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1. Explosion en tiempo finito para EDO con retardo (Athenas 2013, 3-47)

There is a very extensive bibliography on blow-up phenomena. The relation of blow-up

and time delay has not been studied in so much detail.

The authors have done a similar analysis for the “opposite” situation, namely, finite-
time extinction, in which some (nonzero) solutions vanish identically after some finite

“extinction time’.

Some of the techniques used are similar in both cases, but there are important differ-

elces.

The first of these comes from the very nature of blow-up and how “infinity” is involved,

which requires analyzing some technical aspects of the regularity properties of the solution.

The second difference is that the structure of the equation enables us to apply delay-

PDE comparison techniques which are not usually available in the extinction phenomenon.
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Our goal will be to analyze the delay PDE (where f is C'?and Q an open bounded set
of RYV)

u — Au= f(t.u(t,z),u(t —7.2)), (t,z)€ (0,+00) x Q.
(NLPy) { 2:(tx)=0, (t.z) € (0. +00) x Q.
w(f x) =¢&(0, ) (0,z) e (—7,0) x Q,

I

.

going through the study of

r

X — Au= B'(t)u(t — 7.x)
(Pv) q Z:(tx)=0, (t.x) € (
u(f,x) =&(60,x)

- tx) el
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based (for g in C'!' and B defined below) in that of

u'(t) = f(t,ult)) + B'(t)g(t,ult—7)), 0<t

%

(NLDDF)
u(lf)=¢(0), —7<60<0

after considering caretully properties of

u'(t) =B(t)(t, u(t —7)), 0<t
(DDE)
u(f) =¢&(0), —17 <6 <0,

B :[0,7] — R is a positive L' function which hehaves like 1/|t —t*|*, for some
a€(0,1) and t* € (0,7),

B’ represents its distributional derivative. (The product with u will be justified later

on)



We analize the (delicate) possibility of extending blow-up solutions beyond the explo-

sion time t* (in a certain sense).

For this, we will come to define a generalized solution by means of the following integral

identity in a suitable space of functions on {2
t
u(t) = e™E(0) + B(t)E(t —7) + f e B(s) [~ Aé(s — 1) + (s — 7)] ds,
0

where &(6.x) is the initial historyfunction, A is the abstract operator associated to —A

with Neumann boundary conditions and e*! is the associated semigroup, and give suffi-

cient conditions for the integral to exist beyond ¢ = ¢*(for instance on [0, 7).



1.2. Preliminares

Preliminary analysis

Let t* > 0, let b: [0,t") — R be a continuous function such that b(¢) > 0 on [0, 1)

Assume that b “blows up” at t*, that is, b(t) — oc ast 7 t*.
Consider the delay differential equation

u(t) =b(t)u(t —7), for 0 <t <t*,

(DDE™)
u(f) =¢(0), for —7 <60 <0,

where 7 > t" is a given delay and & represents the “history” or “initial function”, which

is usually assumed to be continuous on [—7, 0], (other function spaces can also be consid-

ered).
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If £&(t) = ¢ € R is a nonzero constant, then direct integration of both sides of above

equation gives

1
u(t) = u(t, &) = u(0) +f b(s)cds =&(1+ B(t)), 0<t <t (1)
0

blt)=c(tht )""

o &(e:‘,t)
5(@: 7%(.{:")“‘

If b(t) is not integrable !!

Otherwise, u blows up at t* but the singularity of the solution is weaker than that of

b. a fact that reminds the “smoothing effect” usually found on delay equations.



If the initial condition ¢ is not constant and if &(¢* — 7) > 0, then &(t) = &(t* — 7)/2

on some interval [t* — 7 — 0.t — 7| (where 0 < § < t*) and we may write for t € [0, t7) :

t
w(t) =u(t, &) =u(t* —4§)+ / b(s)é(s — 7)ds = (2)
t*—d
(" =7

> u(t" —0) + [B(t) = B(t" = 9)]

which implies that, u(t, &) blows up at t* like B(t) as before.

| [
1 |
I b(*) [
b®)
B(ET) ; !
! 1 ’
I | :
h-—st | o
: i ! [ S
S F - o (.
o & b Lo o < = \#__F_l‘:ﬁ;;\h_/
MW b ..
Llisfo'f‘y

If £(t* —7) = 0, the product b(t)&(t — 7) may be integrable or not on (0, "), depending
on the (fractional) order of t* — 7 as a zero of & If & is C'', for instance, the order will be

an integer and the product will certainly be integrable. 10



It the function b is also defined and is continuous for ¢ > t* it is natural to ask
whether the solution itself can be continued beyond t* in some sense. In other words, can

the formal integral expression

"
u(t &) =&(0) —|—f b(s)é(s—T1)ds, 0<t<T,
0

be considered a as an “integral solution™ of some kind, defined on the whole interval [0, 7|7

This is the real difficulty, since continuation beyond 7 is always possible as long as b

remailns continuous.
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Let us start again with constant initial functions &(t) = ¢ If B € L?(0, 7) for some
p € [1, o0, the function
u(t.€) = E(L+ B(t)).

is a well-defined L? function. For a general continuous initial &, the function
t
u(t, &) =¢(0) —|—f b(s)¢(s—T7)ds, 0<t<T
0

is also well defined and belongs to the same L” class as B does, it is also C' except a

t = t* and satisfies the differential equation for all ¢ € [0, 7] except for ¢

Of course, one could define an integral solution to be just that, but it is clear that
further analysis is necessary in order to justify such a procedure. This is the purpose of
the next section, which deals with primitives B(f) only assumed to be in L?(0 7), thus

allowing for infinitely many singularities and other more complicated situations.
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1.3. La EDO (lineal) con retardo “basica”

The basic equation

Let B € L?(0, 1) such that B" ¢ L] (0, 7), where B’ is to be understood in the sense

of distributions. Without loss of generality we will assume that B(0) = 0.

Example: B'(t) = C(t*—t)? with 8 € (1,2) [so that B(t) ~ K (t*—t)PT! ¢
LP(0,t*) for some p > 1]

We consider the retarded functional differential equation

u'(t)=B'(thult—7), 0<t<T,

I

u(f) =£(6), —T<6<0,

DDET

where ¢ is a given initial function whose smoothness properties will be discussed below.

For the time being we will concentrate on the initial “basic interval” [0, 7].

13



As discussed previously, if B is C'! except for a singularity ¢* € (0, 7), for instance

B(t)=1/|t—t*|", where 0<a <1, (3)

we can integrate both sides, thus obtaining

t
ut) = £0) + [ Blo)e(s — 7)ds (4)
0

but, in general, this formula will make sense only for ¢t € [0,t*) because the product

B'(t)&(t — 7) need not be integrable. In fact, it will never be integrable for nonzero
constants & As mentioned above, in order to get a better understanding of the problem
and check whether the solution can be continued “beyond” the singular point t* in a

meaningful way we need to give a more precise meaning to the right-hand side of (DDET)

14



A strategy in the theory of differential equations with discontinuous right-hand sides

(Filippov) is to transform the equation into another with integrable discontinuities, that

1s, a “Carathéodory form”, considering an

Equivalent neutral equation

1.4. La ecuacion (funcional) neutra equivalente

By writing

B'(t)u(t —7) = [B(t)u(t — 7)]' — B(t)u'(t — 7)
equation (DDET) becomes

d
NTL{ di

| ulf)=¢(0), —7<6<0,

¥

which is a neutral differential-delay equation.

u(t)— Bl(t)ult —7)| = —-B(t)u'(t—7), t=0,

J. K. Hale, Theory of functional differential equations, Springer, New York, 1977.
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Integrating (formally) both sides of (NT'L) on [0, 7] and since we assume B(0) = 0

(nonessential )

t
u(t) = £(0) + B(t)é(t — 1) — f B(s)'(s—7)ds, 0<t<T
0

which gives an explicit representation of the solution in terms of the initial function.

This is just the standard “method of steps”™ as long as the integral in the right-hand
side is defined. As is usual in neutral FDE's, more smoothness in the initial function is
required than in the retarded case. Since B € LP(0, 7). the hypothesis & € L9(—7,0)

(1/p+1/g =1) will be enough.

