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1 Introduction

One archetype of quasilinear partial differential operators:
the p-Laplacian A u=div(|Dul’ > Du), 1 < p < oo.
The equation becomes singular if 1 < p < 2.

Main goal of the lecture: to present several qualitative
properties for some stationary and parabolic problems in-
volving the quasilinear p-Laplacian operator for the limit
case p = 1: mainly, the total variation flow equation

0 _ iy <£—Z|) 1)

[see Kobayashi and Giga (Journ. Statistical Physics, 95,
1999), Andreu, Ballester, Caselles and Mazén ( J. Funct.
Anal. 180, 2001, 347-403,...] and a related stationary



equation
Du
Au — gdiv (|Du!> f (2)

with g a positive constant, proposed by E. C. Bingham,
in 1922 (non-Newtonian fluids) [also in Image Processing
[Chan et al, SIAM Journal on Scientific Computing, 20,
1999

| will report: a) some qualitative properties of solutions
of (1) (with F. Andreu, J.M. Mazén and V. Caselles, J.
Funct. Anal. 188, 2002, 516-547) and b) case of (2)
(with R. Cirmi (Univ. di Catania, ltaly)).

2 The total variation flow

Let Q) be a bounded set in RYY (02 Lipschitz continuous).
We can assume that 0 € 2.

We are interested in some qualitative properties of the
solutions of
0 D
8—? = div (\DZ\) in @ = (0,00) x

uw(0,2) = ug(x)  in €
with Dirichlet boundary conditions (problem Pp)
u(t,z) =0 in 3 = (0,00) x 02
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or Neumann boundary conditions (problem Py)



0
a—z:O on ..

In order to introduce the notion of weak solution we
recall that a function u € BV (Q) if u € L'(2) and there
are Radon measures fiy, ...,y with finite total mass in

(2 and
/uDZ-gpd:U: —/god,ui
Q QO

for all ¢ € C§°(£2), i =1,..., N. Notation:

| Du|(Q2) = Sup{/ u div e dx:
0

o € CFORY), o]l < 1}
e Useful results: G. Anzellotti, Ann. di Matematica Pura
ed Appl. 1V (135) (1983), 293-318 (see also Kohn-Temam
(1983)).  Let
X(Q)={z e L™(Q,RY) : div z € L*(Q)}.
If z € X(Q2) and w € BV(£2) N L*>(£2) the functional
(z, Dw) : C§°(§2) — R is defined by

< (z, Dw), ¢ >:—/wgpdivzd:v—/wz-Vg0dx.
Q Q

Then (z, Dw) is a Radon measure in (2,

/Q(Z,Dw) :/Qz-dea:

4



for all w € WHHQ) N L>®(Q) and
/ <z,Dw>\ < [l D)l < el [ pul 3

for any Borel set B C 2. In addition, (z, Dw) is absolutely
continuous with respect to |Dw|, with Radon-Nikodym
derivative 6(z, Dw, x) which is a | Dw| measurable func-
tion from () to R and

[ @Dw)= [ ba.DusiDul @

for any Borel set B C (). Moreover

10(z, Dw, -)HLOO(Q,ww\) < HZHLOO(Q,RN)° (5)

e The weak trace on 0f) of the normal component of
z € X(§2) can be defined (Anzelloti, loc.cit.): there exists
a linear operator ~ : X (2) — L*>(0f) such that
17(2)l[ < (1]l
v(z)(x) = z(z)n(x) forallz € 00 if z € CHQ,RY).
We shall denote ~(z)(x) by |z, n](z). Moreover, the
following Green's formula, for z € X({2) and w €

BV (Q2) N L*>(€), is established:
/w divzda:Jr/(z,Dw) :/ z,nJw dH" . (6)
0 0 o0
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e The “energy space” we shall use is
L,(0,T, BV(Q)) =
{v: (0, )—>BV(Q)'U€L1((O T) x Q)
t —< Du(t), ¢ > is measurable V¢ € C;j(Q2, R™)

and/ | Du(t)| () dt < oo}

Definition 1. Let ug € L*(Q2). A function u : (0,T) X
() — R is a weak solution of (Pp) (respectively, ( Py ))
if we C([0,T],L*(Q)) N HY0,T; L*(Q)), V6 € (0,T),
u(0) = ug, u € LL(0,T: BV(Q)), and there exists z €
L>*((0,T)x € : RN) with ||2]| < 1 such that u; = divz
in D'((0,T) x Q) and

/ (u(t) — whu(t) = / (2(t), Dw) — | Du(t)|()
Q

Q

- [ feo.ne~ [ Juto)
o2 0N
(respectively,

/Q (ult) — wudlt) = / (2(t), Dw) — | Du(t)|(©)

Q

in case of the Neumann problem) for every w € BV (£2) N
L>(Q) and a.e. on (0,T).



