,4) % (0,nl),

: /"“ with 5l < 2R.

R (T

(0.0) X,
The corresponding tangential displacements are 4, @o, whereas ug is the displacement
normal to the shell. Some times we shall use the notation 1 = 0* to indicate explicitly the s-dependence.
We shall admit, in this section, that the shell is clamped by the “small curved boundary™ ({0} x [0, nls]
and free by the rest This implies the kinematic boundary conditions:
0=y = iipg = s = Shitg on {0} x [0,nk)],

where

= d
O = o

The space of configuration will be denoted by V.. It is the subspace of H1((Q.) Hl(__E) % HQ(QE)

tormed by the functions satistying the kinematic boundary conditions



Although it i1s possible to write the complete system of equations modeling the above elastic problem

(the “strong formulation™: see. e.g.

F. Niordson, Shell theory, North Holland, Amsterdam, 1985

here we shall follow a “variational or weak formulation”

ca(u®,v) + *b(u®,v) = (f,v)

where the coefficients ¢ and % account for the fact that the membrane and flection rigidities are pro-
portional to the thickness of the plate and to its cube, respectively. Moreover, the two bilinear forms
a(n®, v) and b(n®, v) on the space V are defined thought the previous expressions (membrane strains in

shell theory):

and

for the triplets v = (01, U2, v3).

T“-"j(ﬁ] = T-ﬁa(ﬁ) = Aﬂ;ﬂ#;}h#(ﬁj
T1(V) = i‘j»flf-‘l
Vo2(V) = 0oV + bavg )
T12(V) = J (V) = %(3251 + O 19)

curvature variation tensor



Uncoupling phenomenon (due to the symmetry with respect to x3 = 0):

the total energy 1z the addition of membrain enery and flection energy

Y1

The two bilinear forms on V are then defined by:

o — !:'-l'f . — - ;= ~
a(u,v) = / A )‘“fr-n._g[u]’jr AV Jdx

b(ﬁ1 {:_::' = [ Bﬁﬁ)ﬂul'aa-ﬂ(ﬁ::'lbn-:'_:l’I:i}]dxu
Qe

where the coefficients A“%M and B*PM satisfy the symmetry and positivity conditions

4(1'_-3}.# _ 4:3;1%,1# _ 4,3'\,1“1-.-'_1’

3 : - , .
AP 505, > Bapbap  for Bas =0z,  Withsomec>0.



Remark It should be noted that the very expression for pso in cylindrical shells is

,{32?({') = 5353 + bgbﬁﬂ
but, as we shall see in the sequel  the second term is always asymptotically small

As applied forces, we shall give a normal loading depending on & by the factor =2

f,v) = 53/ Fa(zy,xo/n)0a(2q, x2)dxX,
€2,
We note that the shape of the profile of the applied loading in 2 is independent of =
but applied to the points z5/1

We shall admit in the sequel that
F3 € L*(Q)

where

Q=(0,h) > (0,k).



Remark [ the special case when the curvature b vanishes, there is uncoupling between the membrane

and flection problems; the “normal” loading only produces flection. Moreover, as the width of the shell
(the plate, in that case) is 0(x), the global rigidity is 0(ns®), of the same order as the total applied force

so that, in that case, the solutions (u3 in fact) have a non zero limit,

We shall see that in our case (i. e., with non zero b) the displacements are very small and only cﬂﬁﬂé?‘ge

to a non zero limit after an appropriate scaling.  This amounts to a very high rigidity produced

by the curvature as commented at the Introduction.

Problem PE. Find u® EVE Satzsfymg E{I{UE,V) + Eab{ugﬁv) = {f1 v:] Yv S VE_

Remark Since the bilinear forms a(u,v) and b(w,v) are symmetric, from well known results we

deduce that, in fact, W is the unique solution of the minimization problem
Miny J-(v)

where
3

J.(v) = ga(vj v) + %b(v,v) — (f,v).

The objective of the rest of the section is to study its asymptotic behavior as = | 0.



