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1. The pioneering modeling of electron beams: the auxiliary

formulation on a bounded domain.

Given a > 0 the main goal of the lecture is to find sufficient conditions on a function j : R — [0, +00),

with
{jm:-»o € (~0,a), j € LL(~a0) 0
jlz) =0 ifoé|- :]a

in order to get the solvahility of the singular nonlinear boundary value problem

'—Au%—J&"f_L):O € (- oo—|—oo)ye(01),

Poo.a..j = 4 ’UJ(:I?}O) :Q ( o0 —|_OO)1 (2)
u(z, 1) =1 € (00, 00),
( limjy oo u(z,y) =y y € (0,1),

with the additional conditions

ACr _ ?}; (GL‘ 0) =0 T € (_a? a‘):
o u(z,y) >0 1z € (—00,+), y € (0,1).

3)
The study of the overdetermined problem (2), (3) was initiated, in the one-dimensional case (formally
corresponding to the case a = +00), in the early part of the last century (by C.D. Child on 1903, and hy
[. Langmuir in a series of papers starting on 1904).
Remember: Cathode ray tube, J.J. Thompson (1897) [Prix Nobel in Physics, 1906]: the existence and
charge of the electron.



The onedimensional Child-Langmuir law: find j > 0 in order to get a function u € W*1(0, 1) solving
the boundary problem

—u(z J =0 2€(0,1), u>0,
e "0 , ()
w0)=0 u(l)=1, jzg, u(z) = 243

and such that +/(0) = 0.
In contrast with the Ohm’s law (1823) [u(xz) = Cz]

The PDE (2), (3) was proposed in A. Rokhlenko and J.L. Lebowitz, Phys. Rev. Lett. (2003). Notice
that the additional conditions imply a failure of the “unique continuation property”.
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Stationary Maxwell system of equations for the electric and magnetic fields (E,B)
QO CR Q=Rx(0,D)x R, with D > 0 given, separating two conducting electrodes placed on the planes
Y =0 (cathode) and Y = D (anode) [with 0Q =ToUT; |:

(v.E=L"

€0 p(X,Y, Z) is the charge (electron) density,
) v . B — 0 €p the free space permittivity and
VxE=0 J(X,Y, Z) denotes the current density.

| VX B = pyd

p stationary implies divJ = 0 in

Now we assume that the cathode is in the (X,Z) plane Y = 0, it have a width 2A, and that
there is a very strong magnetic field B, which is perpendicular to the electrodes (B is in the Y-
direction), inhibiting the transversal components of the electron velocities v(X,Y ), and and p(X,Y, Z) =
P(X,Y) X x)<ay (X, YY), where xg < 43(X,Y) is the characteristic function of the set

1 if [ X|<A
X{lx|<a}(X,Y) = { 0 -

otherwise.

Due to the assumption on B. we know that the potential U of the electric field (E=—-VV) is
Z-independent U = U(X,Y).

We also assume that the emitted electrons leave the cathode with zero velocity (and thus, if
we take U = U(X,Y ) = 0 1n the cathode) the total mechanical energy 1s Ey = 0.

The electric potential U(X,Y) is a priori unknown !l 3
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FIGURE 7.10 <Cathode and anode of a vacuoum tube diede. Electrons boil off the hot
cathode and accelerate in E to the anode.

Then, if e and m represents the charge and the mass of the electron, the conservation of the
mechanical energy leads to the equation

m o ‘ ‘ 2eU(X,Y)
—23(X,Y) =eU(X,Y). o(X,Y) =
2 ? Y ? m
Remember that the mechanical force (by a negative charge) is given by F = (—e)E = —e(—VU) = eVU

and thus the potential energy is —el.

