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1 Introduction

» Problem The one dimensional thermistor problem: Q=(—L,+L)
(up — (k(uw)ug), = o(u)(vy)? in Qx (0,7T),
(o(u)vy), =0 in Qx(0,7),
{ v=ovp, u=up >0 on I'p x (0,7, (1)
o(u)5L =0, k(u)g“ =0 on I'y x (0,7),
L u(z,0) = up(xz) >0 on €.

» n is the outpointing normal vector

> pUl'y =900, I'pNT'y = ¢, the possibility I'p = ¢ (the empty set), or I'y = ¢,
being not excluded.

» This problem models the diffusion of heat produced by Joule's effect in a one
dimensional conductor (see for instance Kohlrausch 1900, Cimati 1988).

» u is the temperature, x(u) the thermal conductivity of the medium, v is the
inside potential and o(u) the electric conductivity which (as x as well) is supposed
to depend on the temperature.

» Metallic conduction, the Wiedemann-Franz law k(u) = kguo(u) =-the tempera-
ture equation degenerates where u = 0.



»Many results in the literature but: lack of existence and uniqueness results if
k(0) = 0 [degenerate equation, finite speed of propagations]. Case of o(u) de-
generate (0(0) = 0).

» New formulation:

( Uy — SO(U)M o(u)(v,)? in Qx(0,T),
(o(u)vy), = in Qx(0,7),

{ v=wp, p(u ) @(up) >0 on I'p x (0,7, (2)
o(u)2 =0, 22 — g on Ty x (0,7),
L u(z,0) = ug(x )20 on ().

» No classical solution does not exist in general if £(0) = 0. Quadratic growth of the
right hand side.
» General assumptions

o is Lipschitz continuous, (3)

there exists a bounded strictly increasing function og(u), with g¢(0) > 0 and o1 > 0
such that og(u) < o(u) <oy Yu>0,
(4)



p € CH[0,400)) N C*((0,+00)),
©'0)>0, ¢(r)>0 Vr>0,
there exists Vp € L>((0 T'); H'(Q)) such that
{ Vp=wponlIpx(0,T) and %Lé) =0on Ty x(0,7T),
there exists Up such that p(Up) € H*((0 T); H'(2))

{ o(Up) = o(up) > 0on T'p x (0,T) and 22YD) — g on Ty x (0, 7)),

on
Uy € LOO<Q>, 0<uyg < M,

» Notice that the Wiedemann-Franz law and the assumption (4) imply

kzO/ oo(s)sds < p(u) < Cu® VYV u >0,
0

with C = %
» Our existence result will require the additional condition
O'()(O) > (
or

e(u)® < gg(u) for any u € |0, 9], for some o € (0,1) and § > 0.

(11)



» The great generality allowed on o(u) requires to spend some words on the way in
which the boundary conditions are satisfied. We shall show that o(u)v, € L*(Q)
and that ¢(u(.,t)) is continuous. Then the assumption

og(up(z,t)) >0on I'p x [0,7T] (12)

implies that the trace of v on I'p x (0,7') is well defined.
» It turns out that a function which plays a crucial role in the study of the system is
the function

J = o(u)v,,

which corresponds to the current density. Notice that the second equation of (1)
implies that J is independent of z, i.e., for a.e. t € (0,T)

o(u(zx,t))v.(x,t) = J(t) for a.e. z € (0. (13)
» Since the first equation can be, equivalently written as
u — () = Ju, in Qx (0,7T),

if J(t) = 0 on some subinterval (1 t2) C (0,7") then the equations of system (1) are
not coupled on € X (%1 t2).



» Notice also that J(t) = 0 on (0,7) if inf.cq |v.(x,t)| = 0 (case, for instance, of
['n # ¢) or min, g o(u(z,t)) = 0 (case, for instance, of I'p # ¢, 0¢(0) = 0 and
up(t,x) =0).