Theorem 1. (Andreu, Ballester, Caselles and Mazén
(2001)) Let uy € L*(QQ). Then for every T > 0 there
exists a unique u(t) weak solution of (Pp) in (0,T) x €.
Moreover, it is characterized in the sense that there exists
z(t) € X (1), such that ||z(t)||- < 1, U/'(t) = divz(t) in
D'(Q) ae te (0,400 and

/Q (2(t), Du(t)) = | Du()] (%), (7)
and
z(t),n] € sign(—u(t)) HY'—ae on 9Q. (8)

Finally, we have the following comparison principle: if u(t), u(t)
are solutions corresponding to initial data g, 1y, respec-
tively, then

(u(t) = @)™ [l2 < [[(uo — o)™ |2 9)
forall t € [0,7]. W

Theorem 2. (Andreu, Ballester, Caselles and Mazén(2000))
Let ug € L*(Y). Then for every T > (0 there exists a
unique weak solution of (Py ) in (0,T) x Q2. Moreover, if
u(t), u(t) are weak solutions corresponding to initial data
U, U, respectively, then

| (ult) — ()" ll2 < [[(uo — @) |2 (10)
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forall t € |0,7]. W

e Concerning the asymptotic behaviour for ¢ — oo, it was
shown by R. Hardt and X. Zhou (Comm. Partial Diff. Egs.,
19 (1994)) that if u(t) satisfies (Pp) then u(t) — 0 in
LY(9).

A stronger result can be obtained via the comparison prin-
ciple

Theorem 3 . Let uy € L™(2) and let u(t,x) be the
unique solution of problem (Pp). Then,

) o < (nuouoo _ %t) o

d(§2) := sup,cq |z|. In particular,

d(CD) || wollso
T*(u0>§ ( >A|]|V-OH )

where T (ug) = inf{t > 0: u(t) = 0}(the finite extinc-
tion time).

(12)

The proof will be obtained by comparison with uniform
super and subsolutions of the form U(t, z) = a(t). Some-
thing new appears for the study of our operator since, in
the p-Laplacian case, the conditions on «(t) to generate a
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supersolution are
a(t) > 0 and up(z) < a(0), a.e.x € €,

o' (t) >0 (13)

and, in fact, those conditions are also sufficient for the
total variation flow. Nevertheless, in the limit case p =1,
condition (13) can be substituted by a different one:

Proposition 1. Let uy € L*(S2) and let u(t,z) be the
solution of (Pp). Let us(t,z) = «(t). Then,
(i) if a(t) >0, up(x) < «(0), a.ex € 2 and

we have u(t) < us(t) a.e. on (),
(it) if a(t) <0 and uy(x) > «(0), a.ex € Q) and

N
d($2)

we have u1(t) > us(t) a.e. on ().

/t <
/() <
Y/
Proof of the Proposition: Let us prove i) under the addi-
tional condition |&/(t)] < %. By Theorem 1 there exists

z1(t) € X(Q) such that ||z1(t)||cc < 1, w)(t) = divzy(t)



in D'(€)) a.e. t€|0,+o0| and satisfying
/Q (z1(t), Dua(t)) = [Dua(t)[($2) (14)

z1(t),n] € sign(—uy(t)) HY ' —ae. on 09

Take z(t)(z) = O"]@x (so, ||za(t)|le < 1). Since

divzs(t) = o/(t) = ub(t), applying Green's formula (6),
we get

1d
2dt Jq

_ /Q (divan(t) — divas(t)) (i (t) — us(t)) —

[(ur(t) — uz(t)) ] =

- / (21(t) — za(t), D(ur(t) — ualt))")