From this we deduce that the current density is only dependent on X, J(X,Y, Z) = J(X)x {|X|<A)} (X,Y)e,
and determine the velocity of electrons.
We also recall that
J = —pvey = J(X)xy X|£A}{X,Y]EQ
(see the figure). Then
J(X)xqx1<a3 (X Y)

[2eU(X,Y)




We introduce now the dimensionless variables

X Y A ; .
T="75y=panda=—o (the cathode is now the subset [—a,a] X {0})

and the dimensionless functions

wlz }_U[X Y) {(z) = 9 /m J(X)
\ ‘y - L j —1- 28 EDI’J—S;QI

The first equation of the Maxwell system and the conservation of the mechanical energy leads to

the nonlinear Poisson equation

u(z,y)
with p(z,y) =0 (i.e. j(z) = 0) if |z| > a.

[ —Au+ LD = z € (—00,+00), y € (0,1),
P u(z,0) = 0 xr € (—00,400),
oo u(z,1) =1 xr € (—00,400),
C Imyg i u(:c, y) — Y Yy < (Da J-)a

AC { g;(x 0) =0 r € (—a,a),

==\ ule,y) >0 € (o0, to0), y € (0,1).

The additional condition 2 E-‘y “(x,0) =0 for x € (—a, a) represents the vanishing of the electric field on the

cathode.



Remark. Singular PDEs of this type arises in Chemical Engineering

W. Fulks and J.S. Maybee. A singular non-linear equation. Osaka. Math. J. 12 (1960), 1-19

In this other framework solutions may vanish in some parts of the spatial domain (dead cores) and
then the PDE is reformulated as

Au = J

ﬁx{ufkﬂ}

spatial domain simplification keeping the main difficulties of the problem

j(z)

4 —Auirﬁzo z € (—n,n), y€(0,1),
_ P ’UJ(I?O) =0 (S (_nnn)n
i 7 | n.a.j \ D=1
IE .\\r| J&)zo ’u,(a:, ) N re (_n’n)?
| | \ u(tn,y) =y y€(0,1),
-.’EL O +Y3.,
i _\u—|—‘?$f“ﬂ—j—0 z e (—a,b), ye (0,1)
J | u(xz,0) =0 x e (—a,b),
T T e e { FPabj = u(z,1) =1 z € (—a,b),
RE0 L \%x);?\\\ % J&)':o-l u(z, —a) = y*/3 y € (0,1),
e e . | e b = ve 0.1)
%
3§ T
0 s du
TR ac,, =4 a@0=0 =€ (~a,0)
1 if‘”‘% e “ 7 ulz,y) >0 we(—ab), ye(0,1).
\ P ok ‘
. = e GV‘D ; (‘bfri—);—_)av { j(a:j e tee {_a’-O} J = Lfoc( a, Dj’
B j(x) =0 if z € (0,d).




In the lecture we will prove, and make precise. a conjecture by A. Rokhlenko raised on Journal of
Applied Physics (2006): 6 pages after using asymptotic and numerical methods:

If j(z) behaves (near the boundary of the cathode. x = +a) as A/ |z + t1|'ﬁ , for B €10,8), with By < 1/2
and A > 0, then there exists a solution u(z,y) of (7). satisfying (8). and u(z,y) behaves (near the cathode
[—a,a] x {0}) as y®, for some o € (1,4/3] with the law o =4/3 — 28.
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2.The one-dimensional Child-Langmuir law revisited.

L u(0) =0 wu(l)=1,
u'(0) = 0.

K={ue H'(0,1) such that (0) = 0,u(1) = 1 and u > 0 on (0, 1)}

e > () - Ly =0 2 (01
J(u) = / (5 (u/(z))” + Qj\/u(x)) dx Uz u(m)x{wo} =0 z€(0,1),
0
Theorem 8 (H. Brezis: Personal communication 2004) There exists a unique variational solution.
Moreover 1f we define L. 4
J = 5>
9
a) if 7 = 3% the variational solution is a flat solution and it i1s given by 'LL(:I?) = $4f3_
b) if 7 > j*the variational solution 1s a free boundary solution with &§=1- o
9. ~J
ulz) = A(z—€)Y° A= 4

c)if 0<j<j* then the variational solution is such that uw > 0 on (0,1] and

u'(0) = Ko >0, for some Ko = Ko(j).