3. Scaling and a priori estimates in the basic problem.

Let us perform the change of variables :

{ X = (21,72) = ¥ = (Y1, ¥2),
y1 =11, Yo =1 ‘g

80, the domain (). is transformed into €} and

: ~ : ~ : 7]
o =0 o = nda;  Op = —.
1 =01, Oy =nda; B
Moreover, we shall perform the change of unknowns
i1 (x) = 7uy(y),
g (x) = 1" tug(y),
3(x) =7 72b" lug(y),

As # i1s not déﬁned, the total level of the écaling is not specified, only the mutual ratios

of dilatation of the three components are fixed. They are chosen in analogy with layers in parabolic
shells. Specifically, the ratio between the components 1 and 2 is fixed in order that the new form of the
shear membrane strain €;5 be formed by two terms of the same order (which, on the other hand, are
asymptotically large, forming a constraint for the limit problem). The ratio between the components 2
and 3 is also fixed in such a way that the new form of the membrane strain €59 be formed by two terms

of the same order.



We then perform the previous change for u® as well as for v in FP- and we have
= ~y B
T11(V) =1 011y

1 .
) = '?38_15[‘3}2“1 + ),

-y

Y12(V) = Yo1(
Y99 (V) = 0 72(av2 + v3),
P11 (V) = 1" 9 v,
P12(¥) = poy (V) = P 2672010003, oy (%) = b 020
It will prove useful to define

711(v) = di

i - 11, _
Yi2(V) =751 (v) =17 ' 5(Davy + Fyua),

V32 (v) = 172 (Dova + va);
p71(V) = 07 va,
Pia(V) = po1 (V) = nddaua,
P (V) = D3us.

so that:



We recall that the spatial domain is now € = (0,11) x (0,l3). The space of configuration, after scaling
will be denoted by V. It ig the subspace of

HY Q) < HYQ) x H*(Q)

formed by the functions satistying the kinematic boundary conditions
0=uy =us =wugon {0} x [0, k]

The expression ca(u®,v) + E:E'E:-(ut_?v] = (f,v) then becomes:

Pf A“-’”‘F‘ﬁfiﬁ[m]ﬂ#(v]d}r+Qf B o7 o (uf) s, (v)dy = R/FS(ylnyﬂj'UE[yl?yﬂ]d}’_a
Q 0 Q

with
P E??2H+1

Q _ 53_},329—?&—2
we shall determine the #(z) and @ as functions of £ and the function 1(s) using the two equations
P=0=R.

This gives 6-2 _ .

b=ce/n and 7 " =¢

!, and equal to 1 (or rather 0(1)) in the "typical example” 5 = £!/4

b is always small with respect to 1~

we have 8 = 6.



Once # is determined, the scaling is perfectly defined. We then observe that the factor n® =251
| ua(x) = 772~ tualy),
takes the form: n* which is always small. It means that the scaling of the component u§ is such that,
after scaling, it is asymptotically large with respect to the case before scaling. As we shall prove in the
sequel, the scaled unknown w5 has a non zero limit; it follows that the initial unknown u5 tends to 0 at

the ratio n*. We shall come again on this property, which amounts to the rigidification of the plate with
respect to the plane case.

-Summing u—p, the problem P- becomes atter scaling:
Problem IlI.. Find u® =V satisfying

a®(u®,v) = [, Fa(y1,y2)va(y1, y2)dy.

Yv = V., where

= = de f e LTI £ £ o F A = £y & -
a*(u®,v) = /‘4 M s(a J’n;,,lidewr/ B g7 5(0%) 3, (v)dy.
J 0

LY
It should be emphasized that, by virtue of the definitions the coefficients

involve various powers of 7, running from —4 to +4. The terms in n~* to n~!

whereas those in n! to n* are “singular perturbation terms”.
the limit expression.

are “penalty terms”,
Only the terms of order 1 will remain in

Remark u® is the unique solution of the minimization problem

Miny J-(v)

where



Let us proceed to the a priori estimates. From the expression of a®(v,v) with u* = v,

Lemma The estimates:

|01y

E”Iﬁﬂ} < ca” (v, V)

1
I~ 12 (Fory + Dqva) ||chﬂJ < ca(v,v)

||?I" (Ohva + v3 ||L9:ﬂ: < ca”(v,v)
|93va|72 (e < ca®(v, V)
||?]L}1d213||L2,:ﬂ] ca®(v.v)

0t vs|Z2q) < ca*(v,v)

hold true for a certain ¢ > 0 independent of = and v € 'V,

Now, in order to prove that the functional in the right hand side is bounded independently of =, we
need an estimate on ug itself.