+ [ [z1(t) — 2o(t), 0] (ur(t) — ua(t))" dHY .
0f)
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If Ry(r) = (r — a(t))*, then
/Q (21(t) — z2(t), D(ur(t) — ua(t))")
- /Q (21(t) — za(t), DRy(us (1))
- /Q (21(t), DRy (uy(t))) — /Q (Z2(), DRi(wi(2)))-

Now, by Proposition 2.7 of Anzelloti, we have

/Q(zl(t),DRt(Ul(t)>)
- /99(21(75>7 DRy(u1(t)), x)| D Ry(ua(?))]
_ /Q 0(z1(t), Dus (£), )| DRy (us (1))

From (14), we have 6(z:(t), Duy(t),x) = 1 a.e. with re-
spect to the measure |Duy(t)|. Now, since the measure
| D R;(u1(t))| is absolutely continuous respect to the mea-
sure |Duy(t)], we also have 0(z(t), Dul( ),x) =1 ae.
with respect to the measure | D R;(u1(t))|. Consequently

/( DRt ’LL1 /|DRt Ul
Q
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Moreover, since ||z2(t)]| < 1, we have

/Q (Z1(t) — 25(1), D(uq(t) — u2(t))+) > ().
On the other hand,
[z2(1),n]| < 1,]z1(t),n] € sign(—uy(t))

and us(t) > 0 implies that

/ 23(1) — zo(t), 1] (g (£) — ua(t))* dHY < 0.
of

Thus 1 d
—— t) —us(t))1° <0
i ) = uaft) P <
and the proof concludes. Now, if o/(t) > —%ﬂ) we can

write
C”w‘&ngigO:““>

for some f(¢) > 0 and conclusion follows from the inequal-
Ity
1d
2dt Jg,
The proof of ii) is similar. W

WMﬂ—wwﬁPS/@—f@fFSO

Q

12



Proof of Theorem 3: Take
N +
() = (uuouoo - mt)

and apply Proposition 1. W

The previous estimate can be refined if the support of u
is contained in a ball B(0,r) CC €. For that, we compute

explicitly the evolution of the characteristic function of a
ball.

Proposition 2. Assume that B(0,r) CC €2 and let ug =
kX (o). Then the solution of problem (Pp) is given by

ott:2) = 50 (11~ ) X000

For the proof, let T' = N take

K[
(x
-
z(t) == < —erﬁ if v € QO\B(0,r), 0 <t < T,
T
\O fzeQandt >T,
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and check that u() = dz’vz(t) in D'(2) ae t €
[ Jo(z(t), Du(t)) = [Du(t)|(R2) and [z(t),n] €
Szgn( (t)) HN L —a.e. on 00. W

Remarks.

1. Notice that by Proposition 2, there is not propagation
of the support. This must be compared to the p-Laplacian
case:

)
% — div(|Dul’ > Du) in Q = (0,00) x Q,

Pp < u(t, ) =0 in 2 = (0,00) x 0,
u(0, z) = up(x) in €,

with 1 < p < oo and, for instance, uy = kXB(O,r)?
B(0,r) cC Q :if p > 2 then there is finite speed of
propagation (supp u(t,.) is a compact CC (), at least for
t small), but if 1 <p <2 ku(t,x) > 0,Vz,Vt > 0.

2. The above result shows that there is no spatial smooth-
ing effect, for t > 0, similar to the case of the linear heat
equation and many other quasilinear parabolic equations.
In our case, the solution is discontinuous and has the mini-
mal required spatial regularity: u(t,.) € BV (Q)\WH(Q).
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The method of super and subsolutions “fails” if ug is
unbounded and also for the Neumann problem. Never-
theless, a different method can be applied: the (global)
energy method (see the monograph, S.N. Antontsev, J.I.
Diaz and S.Shmarev, Energy Methods for Free Boundary
Problems. Applications to Nonlinear PDEs and Fluid Me-
chanics, Birkhduser, Boston, Progress in Nonlinear Differ-
ential Equations and Their Applications, 2001)

Theorem 4. a) Let ug € LY (Q)N L), and let u(t, x)
be the solution of problem (Pp). Then u(t) € L~ () for
t>0 and T (uy) < 0.

b) Suppose N = 2 and ug € L*(Q). Let u(t,z) be the
unique weak solution of problem (Py ). Then there exists

a finite time I, such that
1

u(t) = ug ::m/ﬂuo(:ﬁ) de Vt>"1T.