16



We have just proved the following result:

Theorem 1 1. Let B € L?(0, 7). Then, for every & € W9(0, 1) (where 1/p+1/qg =1)
the Cauchy problem (NTL) has a unique solution given by the identity

.
u(t) = €(0) + B(t)é(t—7) — f B(s)é'(s—7)ds, 0<t<T, (5)
0

Therefore w € LP(0.7) and u(t) — B(t)&(t — 7) is an absolutely continuous function
and we may write symbolically

u(t) = B(t)é(t — 1) + AC,
where “AC” means “an absolutely continuous function™. As a consequence, the

singularities of the solution on [0, 7] are also singularities of B

17



2. In particular, let t* € (0,7), 0 < a < 1, let m be continuous on [0, 7| and let

(i

Bl = 5

+ m(t)

¥

If the initial function & satisfies £(t* — 7) # 0, then t* is also a singularity of u and

ast —t".

u(t)

£(t — 1)

¥

is an asymptotic expansion of u near t*.

3. Ifle(t" —17—1t) < Cltr — 17 —t|” near t*, then u is bounded near t*

18



1.5. Soluciones con singularidades “evitables”

Solutions with removable singularities

More in general. following on point 3 of the previous theorem, let us concentrate again

on the single-singularity case as above:

B(t) = m(t), te€l0,7]

¥

Se—
t—t]°

with t* € (—7,0), a € (0,1) and m continuous. For any 7 > a let us consider the

following class of initial values:

E, = {£ €W'9(—7.0) : There exists C' > 0 such that
St —T7—0) <C|t"—7—46|" forall @ € [—7 0]}

Because of the Sobolev embedding MW4(—7 0) € C[—7.0], E, is a closed subspace of

W4(—7.0). We have thus an immediate consequence of representation

t
u(t) = &(0) + B(t)&(t — 1) —f B(s)'(s—71)ds, 0<t<T 19
0



Proposition 2 If & € E. | the solution u of (NTL) is absolutely continuous on [—7,0].

Remark 3 If we restrict ourselves to C' initial functions (a very standard procedure in
neutral delay-differential equations), the hypothesis that the exponent -y be strictly larger
than o means that the condition |&(t* — 17 —t)| < C'|t* — 7 — t|" is automatically satisfied

if t* — 7 is simply a zero of &, and the definition of E. is much easier:

E NnCY[-7.0)={ceC'([—7,0): &t —7) =0}

20



Take, for instance, £ = constant, 1/2 < a < 1, B(t) = 1/t —7/2| on [0, 7] and
extended periodically to all of R. Then u(t) =&(1+ B(t)) =& on [0, 7], on [7,37/2) the
equality u'(t) = B'(t)u(t — 7) does hold and then

u(t) =&(1+ B(7)) + gff B(s)B'(s — 7)ds

1 3T
zg(l—kB{Tj—i—E[B(t}z—B[T)]) L TESt<

because of the periodicity of B. Since B? is not integrable, the solution cannot be extended

beyond 37/2 in a meaningful way.
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1.6. Prolongacion mas alla del retardo

Continuation beyond 7

Assume that B is defined on a larger interval [0, T'), where T > 7. As can be easily

seen from the explicit formula

i
u(t) =&(0) + B(t)é(t —7) — f B(s)u'(s—71)ds, 0<t<T,
0
even for very smooth ¢ if B also contains singularities on the interval [7. 27| (for instance,

if B is 7-periodic, a very important case), the tfunction B(s)u'(s—7) may not be integrable

beyond 7.

22



On the other hand, results of the general theory of functional differential equations
imply that it B is differentiable on [0, 7') except at a unique singularity ¢*, the solution
can be extended to all [0, 7). The following theorem is stated in a simplified situation

which enables us to give a direct proof.

Theorem 4 Let T > 7 (including +o0), 0 < o < 1, let By be given by Bi(t) = ﬁ

and let m : [0, T) — R be continuously differentiable and let

B(t)=B(t)+m(t), 0<t<T

Let &£ € CY([—7,0]). Then the initial value problem

4
dt
u(6) = £(6)

[u(t) = B(t)yu(t — 7)) = —B(t)/(t — 1),
, T=60<0,

has a unique solution on [0,T) which belongs to LP( -7, 7), for every p < 1/a, and con-

tinuous on [0, T) except at t* and continuously differentiable at everyt € [0 T') except t*
N 23
and 7+ 1"



Proof. We already know that the expression
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gives us an L? solution [0, 7]. Since & € C'. it is also continuously differentiable except

at t*. In order to extend it beyond 7, we go back to the original retarded presentation

u'(t) = B'(t)ult — 1),
which does not give any trouble for values ¢ > 7 since the "coefficient" B’(f) is continuous

on [7,T) On [7.27| we can write

t
u(t) = u(7) +/ B'(s)u(s —71)ds, T <t <27,
T
which is absolutely continuous on (7,27) and continuously differentiable except at ¢ =

T+t 1 24



Remark 5 Since linear retarded functional differential equations are well-posed on LP
spaces (Webb) and these equations have a “smoothing effect” (Hale), the above result can
be extended in a number of ways. For instance, if B : [0.T) — R is L? on [0, 7] and

continuously differentiable on [17.T), then the solution belongs to LT (0.T), belongs to

&

Whe(r 27) to W2P(27,37) and so on.

G. F. Webb, Functional differential equations and nonlinear semigroups in LP-spaces.
J. Differential Equations 20 (1976), no. 1, 71-89.

J. K. Hale, Theory of functional differential equations, Springer, New York, 1977.
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1.7. La ecuacion neutra con una perturbacion lineal

Linear perturbations
This aparently easy argument will be important later on.

The above analysis is easily adapted to the case

u'(t) = Au(t) + B'(t)u(t — 1), ¢
ul@)=¢&(0), T=<6<0,

\.v.-"
-

by first applying the Euler change of variables v(#) = e~ *u(¢), which gives

v (t) = —de Mu(t) + e M [Aul(t) + B'(t)u(t — 7)]
= e MB(t)v(t — 7).

and successively obtaining the equivalent neutral formulation

{( & [ot) = Bitjolt = )] = —e Bt -7), >0

() =eE(0), T<H<0

bl

26



the representation for v(t) is

o(t) = eV BBe Nt — ) +£(0)
_ fﬂﬁ E—}LTB(S)E—A{S—T) [_)\f{S —7) + {;-f(s B T)] ds
=&£(0) + e MB)E(t—7) — [Te T B(s) [-A&(s — 7) + & (s — 7)] ds,

and the representation for u(t) = ev(t) is

u(t) = eME(0) + B(t)e(t — 1)

+ [ IB(s) [-AE(s —7) + € (s — 7)] ds.

which is very similar to

t
u(t) =&(0) + B(t)&(t — 1) — f B(s)'(s—T)ds, 0<t<rT
0
The qualitative statements of theorem 1 and the asymptotic expansion near t* are

translated to this case without change. 27



Similar results can be written for non-autonomous versions of the above equation

u'(t) = AMt)ult) + B'(t)ult — 1), t =0,
w(lf)=¢0), 7<6<0,

obtaining the representation

u(t) = B(t)&(t — 1)

+ [y MOAOB(s) [~A(s)é(s = 7) + €'(s — 7)) ds.

Tt

where A(t) is a primitive of A(¢) on [0, 7]. It suffices that A € L'(—7,0). thus allowing for
singularities on the coefficient A which give rise to very interesting interactions with the

singularities of B.

28



1.8. La ecuacion neutra no lineal

We now generalize the results presented above to the “partially nonlinear” case, that
1s
u'(t)=B'(t)g(t,u(t—71)), O0<t<T
u(f)=¢&(0), —1T<6<0,

7 P—

where g is C''. By formally writing

, d d
B/(t)g(t.u(t — 7)) = = [B(t)g(t, u(t — 7))] - B(t)= [g(t,ult — 7))]
we see that the equivalent neutral equation is completely similar to those obtained in the

previous section, that is

u(t) =¢6(t), 7<t<0. 29



On [0, 7] we have (formally)
u(t) = B(t)g(t.£(t — 7)) + £(0)
d i
T fg E Y
But if £ € Wh(—7.0) and g is C', s — g(s.&(s — 7)) is also in W4 (—7 0) and the

integral actually is an absolutely continuous function. Therefore, the representation or

“asymptotic expansion” u(t) = B(t)g(t.&(t — 7)) + AC is still valid.

If an additive term Au(f) appears in the right-hand side, a similar analysis can be

performed by means of the change of variable v(¢) = e~ *u(t). although the nonlinearity
g(t, u(t — 7)) makes the integral representation much more complicated than the above
expression.