Lemma The estimate:
5 2 » £ T T
||'i-3||L2cjcju.11 1 H2(0,15)) = ©a (v, V)
holds true for a certain ¢ > 0 independent of = and v £ V.

PrOOF. Discarding the factors in 13 and differentiating we have:

i [ i 2 - e~
||U}§'U1 + dz"}l'u?)||L2{{D.11]|;H—1[0~Eg}] = ca” (v‘ V)

1918202 + 31'“3)||?J—1|::ZD.:1J;Lﬂm.sgj:j: < ca®(v,v).



using the fact that vy vanishes on {0} x [0, ], by using the Poincaré’s  inequality we obtain:

3 2 £ r r
vz ((0,1):02(0,1)) = €07 (V, V)

and differentiating,
02 2 - S v v
10201171 (0,01 -2(0,0))) = €a” (v, V).
taking the weaker norm, it follows that
A= . ] - S ..
||‘5}2J1LE‘HLE((:::.zij:;H—E:jD“:gjj < ca (v,v)
‘ 2 £
||‘5}1U3||H—1(mm;H—zqu.zzj} < ca (v,Vv)
or even (integrating with respect to y; on account of the vanishing of the trace on {0} x [0, k]):
o || 2 - A (v v
1031122 (0,0, )1 -2(0,)) < €a°(V, V).

The coneclusion follows.

Lemma The estimate
|f Frvady| < ca® (v, v)1/2
Q

holds true for a certain ¢ > 0 independent of = and v € V.

Now, taking v =u® we get the energy estimate:
Lemma Let u® be the solution of .. The estimates

£

|ves(u®)

| <C a,F=172 ||31”c1||%2{m = C

bl oo e -y —2/0 & 1 -
|7 15(‘52“1 + 01u5)||72() < C In~2(8au5 + u3) 720y < C




c_-._. ! oo Bl . 9 s
= C ||7?dld21,t3||i2(ﬂj < C ”T]‘ dlu?r”.ﬂﬂl:ﬂ] < 8
hold true for a certain C' > 0 independent of =.

We shall need an estimate on w5 itself. We shall obtain it by differentiating

with respect to yo and integrating in ;.

Lemma  7.; ¢ pe the solution of I.. The estimates

£ . . ! = | - : ;
il o2y = € 3]l 72 0,001 (012)) = € luslZ 20,11 s mr2(0.12)) < €

holds true for a certain C' > 0 independent of =, where

HY((0,11); H1(0,13)) = {w € HY((0,1;); H(0,15)) such that w(0,-) = 0.
A first result of convergence is

Lemma [Let u® be the solution of Il.. The following convergences (as € — 0) hold true (in the sense
of subsequences, the limits being not necessarily unique):

uj — uj weakly in ﬁé[[[}?ll]; L%(0.15)) uj — us weakly in ﬁf&{{ﬂ,llj;H_l{D, l2))
ug — Uy weakly in L%((0,11); H*(0,13))
where u* = (u,ud,usy) are distributions on (1, belonging to the spaces specified
oul + dqus =0
oty + ug = 0.



Finally,
2 a(ut) — 7l weakly in L?(Q), a,f=1,2,

for some 77 5 € L3(Q).

4. Limit problem and convergence in the basic problem.

Let us define the space G for the definition of the limit problem:
G = {v = (v1.v2,v3) € Hy((0,4): L*(0, 1)) x Hy((0.4): H'(0, 1)) x L*((0,1): H*(0, b)),
621-*1 T 611-*2 = U: ag’b‘g an E?’L‘g = D}ﬂ
where we observe that vy defines completely vy and then vg.