Proof of a). Let ¢ > 1, and ©(r) = |r|7!r. Then,
taking w = wu(t) — p(u(t)) as test function, after some
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technical arguments, it yields

q+1dt/‘u (O + [Dp(u(t)] () (15)

+ [ Ju®)|? dHY ! <.
o0
If we denote

_ S elut))(@) ifz el
v(t)(e) { 0 if - € RM\Q,
then, by Sobolev’s inequality for BV functions (see Theo-

rem 5.6.1 of Evans and Gariepy, Measure Theory and Fine

Properties of Functions, Studies in Advanced Math., CRC
Press, 1992)

[l w1y = 0@ L1 @)
< CHDU(t)HBV(RN)'
Therefore, from (15), we obtain that
1
— / (e + SOl v < 0
Then, taking g = N — 1, we get

N—-1

u ()| + M Ju()]Y "<
i Jjor e ([ o)



From where the conclusion follows.
Proof of b). Taking w = 7y as test function it yields

/Q (ult) — T) wilt) = — | Du(t)] ()

Now, by Poincaré inequality for BV functions (see Evans
and Gariepy, loc.. cit.) and having in mind that we have
conservation of mass, we obtain

lu(t) = ol < C'[Du(t)] ().

Thus, we get
1d 5 1
—— t) — ug —u(t) — uglle < 0.
sai - () =)+ ) ]l <

Therefore, the function y(t) = |, (u(t) — y)” satisfies
the inequality /() + My(t)'/2 < 0. B

Remark.
3. The energy method can be applied to more general
quasilinear equations of the form

% = divA(z,t,u, Du)

with A(z,t,u,p)-p > |p|. B

A finer study near the finite extinction time is possible.
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Theorem 5. i) Let uy € L>®(Q)N BV (Q2) and let u(t, x)
be the solution of (Pp). Let
u(t, x) ,

fF0<t<T”
wp(t,z) = q T*(ug) —t S (t0)

Then, there exists an increasing sequence t, — T*(uyg),
and a solution vy, # 0 of the stationary problem

( D
—div (|DZ|) = In )

(Spb) 1
v=0>0 on 0f)

\

such that
lim wp(t,) = v}, in LP(Q)

for all 1 < p < o0.
ii) Suppose N = 2. Let uy € L*(Q2) N BV (Q)) and let
u(t, x) be the weak solution of problem (Py ). Let

f0<t<T?

Then, there exists an increasing sequence t,, — T™(uy),
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and a solution vy, # 0 of the stationary problem

)
D
—div (]DZ\) = In )

\g—z:o on 0f)

(Sn)

2\

such that

lim wy(t,) = vy in LP(Q),

for all 1 < p < 0.

Idea of the proof of i). Let g(t) := (T*(ug) — t)*. Then,
for 0 <t < T*(UQ>,

_ud) and w'(t) =

We make a change of scale in time t = ¢(7), such that
©(4+00) = T*(up). To do that we take

o(T) = T (u) (1 — e_T) .
Hence, if we define

_ulpln)
T* (’LLO) ’

v(T) is a strong solution of the problem
V(1) + 0P (v(7)) > v(7),

19
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where @ : L*(Q) — (—o0, +00] is defined by

D(u) = [Dul (Q) + [5 |u| if w e BV(Q) N L*(Q),
| +o0 otherwise,

then we have A N (L*(Q) x (L*(Q)) = 0. Let us see

that there exists an increasing sequence 7,, — +00 and a
function v* € BV(Q), such that lim, .., v(7,) = v* in
LP(€2) [which implies the existence of t, — T™(ug) such
that lim,, o w(t,) = v* in LP(Q2)].