10



Remark. Optimal regularity: in cases a) and b): u € W2P(,1) Vp € [, %)? and in case c) u €
W22(0,1) Ypell,2).
In fact, sharp gradient estimate

u/(z)] < cu'/*(z), for some C >0, for any z € (0,1).

Estimates of this nature play an important role in the study of the existence of solutions of the associate
parabolic problem (the so called “quenching problem”): see, e.g. Phillips (1987). Dao-Diaz (2016)....

The distributed one-dimensional current density

The main goal of this subsection is to consider a similar problem for some j = j(z) with j € L}OC{D, 1),

j = 0. The problem under consideration is

p .
_MH{{E} -+ ﬂ%{u::-ﬂ} =0 ze€ (U. 1)}“‘ =0
ulx

w>0 ze(0,1)

We can consider some special cases of j(z) which allow to get some results in the line of the above
Theorem i
jlz) = Az with g € (—5,1), A >0, (41)

i

Note that, obviously, ¢ = 0 corresponds to the case treated hefore and that our study will consider cases
in which j(0) =0 (g € (0,1)) as well as cases in which j(0) = +o00 (g € (—%,0)).



Theorem 14 [(D-2022) Assume (41). Then if we define

2(1 + 2¢g)(2 + q)

AL =

9 9
ther:
a) if X = A, the function
wu(x) = x4+29/3
iz a ffat solution of the problem and
J(=) Arx— = < 110, 1).
Vviul(x)

b) if X > A, the function
w(x) = A(x — E}Ef_'_ij’m

is a free boundary solution with

1
c=1- [i}h’(?ﬁqu’
Aa
and
A — %}2{3
g
Moreover

Jlx) A _(2—2q) .
— — (o — 3 ) [ U‘, 1.
r(m}){{u;}o} —( £) X{z=ey € L7 (0, 1)

c) if 0 <A< AL, then the unigue solution w is such that u > 0 on (0, 1] and

u"(ﬂ} = Ko > 0, for some Ko = KolA\).

Remark. [f we use o different notation. 8 = —q and o = (4 — 28)/3. then we get the existence of
solutions of the form u(z) = z®. with a € (1,4/3). once we assume 3 € (0,1/2). Curiosly enough. the
constraint 3a/2 + 3 =2 arises also in the Rokhlenko (2006) approach to the two-dimensional problem.



Remark. The gradient estimate mentioned when j is a constant is no longer valid when j(z) = Az
with B € (0,3). If X > Ag. for some Ag >0

1438

W/ (z)| < Cu*2(z). for some C >0, for any = € (0,1)
3. The 2-d parallel-plate geometry.

3.1. Statements of the existence of partially flat solutions (via super and subsolutions
method).

#
A

-5

‘-:-lj ) b
s : =B w(x,0) =0 xr € (—a,b),
I ) 1\“\ \.\EJLD '-I ) 1 . Pa,b.__}' = 4 ulxz,1) =1 T € {—{I, bj,
x)=0 < Q) 2 =0 | p . )
Bl S 0o u(z, —a) = y*/3 y € (0,1),
TR e N | u(zd) =y y € (0,1),
— ___.wo _{_)*_0_
1 e ek Cd(x,00)% < ulz,y)
N _ ) = :
';E; __;\g:?;; = s R GACap = for a.e. (xz,y) € (—a,b) x (0,1).

jlz) >0 ifz e (—a.0), j L} _(—a,0),
jlz) =0 if = € (0,8).
13

Exact transition. at x = 0. between flat and linear profiles




Definition 19 A function u® € WP(Q), is said a p—positive supersolution of Pobj if u? >0, \;% €
LP(Q). for some p > 1, and verifies that

([ —Au? > V(—,x_g in Q,
u(z,0) >0 ab),
. ﬁ(1131 a,b),
u®(—a,y) > y** (0,1),

[ «%(by) >y (0,1).