30



1.9. La ecuacién neutra no lineal general: férmula de variacion de las constantes de

Alekseev

The fully nonlinear case

Let us now analyze the “fully nonlinear” case, that is

u'(t)= f(t,ult) +B'(t)glt ult—71)), 0<t<T

ulf)=¢(6), —17<6<0

¥

where f is C? and ¢ is C'. Its reduction to a “neutral form” is still possible:

© lu(t) — B(t)g(t.ult — 7))
< = F(t.u(t) ~ B(t) o lo(t.ult = 7))] £ > 0.
ulf)=¢(0), 7<08<0

31



However, the presence of the term f(# u(t)) makes the (formal) integration of both
sides of the equation hard to deal with: instead of an explicit expression of u, it becomes
an integral equation with u as the unknown, and it would be necessary to choose the right
function space in which the equation not only made sense but had a unique fixed point
as well. In any case, the neutral formulation can be used to give a precise meaning to the

equation, but we will not follow this approach here.

Instead. we will change our strategy and make use of a very useful, but little-known
mathematical device: Alekseev’s nonlinear variation of constants formula. We now briefly
recall this result in a very simple setting, which will suffice for our purposes. (Laksmikan-

tham)

Avexseev, V. M. (1961). An estimate for the perturbations of the solutions of ordi-
nary differential equations (Russian). Westmik Moskov Unn. Ser 1 28-36.

V. Laksmikantham, S. Leela, Differential an Integral Inequalities, vol 1., Academic
Press, New York, 1969.
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Proposition 6 (Alekseev’s formula) Let f : R* — R be C? Let y = o(t to. &) repre-
sent the unique solution of the ODE

y' = f(t.y(t)).
y(to) =&,
and let D(t,t0.&) = O:0(t, to, &), where O, denotes partial differentiation. Then ¢ is C?

is Cl and if G : R — R is L] the solution u(t) of the so-called “perturbed problem”

has the integral representation

t

u(t) = yl(t) +/ O(t s y(s))G(s)ds,

0

where y(t) = o(t. to. &) is the “unperturbed” or “reference” solution. 3



Remark 8 Alekseev’s formula is usually stated under stronger regularity conditions on G.

However, it is very simple to check by direct differentiation that the function u(t) defined
by

t
u(t) = yl(t) —|—/ Dt s y(s))G(s)ds,
o

is an absolutely continuous solution of the (Carathéodory) equation

u' = f(tu(t)) + G(1),

Alekseev’s formula is usually applied to the more ambitious setting of having G depending
on t and w, which is typical of control theory. u(t) = y(t) + f;; D (t, s y(s))G(s)ds, then
becomes an integral equation and a more delicate analysis is required.

Fortunately, we can consider the retarded term as an external “forcing”

G(t) = B'(t)g(t £(t — 1)),

and by setting tg = 0, & = u(0) = £(0), y(t) = o(t, 0, &), write (formally):

¢
u(t) = y(t) +f D(t, s, yl(s))B'(s)g(s,&(s — 7))ds, .
0



and integrate by parts:

u(t) = y(t) +
- fn
=y(t) +

_fﬂ

[fIJ(t 5,y(s)B(s)g(s,§(s = )1
fIJ(t s.y(s))g(s &(s —1))|ds
O(¢,t,y(t)B(t)g(t, &t — 7))

fI> t.s y(s))g(s &(s—1))ds

35



On the other hand, as we saw before, for & € W14(—7 0) and g € C! the composite
function s — g(s.&(s — 7)) is also W9(—7.0) and so is its product by the C' function
®(t, s, y(s)). Therefore, its derivative belongs to L9(—7,0) and the indefinite integral,
as in all the previous cases, i1s an absolutely continuous function. This means that the
integration by parts is legitimate and we may state the following result. which is an
extension of the previous ones. We may summarize the previous comments in the following

way.

The initial value problem

u'(t) = f(t,ul(t)) + B'(t)g(t u(t — 1)), <t<T,

with f € C%*(R?), g € C'(R?) and initial function & in W9(—7 0) can be given a

precise integral sense in [0, 7] by means of the neutral equivalent equation

36



- (u(t) — B(t)g(t, u(t — 7))

d
* = f(t,ult)) — B(t)— lg(t, ult — 7))].t >0,

u(f) =£(0)

T<8<0.

I

and its unique solution u admits the integral representation

t
u(t) = y(t) + BO(t 8t = 7)) = [ Ble) - [B(t.5,u(s))g(s, (s = )]s
0

S

(where y(t) = o(¢,0,£(0))) as well as the “asymptotic expansion”

u(t) = B(t)g(t,&(t — 7)) + AC,

which gives the qualitative picture of the behavior of the solution near singularities of B.
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1.10. Aplicacién a una EDP lineal con retardo

In order to avoid technicalities, let us consider the delayed linear heat equation with

Neumann boundary conditions

( g—;‘ — Au= B'(t)u(t — 7.x), for (t,x) € (0, +00) x Q,
(Pn) 4§ Z(t,z)=0, for (t,x) € (0, +00) x 99,
\ u(f x) =&£(0. ), for (6, x) € (—7,0) x Q,

where Q is a connected domain of RV N > 1. with smooth boundary, and concentrate

on a simplified version of the single-singularity case

B(t) = = + m(t),

L
=t

with m € C'([0,7]), @ € (0,1) and t* € (0, 7). It is well known (Ha,Wu) that on [0, t*) the
initial value problem is well defined for continuous initial functions & and has a unique
solution. The possibility of extending the solution beyond t* will be discussed later. Also,

other function spaces and boundary conditions are easily treated by these methods.

K. S. Ha: Nonlinear Functional evolutions in Banach spaces, Kluwer, AA Dordrecht,
2003.

J. Wu, Theory and applications of functional partial differential equations, Spri%er
Verlag, New York, 1996.



Separable solutions

Assume that the initial function is separable: w(x t) = &£(f)@y(x) for t € [—7 0] and
x < £ It is then natural to look for solutions of the same type u = w(t)o(x), thus
obtaining

w(t)olzx) = w(t)Ao(x) + B'(t)w(t — 7)o(x).

In order to have a separable solution we divide by w(t)o(x) and observe that the

assumed identity

W) _ A0, gy wlt— 1)
w(t) o) wi(t)

can only hold if there exists a real constant A such that

Ad = Ao,

(that is, @ 1s an eigenfunction of A with the given boundary conditions, with associated

eigenvalue A) and w satisfies the delay-differential equation

w'(t) = Aw(t) + B'(t)w(t —7), fort =0,

w(f) = we(F), fort e |[—7, 0],
39
which is of the type alreadystudied



This obviously requires that ¢y(x) = o(x) be already an eigenfunction. Assuming

this is the case, we have an explicit representation of these separable solutions from the

formula

u(t) = eM&e(0) + B(t)é(t — 1)

If £&(t* —t) > 0 then w(t) = B(t)&(t — 7) — o0 as t — t*, and the same will happen for

the separable solution on the region {¢ > 0}, while u(t, z) = w(t)o(x) — —oc as t — t*

when ¢(z) < 0. Clearly, the opposite behavior takes place when &(¢* —¢) < 0. In any

h

case, we have single instant time blow-up outside the nodal region {x € Q : o(z) = 0},
meaning that the explosion time is the same for all the points involved.and uniformly in

x The most important case from the practical viewpoint is that of ¢(x) = 1, the first

b

eigenfunction of A with Neumann boundary conditions.
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1.11. Aplicacién a una EDP no lineal con retardo y con explosidon en tiempo finito

Some linear and nonlinear delay-PDEs with blowing-up solutions via com-

parison arguments

We consider now the sign condition B'(¢) > 0 on [0,t*), whose importance comes

from the fact that some comparison arguments can be applied in this case, thus enlarging
considerably the set of equations for which we get blowing-up solutions. Although our
arguments also apply to the case of (NLDDFE') here we merely state a simple version of

more general results for (N LPy ), which will be enough for our purposes
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Proposition 9 For: = 1.2 consider the delayed reaction-diffusion equations

(2 A = Fi(tui(t 2) it — T.x). (£ 2) € (0. +00) x Q.
(NLPy) { Z=(t,z) =0, (t,z) € (0, +00) x 99,
WO, x) = &0, x), (0.x) € (—7.,0) x Q.

\

where f* are locally Lipschitz in all its arguments and nondecreasing in its third variable,

1. €.

pt < p? = fl(t u' p') < 2t u? p?),
for a.e. t > 0, for any u*,p* € R.

