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1. Introduction
The study of crystal precipitation attracted the attention of many
specialists, specially after the pioneering works by the Nobel Prize F. W.
Ostwald (1853-1932) on the so called Ostwald ripening in reactive batch
crystallizers (persistency of a single crystal size for very large values of
time). Several mathematical models can be introduced to this respect.
Here we shall follows the so called Tavare model [Tavare 1985], later study
from the mathematical point of view in [Friedman-Ou 1989],
[Friedman-Hu-Ross 1989] and [Gobi-Palpacelli-Spigler 2008].

Some other completely di¤erent models (the so-called
Lifshitz-Slyozov-Wagner, ...) have been mathematically studied by several
authors (see, e.g. [Boistelle-Astier 1988], [Ratke-Voorhees 2002],
[ Velázquez 2006] and their references).

A good illustration arise with the photographic emulsion a suspension of
small particles in aqueous gelatin. A crystal is a three-dimensional atomic
or molecular structure consisting of periodically repeated unit cells. The
method of manufacturing silver halide grains of a given (approximate) size
is based on a process called "Ostwald ripening."
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Applications to traditional photography are nowadays of much less
importance, in view of digital photography, but there are many other
applications, e.g. to colloidal dispersions, where Ostwald ripening is an
important phenomenon [Boistelle-Astier 1988].
The phenomenon of Ostwald ripening is based on the following fact: for a
"very long time," either all crystal grains will dissolve into solution, or all
the grains in the solution become the same size.
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In this presentation we shall consider two di¤erent models. The �rst one
(a simpli�ed model in which the number of crystals is assumed to be
prescribed for any time) which can be stated as a system of nonlinear
ODEs and a more realistic model arising when the number of crystals of
each size µj (now in number N � 2) is not prescribed but given by the
"solution" of a suitable nonlinear and nonlocal hyperbolic problem. In
both cases, our special interest is to search for conditions implying that
the Ostwald ripening phenomenon ends completely after a �nite time (and
not only asymptotically when t ! +∞) as in previous papers. Works in
progress with R. Gómez (UCM) and with J. Jimenez (Pau, France).

2. On Tavare�s model with a prescribed number of crystals.
Given a volume of �uid containing an amount of dissolved matter (solute),
there will be in equilibrium a saturation concentration c�, which is the
maximum solute per unit volume of �uid that the system can hold. If the
actual concentration c(t) exceeds c�, then the excess precipitates out in
solid form, i.e., in crystal form.
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Actually, to cause precipitation, c(t) must be larger than a quantity cL (
cL > c�), which also depends on the size of the grain, as will be explained
below.
We denote the edge of crystal grains by L (we assume that all crystal
grains have the same shape and that they di¤er only in size. For
de�niteness, we assume that all the grains are cubes with variable diameter
and variable orientation). We assume that the distribution of grains of
edge L is roughly uniform throughout the solution. Then cL is given by
the Gibbs-Thomson relation,

cL = c
�eΓ/L

where Γ is a physical quantity that depends on the shape of the crystals, on
its material properties, and on the temperature (which is assumed �xed).

J.I.Díaz (UCM) Singularities developed by the solutions of two Ostwald ripening models in reactive batch crystallizersMarch 23th , 2011 5 / 25



If c(t) > cL, then material will come out of the solution and deposit onto
the crystals characterized by L, and if c(t) < cL then material will dissolve
from the crystals. Set

