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Abstract. After a general introduction about the convenience of to study

the coupling of atmospheric energy balance climate models with the deep
ocean temperature, we consider the model proposed by Watts and Moran-
tine, in 1990, about such a coupling leading to a nonlinear dynamic problem
in which it appear a dynamic and di¤usive boundary condition. We show
that for the special case of discontinuous coalbedo functions (as proposed by
Budyko in 1969) there is not uniqueness of solution of this climate model, at
least for some special data.

1 Introduction.

The scienti�c study of the Global Change is one of the motivations of very
large time scale models to study the evolution of the Earth locally aver-
aged temperature: the climate. The pioneering global climate energy bal-
ance mathematical models (EBMs) were introduced by M. Budyko and W.
Sellers in 1969, independently. EBMs are diagnostic models for the surface
atmospheric temperature. Several aspects of the mathematical treatment
of di¤erent versions of climate EBMs have been studied by many authors,
among them, [5], [10], [16], [22], [12], [7] and [3], among many others.
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Nevertheless, in this class of global climate models the averaging process
is taken place only at the surface atmospheric level and, in particular, deep
ocean e¤ect was not directly included but only as some special values of the
constitutive coe¢ cients of the super�cial model. A growing set of evidence,
however, indicates that variations in the climate may be strongly connected
to variations in the tropical ocean. An obvious case in point is the existence of
climatic anomalies in various parts of the world following an El Niño event.
If the ocean were a stagnant body of water, the bottom of the equatorial
ocean would be warm. However, it has been known, for a long time, that the
deep ocean is quite cold.
The important role played by oceans was not correctly taken into account

and, for instance, rapid climate changes during Glacial-Holocene transition
could have been the results of variations in the rate of deep water formation
(see Berger et al [2]). The coupling among atmosphere and ocean have been
considered by many other purposes, as, for instance, the elevation of the
ocean levels,
Many di¤erent mathematical models coupling atmosphere and ocean are

available today in the literature (see, e.g., the important series of papers by
Lions, Temam andWang [19], [18] and [20]). But the great complexity of such
systems of nonlinear partial di¤erential equations made almost impossible to
use them for the study planetary scale phenomena as, the evolution of ice
sheets, the sensitivity with respect the Solar incoming energy, etc.
To simplify the understanding of this coupling, di¤erent models were

proposed in the literature: see, e.g. [24], [13], [14] and the many references
of the books [15], [23] and [27], to only mention a few of them.
In this paper we shall follows the simpli�ed model proposed by Watts

and Morantine [31] (and then used by many other authors, as, for instance,
[29], [21], [30] and [28]). Such a model consists of a parabolic equation in
a global ocean with a dynamic and di¤usive nonlinear boundary condition.
This boundary condition is obtained through a global energy balance for the
atmosphere surface temperature. A previous detailed mathematical study of
the model was carried out by the authors in [8], [10] and [11]. The goal of this
work is to show that under the discontinuous coalbedo function , proposed
by M. Budyko in 1969, there is lack of the uniqueness of solutions. This
is constrast with what it is usually assumed in many studies on this kind
of coupling (as, for instance, in the numerical treatment of such coupling
models: see, e.g. [24]). Here we construct an example of nonuniqueness
solutions of this evolution system under suitable conditions on the model.
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This completes the work by the authors [9] in which such a result was merely
announced (without proof).

2 The model.

The global model studied is the simpli�cation of a climate model with deep
ocean e¤ect where the surface is the sphere of radius R and the temperature is
constant over each parallel. The resulting spatial variables x; z; represent the
sine of the latitude and minus the depth, respectively. The spatial domain is

 = (�1; 1)� (�H; 0) and its boundary, �H [�0 [�1; where �H = f(x; z) 2

 : z = �Hg; �0 = f(x; z) 2 
 : z = 0g; �1 = f(x; z) 2 
 : x = �1g:
The boundary condition on �0 is based on a global energy balance over

the Earth surface. The unknown U on �0 is the mean temperature over each
parallel.
We are concerned with the following model
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U(0; x; z) = U0(x; z) in 
;

U(0; x; 0) = u0(x) in �0:

The physical description and the numerical approximation if p = 2 and where
� depends only on x is in Watts Morantine [31]. The proof of existence of
bounded weak solution to this 2-D model is in Díaz and Tello [8]. The number
of steady states of (P2D) was studied in [11].