Let €' and £? be two initial functions. in C([—7,0] : LP(Q2)) for some p € [1, +0o0], ordered

as follows:

0<¢&'(0.x) <&%0.x), foranyl < [—7,0] and a.e. € Q.

Then there exists the corresponding weak solutions u'(t, x), u?(t.x), in C([—7.1:._..)

LP(Q)), for some T: _. € (0, +oc]. and they satisfy

0 <u'(t,z) <u®(t,x), forallte |—7 Th..), ae x Q. "



Proof. The existence of solutions is consequence of well-known results Most of the
comparison results in the indicated literature are presented for the simper case in which

v W . .
! = f* (see also other general references The case of

pt < p* = fl(t,ul,ph) < f2(tu? p?),

for a.e. £ = 0. for any u*, p* € K.

with f!' # f? is well known in the literature without delay (Diaz) and can be easily

adapted to the case of delayed equations.

Other boundary conditions are possible. The condition to be taken into account is
that —A with the given boundary condition generates a positive semigroup on the usual

function spaces.

Applying this result to our case. we have the following
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Theorem 10 Assume that the initial function satisfies

(8, x) = &o(@)o (), forf e [—7.0], = Q2

where @ is an eigenfunction of A with the Neumann boundary condition. £, € W9 (—7_0)

and £o(t" — 7) = 0. Assume

B(t) = + m(t),

a
and let f(t w, p) be locally Lipschitz in all its arguments, nondecreasing in its third vari-
able, and such that

p! = p? = B'(t)p' = f(t, u.p?),
for a.e. t = 0, for any u,p', p®* €

Then, if u(x, t) is the solution of

( % — Au = f(t,ult, ) ult —7,x)), (t.x) < (0, +o0) x
(NLPy) < 55(t,z) =0, (t.z) € (0, +00) x 99,
w(@, x) =&(6, x), (0, z) € (—7,0) x Q,
“
we have

a -
méa(f —7) +n(t)| o(z),

w(z,t) = {

where n is an absolutely continuous function on [—7_ 0] In particular, u blows up at some

finite time L max = t° in the sense that
44

tlinﬁl wu(t,x) =00, aexec{reQ:olx) =0}



Proof. Let w(?) denote the solution of the initial value problem

w'(t) = Aw(t) + B (t)w(t — 7), fort = 0,
w(f) = &(0), for 8  [—7, 0]

¥

where A is the eigenvalue associated to the eigenfunction ¢. As before, the hypotheses on
&g imply that w(t) admits the asymptotic expansion

w(t) = B(t)s(t — 7) + n(t),

where n(t) is absolutely continuous. On the other hand. the comparison result stated
above implies that w(t, ) = w(t)o(x), and the result is proved. =

Remark 11 The theorem holds for the Dirichlet boundary condition without any change.
For (possibly nonlinear) Robin boundary condition du/dn+k(t, x,u) = 0, for some nonde-
creasing function k(.. w) of u (a requirement imposed for the applicability of comparison
arguments (Diaz). ] J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol.1.
Elliptic equations.
Research Notes in Mathematics n® 106, Pitman, London, 1935.

Remark 12 For both Dirichlet and Neumann boundary conditions, if the initial function
satisfies £(t,x) = u > 0 in 2, we can always choose ¢ to be the first eigenfunction, which

does not change sign by the Krein-Milman theorem. We have then instantaneous blow-up
on the whole domain 2.

Remark 13 In the region {x € Q : o(z) < 0} the comparison argument does not give us
any useful information, unless some symmetric condition u(6, z) < &,(0)o(x), &o(t*—7) <
0 holds. 45



1.12 Continuacién mas alla de la explosion

The question of existence of solutions on the whole interval [0, 7] is more delicate
since 1t involves performing some kind of integration by parts in order to define a suitable
notion of generalized solution. The special structure of the right hand side of our equation,
however. simplifies the situation, since the method of steps is directly applicable. Using
the notation of abstract evolution equations in Banach spaces X, our basic equation is

written as follows

u'(t) = Au(t)+ B'(t)u(t —7), in X, fort >0,

u(f) =¢&(6), forfe|[—7 0]

k)

4

where u(t) is the function u(t)(x) = u(t, x), the same for & and A is the abstract operator

on X associated to —A with Neumann boundary conditions. On the basic interval [0, 7]

we may express the solution by means of the variation of constants formula:

t
u(t) = e™£(0) —|—f B (5)é(s —T)ds, 0<t<T.
0
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Assume. again,

i’ ;
B(t) = —— + m(t).

. The fact that B’ is not a function (and so v’ ¢ L'(0,7 : X)) requires integration by

h

parts. By proceeding formally we arrive to a direct extension of equation

u(t) = eMe(0) + B(t)é(t— 1)
+ [ eIB(s) [-\(s —7) + &(s — 7)) ds.
by substituting A by A :
u(t) = e¥£(0) + B(t)s(t — 7)

t (o . '
+ [y X B(s) [=A&(s — ) + (s — 7)]ds,
which we may use as definition of “generalized solution in W' (0.7 : X)" for some

p = pla) > 1 small enough. As an illustration, let us state a simple sufficient condition

for a “generalized solution in W ~'#' (0,7 : L*(Q))" to exist:

47



Theorem 14 Let £ € C?*([—7,0] x Q) satisfying 95/On = 0 on IQ for all § € [—7.0].
Assume

(i
B(t) = —— +ml(t).

Then the integral in
u(t) = e*&(0) + B(t)e(t — 1)
—|—fﬂ =) B(s)[—Al(s —7) + &' (s — 7)) ds,
is well defined and the equation
u'(t) = Ault) + B'(t)ult —7), in X, fort =0,
u(f) =¢(0), forfe[-7,0]

!

has a “generalized solution in W=7 (0,7 : L*(Q))" for some p = p(a) > 1 small enough,

and, so defined, at least, on [0, 7|

Proof. The hypotheses imply that &(¢, ) belongs to the domain of A and the function
s+— Aé(s—71,-)+3,&(s — 7, ) is continuous from [0, 7] into C'(Q). Therefore, its product

by the L? function B is in L?, and the integral is well defined.. m
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2. Control de la explosion en EDO no

lineales sin retardo (Orlando 2014, 48-62)

e Casal, A.C., Diaz, J.I. and Vegas, J.\M.: Controlled explosions of blowing-
up trajectories in semilinear problems and a nonlinear variation of constant
formula, XXIII Congreso de Ecuaciones Diferenciales y Aplicaciones, XIII
Congreso de Matematica Aplicada, Castellon, 9-13 septiembre 2013. e-
Proccedings.

e Casal, A.C., Diaz, J.I. and Vegas. J.M.: Complete recuperation after the
blow up time for semilinear problems, AIMS Procceding 2015, 223-229.
(2015).
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2.1. Introduccion

Ve consider blowing-up solutions y%(t), t € [0,T,,), of some ODEs

W) = ) in RY
P(f, ) = { 0 = 100)
nd>1

s f:RY = R? is a locally Lipschitz function superlinear near the infinity

fly)y > Cly[™ if |y| > k. for some p > 1 and C, k > 0.

m (i.e. there is a complete blow-up in the norm of y(f) after T3, )

s In Control Theory, (as in Diaz, Fursikov, (1994)) it can be seen how to avoid the
blow-up phenomenon:

dy g _ n R i
P(fyo.u) = { m-,(‘:)_—. f(y(t)) +u(t) in RY, No delay in the
4(0) = yo. statement !!
s with a suitable control u € L] (0, 400 : BY)

» for any small enough ¢ > 0 there exists a continuous deformation y(t) of y°(t), as
solution of the control perturbed problem

n defined on the whole interval [0, +00)

» such that y(t) = y°(t) for any t € [0,T;;, — €]

J. I Diaz and A. V. l;‘ursikﬂv, A simpier p\I'DDf of the approximate controllability from the interior for

nonlinear evolution problems. Applied Mathematics Letters T(5) (1994), 85-87.



Definition. We say that the trajectory y°(t) of problem P(f, o), with blow-up time T o,
has a controllable explosion if for any small enough € > 0 we can find a continuous
deformation, y(t), of the trajectory y"(t), built as solution of the control perturbed problem
P(f,wo,u), for a suitable control u € H’r{;l‘q’{{}._ 400 : BY) [the dual space of I«If'ulﬁr__{ﬂ, +00 :
R4)], for some q > 1, such that y(t) = y°(t) for any t € 0, Ty, — €], ylt) also blows-up
at t = T, (the controlled explosion) but y(t) can be extended beyond T,, as a function

y € L} (0,400 : RY),
il The controled solution is
_ \\MJL("‘L\ a less explosive function
than the original one !!