We have

s [per sl @+ [ ei= [

On the other hand,

6’7’

T (u) |u(o(7))||oo-

1o(7)lloo =

Hence, we get
[v(T)||oo < C forall 7> 79>0 (16)

since we can prove (by applying the smoothing effect of
Ph. Benilan and M.G. Crandall, [in Contributions to Analy-
sis and Geometry, D.N. Clark et al. eds., John Hopkins
University Press, 1981, 23-39]) that

2[uolloc
T

|u(t)||o < (T (ug) —t) for 7 <t < T™(uy).
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By Lemma 3.3 of Brezis ( Operateurs Maximaux Monotones,...,197:
we have

d VIR /
@0 = = [P+ [ o),

from where it follows that

Do) @+ [ (o) = [ o)

o

< |Dv(0)] () — 1/vm)? [ poy)vr>o
2 Ja 0

Thus, the orbit {v(7), 7 > 0} is bounded in BV (Q).
Hence, by the compact embedding theorem for BV-functions
(see, e.g., Ambrosio-Fusco-Pallara, Oxford Mathematical
Monographs, 2000) {v(7), 7 > 0} is relatively compact
in LP(Q) for 1 < p < % and consequently, there
exists 7, — oo and v* € LP(2) N BV(()), such that
v(T,) — v*in LP(§2). Moreover, by (16) we can assume
that v(7,) — 0" in L) for all 1 < ¢ < oco. On the
other hand, by using the energy inequality of Theorem 3
we have that

|lo(T)[|]y >C ¥V 7>0.

Then, we get v* = 0. Finally, v* is a solution of the sta-
tionary problem (Sp) since T'(t)v* = v*, where (T'(t));>
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is the semigroup in L?(Q)) generated by A — I. The proof
of part ii) is, essentially, similar. Il

Remarks.

4. Previous versions of this type of behaviors: J.G. Berry-
man and C. J. Holland, Arch. Rational. Mech. Anal. 74,
(1980), 279-288 (for u; — Au™ =0, 0 < m < 1), J.L.
Diaz and A. Lifidn (Movimiento de descarga de gases en
conductos largos: modelizacion y estudio de una ecuacién
doblemente no lineal. In the book Reunion Matematica en
Honor de A.Dou (J.1.Diaz y J.M.Vegas eds.) Universidad
Complutense de Madrid, 1989, 95-119 (for u;—A,u™ = 0,
0<(p—1)m < 1).

5. Notice that by Theorem 5, there exists solutions of the
“singular eigenvalue type” problem (Sp) which are not
strictly positive (in contrast with the Krein-Rutman theo-
rem).

Concerning the study of (Sp) under symmetry assump-
tions we have:

Proposition 3. Let ) = B(0,R), R > 0, and uy > 0
be a radial function in B(0, R). If v* is the asymptotic
profile of the solution of (Pp) then v*(x) = g(|x|) for
a decreasing function g : [0, R| — |0, ||ug||~] satisfying
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gr)y=1Lorg(r)=0,ae inrec(0,R). N

We finish this section by giving some explicit solutions
of (Sp) in the radial case.

Proposition 4. The following functions are solutions of
N —1
x|

ui(x) =

~ Per(B(p,r))

Us(x) = Bip.r) X (r), ¥V B(p,r) C B(0, R),
(T i 2eBO.NCBOR
uz(x) = < N
|;‘ if = e B(0,R)\ B(0,r).

Moreover, if Ry < Ry < R, By = B(0,Ry), By =
B(0, Ry). Then the ‘“tower function”

~ Per(By) Per(Bsy) — Per(B)
us(x) = B, | XB1(5C>+ ‘B2| _ |Bl‘ XBz\Bl(x>

is also solution of (Sp) in B(0, R). &

The proof uses several techniques from the geometrical
measure theory.

23



3 On the Bingham stationary model

We shall study some qualitative properties on the spatial
structure of solutions of problem

_ — adiv [ v ) — '
(BS) Au — gdiv (|Du|) f inQ,
u=>0 on 0f),

Given f € L?(€), the existence and uniqueness of a
solution u € H}(Q) was shown by Duvaut- Lions (1969).

The regularity H*(Q)) was obtained later by Brezis (1971).
Let us define the plastic region by

Qo ={z € Q:|Du| = 0}.
Theorem 6. Assume f € L*>(2) and let ¢ .= || f|,..
Let wy = ‘B(O, 1)‘ :
N
i) if Q] < wN(—g)N then u(z) =0, a.e. x € (),
c

N
i) if f(z) = cand [Q > wy(=DN then |Q| >
C
N

The main ingredients of the proof are the consideration
of the special case {2 = B(0, R) and a comparison in terms
of the decreasing symmetric rearrangement
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Proposition 5. Let ) = B(0,R) and f (z) = ¢
N
i)if R< 29 then u(z) =0, a.e. x €€,