L�(t) =
Γ

log c (t)c �

According to semi -empirical law, the crystal size L will grow or dissolve
at the rate

dL
dt
(t) = G (L(t), c(t)) (1)

where

G (L(t), c(t)) =
�

kγ(c(t)� c�eΓ/L(t))γ if L(t) > L�(t),
�kδ(c�eΓ/L(t) � c(t))δ if L(t) < L�(t),

(2)

where the main changes, with respect to the formulation proposed in
[Friedman-Hu-Ross 1989], concerns the assumptions γ > 0 and δ > 0
instead γ � 1and δ � 1.
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We mention that it is well known (see, e.g. [Aris 1975]) that in many
chemical reactions the kinetics leads to exponents γ 2 (0, 1) and
δ 2 (0, 1). As a matter of fact, the limit cases γ = 0 and δ = 0 are also
relevant in the applications [Aris 1975] but they must be suitably
formulated in terms of multivalued functions [Díaz 1985] and we shall not
discus them here. On the rest of parameters we assume that kγ, kδ, Γ and
c� are given positive numbers.
Observe that

if c(t) > cL (or L(t) > L
�(t)) then

dL
dt
(t) > 0, i.e. the crystal grows,

if c(t) < cL (or L(t) < L
�(t)) then

dL
dt
(t) < 0, i.e. the crystal shrinks,

Let us assume that initially there are N di¤erent sizes of crystals,
characterized by sizes L = x�j in numbers µ�j per unit volume, where

0 < x�1 < x
�
2 < ... < x

�
N .
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These sizes will then evolve in time to x1(t) < x2(t) < ... < xN (t),
according to (1),

dxj
dt
(t) = G (xj (t), c(t)). (3)

The concentration c(t) of the solute at time t is given by

c(t) := c0 + ρkv
N

∑
j=1

µ�j (x
�
j )
3 � ρkv

N

∑
j=1

µ�j (xj (t))
3,

where c0 is the initial concentration, kv is a geometric parameter
connecting L3 to the crystal volume (in the case of cubic crystals, kv = 1),
and ρ is the mass density of the solid phase.
If we substitute c(t) into (3), we obtain a system of di¤erential equations

dxj
dt
(t) = Gj (x1(t), ..., xN (t)), j = 1, ...,N.

We also have initial conditions xj (0) = x�j .Set

µj := ρkvµ�j , c1 := c0 + ρkv
N

∑
j=1

µ�j (x
�
j )
3.
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Note that c1 represents the total amount of silver halide per unit volume in
either crystal or solution form. Note also that for N = 2 the problem can
be reformulated as the system The �rst one (a simpli�ed model in which
the number of crystals is assumed to be prescribed for any time) can be
stated (after important simpli�cations) as the nonlinear ODEs system8>>><>>>:

dx1
dt + jf1(x1, x2)j

δ�1 f1(x1, x2) = 0
dx2
dt + jf2(x1, x2)j

δ�1 f2(x1, x2) = 0
x1(0) = x0,1
x2(0) = x0,2

where δ > 0 (here we are assuming γ = δ for simplicity) and
fi (x1, x2) = µ1x31 + µ2x32 + e

Γ/xi � bc for i = 1, 2 and for some positive
constants µ1, µ2, Γ and bc , mentioned in the abstract of this lecture.
In the case N = 1

dx
dt
(t) = G (x(t)), (4)

G (x) =
�

kγ(c1 � µx3 � c�eΓ/x )γ if c1 � µx3 > c�eΓ/x ,

�kδ(c�eΓ/x � (c1 � µx3))δ if c1 � µx3 < c�eΓ/x .
(5)
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Typical physical constants are c� = 4� 10�6kmol /m3, Γ = 4� 10�9m, ρ
= 6473kg/m3, kγ = kδ= 5� 10�2, and c0 = 1.05c�,x� = 10�7m or
10�8m and µ = 1019 or 1016.
3. Crystals of single size
Consider the situation when all crystal grains have initially the same size
x�. The crystals will evolve according to (4), (5). The points x where G
changes sign will play a crucial role. That is

µx3 + c�eΓ/x = c1 (6)

Lemma 1. There exist at most two positive solutions ξ1 and ξ2 (with
ξ1 � ξ2) of (6).
Proof. Function f (x) := µx3 + c�eΓ/x has a positive second derivative for
x > 0, and f (x)! ∞ if x ! 0 or if x ! ∞.

G bis

2.pdf
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Equation (6) may have no positive solutions, but for de�niteness we
concentrate on the case where there are two distinct positive solutions.

