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In his pioneering paper, 

“Some problems with free boundaries for the degenerating 
equations of gas dynamics” 
Dinamika Sploshnoi Sredy, Novosibirsk, 1973, Vyp. 13, pp. 5-17
(Russian). 

Stanislav N. Antontsev proposed the idea of a general method to 
prove the existence and location of free boundaries for quasilinear
parabolic equations of degenerate type. 

Since then, many other paper developed this clever idea giving rise 
to a general methodology which today is applicable to nonlinear 
partial differential equations on any type (elliptic, parabolic and 
hyperbolic) and of any order (higher order too) and systems
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s.9, 15, 257-270, 2004.



Problem:

?



P. Bégout, J. I. Díaz. On a nonlinear Schrdinger equation with a localizing effect. 
Comptes Rendus Acad. Sci. Paris, t. 342, Série I, 2006,  459-463

P. Bégout and J. I. Díaz,  Localizing Estimates of the Support of Solutions of Some 
Nonlinear Schrödinger Equations: The Stationary Case. Annales de l'Institut Henri 
Poincare (C) Non Linear Analysis,   29, (2012), 35-58

P. Bégout and J. I. Díaz,  A sharper energy method for the localization of the support 
to some stationary Schrodinger equations with a singular nonlinearity. Discrete and 
Continuous Dynamical Systems

P. Bégout and J. I. Díaz, Self-similar solutions with compactly supported profile of 
some nonlinear Schrödinger equations. Submitted



S. Antontsev, J. I. Díaz,  Mathematical analysis of the discharge of a laminar 
hot gas in a colder atmosphee, Rev. R. Acad. Cien.Serie A Matem, 101, 2007, 
235-24



J. I. Díaz,   Estimates on the location of the free boundary for the obstacle and 
Stefan problems by means of some energy methods  , Georgian Mathematical 
Journal (special issue dedicated to the memory of J.L. Lions on the ocassion of 
his 80th birthday). 15, 2008, nº 3, 455-484.



J. I. Díaz, R. Glowinski, G. Guidoboni, T. Kim, Qualitative properties and 
approximation of solutions of  Bingham flows: on the stabilization for large 
time and the geometry of the support. Rev. R. Acad. Cien. Serie A. Mat 
RACSAM 104 (1), 2010, 157–200



Y. Belaud, J.I. Díaz,  Abstract results on the finite extinction time property: 
application to a singular parabolic equation.    Journal of Convex Analysis 17 
(2010), No. 3&4, 827-860. 







J.I. Díaz, On the free boundary for quenching type parabolic problems via local 
energy methods. 
Invited paper to the journal 
Communications on Pure and Applied Analysis, 
Special issue in Memory of M.I. Vishik.

The main goal of this lecture is to present the application of this kind of energy 
methods to the case of equations involving terms with negative exponents 
(the so called quenching problems).

2. Local energy methods to the quenching problem

(1)

Professor Vishik visited Spain, mainly Barcelona and 
Madrid, from October 1, 1994 to January 31, 1995.



(2)



Other formulations

The uniqueness of solution fails



This is one of the reasons why it looks difficult to apply, directly, super and 
subsolutions methods to study such a free boundary. Our alternative is the 
application of local energy methods

Notations (for the simpler formulation (1))

For a global energy method (the complete quenching)

For some very recent continuous dependence



Remark.

is not a norm but merely a seminorm (in fact it arises the so called reversed 
Minkowski inequality) and so the usual "interpolation-trace inequality" (such as it is 
being formulated in the previous literature (see, ADS) cannot be directly applied. 
But we shall show that a systematic use of the Hölder interpolation inequality

which is valid for any d∈[0,1], even for 0<α<1. 





For the proof we shall need a suitable  interpolation-trace result.
We start by recalling a well-known version of such results:

Remark 2. Although we are going to consider terms with 0<α<1, Lemma 1 will be 
applied in now with s>1. We postpone for the moment a generalization which will be 
used in problem (2).

The main interpolation-trace result used in the proof of Theorem 1 is the following one:





A sharper estimate, for T small, can be also obtained:

The proof of Theorem 2.2 requires some sharper interpolation inequalities:



Coming back to Theorem2.2: 





Concerning the behaviour for small time we can prove a first result showing the local 
waiting time or, what we can call perhaps more properly as the non dilatation of the 
initial support: the free boundary cannot invade the subset where the initial datum is 
nonzero. 



Non cylindrical local energy subsets technique: case of the quasilinear equation (2)

Free boundary formation even in the case of strictly positive initial data: instantaneous 
shrinking of the support property.
Energy functions defined on local domains of a special form

Notice that the shape of P(t), the local energy set, is determined by the choice of the 
parameters ϑ and υ. Here we shall take ϑ>0, 0<υ<1 and so P(t) becomes a paraboloid.



The key new ingredient, is the following interpolation-trace result which extends 
Corollary 2.1 of DV in the sense that 0<s<1 and that the interpolation inequality 
involves  a seminorm: 

We shall only require that u is any function such that the local energies let finite, for 
almost all ρ∈(0,ρ₀), for some ρ₀, and satisfies the "local integration by parts 
inequality" on the paraboloid P=P(t;ϑ,υ)









Thanks for your attention

Thanks, 
Stanislav, 

for so many years of 
collaboration ¡¡¡
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