Clearly, G 1z a Hilbert space with the norm

{ O - e

=~ ||Gyv1 | i?{n} + [|05va| %9{9}

Remark A straightforward comparison with the space V' shows that the space G for the limit problem

incorporates the two constraints corresponding to the "penalty terms™ in Il  whereas the boundary
conditions for ua, which are concerned with the "singular perturbation terms™ in Il.  are lost.

It is worthwhile to state an equivalent definition of the space G where the functions are defined in
terms of a scalar "potential 0" :



Lemma The space G may equivalently be defined as the space of the triplets v .= (vy.vo,v3) such

that:
v = 010, vo = —doth, Uy = _331.5!.

where 1 is an element of

G = H2((0,13); L*(0,12)) N L2((0,11); H*(0,13))

where .
Hg((0.11); L*(0,12)) = {¢» € H*((0,11); L*(0,13)):¢(0, y2) = H14(0,y2) = 0}.

Remark  The introduction of the scalar potential ¢ seems to be new in the shell literature.

Some closed, but different, ideas can be associated with the stress function introduced

by G.B. Airy (1801-1892)
It should prove useful to prove a lemma on density in G.

Lemma 7y, subspace of G formed by the elements v = (v1,v9,vy) which are smooth, vanish in a

neighborhood of {0} x [0,13] and derive from a “potential™ v is dense in G.
We are now defining the limit problem. It involves the numerical coefficient 1/Cq111, and B?222 where
C'apae 1s the matrix inverse of A2BMe i e, the matrix of membrane compliances, and B is the matrix of

flection rigidities. They are both strictly positive. -
3y () = CrpasT? (1)
f A Apren 3



Problem Ily. Find u € G such that

1 _ o _
/C 31'{1-1311;1{3}?4—/ Bﬂﬂﬁgugﬁ,}%uad}'zng-t.igdy.
o Chii Q O

L)

vv € G, or equivalently, in terms of the potential, find @ €G such that
f S 0lpdivdy + f B¥20ypdydy = — f F3dybdy.,
a Ciin " Q

L II ' 1
V! ':G.

| Obviougly, this problem is in the Lax - Milgram framework, as the right hand side 1is a

continuous functional on G. We then have

Theorem [pder the assumption Fy Lg[ﬂ], Problem 11y has a unique solution.

Our main convergence result is:

Theorem Let u: and u be the solutions of 11, and Ily respectively. Then, for = | 0, we have:

mn —u

In other words, the limit u* is the solution of the limit problem



The corresponding higher order partial differential equation for ¢ is obviously

(104 4 B2298), _ _a82F,.

C1111

parabolic according the theory of linear partial differential equations

Remark if we define the bilinear form

a’(u,v) =f = Ul'ulal't-’lff}"#—/Bmﬂﬁﬁugﬁﬁ-uad}r,
a C1111 Q

then the symmetry of a®(w,v) shows that the (unique) solution w of problem Tly can be characterized as
the unique element of G solving the minimization problem

ﬂ-ffﬂg JD [‘bjl

where |
Jo(v) = =a"(v,v) — / Fiyvady.
2 0
We can formulate, equivalently, this property in terms of the potential

Seo, the (unique) solution ¢ G of problem Ily can be characterized as the unique element of G solving
the minimization problem

MingJo(i))

B 1 B2222

Tow) = 5o [ 100l ay +

1) zﬂf‘y'—l—f F3021)dy
2C1111 L|2| ' Q MR



5. The shell has an edge with slight folding ...

In this section we consider a case slightly more complicated than the basic problem, when the section by
y1 = const. 1s as sketched in Fig 2.