» Moreover, if min g o(u(z,t)) > 0 we have

J(t)
(T, 1) = €. €2.
v (T, t) (2. D) a.e T €
Then, a simple integration shows that, for a.e. t € (0,7)
dz
v(L,t —v—L,t:Jt/ : 14
(L)~ v(-Lt) =) | (14

which will play an important role in our proof of the existence of solutions and also
can be understood as a weak sense in which the Dirichlet condition holds (notice
that if J(¢) = 0 and, both, 'y # ¢ and I'p # ¢ then, necessarily, v(z,t) = vp(x, 1)
on I'y x (0,7)).

» Notice also that if J(¢) = 0 and o(u(x,t)) > 0 for any = € (), we get that v, = 0.
Finally, if 'y = ¢ as [, o(u(z,t))dz > 0 for a.e. t € (0,T),we get from (14) that
J(t) = 0 (respectively J(t) > 0 or J(t) < 0) if and only if vp(L,t) —vp(—L,t) =0
(respectively vp(L,t) — vp(—L,t) > 0 or vp(L,t) —vp(—L,t) < 0).
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» The uniqueness of a weak solution will be obtained for the cases in which I'p = ¢
or up(t,x) > 0 on I'p x (0,T) (notice that the possible vanishing of uy maintains
the degenerate character to the parabolic equation).

» The last section of the paper is devoted to the study of a qualitative property which
is peculiar to the case ¢'(0) = 0. It concerns with the occurrence of a free boundary
(given by the boundary of the support of u).

»When o((0) > 0 the vanishing set of the solution can be reduced to some curves
in Q).

» Nevertheless, if o¢(0) = 0, we show the, so called, finite speed of propagations
property: if up(x) =0 on B, (z¢) := (xo — po, xo+ po) for some z¢ € Q2 and py > 0
then there exists ¢t* > 0 and a function p(t) : [0,t*) — |0, 00), with p(0) < pg, such
that u(z,t) = 0 a.e. in B,y)(xo),Vt € [0,17).

» This result opens the possibility of further studies on the properties (and regularity)
on this free boundary.



2 Existence of a weak solution

Assumed (12), by a weak solution to problem (2) we mean a couple of functions
(u,v) such that

o(u) € L*0,T: H'(Q)),u > 0,u € C([0,T]; L}(2)) N L®(Q),
(15)

v e L>(Q), (16)
o(u)v, € L0, T; L)), o (u) [v,|* € L0, T; LH(Q)), (17)

the boundary conditions v = vp, p(u) = ¢(up) and o(u )g = 0, ago( ) = 0 hold on
I'p x (0,7) and I'y x (0,T) respectively, u(.,0) = ug in L(Q) and

fQU<5'7>T)§(5UaT)dCU — fQ u(x 5(33 0)dx = fOT fQu &dtdx
— [T [ plu)ubodtdr — [T [ o) |v,| €dtda,



(18)

/a(u)vx@dw =0 ae. t€(0,7T),
(19)

for all £,¢ € CHQ) such that &(x,t),((z,t) =0onT'p x (0,T)..

Theorem 1. Under the assumption (12) there exists, at least, one weak solution to
the problem (2). Moreover, J(t):=c(u(x,t))v.(x,t) is a bounded (constant in x)
function on (0,T) and if oy(0) > 0 then v, € L>(Q).

Proof. We can always assume that

vp(L,t) #vp(—L,t) ae. t€(0,7T). (20)
Indeed, otherwise, as pointed out at the Introduction, J(t) = 0 on (0,7) and the
system is reduced to two uncoupled equations for which the existence of solutions is
well-known in the literature.



» Notice that the same appears if I'y = ¢, nevertheless we shall not assume this
condition in the rest of the proof in order to recall an approximation argument which
will be used in the proof of the uniqueness.

» The process of proof consists in three steps.

