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1 Introduction

Let us consider a distributed system, i.e. a system whose state is defined by the
solution of a Partial Differential Equation (PDE). We assume that we can act
on this system by a hierarchy of controls. There is a “global” control v, which is
the leader, and there are NV “local” controls, denoted by wy, ..., wy, which are
the followers. The followers, assuming that the leader has made a choice v of its
policy, look for a Nash equilibrium of their cost functions (the criteria they are
interested in). Then the leader makes its final choice for the whole system. This
is the Stackelberg—Nash strategy.

Such situations arise in very many fields of Environment and of Engineering
(and, by the way, for systems not necessarily described by PDE’s). In order to
explain more precisely our motivation, let us choose here an example taken from
Environment: let us consider a resort lake, represented by a domain §2 of R3,.
The state of the system is denoted by y. It is a vector function y = {y1,---,un},
each y; being a function of x and ¢, z € £, t = time. The y;’s correspond to
concentrations of various chemicals in the lake 2 or of living organisms. The y;’s
are therefore given by the solution of a set of diffusion equations. In the resort,
there are local agents or local plants, Py, ...,Px. Each plant P; can decide (with
some constraints) its policy w;. There is also a general manager of the resort. He
(or she) has the choice of the policy denoted by v. Therefore the state equations
are given by

%% + A(y) = sources + sinks + global control v + local control {w, ..., wx}, (1)
where the initial state is supposed to be given,

y(z,0)=yo(2), (2)

and where there are appropriate boundary conditions (of course this is made
more precise in the next section of this paper). The general goal of the manager
v is to maintain the lake as “clean” as possible. In other words, if the situation
at ¢ = 0 is not entirely satisfactory, he (or shé) wants to “drive the system” at
a chosen time horizon T' as close as possible to an ideal state, denoted by I
Each plant P; has essentially the same goal, but of course, P; will be particularly
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careful to the state y near its location. Let p; be a smooth function given in {2
such that
pi(z) >0, p; = 1 near the location of P;. (3)

Then P; will try to choose w; such that the state at time T, y(z, T), be “close”
to p;y”, and to achieve this at minimum cost. This leads to the introduction of

s on) = skl + 2 a6 GD -y, @

where |||w;||| represents the cost of w;, «; is a given positive constant and
”p,»(y(., T)— yT)H is a measure of the “localized distance” between the actual
state at time T and the desired state y7.

Remark 1.1 We have assumed here that the system (1), (2) (together with ap-
propriate boundary conditions) admits a unique solution y(z,t;v;wy,..., wy).
In (4), y(.,T) denotes the function z + y(z,T;v;wy,..., wy).

The “local” controls wy, ..., wy assume that the leader has made a choice
v and they try to find a Nash equilibrium of their cost J;, i.e. they look for
wi,...,wy (as functions of v) such that

e
Ji(v;wi, .o, wict, Wi, Wit ..., wN) < Ji(v;wr, .. wic, Wi, wit, ..., WN),

for all w;, fori=1,...,N.

(5)

If w={wy,...,wn} satisfies (5), one says it is a Nash equilibrium.

The leader v wants now that the global state (i.e. the state y(.,T) in the
whole domain {2) to be as close as possible to yT. This will be possible, for any
given function y7, if the problem is approximately controllable, i.e. if

y(z,t; v;wy, ..., wy) describes a dense subset of the given state
space when v spans the set of all controls available to the leader.

(6)

Remark 1.2 We emphasize again that in (6) the controls w; are chosen so
that (5) is satisfied. Therefore they are functions of v.

Remark 1.3 The above strategy is of the Stackelberg’s type. This strategy has
been introduced by Stackelberg [12] in 1934 for problems arising in Economics. It
has been used in problems of distributed systems in Lions [7], without reference
to controllability questions and in Lions [8] in a different setting without using
Nash equilibria.

Remark 1.4 We have explained the family of problems we are interested in for
environment questions, but problems of this type arise in many other questions,
such as the control of large engineering systems.

Remark 1.5 It is clear that y7 is not going to be an arbitrary function in
the state space. Therefore the resort could be maintained in a satisfactory state
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even without the system being approximately controllable (in the sense of (6)).
But if there is a serious degradation following, for instance, an accident, then
the initial state can be “anything” so that it is certainly preferable to live in a
“controllable resort”. ..

Remark 1.6 Of course, the Stackelberg’s type strategy is not the only possible!
One could also replace the Nash equilibrium by a Pareto equilibrium for the
followers wy, ..., wn (seé, for instance, Lions [9]). Here all the controls w; agree
to work in a strategy where v is the leader, and they agree to work in the context
of a Nash equilibrium. Their personal (selfish) interests are expressed in the cost
functions J; as we shall see in the next section.