.

or reasons concerned with applications to homogenization problems

tangent plane on Yy, = —b /2 and y» = /2 13 horizontal. This amounts to éaying that the ané‘le_ﬁf the
folding 1s 2w, with w = bnl/2 (see Fig 2) where b always denote the (constant) curvature. Denoting
by u; and fL:_ the traces on x5 = 0, the continuity of the displacement 01 at the folding gives in the
projections along 1, 1ts normal in the "base plane" and the axis Z (see Fig. 2) respectively:

In order to avoid irrelevant and cumbersome expressions, as w is small, we shall take cosw = 1,
sinw = w. Moreover, we shall see in the sequel that the components ug are asymptotically larger than
ug, and we shall neglect w?uy with respect to us. Then we shall consider

=

uy
_|_ .1.'+ _II'-u.-_ ~—
q t iy = Wiy + Uy
H'S

E-!

=

+
1
— Lt
+
3



so that we merely may keep in mind that w; and ug are continuous across ro = 0 and

-ﬁ; — Uy = 2wug.
Let us denote
ﬁ;’ = (0, 4) x {U]T;ngZ} and Q. =(0,0;) x {—ﬂfga.-'fg__,[]]

and we shall also denote by €. the union of QF and Q_. The space of configuration will be denoted by
V.. It is the subspace of

HY(QF) x H'(QF) x H*(QF) x HY(Q7) x H(QD) x H(Q7)
tormed by the functions satistying the kinematic boundary conditions
0 = ﬁ{_" = ﬁ;_" = ﬁ;’ on {0} x [0,k /2],
0 = 4y =ay = a5 on {0} x [-nk/2,0].

and the transmission conditions

The “variational or weak formulation”

of the elasticity problem for this structure takes again the
torm

ca(u®,v) + 3b(uf,v) = (f,v)
with

a(t,v) = f AT (), () dxet f AN (8775, (V7 )dx
g 0 :

b(a,¥) = L L BN D (U)o (77 )t L BN s )P (V7 )dx,

-]



where we are using the obvious decomposition v = (v, v~ ) for any element of the energy space V..

The scaling and other developments are then analogous to those of the "basic problem”. The space
of configuration after scaling will be denoted by V. It is the subspace of

i .

HY QM) « HY(OT) x H2(QT) x HY(Q7) x HY(Q7) x HY(Q7)
tormed by the functions satistying the transmission and kinematic boundary conditions

-+

Uy — Uy = Uz

and
0= U] = Uy = Uz ON {U} - [—Eg}.";?? ﬂg ;’IQ:?

Theorem  Let u: and u be the solutions of the above coupled problems respectively. Then, for = | 0,
we have:

u —u

with convergence of each component u® = (W7, u" ")

Equivalently, the limit w can be obtained through its potential p = (p*, 07 ) € G, solution of

1 o 1 . o
/ ——0f T UTdy + f —— it oty Ty
o+ C1111 o- C1111

+ / BR2od ot oty tdy + f B*%28y0~ d3v " dy
o+

= — f F302)tdy — / F3020 dy,
o+ -



We consider now the case in which the shell is 2nls —periodic with respect the section by 1 = const.projected
on the band (0,1;) x (—oc,4+oc) and having a slight folding at any section of the form (0, l) x {knk}
with & € Z, as sketched in Fig 3.

We can consider as "unit shell” the shell defied trough the rectangle (0, [1) % (—nl, +nl), clamped
along the "small sides” at {0} x [-nk,nk], which implies again kinematic boundary conditions similar to

those indicated

We then consider periodic loadings and search for periodic solutions.

The convergence arguments follows as in previous Subsections with easy modifications.

Remark. Many other results (global properties, the obstacle problem, ...}, work in progress (homo-
genelzation, hyperbolic surfaces, ...). Many open problems.



Thanks for your attention




	Mathematics for the �Torroja's shell roofs of the� Zarzuela Racecourse
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 22
	Número de diapositiva 23
	Número de diapositiva 24
	Número de diapositiva 25
	Número de diapositiva 26
	Número de diapositiva 27
	Número de diapositiva 28
	Número de diapositiva 29
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32
	Número de diapositiva 33
	Número de diapositiva 34