» Step 1: Approximation. The method consists in approximating the solution (u, v)
by (uf, v¢) the solution of

(uf — p(u)pe = o(u)(vg)? in QX (0,7,
(o(u)vs), = in Qx(0,7),
{ v¢ =wp, p(u) = p(max(up,€)) on I'p x (0,7, (21)
vt — ), 2] — on Ty x (0,T),
L u(.,0) =up+ € on €.
»As uf — p(u)y, > 0, we get
u® > eae. on 2 x(0,7). (22)

Thus, ¢'(uf) > 0, the operator is, now, uniformly parabolic and so a solution
(u€, v°) to problem (21) is known to exist (see, e.g., Cimatti 1988).
Step 2: A priori estimates. We show that o(u¢)(v¢)? (respectively u¢ and o(u)v, €

X

L>(Q)) is bounded in L'(Q) (respectively in L>°(Q)) independently of €. [For that,
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multiply the equation of v€ in problem (21) by v¢ — V), integrate by parts, applying
the Cauchy-Schwarz inequality,

» o(uf)(ve)? bounded in L°(0,T : LYQ)) implies that uf — p(u),. = f(t, )
with f¢ uniformly bounded in L'(Q) and so we have from Kawanago (1993) ¢ is

uniformly bounded in L>°(Q).
»On the other hand, from the equation of v we have

o(u)v, = J(1)

and hence

()]

01

< |3 (23)

Plugging this into (?7) we obtain

T2 < C(T)2o%ess sup <f9 ! ) (24)

te[0,T] (u(x, t)dx

where C(T') denotes some constant independent of € and so
| J5(t)] < CH(T) (25)
for some positive constant independent of ¢.
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>t is easy to get a L>°(()) a priori estimate on v° since, if I'p # ¢ then, by the
maximum principle,

[v(z,t)] < |lvpllpe(g), for a.e. @ € Q2 and any ¢ € [0,77].
In the case I'p = ¢ the function v<(x,t) = 0 and since v° is determined up a constant

we can take v°(x,t) =0 for a.e. x € Q and any t € [0, T].
»If Jy(t) # 0 forany ¢t € [0, T

T T 2

Vve ) *dxdt

/ /|fu;|da:dt§f0 Joolu)(vs) de < O(T). (26)
0 JQ mmte[O,T]|J€<t>|

To get other a priori estimates we see that by multiplying the equation of u° in
problem (21) by ¢(u€) — p(max(Up, €)) € L*(0,T; H'(52)) and integrating over (2,
we get that if
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and integrating over (0, ¢) we obtain for some new constants C(T’) and

/B( (2, ))dz + = // u),)2dtda (27)
< &(T) + LBme

» Then, since B(s) > 0 for s > 0, there exists some constant C' = C(T'), indepen-
dent of ¢, such that

/ B(u(., 1)) < C(T) Vit € (0,T),

()| z20,m 1)) < C(T),

and (from the equation of u°)

uil 20, m-1(0)) < C(T).
Moreover, since
p(u) = ¢ (u)us,
it follows that
()l | 20 7102 < C(T).
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Step 3 : Passage to the limit. Using a classical compactness argument, (see [30])
and the monotonicity of ¢, we can extract a “subsequence” that for simplicity we
still label by “¢” such that

ou) =1y in LX(0,T; H'(2), (28)

ou) = 1y in 1(Q). 29)

u¢ — u in L™(Q), (30)

(u), =1y in L*0,T: H 1)), (31)

J(t) — J(t) weakly-star in L>°(0,T), (32)

v¢ — v weakly-star in  L>(0,7T : L>(2)), (33)

o(uf) (v5)* = J(t)v — I3 weakly-star in L=(0,T : LY(Q)). (34)

» Clearly, one deduces that I; = ¢(u), Iy = u, . In order to prove the regularity
u € C([0,T]; LY(Q)) it suffices to multiply the equation of u¢ by sign(¢(uf)). Then,

—/|u (x,1)] dx</‘a (z, 1)) (v (2, ))?| dx
d
—/|u(az,t)|d:c§/|l3(:c,t)\d:c
14

and in the limit



which proves that u € C([0, T7; L*(Q)).
» Since min, g o(u(x,t)) > 0, by using the identity

wp(Lot) — vp(—L.t) = J<(1) /Q - (ufz o (35)
we deduce that, for a.e. t € (0,7,
J(t) — J(t) in R (36)
since for a.e. t € (0,7
vp(L,t) —vp(—L,t) yany (37)

oo
o(uf(z,t)) — o(u(z,t)) forany x € Q (recall that p(uf) — p(u) in L*(0,T; HY(Q))
implies that ¢(u(.,t)) — (u(.,t)) in C(Q) for a.e. t € (0, 7)) and notice that if
min g o(u(z,t)) = 0 then J(t) = 0 and (36) is reduced to J(t) — 0 in R.