BU+C is the emitted energy from the atmosphere layer (by cooling). The
planetary coalbedo � is eventually discontinuous on u. KV and KH are the
vertical and horizontal di¤usivity in the inner ocean, KH0 is the horizontal
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di¤usivity in the mixed layer (atmosphere-ocean). w is the vertical velocity,
R is the Earth radius and Q the solar constant.
We study the uniqueness / nonuniqueness of solutions to (P) under the

following structural hypotheses,

(H�) � is a bounded maximal monotone graph, that is, jvj �M 8v 2 �(s);
8s 2 D(�) = IR;

(HB;C;p) B and C are positive constants and p � 2;

(HS) S : (�1; 1)! IR; s1 � S(x) � s0 > 0 a.e. x 2 (�1; 1);

(Hw) w 2 C1(
).

We say that (U; u) 2 L2(0; T : W 1;2(
)�W 1;p(�0))\ W 1;2(0; T : L2(
)�
Lp(�0)) is a solution of (P) if Uj�0 = u and 8( ; �) test functions in L2(0; T :
W 1;2(
)�W 1;p(�0))\ W 1;2(0; T : L2(
)� Lp(�0)) we have
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for some h 2 L1(0; T : L1(�0)); h 2 �(�; u).
Existence of solutions was proved in Díaz-Tello [8] by �xed point tech-

niques. Moreover, when �(u) is Lipschitz continuous (as proposed by Sellers)
it is not di¢ cult to adapt the arguments of [5] to prove the uniqueness of a
solution of the above system.
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3 A nonuniqueness result.

In this section we pay an special attention to the case of discontinuous (or
multivalued) coalbedo functions (as proposed by Budyko). We give here a
counterexample to the uniqueness for the problem (P2D) under the following
hypotheses:
(H1) The coalbedo function is

�(u) =

8<:
[m;M ] if u = �10;
m if u < �10;
�(u) =M if u > �10; with 0 < m < M .

(1)

(H2) B + C are positive constants, and

�10B + C >
Qs1m

�c
: (2)

(H3) We also assume

w(x) � 0 for all x 2 (�1; 1):
(H4) The initial data (U0; u0) satisfy

8>>>>>>>>>>>><>>>>>>>>>>>>:

(U0; u0) 2 C1(
)� C1(�0); u0(x) = u0(�x) for all x 2 [�1; 1];

du0
dx
(0) =

d2u0
dx2

(0) = 0; u0(0) = �10;

du0
dx
(x) < 0 if x 2 (0; 1); du0

dx
(1) = 0;

@U0
@z
(x; 0) > 0; U0(x; 0) = u0(x); if x 2 (0; 1):

Theorem 1 Under the above conditions, Problem (P2D) has at least two
bounded weak solutions.

Idea of the proof.
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Step 1. First, we consider the problem (Pm)8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
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From hypotheses (H0) and (2), there exists T0 > 0 s.t. if t < T0 then the
right hand side term is positive. Consequently u� = �10�um is positive and
um < �10.
Notice that KV
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+ wx@U
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Step 2. Now, we prove that there exist a solution which takes values
bigger than -10 in a subset of �0: To see the existence of this second solution,
we shall construct a family of auxiliary functions U� (and the restrictions
U�j�0

= u�), as follows:


� [0; �] =Q�
1 [Q�

2 [ ��; where

Q�
1 = f(x; z; t) 2 
� [0; �] : x2 + z2 >

t2

�2
g;

Q�
2 = f(x; z; t) 2 
� [0; �] : x2 + z2 <

t2

�2
g;

6



�� = f(x; z; t) 2 
� [0; �] : x2 + z2 =
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g:

. In the region Q�
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where

H� = �(C�)0(t)(x2+ z2� t2
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.
There exist � > 0 and C� : [0; T0] ! IR such that (U�; u�) is a lower

solution of Problem (P).

Then, by upper and lower solution method we deduce that there exists
a solution (V; v) of (P ) satisfying u� < v. Consequently v > �10 in some
subset of positive measure. (V; v) is di¤erent than the solution of step 1.

Finally, we get two di¤erent solution of (P2D) for an initial data satisfying
(H4).

Remark 1 We have proved here that, for some special initial data, there
exist more than one time dependent solution of the coupled system. The
behaviour of this type of systems leads us to the conjecture that it could be
exist, in fact, a continuum of solutions, and not only two, in a similar way to
the results in the literature concerning the EBM (without any coupling with
the deep ocean). .
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