Remark 1.7 In the above context there does not always exist a Nash equi-
librium. We prove in Section 4 some sufficient conditions for the existence and
uniqueness of a Nash equilibrium. We also present a general counterexample
showing that those conditions are, in some sense, necessary. What we (essen-
tially) show in this paper (the first of a series) is that for linear systems, if there
is existence and uniqueness of a Nash equilibrium for the followers, then the
leader can control the system (in the sense of approximate controllability). The
study of the case of nonlinear systems is the main subject of Diaz and Lions [2].

The content of the rest of this paper is the following: In the next section we
make precise the statement of our main result by taking one state equation, i.e.
y is a scalar function y instead of a vector function {yy,...,yy}. This is just for
the sake of simplicity of the exposition. It is by no means a serious restriction.
But we shall make a very strong assumption, namely that the state equation is
linear. The proof of the approximate controllability will be given in Section 3.
The study of suitable assumptions (and their optimality) implying the existence
and uniqueness of a Nash equilibrium is carried out in Section 4. Finally, some
further remarks are presented in Section 5.

2 Statement of the approximate controllability theorem

Let A be a second order elliptic operator in §2 :

0 dp - 0p
Ap = — A P A j : 7
where all coefficients are smooth enough and where
N N AL
Z ai,j(z)fiﬁjZaZﬁ, a>0, ze . (8)
h,j=1 i=1

We assume that the state equation is given by

g

N

y N iy
5+Ay—v><+;wzxi 9)
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where
x is the characteristic function of O C 2, and

10
X; is the characteristic function of O; C 2. (10)

Remark 2.1 The control function v(z,t) of the leader is distributed in O and
the control function w;(z,t) of the follower “i” is distributed in O;.

Remark 2.2 All the results to follow are also valid for boundary controls. The
case of distributed controls permits to avoid some difficulties of a purely technical

type.
We assume that the initial state is

y(z,0) =0,z € 2. (11)

Remark 2.3 Since the system is linear, there is no restriction in assuming the
initial state to be zero, in the same way as there is no restriction in assuming
in (9) that sources + sinks are zero (compare to (1)).

We assume that the boundary conditions are

y=0 on 082 x (0,T). (12)

Remark 2.4 Again (12) is not at all a serious restriction. We could consider
as well y to be nonzero and that the following results apply for other boundary
conditions.

We introduce now functions p; such that

p; € L=(£2), p; 2 0,
(13)
p; =1 in a domain G; C 42,

and we define the cost function J; (compare to (4))
1 £ 2 Qg T2
Ji(viwy,. . 0n) =3 wf dedt + - |piy(Ts0,w) = pey* |75 (14)
o Jo;
where ||-|| is the norm in L?(£2).

Remark 2.5 In the case of the example presented in the Introduction, G; is
the region of the lake the plant P; is particularly interested in (the place near
P; for instance!). If P; is selfish, then p; = 0 outside G;.
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Remark 2.6 From a mathematical view point, the only hypothesis needed on
p; is that p; € L (§2) (one could even take p; in a suitable LP(§2) space, but
this is irrelevant here).

Remark 2.7 We assume that
v € L0 x (0,T)), w; € L*(0; x (0,T))
and that y(z, t; v, w) is the solution of (9), (11), (12).
Given v € L%(O x (0,T)), we now define (cf. (5))

w ={wy,...,wn}, a Nash equilibrium for the cost, } (15)
1

and functions Jy, ..., Jy given by (14).

We will show in Section 3 how (under hypotheses which are presented in Sec-
tion 4) that this Nash equilibrium can be defined as a function of v:

w=w(v) or wi = wi(v), i=1,..., V. (16)
We then replace in (9) w; by w;(v) :

Jy _ o
Sl Ay ~vx+;wz(v)xi (17)

subject to (11) and (12). The system (17), (11) and (12) admits a unique solution
y(z,t;v,w(v)). In Section 3 we prove the following result.

Theorem 2.1 Assume that
the set of inequalities (5) admits a unique solution (a Nash equilibrium). (18)

Then, when v spans L*(O x (0,T)), the functions y(.,T;v,w(v)) describe a
dense subset of L?(§2). In other words,

there is approzimate controllability of the system

when a strategy of the Stackelberg—Nash type is followed. (19)

3 Proof of the main theorem
3.1 Nash equilibrium

We have (5) iff

T %
| [ wiidsds+as [ o(Tiow) —oT) @D dz =0, v, (20
0 0; 2
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where y; is defined by

y; N
—(9T+Ayz = Wi X;, (21)
7:(0)=01in £2, g =01in 92 x (0, 7).