C
N N
i) if B>~ then Oy = B(0, ~2).
C C

Idea of the proof of Proposition 5. By the equivalent for-
mulation in terms of a Lagrange multiplier, there exists
peA:={qel>®Q)" :|q|l, <1} such that
—Au —gdivp=f in ),
u=20 on 0f),
p-Du = |Du|l a.e.in (.
Then, by approaching (when p \ 1) by the solutions of

—Au—gAyu=f in (),
(BS) { u =70 on 02,

N
we prove that if R < 9 then Ipll,, < 1, and so
c

N
u(x) = 0, ae x € Q. If R > it is possible to

c
construct (explicitly) the solution. So, for instance, for
N =2

)

(R (R+7)~ g 29 < <R,

C 29 X 29
—(R—=)? if 0<r<=2
\ 4< c> TE=T=Ts

u(r) =
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(see also Glowinski, R. Lions, J.L. and Tremoliéres, R., Nu-
merical Analysis of Variational Inequalities, North-Holland,
Amsterdam, 1981).

Proposition 6. Let f € L*(Q), f > 0. Let f* € L*(Q")
its decreasing symmetric rearrangement. Let U be the
solution of BS associated to (2" and f*. Then

w (x) < U(x), ae x e

and
|Du*(x)| < |DU(x)|, a.e. x e Q.

(The proof is an easy variation of J.I.D: “Desigualdades
de tipo isoperimétrico para problemas de Plateau y capi-
laridad” , Revista de la Academia Canaria de Ciencias, Vol.
I, No.1, 127-166, 1991)

Remarks.

6. The proof of Theorem 6 is now immediate from Propo-
sitions 5 and 6.

7. The radial solutions can be used as super and subso-
lutions in order to get pointwise estimates on the location
of the plastic region.

8. In the radial case we conclude that [€)y| = wM%)N
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N
independently of R (once that R > _g) This is entirely

different to the case of the free boundcary for

—Aju+u=1in Q= B(0,R),
u=>0 on 0f),

assumed p > 2. In that case the “solid region” is {); =

{reQ:u=1}and || ~if R / (see: J.1.D. Nonlin-
ear PDEs and free boudaries, Pitman, London, 1985).

9. Recent numerical experiences in J.W. He and R. Glowin-
ski: “Steady Bingham fluid flow in cylindrical pipes: a time
dependent approach to the iterative solution”, Numerical
Algebra with Applications, 2000, T, 381-428.

10. Estimates on [€)y| for different special geometries of
(2 in P. Mossolov and V. Miasnikov: “Variational methods
in the theory of the fluidity of a viscous-plastic medium”,
Journal of Mechanics and Applied Mathematics, 1965, 73,
468-492.

11.7To finish, let us consider the evolution problem

( uy — vAu — gdiv (@—“M) = f(t,z) in Q,
(BE) < u =20 on 2.,
\ u(0, ) = ug(x) on €,

forv >0and g > 0and f (t,x) # 0.
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e Conditions on f for the existence of a finite extinction
time 7 (f = 0 in Section 2).
e Necessary condition:
f(t,x) € B(0) ae z €, tlarge
where
B:D(B) C L*(Q) — P(Q),

_ — adiv [ Lw
Bu = —vAu — gdiv (\DUI)'

The abstract results for multivalued operators can not be

applied (H. Brezis, Proc. Int. Congress Math. Vancouver,
1974, J.1.D. Rev. Real Acad. Ciencias, 74, 1980, 865-880)
As in Proposition 1,

B0) D> {ceR: |¢ < g%},
d(Q2) := sup |z|.

r€ef)

Proposition 7. Let uy € L>*(Q)), f € L*(Q) and let
u(t, x) be the unique solution of problem (BE ). Assume

N
€8S sup {Hf (£, )l ooy + E]vaT[} < gm-

Then, for any t €|Ty, T we have

Jult) o < (Hu@f, i~ (e = c)t)
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with ¢ := esssup {Hf () ooy : E]Tf,T[} . In par-
ticular,

(17)

Compare (as in Proposition 1) with uniform super and
subsolutions satisfying

and

respectively. il

Notice that

Ty
[T, Mm@ < Nl + / £ (5, ) e 5
0

and estimate (17) becomes explicit.

29