» Thus,we conclude that for any £ € C'Y(Q) such that £(z,t) =0on I'p x (0,7)

/Qa(ue(x,t)) \vg(x,t)\Qﬁ(a:,t)da: = Je(t)/vg(x,t)f(x,t)da:

Q

— _Je(t)Lve(x,t)fx(x,t)dx.
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Using (33), (34) and (36) we can pass to the limit to deduce that

/Qa(ue(:z:,t)) W (z, t)[* €(x, t)dz — —J(t)/v(x,t){x(az,t)d:c:/lg(:c,t)ﬁ(:c,t)dx.

Q Q

» Then, we can pass to the limit in the boundary conditions and in the equations to
get that

Joulz, T)é(x, T)dx — [, uo(z)é (ac 0)dx — fo o u&dtd (38)
+f0T Jop(u)&pdtds = fo [o, 0(w)(vy)*Edtd,
/a(u)vx@dw =0ae te(0,7), (39)

to get the existence result.g

3 Uniqueness of solutions

» Our main idea will consist in proving that any possible weak solution must coincide
with the solution constructed in the previous section by using a method that, coming

from the Holmgren duality method, it was first adapted to degenerate equations by
A.S. Kalashnikov (1979) and then refined in Diaz-Kersner (1993)[16].
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Theorem 2. Assume I'p = ¢ or up(t,z) > 0 onI'p x (0,T). Then problem (2)
has a unique weak solution (u,v) such that v € L0, T; WYYQ)) (v(.,t) being
univocally determined in ) unless a constant in the case of 1'p = ¢ and arbitrary on
the set {(x,t) € Q, u(t,x) =0}).

» Before giving the proof of this theorem let us introduce some notation. Let (uf, v°)
be as before. Let (w, 2) be any weak solution to problem (2). By subtracting and
using that

/ / (2,)? Edtda = / / w)zz,)Edtdr = — / / W)z 2E,dtdr,

which is justified since o(w)z, € LY(Q) and 2z € L>®(Q), we have

/(w )<xT>g<xT>daz—/< )z 0)€ :cOda:—// W — uO\Edtda

/ / NE,pdtdr — / / w)ezs — o(u W i
/ /FD max(Up(s, 1), €))—p(up(s, 1)) anstdtder/ / w)ze—0(u

40)

17
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forall £, € CHQ)NC([0,T] : C*(Q)) such that &(z,¢),(x,t) = 0on T'px (0, 7).
»Here the term fOT Jr, (p(max(Up(s, 1), €)) — p(up(s, t))) % (s, t)dtds must be un-

derstood in the usual onedimensional integration by parts sense. So if, for instance,
I'p={—L}U{L} we have that

/ /p (max(Up(s, ), €)) — @(unl(s, t)))gi(s t)dtds

/0 [(p(max(Up(L,t),€)) — p(up(L,1)))E(L, t) — (p(max(Up(—L,t),¢€)) — p(up(—L,

»Let us denote by I the left hand side of (40). Thus

/ / —u) (& + e femfm - 0<wuz ~ zfue)zzxfﬁ
+a(’w) )ngx dtd:c+/ /F (max(Up(s,t),€))— gp(up(s,t)))gi(s t)dtds

/ / 2z — ) (0(u)2:€ — (0 (u)vE) s + (0(uf)(,),) didx. (41)
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» et us set

A = Az, t) = 90(“2 - Z‘L’fue), B. = B.(x,t) = "</“2 - z(u)zz (42)
C. = C.x,t) = "</“2 - z<“)z . D.=Ddx,t)=o(u)z  (43)
E.=FE(z,t) =c(u ), F.=F(z,t)=o(u). (44)