In order to express (20) in a convenient form, we introduce the adjoint state p;
defined by
Opi " :
~% +A'p; =01in 2 x (0,7),
pi(e,T) = p(z)(y(x, T;v,w) — y¥ (x)) in £, (22)
pi =0in 082 x (0,7,
where A* stands for the adjoint of A. If we multiply (22) by %; and if we integrate
by parts, we find

T
[ Ao w) =@y de= [ [ i dedt,
i) 0 i)

so that (20) becomes

T
/ / (ws + a;pi)w; dedt = 0, Y,
0 O;

- w; + aupix; = 0. (23)
Then, if w = {w1,...,wn} is a Nash equilibrium, we have
Oy 2
3 + Ay + ;mmxi =X,
_‘967;"+A*p,:0, T (24)

y(0) =0, pi(2,T) = pZ(z)(y(z, T;v,w) — yT (z)) in £2,
y=0, p; =0in 002 x (0,7).

We recall that here we are assuming the existence and uniqueness of a Nash
equilibrium (hypothesis (18)). We return to that in Section 4.

3.2 Approximate controllability: Proof of Theorem 2.1

We want to show that the set described by y(.,T;v) is dense in L?(£2), where y
is the solution given by (24) and when v spans L?(O x (0, T)). We do not restrict
the problem by assuming that

yT =0

(it suffices to use a translation argument). Let f be given in L?(§2) and let us
assume that

(y(:, T;v), f) =0, Yo € L2(R2). (25)
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We want to show that f = 0. Let us introduce the solution {y, ¢y,...,%y} of
the adjoint system
Oy
ot
O,
9t i = TOPX,
o(T) = f+ 35 %:(T)pi,
¢l(0) =0,
=0, ¥; =0in 992 x (0, 7).

We multiply the first (resp. the second) equation in (26) by y (resp. p;). We
obtain

f+Z¢ )p?, u(T)) + // <—+Ay)dxdt+
Z(¢ (T), (T)) + (27)

Op; * i
+Z/ / ( + A pz) dxdt:—Zai/o /ngopixidxdt.

Using (24) (where y© = 0), (27) reduces to
T
+/ / pvx dedt = 0. (28)
0 9}
Therefore, if (25) holds, then

e=00n O x (0,7). (29)

+ A% =0,

Using Mizohata’s Uniqueness Theorem (see Mizohata [5] or Saut and Scheurer
[10]) —this is the only place where some smoothness on the coefficients of A4 is
needed— it follows from (26); and (29) that

@ =0o0n 2x(0,T). (30)
Then (26)2, (26)4 and ¥; = 0 in 92 x (0,7 imply that
%; =0in 2x (0,T),i=1,...,N, (31)

so that (26)3 gives f = 0.

4 On the existence and uniqueness of Nash equilibrium

4.1 A criterion of existence and uniqueness

We consider the functionals (14). Let us define
My =LA@ 0T,
H=TIY, Ha (32)
Liw; = g;(T) (cf. (21)), which defines L; € L(H;; L(£2)).
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Since v is fixed, one can write

N
y(T5v,w) = Z Liw; + 27, 27 fixed. (33)
=1

With these notations (14) can be rewritten

2

1 2 Qy
Ji(v;w) = 5 llwill,, + *21‘ Pi Zijj " (34)
J
where n” = yT — ;7. Then w € # is a Nash equilibrium iff

(wiaw/\i)’ﬂi + a; Pi ZLJw] - 77T ) p1Lzﬂ)\z == 07 1= 1,'--aN7 v@ (35)
J

or
N

w; + oy L} p?Zijj = oL} (p?n7), i=1,...,N (36)
Jj=1

(where L€ L(L?(£2);H;) is the adjoint of L;), or equivalently

Lw = given in H,

L e L(;H), (37)
~ (Lw); = wi + i L] (P? 2 ijj) '
Then we have
Proposition 4.1 Assume that
a; = a, for all 1, (38)
and that
a ”pi —p; “Lw(n) HPi”Loo(n) is small enough, for any 7,5 =1,...,N. (39)
Then L is invertible. In particular there is a unique Nash equilibrium of (14).
Remark 4.1 Of course, if N =1 the situation is much simpler. In that case,
(Lo, w) = [fw[* + a1 [y Ly

hence L is coercive and so the existence and uniqueness of a minimum w of
J1(v; w), when v is fixed, is a classical result.
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Proof of Proposition 4.1: In the general case N > 1, one has

(Lw, w) Z““’l“% —I—Za, plZL wj, p;Liw; | . (40)

Then one can write

ZP@L Wi

Applying Young’s inequality, it follows that, under hypothesis (39), L is coercive,
i.e.