Theorem 1. i) If x� = ξ2 then the solution of (4) is x(t) = x�. If x� =
ξ1 then x(t) = x� is a solution of (4) (which, in fact, it is the only one if
γ � 1 and δ � 1).
ii) If x� > ξ2 then x(t) is strictly decreasing and limt!∞x(t) = ξ2 (with
x(t) = ξ2 after a �nite time if δ 2 (0, 1)).
ii) If x� 2 (ξ1, ξ2) then x(t) is strictly increasing and limt!∞x(t) = ξ2
(with x(t) = ξ2 after a �nite time if γ 2 (0, 1)).
iii) If x� 2 (0, ξ1) then x(t) is strictly decreasing for some interval [0, t0]
and then x(t0) = 0 with limt!t0

dx
dt (t) = �∞.
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Remarks 1. Note that Theorem 2 asserts that the crystal�s size will
decrease to zero in �nite time t0; thereafter the crystal is entirely dissolved
in the solution (there is no di¤erential equation once that x(t) = 0).
2. The proof of the existence and uniqueness (for x� 6= ξ1) of the solution
uses the decomposition of G as a locally Lipschitz function + monotone
function and the di¤erent sign of dxdt (t) according the initial condition x

�

(see, e.g. [Di-Thelin 1994] for some related results).
3. A singularity on dx

dt (t) arises at the extinction time t0

t0 =
Z x �

0

ds
G (s)

.
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4. Crystals of several (prescribed) sizes
We consider the general case of crystals with N sizes. We assume that the
initial concentration is larger than the critical concentration c�

c0 > c�.

Lemma 2. We have c(t) > c� for any t > 0.
Proof. Indeed, if c(t1) = c� then dc

dt (t1) � 0. But, on the other hand,

dc
dt
(t) = �3

N

∑
j=1

µj (xj (t))2
dxj
dt
(t) = �3

N

∑
j=1

µj (xj (t))2G (xj (t), c(t)) > 0,

(7)
which leads to a contradiction at t = t1.
Lemma 3. We c(t) < c1 := c0 + ρkv ∑N

j=1 µ�j (x
�
j )
3 for any t > 0. And,

in particular xN (t) �
�
c1
µN

�1/3
for any t > 0.

Proof. Use the de�nition of c(t).
As in the case of a single-size crystal, some of the crystals may dissolve
entirely in �nite time, and they disappear thereafter from the di¤erential
equations.
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Lemma 4. The size ordering of the solutions xj (t) continues to hold as
long as the xj (t) are positive.
Proof. We have

d
dt
(xj+1(t)� xj (t)) = G (xj+1(t), c(t))� G (xj (t), c(t)) > 0.

This implies that xj+1(t)� xj (t) is strictly monotone increasing.

Remark. The curve x = L�(t) := Γ
log c (t)c�

determines whether a crystal

grows or shrinks. If xj (t) > L�(t) then xj (t) is growing, whereas if xj (t)<
L�(t) then L�(t) is shrinking.

We denote by k the maximal number of crystal sizes that have
disappeared in �nite time, say by the time t = t�. Thus for t > t� there
are only crystal grains with sizes xk+1(t), xk+2(t), ..xN (t) present in the
di¤erential systems (the x1(t), ..., xk (t), dropped out).
Theorem 2. All crystals that do not have the largest size xN (t) will
dissolve in �nite time, i. e., k + l cannot be smaller than N for t� large
enough.
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Proof. We suppose that k + 1 < N and derive a contradiction. A crystal
of size xj (t) may possibly intersect the curve x = L�(t) several times.
However, xN (t) can intersect x = L�(t) at most once. Indeed, at a point
of intersection t = tN , we have

dxN
dt
(tN ) = G (xN (tN ), c(tN )) = 0

whereas

dL�

dt
(tN ) < 0 since

dc
dt
(tN ) < 0

as seen from (7) (the sum ranges over k + 1 < j < N, and each G with
k + 1 < j < N is negative). We conclude that for some tN > t� either

xN (t) > L
�(t) for all t > tN (8)

or
xN (t) < L

�(t) for all t > tN . (9)

In the last case (9) dxNdt (tN ) < 0 for all t > tN whereas in the �rst case (8)
dxN
dt (tN ) > 0 for all t > tN .