Thus (41) reads now :

I = /0 ) / (W=t WAy BEsC.Co Yt dat / /F (plmax(Up(5, 1)) —plup(s 1)

/ / e Dk, — (E)o + (FC) Ydtdz,

Lemma 1. There exist three positive constants m., M. and M* (M* independent
of €) such that m. < A x,t) < M. V(z,t) € Q , |Bxz,t)|, |Cux,t)] <
M~ V(ﬂ?,t) €Q.m

» Assume that we extend A., B., C. to the whole R? respectively by m., 0,0 and
denote again these extensions by A,, B., C. . Let p be a function of class C'*° with
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support in the ball B(0, 1) of center 0 and radius 1 of R* and such that
/ pdtdr = 1.
B(0,1)

pul,t) = n’p(nz, nt)

Set

and

Al =p,x A, Bl=p,*x B, CI'=p,x*C,
where x denotes the usual convolution of functions. Clearly, these functions are of
class C'™ in R?. Moreover, one has

me < Az, t) < M. V(z,t) € Q,Vn (45)

B, [CM < M* W(z,t)€Q, Vn. (16)
Thus, equation (40) reads now

T
_ / / W — UV E + ATE, — BUE, + O"C, Ytdat
/ /FD max(Up(s,t),€)) — o(up(s, t)))gi(s t)dtds
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o[ [t - anaas — [ [ -wie s - By

¥ /0 ; /Q (=) (C— C)dtdar — /0 ) /Q 0N Debes— (B£)ot (F.C) b
(47)

A similar argument must be applied if the coefficients D,, E. and F| are not bounded
(we leave the details to the reader).

Now we construct a “dual system” which plays a crucial role in the proof of Theorem
2.

Lemma 2. There exists a unique smooth solution (£,() = (£, (™) to the

system
( §t+A?€xx_B?€x+O?Cx:O In Qn
_<F€Cx>x — <E6§x>x — D&, In Q,
{ (=0, &£€=0 on ['p X (O,T), (48)
& =0, & =0 on Ty x (0,7),
€0 T) = w™ on (0, L),

where w™ € C§°(S2) is such that |w™(x)| <1 forany x € (—L, L) and

w™ — sign(w(z,T) —u(x,T)) in  L*Q),when m — oo (49)
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(here sign denotes the signy function, i.e., sign(x) = x/|z| if © # 0, and 0 if
r=0).

Next, we show some estimates which we shall need later.
Lemma 3. Let (£, (™) be the solution to problem (48). Then, there exists a

constant C, independent of n and m such that

lezill g €t gy lletllog = € (50)

(Illlo. denotes the usual L*-norm on L*(Q))).
Proof of Theorem 2. In (40), (47) choose (£,() = (£™,(™™) solution to (48)
where w satisfies (49). Then expressions (40) and (47) leads to

/ u)(x, T)w™(z)dx — /(w )z, 0)E (2, 0)dx 1)
/ /FD max(Up(s, 1), €)) — ¢(up(s, t)))g—i(S,t)dtds
/ / Ue)re(Ac — AN )dadt (52)
[ fo

w)Ex(B. — BY)dwdt + / / w)Co(C. — C™)dadt.



Notice that the assumption up > 0 implies that for ¢ > 0 small enough we get that
max(Up(s,t),€)) = up(s,t)) and so the first term of the right hand side disappears
(this is also the case of I'p = ¢). Then, by passing to the limit (first in ¢ — 0, then
in n — oo and finally in m — o0) we get that [, |w(z,T) — u(z,T)|dx = 0.
Since T is arbitrary we get that w = u° and then, obviously, z = v on Q if ['p # ¢.
»When I'p = ¢ we deduce that, for any ¢ € [0.T] there exists a constant C(t) such
that z(.,t) —wv(.,t) = C'(t) on 2. On the set {(x,t) € @, u(t,z) = 0} z and v may
be different without any consequence on the rest of points of ().u