Well defined |
[ R (Tﬂ J'i'ab_)

-]

|
’olo\xf—-up time
for .jﬂ‘(t) oud \j(t) ! l



Theorem 1. Assume [ locally Lipschitz continuous and superlinear. Then, for any yp €

R? the blowing up trajectory y°(t) of the associated problem P(f : w) has a controlled

erplosion by means of the control problem P(f. yp,u). For the proof, we use two important
tools

m A suitable delayed feedback problems (in the spirit of Casal, Diaz, Vegas, (2009))

n A powerful nonlinear varation of constants formula



Proposition. [Alekseev's formula) Let f: R — R be C2. Let y = &{i,n.£) represent
the unique solution of the ODE
{ ¥ = fy(#)),

ylto) =&,

and let ®(t, tg, £) = Jed(t, to, £), where 3, denotes partial differentiation. Then ¢ is 2, &
is O, and for any G : B — R in L} the solution 2(t) of the so-called “perturbed problem”

(1)

f = £ + Gt),
{ z' = flz(t)) + G(t) @)
z(to) = €,
has the integral representation
t
2(t) = yit) + [ Bt s, z(s))G(s)ds, (3)

fo

where y(t) = &(t, tp, £) is the “unperturbed” or “reference” solution.

Remark 1. Notice that &t tg,£) satisfies $(f,¢.£) = 1. Notice also that Alekseev's
formula is usually stated under stronger regularity conditions on &, and for d > 1.

m This type of formula was first established for nonlinear terms of class €2 { Alekseev,
(1961), Laksmikantham, Leela, (1969))

m We show that the formula holds also for Lipschitz functions f (first assumed globally
Lipschitz)



For instance, given such a f and

» a family of maximal monotone operators A(t.y), on H = B9,

m 3(t,) € L} (0, +oc : RY),
and the perturbed problem
P*{f1_ﬂ1£] —_— { El:: ::I] i‘;{y{t]] + .S(Ery{t]:]r in ]Ed1 {4}

if f is globally Lipschitz function, the solutions of P*( f, 3, £) are well defined, as absolutely

continuous functions on [0,T], for any given T = 0 (see Brezis, Operateurs maximaux
monotones... ).

H. Brezis, Operateurs maxrimaur monotones et semi-groupes de contractions dans les espaces de Hilbert,

North-Holland Mathematical Studies, Amsterdam, 1973.

= Let y"(t) = &(t, tp. £), the unique solution of the ODE

/ _ i d
0~ { 10 10 2

m Call ®(t,tg,£) = dedd(t, to, £). We prove:



Theorem 2. The flow map ¢ is Lipschitz continuous, & 1z absolutely continuous and the
solution y(t) of the “perturbed problem® P*(f, 3,£) has the integral representation

y(t) =y"(t) + [ bt,s,y(s)) (s, y(s))ds, for anyt € [0, 1], (6)

where 4°(t) = ¢(t, tg, £) is the solution of the “unperturbed” problem P*(f,0,£).



2.2 Explosiones controladas para EDO con términos superlineales

1. f e C? and superlinear (e.g. f(y) = |y/" 'y with p > 1).

Assume, for simplicity, d = 1.

Theorem 3. Assume [ € C? and superlinear. Then, for any yo € RY the blowing up
trajectory y°(t) of the associated problem P(f : yo) has a controlled explosion.

Proof. Step 1 (the strategy). Define T = Ty, — ¢, make f = ¢ — 7 and consider the delayed
problem

y'(t) = fly(t)) + B'(t)g(y(t — 7)), O<t<rT

Pif.". B) = (7)
Sy, B) { y(8) = 9(8), —r<f<0 7]

where, for simplicity we denote again £ by £, so that, for any —7 < # < 0 we are identifying
g,:ﬁ[ﬁ'] with yﬁlzfi+'Ty,:,—£:l, for some suitable functions B(t) and where g(r) is any C* function
(for instance g(r) = r).

m Owur goal is to show that we can chose the control term u(t) := B'(¢)g(y(t — 7)) such
that

n uec W-Lo(n 7 : RY).

a the solution of P(f, 4", B) is defined and integrable on the whole interval [0,7)

Since y(t —7) = 4t —7) for any t £ [0, Ty, — €], this will prove the result by iteration
on the intervals r <t < 27, . .nTt <t < (n+1)r,n e M.



Escala inicial del tiempo

(en la nueva escala del
tiempo renombrada de
nuevo como en la antigua

w(t)= B\(‘Ej (ﬂ[t *f)) escala: t)

Blt)= —2—_ +wm(+) | ae(0,4) 954
) T 2 , W{) $). 17

‘(:x:: (|~
€ e(o,t(T% g))'

1

—

MTH:E o 0 Tgf ’[50 .
- - T

Problema con retardo en una
nueva escala del tiempo

57



Step 2 (choice of function B and reformulation as neutral equation). Glven g > 1, a = 0
and o € (0, %] and a continmous function m (to be taken, for instance, in order to have

B(0) =10) we define

i

TR +mit), e ][07]. (8]

B(t) =

with#* = ¢ (Le. = Tip in the original time seale). We assume that #* € (0, 7). Le. 2e < To.
We can reformulate 15[ f.y", B) as the neutral problem

d
- () = B(t)gly(t —7))]

) F(u(6) — B2 [yt = 7)) ¢ > 0, (9)
y(B) = 1°8), —r<H<O

We will change our strategy and apply the Alekseev’s nonlinear variation of constanis
formula (Alekseey, (1961)).



Continuation of Step 2 We can consider the retarded term as an external “foreing”

G(t) = B'(t)gl&(t — 7)), (10)

and by setting tn = 0. £ = =(0) = (0, y(t) = &(¢,0,£), we can write (formally):

t
z(t) = wlt) +L Bt s, 2(s)) B'(s)g(y" (s — 7))ds, (11)

2(t) = y(t) + [B(t, s, () Bls)gly’(s — 7))]
d
- I3 B(s)=- [@(t, s, 2(s))g(y"(s —7))] ds
= y(t) + ‘I"If tx(t))B(t)gly"(t — 7))

- LB [ (t,s,2(s))g(y(s — 7)]] ds.

(12)



Bv the remark above, @t ¢ =(f)) = 1. On the other hand, as we saw before, for
y? e W —7 0) and g £ €1 the composite function s — g{y" (s — 7)) is also W[ —7 0]
and so is its product by the ! funetion ®(¢, s, 2(s)). Therefore, its derivative belongs
to LA(—r 0} and the indefinite mntegral, as in all the previous cases, 18 an absolutely
continuous function. This means that the integration by parts 1= legitimate and we may
state the following result, which 15 an extension of the previous ones. Summarizing:

m The initial value problem

- [ Y= fO) + Byl —T), 0<t<T
P”’y‘m_{ymj=yﬂim, —r<0<0 (13)

with f € C*(R), ¢ € CYR) and initial function " in W9 —7 () has a precise integral
sense in [0, 7] by means of the neutral equivalent equation.

m [ts unique solution = admits the integral representation

() = y(t) + Blt)gl(y"(t — 7)) — j; EIISII%S [®(f,5,2(s))gly" (s — 7)) ds,  (14)

(where y(t) = @(t. 0, y"(0)))).



Then, for every £ € WU(0, 1) (where 1/q+1/r = 1) the neutral Canchy problem has a
nnigue solution given by the identity (14). Therefore » € L0, 1) and z(#)— B(#)g{y"(i—7))
15 an absolutely continuous function and we may write symbolically

() = B(t)gly"(t — 7)) + AC (15)

where "AC" means “an absolutely continuous function”. As a consequence, the singular-
itles of the solution on [III,T] are al=o singularities of B. Thus, in particular, let ¢* = ¢

notice that * = T,0 in the original seale of time), 0 < & < 1, let m be continuous on
0, r| and let

B(t)= m + mit), (16)

Since the nitial funetion 3" satisfies y"(#* — ) = 3" () £ 0, then #* is also a singularity of
= (the controlled explozion) and

It blows up
() & pgmely(e), ss¢— i, butnowitis - (17)
integrable !

is an asymptotic expansion of = near #* = T, ., which gives the qualitative picture of the
behavior of the solution near singularities of B. Obviously, from the choice of o we get
that the control w(t) == B'{#)g(y(t — 7)) is in W=L2{0,r : BY)), for any funetion g £ 1.