J.I.Díaz (UCM) Singularities developed by the solutions of two Ostwald ripening models in reactive batch crystallizersMarch 23th , 2011 15 / 25



In both cases limt!∞xN (t) exists (recall that xN (t) is bounded, by Lemma
3).
From Lemma 4, withj + 1 = N, it follows that limt!∞xN�1(t) also exists,
and similarly limt!∞xj (t) exists for all N > j > k + 1.
From the de�nition of c(t) it also follows that limt!∞c(t) exists. Set

xj (∞) = limt!∞xj (t) and c(∞) = limt!∞c(t).

Again, by Lemma 4
xk+1(∞) < xN (∞).

Hence
G (xk+1(∞), c(∞)) < G (xN (∞), c(∞)).

It follows that at least one of these two numbers is di¤erent from zero; say
η := G (xk+1(∞), c(∞)).Since for very large t

dxk+1
dt

(tN ) = G (xk+1(t), c(t)) � η,

we deduce that limt!∞xk+1(t) does not exist, which is a contradiction.
The contradiction can be avoided only if k + 1 = N, and thus Theorem 2
follows.
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As conclusion, we now know that x1(t) dissolves in time τ1, x2(t)
dissolves in time τ2, ..., xN�1(t) dissolves in time τN�1. For t > τN�1 we
are back into the one-size crystals situation studied before. Moreover
xN (t) attaints its asymptotic value in a �nite time if δ 2 (0, 1) or
γ 2 (0, 1) according if dxNdt (t) is negative or positive after τN�1.
We have concluded that after a �nite time t = τN�1 all but the largest
size crystals will have dissolved in the solution. Thereafter, the remaining
crystals, having uniform size, will either (i) shrink to zero size (and hence
dissolve) in �nite time; or (ii) converge to one of two sizes ξ1 and x� = ξ2
, depending on the conditions existing at time t = τN�1. Numerical
methods allow us to compute the limiting size of the crystals.
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5. On the case of non prescribed sizes crystals.
A more realistic model arises when the number of crystals of each size µj
(now in number N � 2) is not prescribed but given by n(x , t) the
"solution" of the nonlinear and nonlocal hyperbolic problem�

∂n
∂t +

∂
∂x (Gn) = 0 x > 0, t > 0,

n(x , 0) = n0(x) x > 0,
(10)

where

G (x , t) =
�

kγ(c(t)� c�eΓ/x )γ if x > x�(t),
�kδ(c�eΓ/x � c(t))δ if x < x�(t),

(11)

x�(t) =
Γ

log(c(t)/c�)
and c(t) = c0+ β

Z +∞

0
x3n0(x)dx� β

Z +∞

0
x3n(x , t)dx .

(12)
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The natural modelling of the problem leads to the assumption
n0(x) = ∑N

m=1 µmδ(x � xm,0), where µm are some given positive
constants, δ(x) denotes the Dirac measure with unit mass at x = 0 and
the values 0 < x1,0 < x2,0 < ... < xN ,0 < ∞ are N given positive numbers
representing the sizes of the initial crystals.
Besides its relevance in the applications, which made specially interesting
such a problem is that the corresponding solution is not a L1-valued
function but a measure-valued function n(�, t). We shall prove that, under
suitable additional conditions on G (for instance γ, δ 2 (0, 1)) the Ostwald
ripening phenomenon takes play not only asymptotically (when t ! +∞)
but in a �nite time.
As mentioned, our approach follows closely the pioneering paper
[Friedman-Hu-Ross 1989]. They arguments can be easily extended to
prove the existence and uniqueness of a solution of problem (10), (11),
(12), for such initial datum.
Theorem 3. Assume γ > 0 and δ > 0. Then, given such a n0(x), there
exists a unique entropy solution n(x , t) of problem (10), (11), (12),
n 2 C ([0,+∞) : M(0,+∞)). More precisely, we have the
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representation formula