Remark 2. The case up = 0 is more delicate since the first term of the right hand

side of (51) becomes
/ ] / ()28 (5. 1)dtds
0 JIp on

and the passing to the limit requires sharper estimates obtained under additional
assumptions (see, for instance, Diaz-Kersner 1993 for the case of a single scalar
equation). Nevertheless, we conjecture that, as in the scalar case the uniqueness of
weak solutions holds also for up = 0 and general functions ¢.
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4 On the existence of the free boundary

» The assumption ¢'(0) = 0 and a suitable growth assumption lead to the existence
of a free boundary given as the boundary of the support of the solution. It is the finite
speed of propagation property: if uo(x) = 0 on B, (x¢) := (xo—po, To+ po) for some
xo € €2 and py > 0 then there exists t* > 0 and a function p(t) : [0,t") — [0, 00),
with p(0) < po, such that u(z,t) = 0 a.e. in B,y)(x0),Vt € [0,t%).
»When I"y # ¢ we know that the system becomes uncoupled (see the Introduction)
and, so, the criterium for the finite speed of propagation is well known (see, e.g., the
surveys Kalashnikov (1987) and Antontsev-Diaz-Shmarev 2002).
» Nevertheless, if I'y = ¢ and 0g(0) > 0 the vanishing set of the solution can be
reduced (at most) to some curves in () since, if we assume that u(.,t) is a convex
function of x then

wy > 0g(v,)?

and thus t
u(zx,t) > 00/ v (w0, 8)°ds + ug(w).
0

Then fot v.(Tg, 8)*ds > 0 implies that u(xg,t) > 0. Notice also that, by the strong
maximum principle, v,(x,.) can not be zero on a subset of () of positive measure
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(for any fixed ¢ € [0, T7).

»On the other hand, if o(u(z,t)) (v.(z,t))” > 0 on Q, it is impossible to get solu-
tions u(x, t) vanishing on an open subset w of () since we would reach a contradiction
on w trough the equation of (1).

» The case 0¢(0) = 0 (and 'y = ¢) is different. More precisely we have:
Theorem 3. Assume ¢ satisfying

/ 71) s < oo, (53)

S

00(0) = 0 and I'y = ¢. Then, if suppuy is a non empty compact subset of () the
same happens with suppu(.,t) for any t € [0,t*), for some t* € (0,T]|. Moreover, if
t* < T then u(x,t) >0 forany t € (t*,T].

Proof. Consider w as the solution of the scalar homogeneous problem

wy — (W) =0 in  Qx(0,7),
e(w) =p(up) >0 on I'p x (0,7, (54)
w(z,0) = upg(x) >0 on ().

(remember that now ['p = 0€2). Thanks to the assumption (53) we know that there
exists t* € (0,7T] such that suppw(.,t) is a compact subset of the open set ) for
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any t € [0,t*) and that if ¢t* < T then w(x,t) > 0 for any ¢t € (t*,T]. It is easy to
see that, necessarily, w(.,t) must coincide with u(.,%) for any t € [0,¢*). Indeed, as
o(u(zx,t))v.(x,t) must be a constant (in x) J(t) we get that, necessarily J(t) = 0
if o(u(xg,t)) = 0 for some xy € ). Then, as o(w(xy,t)) = 0, for some xy € 2 if
t €10,t*), we can take v = z as the unique function solution of

2z, =0 in Qx(0,t%),
z =wvp, on I'p x (0,t%),
22 =0, on I'yx(0,t),

and we get that (w, z) satisfies problem (1) on [0, t*) (notice that o(w(x,t))(2.(x,t))* =
J(t)zz(x,t) = 0 on € x (0,¢")). By the uniqueness of solutions for problem (1) we
conclude that (u,v) = (w, z) on 2 x [0,t*). Moreover, as o(u(x,t))(v (:z:,t))2 >

0 on 2 x (0,T) we conclude (by the maximum principle for problem (54)) that
u(x,t) > w(x,t) > 0on Q2 x[0,T] and then u(x,t) > 0on Q x (t*,T].m

Remark 4. Notice that assumption (53) holds under the Wiedemann-Franz law
k(u) = kouo(u) (remember (10)).
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