Example. The proof of Theorem 1 1s constructive and so, if we consider a special P(f, yo)
case, as, for instance, the one corresponding to f(y) = y* and yp = 1 then we can identify
easely the associate control problem P(f, yp,u). Ideed, in this case,

1 1
Q‘/ﬁg—[t—tujl

and Top = 1/2. Thus we can take, e.g., € = 1/8 (so that 2e < Tip), 7 =T, — e = 3/8§,
a=1/5a=1, g(s)=s, B'(t) = —(1/5)sign{t — 1/2)/ |t — lj’E|':'-’r‘5 and thus the searched
control u(t) is given by u(t) = B'(t)y(t — 6/8) (for t > 0) with y solution of the problem

'-T'ﬁ'l:t'l Lo, ‘{.:} =

(18)
—— 0.
\ Monstrous delayed
I
Moderate initial control !!!
history
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2.3. Explosiones controladas para f(y) localmente Lipschitz continua y superlineal

m The proof of Theorem 1 is exactly the same as that of Theorem 3, onee Theorem 2
12 proved.

m Since we need only a control of the growing of the solution near the blow-up time
Ty, 1t 18 enough to prove only for globally Lipschitz funetions f.

m It can be extended easily for d = 1.
Proaf of Theorem 2. Let f, € CY{B% : B%) be a sequence approximating f in Wh(B4 : B4,
for any s £ [1, +o00), and such that

|0 fr (| oot p ) = (92 0 poomaopny, o = M for any n e M (18]

(see, Adams, Sobolev Spaces, Academic Press, 1975 ).



m Lot ) = ¢, (, 0, £) be the unique solution of the unperturbed ODE

y'(t) = faly(t)) in R,
yita) =&,

and let $,(t, #0, &) = degnlf, fn, £),. Let us consider the sequence of perturbed problems

P fa.0,8) = { (19)

dijn ; : d
(5 5.6) — { iﬁ;:lféfntyﬁm:l + B(t, yn(t)). in BY (20)

Then, by the classical version of the Alekseev formula (also valid for d = 1) we know that

i

Yn(t) = yn(t) +f Dt s, yn(s)) 5 (s, yals))ds, for any ¢ £ [0, 77, (21)

i

s Since f, — f and f is locally Lipschitz we know that y2(-) = 3°(+) and y,(-) = y(-)
strongly in AC{[0,T] - Edj for any fixed T = 0 (Theorem 4.2 of Brezis book).

m Since any maximal monotone operator 18 stronglyv-weakly closed, at least, (-, g (1) —
Biey(-) in L0, T : BY).

m From the classical Peano theorem, there exists a ${#, s, y) such that
Dol unl)) — B(E - wi-)), for ae £ (0,77,

strongly in L3(0,T : Mg.d).



m Pt 0, &) 18 the solution of the problem
D) = Hy(t 0. E02(E) In Mawq,
Plto) = 1.
where
Hylt t0.8) = O fuloalf. f0.£)).
m Sinee M 18 given by (18]

[ Hnlt to, £ poe g Totan gy = M for any o € (0,77 and for any £ € B9,

m Thus, by Gronwall inequality, there exists a positive constant M=M '[f.:,:(f ) such
that

”‘I'ﬂiﬁ i!I-D: ‘E:lllﬂ’i,-:-:f[,‘-]"ﬁj = ﬂrf

which implies that there exists a Lipschitz function @(¢, s £) such that €, (t. yal-)) —
Bt y(-)) in W0, T : Maq) for any g € (1, 2¢). This leads to the strong convergenee
in L0, T : My, 4). Then we ean pass to the limit in formula (21) and get that

4

y(t) = y" (1) +L Bty =, y(a)) 55, yl=))ds, for any ¢ £ [0,77].



Remark 2. Notice that sinee our main interest 1= to study the asymptotie, near T, , we
do not need to ldentify the limit matricial function ®(¢, s, ¢). This = a complicated task
over the set of points y € BY where f is not Frechet differentiable in y (see a nonlinear
characterization in Mirica, On differentiability with respect to initial data in the theory
of differential equations, Hev. Rouwmaine des Math, Pures Appl., (20035)).

Remark 3. Several applications to the case of the some nonlinear blowing-up parabolic
problems of the type

i ; -1 _
> — Ay = |y yHu(t.x) for (t,z) € (0, +o0) x 11,
(F ) Lt x) =0, for (¢,) € (0, +0a) x H€2, (22)
Y0, x) = yolx). for = £ 1,

once we assume p = 1, for snitable conditions on yo € L*(02) and for an appropriate
cholee of the control function (taken as a suitable delayed feedback control) ean be given
in a similar way to the results presented in Casal, Diaz, Vegas, Dynam. Systems Appl. 18
(20049 ). By lmitations in the length of this work, those results will be given elsewhere.



3. Aplicacion a EDPs estacionarias con condiciones

dinamicas
(Post-Athenas Il: Rakotoson 60, 2017, 63-76)

Controlled explosions: dynamics after blow-up time
for semilinear problems with a dynamic boundary
condition

A.C. Casal, G. Diaz, J.I. Diaz, J.M. Vegas
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3.1. Introduccioén

This talk collects some results by the authors presented at the AIMS 2016 (Orlando,
USA), a detailed manuscript [CDDV2018] will be submitted to publication in a few
days.

It is well known that in many nonlinear dynamical problems the maximal horizon
Too < oo of solutions is defined trough the blow-up time [|u(-, Too)

HLoo — Q.

Nevertheless, in the case of some ordinary differential equations it is possible to
control the horizon time in such way that the solution left well defined after the
blow-up time T (see [CDV2015] Casal, A.C., Diaz, J.I. and Vegas, J.M.). The main
goal of this contribution is to extend such control process to some illustrative
semilinear boundary value problem as

( TC}AU(X, t) Jr‘)u(x: t)™ =0, x € Br(0)x]0, o],
< a—?(x, t) + %(x, t) = u(x,t)’ + a(t),  (x,t) € IBr(0)x]0, oo,
| u(x.0) = up(x), x € Br(xo).

where n is the unit outer normal and the constants positive m and p satisfies

m-+ 1
p>— >1
2
An important motivation comes of the study of the dynamics of the concentration of

lithium in porous electrodes.



Some more details about related previous results:

It is well know than one of the more relevant qualitative behaviors of nonlinear
evolution problems is the possibility to get the finite time blow-up of the L°°-
norm of the solution. Without any aims to be exhaustive, we mention as general
references are the hooks:

e Bebernes, J. and Eberly,D.: Mathematical Problems from Combustion
Theory, Springer, New York, 1989,

e Hu, B., Blow-up Theories for Semilinear Parabolic Equations, Lecture
Notes in Mathematics 2018, Springer-Verlag, Berlin, 2011,

e Quittner, P. and Souplet, P.: Superlinear Parabolic Problems, Birkhauser,
Berlin, 2007,

e Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P., and Mikhailov,
A. P.: Blow-Up in Quasilinear Parabolic Equations ,Walter de Grueter.
Berlin, 1995,

e Straughan, B.: Explosive Instabilities in Mechanics, Springer, Berlin,
1998,

e Zel'dovich, Ya. B., Barenblatt, G. I., Librovich, V. B., and Makhviladze,
G. M.: The Mathematical Theory of Combustion and Explosions, Don-

ald H. McNeill, trans., Consultants Bureau (Plenum), New York-London,
1985,



as well as the surveys

e Brezis, H., Cazenave, Th., Martel, Y., and Ramiandrisoa, A.: Blow up for

uy — Au = g(u) revisited. Adv. Differ. Equat., 1, 73-90 (1996).

o Galaktionov, V.A., and Vazquez. J.L.: The problem of blow-up in non-
linear parabolic equations, Discrete Contin. Dyn. Syst.. 8, 2, 399-433

(2002).

In this paper we are specially interested in conditions on the mmvolved non-
linear terms which allow to ensure that the solution can be continued beyond
the finite time blow-up of the L>-norm of the solution.