The notion of p—positive subsolution ug is introduced similarly.
Theorem 20 Assume that

there exists p > 1, a p—positive supersolution u® and a p—positive subsolution ug (63)
of Pgp; such that 0 < up < u® a.e. in Q. ’

Then problem P, p ; possesses a minimal and maximal solutions u, and u™ in the interval [ug,uu]. 1.€E..

wo < uy < u* < ulaein Q.

Idea of the proof. We define the iterative schemes (starting with «® and ug)

[ —Aut = -2 in Q, [ —Au, = - in Q,
w*(z,0) =0 z € (—a,b), Up(z,0) =0 z € (—a,b),

¢ wt(z,1) =1 z € (—a,b), { unl(z,1)=1 z € (—a,b),
u(—a,y) = y*/3 y e (0,1), un(—a,y) = y*? y € (0,1),

L um(by) =y y € (0,1).  Un(b,y) =y y € (0,1).

14



By using the comparison principle for the Laplace operator we get that
O<ug <ug < o<y < oo << .o<u' <4’ ae in Q,

and so the sequences {u"}, {u,} converge (monotonically) in LP(Q) to some functions u. and u* and the
sequences {\;—1} {v”“—} are bounded in L?(2) and converge also (monotonically) in L?(2).
un— n—1 g i

Remark. With some minm' modifications, the above result holds when the super and subsolutions are
in the weighted space \/— € LP(Q,4). for some p > 1, with § = d((z,y),0Q). See. e.g.

* H. Brézis, T. Cazenave, Y. Martel and A. Ramiandrisoa. Blow up for us — Au = g(u) revisited, Adv.
Differential Equations, 1(1) (1996), 73-90,

* J.1. Diaz and J.M. Rakotoson, On very weak solutions of semilinear elliptic equations with right hand
side data integrable with respect to the distance to the boundary. Discrete and Continuum Dynamical
Systems. 27 3 (2010) 1037-1058.

Remark. By some standald approximating arguments. it is well-known that the above notion of p—super
and subsolutions of P p; Can be extended to the case in which the diffusion term generate an additional

distribution over a 51mple curve I’ separating Q in two different parts (matching without a WP _contact.
AN Ii'in, A.S. Kalashnikov and O.A. Oleinik. Linear equations of the second order of parabolic type.
Russian Math., Surveys 17 3 (1962). 1-143,
H. Berestyvcki and P. L. Lions. Some applications of the method of sub- and supersolutions. in Bifurcation
and Nonlinear Eigenvalue Problems (Bardos, Lasry and Schatzman. eds.), Math. No.782. Springer, New
York,1979.
Then the subsolution u of problem P, ; satisfies (for some ¢ > 0)

j(z)

o J\E) in D).
_".1,.:94—\%_ cor in D'(Q2)



0

The existence of a (not-flat) supersolution u” can be easily proved.

Lemma 22 Let j(z) satisfying

j(z) >0 ifze(—a,0), je L] (—a0),
j(z) =0 if z € (0,0).

Then the function u° (z,y) =y is a positive p—supersolution of Py ; for any p € [1,2).

Proof. 1t is a trivial fact since

()
—AW =0> @) x € (—a,b), ye(0,1),

V0
and
u9(z,0) =0 r € (—a,b),
w(z,1) =1 r € (—a,b),
W (—a,y) > y*? ye(0,1),
ul(by) =y y € (0,1).

L

The construction of a positive subsolution is a very delicate task which will be presented in the
following Section.
16



One of the main results of this lecture is the following existence result. We define

6{33! yj’ = dist((az, y): aﬂj

(which sometimes we shall denote simply as ).

Theorem A Assume that j(z) satisfies

A

( )81 .fﬂ?‘ Iec (_&-, 0) and ](I} = () ?'f T E {01 b).
—7)

ilz) <

with
0<B8<1/2and A >0 small enough.