n(x , t) =
N

∑
m=1

µmδ(x � xm(t)) (13)

for some functions xm(t) satisfying that xm(0) = xm,0.
Idea of the proof. It is natural to start by approximating the initial datum
by

n0,j (x) =
N

∑
m=1

µmρj (x � xm,0)

where ρj (x) is a smooth function such that

ρj � 0, ρj (x) = 0 if jx j >
1
j
and

Z +∞

�∞
ρj (x)dx = 1.

The existence of a solution (nj (x , t), cj (t)) for this class of initial datum is
an easy modi�cation of the arguments of [Friedman-Ou 1989] since the
local existence is built through the solution of the ordinary di¤erential
equation � dx

dt = Gj (x , t) t > 0,
x(0) = x0.
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It is clear that, in general, function G is not globally Lipschitz continuous
but it is locally Lipschitz continuous and monotone near the singular
points. So, by well known results (see, e.g. [Di-Thelin 1994]) we know the
existence of a global solution x(t). Then

d
dt
nj (xj (t), t) = �

∂Gj (xj (t), t)
∂x

nj (xj (t), t)

and thus

nj (xj (t), t) = n0,j (x)e�
R t
0

∂Gj (xj (s),s)
∂x ds .

Then we get that

cj (t) = c1,j � β
Z +∞

0
x3nj (x , t)dx ,

dcj (t)
dt

= �3β
Z +∞

0
x3nj (x , t)bGj (x , t)dx ,

bGj (x , t) =
(

kγ(cj (t)� c�eΓ/x )γ if x > x�j (t),
�kδ(c�eΓ/x � cj (t))δ if x < x�j (t),
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with x�j (t) =
Γ

log(cj (t)/c �)
. If we denote by xj (t) � xj (t; x) the solution of� dxj
dt =

bGj (x , t) t > 0,
xj (0) = x0,

(14)

we obtain that xj (t) is well de�ned (even if γ 2 (0, 1) and/or δ 2 (0, 1))
and thatbGj (x , t) � C , dxjdt � C and

Z +∞

0
nj (x , t)dx �

Z +∞

0
n0,j (x)dx � C ,

for a suitable positive constant C . Then we can extract a subsequence
cj (t), xj (t) and nj (x , t) which are pointwise convergent to the searched
solution satisfying the representation formula (13). Once more, the
uniqueness of such a solution is consequence of the uniqueness of solution
of the Cauchy problem obtained passing to the limit in (14).

Remark. It is possible to prove (something which is not analyzed in
[Friedman-Hu-Ross 1989]) that the obtained solution n(x , t) satis�es the
hyperbolic equation in the weak entropy sense,
n 2 C ([0,+∞) : M(0,+∞)) as introduced in [DiPerna 1985] (see also,
e.g., the exposition made in [Malet et al 1996]).
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Thanks to an extra assumption, we can prove that the Ostwald ripening
phenomenon (persistency of a single crystal size for very large values of
time) takes play not only asymptotically (when t ! +∞) but in a �nite
time.
Theorem 2. Assume that

γ 2 (0, 1) and δ 2 (0, 1). (15)

Then there exists bt > 0 such that n(x , t) = µN δ(x � xN (t)) for any
t > bt. Moreover, n(x , t)! µN δ(x � ξ2) as t ! +∞, where ξ2 is one of
the zeros of the trascendent equation

βµN ξ3 + c�eΓ/ξ = c0 + β
N

∑
m=1

µmx3m � c1.

Idea of the proof. We use the arguments of the precedent section to show
that the solutions of the limit problem associated to (14) wanishes in a
�nite time (except for the last size xN ), thanks to the condition (15). The
asymptotic behaviour follows similar arguments to the ones introduced in
[Friedman-Hu-Ross 1989].
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