This corresponds to the absence of the most usual case in which the so
called complete blow-up phenomenon holds (see,.e.g. Baras, P., and Cohen, L..
Complete Blow-Up after T,,,, for the Solution of a Semilinear Heat Equation.
J. Funct. Anal. 71, 142-174 (1987)).
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This philosophy was initiated in the previous paper by some the authors of
this paper (now also in collaboration with G. Diaz) dealing with some ordinary
and partial differential equations with time-delay

e Casal, A.C., Diaz, J.I. and Vegas, J.M.: Blow-up in some ordinary and
partial differential equations with time-delay, Dynam. Systems Appl., 18
1, 29-46 (2009).

e Casal, A.C., Diaz, J.I. and Vegas, J.M.: Controlled explosions of blowing-
up trajectories in semilinear problems and a nonlinear variation of constant
formula, XXIII Congreso de Ecuaciones Diferenciales y Aplicaciones, XIII
Congreso de Matematica Aplicada, Castellén, 9-13 septiembre 2013. e-
Proccedings.

e Casal, A.C., Diaz, J.I. and Vegas, J.M.: Complete recuperation after the
blow up time for semilinear problems, AINMS Procceding 2015, 223-229.
(2015).

In the present paper we shall consider the case in which the dynamics takes
place mainly on the boundary of a set of RN, which, by simplicity will be
assumed to be a ball Bg(0). More precisely we shall consider some semilinear
elliptic equations with a dynamic boundary condition of the following type:

—Au+ g(u) =0 in x]0, cof
du Ju :
— + — = f(u) + a(t) on 9x]0, oo, (1)
ot On
u(x,0) = uo(|z|) > 0, x € OBR.
under some structural assumptions which will be fulfilled in the special case of
g(u) = «™ and f(u) = «P with suitable m,p > 1. Here «(t) is the control
function which we search in order to get a solution w such that u € L} (O, o0 : 71

L>(Bg)).



A quite complete list of references dealing with nonlinear problems with
dynamic boundary conditions, starting already in 1901, can be found, e.g., In
the survey papers

e Bejenaru, 1., Diaz, J.I. and Vrabie, I.I.: An abstract approximate con-
trollability result and applications to elliptic and parabolic systems with
dynamical boundary conditions, Electr. J. Differ. Eqns., 50, 1-19, (2001),

e Bandle, C.. von Below, J. and Reichel. W.: Parabolic problems with dy-
namical boundary conditions: eigenvalue expansions and blow up, Atti
della Accademia Nazionale dei Lincei., Classe di Scienze Fisiche, Matem-
atiche e Naturali. Rendiconti Lincei Matematica E Applicazioni 2006, 35-

67 (2006).

The study of the special case in which only the nonlinear dynamic boundary
conditions is the origin of blow-up phenomena was considered in

e Kirane, M.: Blow up for some equations with semilinear dynamical bound-
ary conditions of parabolic and hyperbolic type, Hokkaido Math. J., 21,
2, 222-229 (1992),

and later by several other authors: see e.g.,
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e Kirane, M., Nabana, E., and Pokhozhaev, S. I.: The Absence of Solu-
tions of Elliptic Systems with Dynamic Boundary Conditions, Differential

Equations, 38 6 (2002) 808-815

e Kirane, M. and Tatar, N.: Absence of local and global solutions to an ellip-
tic system with time-fractional dynamical boundary conditions, Siberian
Mathematical Journal, 48 3, 477-488 (2007).

Notice that this is a different situation to the case in which there is a non-
linear parabolic equation with a source term jointly with a dynamic boundary
condition: see, e.g..

e Amann H. and Fila M.: A Fujita-type theorem for the Laplace equation
with a dynamical boundary condition, Acta NMath. Univ. Comenian., 66,
2, 321-328 (1997),

e Joachim von Below & Gaélle Pincet Mailly (2003) Blow Up for Reaction
Diffusion Equations Under Dynamical Boundary Conditions 28:1-2, 223-
247,

e Bandle, C., von Below, J. and Reichel, W.: Parabolic problems with dy-
namical boundary conditions: eigenvalue expansions and blow up, Atti
della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matem-
atiche e Naturali, Rendiconti Lincei Matematica E Applicazioni 2006, 35-

67 (2006),

e Rault, J.F., Phenomene d’explosion et existence globale pour quelques
problemes paraboliques sous les conditions au bord dynamiques. These,
Université du Littoral, Céte d’Opale, 2010. https://tel.archives-ouvertes.

e Vazquez, J.L.. and Vitillaro, E.: On the Laplace equation with dynamical
boundary conditions of reactive diffusive type, J. Math. Anal. Appl., 354

2. 674-688. (2009),

e Fiscella, A. and Vitillaro, E. (2015). Blow-up for the wave equation with
nonlinear source and boundary damping terms. Proceedings of the Royal
Society of Edinburgh: Section A Mathematics,145(4):759—778.
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In all the cases, the blow-up takes place on the boundary, as it also holds
for the case of a nonlinear parabolic equation with a source term jointly with a
static possibly nonlinear Robin type boundary condition: see, e.g.,

e Levine, H, and Payne, L.: Nonexistence theorems for the hear equations
with nonlinear boundary conditions and for the porous medium equation
backward in time, J. Differential Equations, 16 (2), 319-334 (1974),

e [.6pez Gdomez, J., Marquez, V. and Wolanski, N.I.: Blow up results and lo-
calization of blow up points for the heat equation with a nonlinear bound-
ary condition, J. Diff. Eq. 92 (2),1991, 384-401 (1991),

e the survey Fila, M. and Filo, J.: Blow-up on the boundary: a survey. In
Singularities and differential equations. Banach Center Publications, vol-
ume 33. Institute of Mathematics, Polish Academy of Sciences, Warszawa,

67-77 (1996),

e and many other more recent papers.

From the point of view of Control Theory, one of the pioneering works on
control for blow-up problems for nonlinear parabolic equations with a source
term was the hook

e Lions, J.L.. Contréle des systémes distribués singuliers, Gauthier-Villars.
Bordas, Paris, 1983,

see also 74



e Diaz. J.I. and Lions, J.-L.: Sur la controlabilite de problemes paraboliques
avec phenomenes d’explosion, C. R. Acad. Scie. de Paris. t. 327, Serie I,

173-177 (1998),

e Diaz, J.I. and Lions, J.-L., On the approximate controllability for some
explosive parabolic problems. In: Hoffmann, K.-H., et al. (eds.) Optimal
Control of Partial Differential Equations (Chemnitz, 1998), Internat. Ser.
Numer. Math., vol. 133, Birkhauser, Basel, 115-132 (1999),

e ['ern andez-Cara, E. and Zuazua, E.: Null and approximate controllability
for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincar
e Anal. Non Lineaire, 17, 583-616 (2000),

e Coron, J.M., E. Trelat, E. : Global steady-state controllability of 1-D
semilinear heat equations, STAM J. Control and Optimization, 43 (2),

549-569 (2004).

e Coron, J.M., Guerrero, S. and Rosier, L: Null controllability of a parabolic
system with a cubic coupling term, SIAM J. Control and Optimization.
48, 8, 5629-5653 (2010),

e Vo, T.M.N.: Construction of a control for the cubic semilinear heat Equa-
tion, Vietnam J. Math., 44, 587-601 (2016).

In these, and many other works, the goal was to avoid the occurrence of
the blow-up phenomenon by means of suitable controls (see also, e.g. some
numerical experiences in He, J.\V. and Glowinski. R.: Neumann Control of
Unstable Parabolic Systems: Numerical Approach, J. Optim. Theory Appl.. 9
c6, 1, 1-55 (1998)). 75



The possibility to choose the blow-point time and points were considered in

e . Nerle, Construction of Solutions with Exactly k Blow-up Points for the
Schrodinger Equation with Critical Nonlinearity, Commun. Math. Phys.

129, 223-240 (1990),

e Li.X.: A modeling study of the pore size evolution in lithium-oxygen
baterry electrodes, Journal of The Electrochemical Society, 162, A1636-
A1645, (2015).

The optimal control for problems with a dynamic boundary condition was
considered in

e Ahmed N. U. and Kerbal S.: Necessary conditions of optimality for sys-
tems governed by B-evolutions. In Ladde G. S. (ed.) et al., Dynamic
Systems and Applications. Vol. 2.Proceedings of the 2nd International
Conference (Atlanta, GA, USA, May 24-27, 1995),Dynamic Publishers,
Atlanta, GA, 293-300, (1996).