+o Z 2(Ljwj, p;Liw;). (41)
h,j=1

(Lw, w) Z“w,nﬂ +a

(Lw,w) >~ HW”?H , for some v > 0. (42)

The conclusion is now a consequence of the Lax-Milgram theorem.

Remark 4.2 The hypothesis (39) is certainly satisfied if p; = p for all ¢, in
which case there is only one function J; = Jy for all i, and we are back to
Remark 4.1 (with w = {wy, ..., wn}).

4.2 Some non-existence and non-uniqueness results

We begin this subsection by some general considerations on the existence, or
non-existence, of Nash equilibrium solutions.

Let #;, IC be two families of N real Hilbert spaces (i,j = 1,...,N), the
scalar product (or norm) in a space # being denoted by (, )3 (or || ll3,)-

We consider linear continuous operators a; ;

aij € L(H;, Ki), Vi, §, (43)
and we assume that
a; ; is compact, V4, j. (44)
We define w = {wy,...,un}, w e H = [\, H; = | P
2
Ji(w) = ““’1”7{ dzdt + Zawa N (45)
Ki

where «; is a positive given constant, and where

N
n=A{ny,...,ny} is given in HICi. (46)

i= 1

@

We are looking for the Nash equzlzbrzum pomts of the functionals Jy,...,Jn.
We are going to show that “in general” with respect to o = {os} € RY, there
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exists a unique Nash equilibrium for the functionals J;. When « is “exceptional”
in RY, then “in general” with respect to n = {n;} € HfV:l Ki, there is no solu-
tion. When o and n are “exceptional”; there is a finite dimensional subspace of
solutions in Hl]il Ki. ‘

Of course, this “result” has to be made precise. An element w = {wy, ..., wx}
is a Nash equilibrium iff

(wi,wi);tl + o Zaijwj — N;y Qi W5 =0,:=1,...,N, Yu; € K;
J K,
i.e.
<! 1
* * . =
aiiZ“z‘j“’j"‘;wi:aiimv t=1,...,N, (47)
j=1 !

where a; € L(K,;,M;) denotes the adjoint of a;;.
Let us define

Ael (HzNzl Hi’Hf\;l Hi) )

gt (18)
Aw ={af; 32, aijw;},

1 ’ 1
<——> = diagonal operator {w;} > {-——wl} ; (49)

(84 (073
Ci = aum;, € ={G} (50)

Then (47) is equivalent to
. N

Aw+ (E) w=¢( inH=]]%, (51)

i=1

where, by virtue of (44), A is compact in £(#,?). Then the “result” stated
above is a trivial consequence of the classical Fredholm alternative. Indeed, let
us consider the a’s such that

1
— = ;A, 7; fixed, (52)

Q;

all these numbers being positive. Then, according to the Fredholm alternative,
(51) and (52) admits a unique solution except for a countable set of X’s. This
makes precise the fact that there is, “in general” with respect to a, a unique
solution. If A belongs to the spectrum of A + ~ A, then there is a solution iff ¢
is orthogonal to the null space of A* ++, a conclusion which is “in general” not
satisfied by ¢, i.e. by n = {n,} . If it is satisfied, then there is a finite dimensional
space of solutions.
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Remark 4.3 Of course, the formula (51) does not use the hypothesis (44).
Therefore, one has that without the hypotesis (44) there exists a unique Nash
equilibrium if

lloeAll 0,3y < 1 (53)

(where (ad)w = {aia;‘i > aijwj}).
All the above remarks apply to (32), (33) if we take
aij = piLj, mi=pn’, Ki= L*(02), Vi (54)

(then (53) amounts to «a ||p; — pj“Loo(n) ”Pi“Loo(n) being small enough) if one
verifies that L;, as defined by

Liw; = y;(T), y; solution of (20) (with @; replaced by w;), (65)

is compact from L*(0; x (0,7)) = H; into L2(£2).
If the coefficients of the operator A are smooth enough, then the solution y;
of (20) satisfies

yi € L2(0,T : HX(2) N HY(02)), % € L*(0,T : L*(2))
(recall that y;(0) = 0), so that L; € £(H;; HL(£2)), hence L; is compact from H;
into L?(£2) (since the injection H{(£2) < L2(£2) is compact when £ is bounded).
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