The approximate controllability for the case of dynamic boundary conditions
leading to global solutions was considered in

e Bejenaru, I., Diaz, J.I. and Vrahie, I.I.: An abstract approximate con-
trollability result and applications to elliptic and parabolic systems with
dynamical boundary conditions, Electr. J. Differ. Eqns., 50, 1-19, (2001),
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3.2. Perfiles explosivos y resultados previos

We begin with a suitable application of the well-known Keller—Osserman condition

> ds
/ NGO < o0 (1)

5
where G(s) = / g(7)dT for a continuous and increasing function g : Ry — Ry,
0

with g(0™) = 0. Since

o0 ds
(o :/ ———, 0>0 2
0=[ e @)
is decreasing we can define the function U(x, t) given implicitely by
oe ds
Too —t) + (R —|x|) = —_—
( ) ( | |) U(x.t) /2G(s)

U= (T =) + (R [x)]. (60 € [FR AR X [0, Tl (3)

here R and T are arbitrary positive constants fixed previously. From definition it

follows
U(x,t) =V 1T —t], x € {ER} x [0, Tool, (4)
4
U(x,0) =V~ [T + (R—[x])], xe[-R,+R].
Moreover, the capital property W(oo) = 0 implies
lim U(x, t) = +oo. (5)

(= {£R}x{Tw}



Straightfordwad computation prove
_UXX(X5 t) + g(U(X t)) - 01 X € [_R: +R] \ {0} < TOC

and

U(£R, 1) = 2G(U(2R.1)), < Twe

whence the master equation

V2¢ (U(£R.1))
R S

OU(LR, t :
Ue(£R, t) + (a 0) :2\/2(_}(1_,-(iR,t)), t < Too
X

holds.

Function W1 provides the unique explosive profile on the boundary of the large
solution

~AUs +g(Usxo) =0 in Bg(0) CRY,
U = o0 on 0BR(0),

provided
V(ny
limsup ()
Y— 00 W(";«-')

<1 formp>1.



More precisely

. Use (%)
lim
x—8Br(0) W1 (R — |x]|)

(see [ADR2015, Theorem 1.1]). In fact, U is a radially symmetric function denoted
by

~ 1. (10)

Use(x) = Uso(R = [x]), x € BR(0).

For the power like case g(s) = s™, condition (1) becomes m > 1. Then

Wm(8) = iz L 5> 0. (11)

m—1 5o7L

Moreover, (9) also holds. Then

2(m+1)

m)'”—_f (R—|x) "7 4 o(R — |x|).

Uso(x) = (

Alarcén, S., Diaz, G. and Rey, J.M.: Large solutions of elliptic semilinear equations in
the borderline case. An exhaustive and intrinsic point of view, Journal of Mathematical
Analysis and Applications, 431, 365-405, (2015).



Example 2

Other illustrative choice satisfying (1) and (9) is the function g(s) = se®s for which

Ueo(x) = V2erfc™? (%) +o(R —|x|)

2 > 2
where erfc(v) =1 —erf(vy) = —/ e ° ds. O
VT Jy

We note that these explosive profiles do not depend on the geometrical properties of
Br(0) as curvature or dimension. These influences can appear in lower term of the
explosive expansion near OBR(0) (see again [ADR2015]).

In the master equation (7) the dynamical blow up term is balanced with the blow up
absorpion term. When the dynamical blow up term is absolutly dominant at the
infinity the master equation becomes

Wi(£R,t) = F(W(£R,t)), t< T (12)
where the function W(=£R, t) is given implicitely by
oc d

W(+R.1) f(s)

> ds
/ 7(s) < 00 (13)

assumed the version

of the Keller-Osserman condition.



Thus,
W(ER,t) =0 (T — t), t< T

for the decreasing function

% ds
d(d :/ —, 0>0 14
o= 75 (14)
As for W(d) we will require the version
¢
im sup tn) <1 forn>1. (15)
y—oo D7)

of the property (9).

Example 3

For the power like case f(s) = sP, condition (13) becomes p > 1. Then

1
Om(8) = ";p_l L8>0 (16)

Then




3.3. El problema dinamico sin control

Let us consider the dynamic problem

—Au+g(u)=0 in BR x]0,00[, Bgr = Bgr(0) c RN, N > 1,

?) ) |

% n % — f(u)  on &BRx]0, 00|, (17)
u(x,0) = ug > 0, x € 9BR.

where g and f are continuous increasing functions and n is the unit outer normal
vector.

Theorem 1 (Existence of a finite blow up time)

et us assume
m-+1

p = > 1

for the power-like choices g(s) = s™ and f(s) = sP. Then (17) has a unique solution
on Br X [0, T, Toc < ®m(ug) < oo (see (16)), such that

2(m+ 1)\ 71 1
0 E U{X, t) < (m) (R_ |X|)ﬁ ’ (X._. f) = BR X [G,Tm[
Im  u(x — M m—l_l— 1 x B
\ r/I“Tm ( _,t) ((m_l)g) (R_ |X|)% = R
Moreover
u(x, t)

1
lim =(p—1)p-1
t T oo (T::x:: _ f)ﬁ

for x € OBr. We note that u(-, t) is integiable near T if p > 2. 0




The above illustrative result is extended to some general terms g(u) and f(u)

Theorem 2 (Existence of a finite blow up time)

Assume (1), (13) and

lim ——— =0 (18)

=
with G(s) :f g(s)ds.
0
Then (17) has a unique solution on Br x [0, Too[, Toc < ®(up) < o0, such that
0 <u(x,t) < Ux(x), (x,t)€Br x][0,Txl,

l 1) = Uso(x), € Bg.
r/;,T:-mu(f>f~'_.) (x), x € Bg,

(see (8)). Moreover under (15) the inequality

lim ulx; t)

t " Too & 1(Too — 1) .

holds for each x € JBgR.

Remark 1

Among other contributions, Theorem 2 says that the blow-up takes place only on
the boundary dBr at t = T.



In Theorems 1 and 2 the dynamical blow up term f(u) is absolutely greater than the
aborption term g(u). Next, we consider the case where the domination is balanced.

Theorem 3 (Existence of a finite blow up time)

For power-like choice g(s) = s™, m > 1 one obtains

% M (f:))ﬁ - (7 ) -

for each x € dBR, provided that the continuous and increasing function f satisfies

m / 1
lim f(7)7~ 7= ¢ i, ¢ > 1.
T—00 2

We note that u(-, t) is integrable near T if m > 3.

Again this illustrative result is a particular case of some general terms g(u) and f(u)

Theorem 4 (Existence of a finite blow up time)

L et us assume

im A7) =0>1 (19)
T—00 . 2G(T)

and (9). Then

lim u(x. t)
t/ Too W1((0 —1)(Vo — 1))

=1, x € JBR.




m We may apply Theorem 4 to the functions given in Example 2.

m We may extend the explosive boundary behavior

lim ulx, t) =
t/Too W1((€ —1)(Too — t))

whenever additional assumptions on general functions W satisfying the
borderline case assumption

|}
lim sup (107)

=1 for some g > 1
y—oo  V(7)

(see [ADR2015]). It enables us consider functios as g(s) = s(logs)™, s > 1
with 7 > 2.



3.4. Explosiones controladas

In our main contribution we prove that we may to govern the blow up by means of a
suitable control for which exists a kind of extension of the solution after the blow up.

If
m + 1
p > > 1,

there exists a function a(t) > 0 such that a(T o) = +o00 for which the solution of the
problem

—Au(x,t)+ u(x,t)" =0, x € Br x]0, oo,

ou du _

E(xg t) + a(x? t) = u(x, t)P + a(t), (x,t) € OBR x]0, oo, (20)

u(x,0) = wo(x), x € Bgr,

is well defined for all t > 0.

ldeas of the Proof As it is well known the solution of

d
—V(t) = V(t)P
V(1) = V(1)

blows up at some finite time T, depending on the initial data. As in [CDV2015] we
can avoid the blow up phenomenon by introducing a sharp control function «(t)
vanishing in the interval [0, T — 4], with ¢ is small. So that the solution V, of

d
EVQ({) = Val(t)P +a(t), t=>=0.

recovers the dynamic of V on [0, T« — §].



Essentially the behaviour of the control is not far

at) = %V(f) — V()P

when it is possible. The detailed obtainment of «(t) is based on a suitable reasoning

involving the variation of constants formula applied on a multivalued problem.
ou
With this reasoning, if u is the solution of (20), since n > 0 we get that
n

)
iu(R, t) < u(R, t)P + a(t).

So, we have the comparison
0 < u(R, t) < V(t)

and then u(R, t) is well defined for all t > 0. [

Remark 3

m For the domination balanced case the construction of the control function
a(t) is also available.

m Some related questions, including some borderline cases, are studied in
[CDDV2018].



Muchas gracias
por vuestra
atencion
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