Then there exists a weak solution u € L*(Q: 4 ) of

f —ju—l—%zo r € (—a,b), ye(0,1),
u(z,0) =0 z € (—a,b),
Papi=9 ulz,1)=1 z € (—a,b),
u(—a,y) =y** y € (0,1),
u(by) =y y €(0,1),

such that
Cﬁ(;}j}y)a < H{.’E.y) < Y a.e (3:! y) € (_ﬂf! b} X (U~ 1)

for some C >0, with 1 < a € (1, %] given by

17



[t is possible to show the uniqueness of solutions in the class of flat (or nondegenerate) solutions by
applying the techniques introduced in the recent paper
J.I. Diaz and J. Giacomoni. Monotone continuous dependence of solutions of singular quenching parabolic
problems. Rendiconti del Circolo Matematico di Palermo Series 2 (2022).

Let

1
= (n, 5] (66)

and define the class of functions

M(v) = {u e L*(Q:6) | such that w(z,y) > Cé(z,y)” in Q. for some C > U}. (67)

Theorem B Assume j(xz) as in the precedent Theorem. Then, there exists at most a solution u; €

M(v) of Py ;.

The proot will be obtained through some smoothing estimates for the associate parabolic problem
(see the last section).

18



Theorem C. There exists Ag,.bg > 0 and By € (0, ;—) such that, if
b= by >0,

and if we assume
j(z) = s, for x € (—a,0),
jlz)=20 for x € (0,b),

with
0<8< By and Ae (0,A)),

then there exists a partially fiat supersolution u(x,y) of problem Py ;. t.€.. such that U € L2(:9).

( —L\.EJrj%) >0 z€(—ab), ye(0,1),
u(z,0) >0 z € (—a.b),
y  ulz,1)>1 z € (—a,b),
u(—a,y) > y*/3 y € (0,1),
(. ulby) >y y € (0,1),

and
0 <7(z,y) < Co(z,y)* ae. (z,y) € (—a,0) x (0,1),

for some C > 0, with o € (ap, %] given by

w2
)

o= é(z — B). where ag = 5(2 — Bo).

In particular, under the above assumptions. there exists a unique partially fiat solution of the problem
Fobim



3.2. On the construction of a partially flat subsolution ().

To complete the study of the 2-d problem F, ; ; we will construct a flat positive subsolution.

We start by reducing the difficulty of this task by splitting the domain in two well differentiate
problems. We define the subsets

Q= {lz,y) €Q:z€(—a,0)}, Q. := {(z,y)€Q: z€(0,b)}.

Once again, we need to introduce an artificial boundary condition on the points (0,y), y € (0,1).
corresponding to the boundary of the cathode. \We will prove something already suggested in Rokhlenko
(2006) in its study made by asymptotics techniques and numerical analysis.

It is an important conclusion which modifies what it was expected in many previous papers in the
literature on space charge problems: the correct behaviour in the border of the cathod is higher than the
profile y‘” 3 corresponding to the Child-Langmuir law. The precise artificial boundary condition we
will introduce is of Dirichlet type

u(0,y) = hy®, y € (0,1),for some h € (0,1] and o € (1,4/3).

20




The following result simplify the task since it allows to pass from the study of a discontinuous ab-
sorption coefficient j(z) to a problem with a strictly positive one.

Proposition 25 Let j(z) satisfying

3{:“’“) >0 Ef&? = (_ﬂ‘! U) .j S L.!]oc(_ﬂ‘:
jlz) =0 if x € (0,

Let e € (1,4/3). Given h € (0,1]. consider the problem on Q_

0),
).

" + ‘b

u_
P = u—{_a'ﬂ y} — ’yil’lfg = {0-1}1
@07 u_(0,y) = hy™ y € (0,1),
u_(x,0) =0 z € (—a,0),
| u_(x,1) =1 z € (—a,0).

Assume that there exists up —(x,y). @ po—subsolution of problem Pq o ;. for some po > 1. such that

[l
e

E)uu___

{D:« y} = 0 .--'F'j'jln (= {0~ 1}1 (68}
ox
satisfying also the additional conditions
dug — o B
AC, o 5. (2,0)=0 z € (—a,0). (69)
’ w, —(z,y) >0  z€(-a,0), yec(0,1)

Then problem P, ; has a pg—subsolution u satisfying the additional conditions AC, ;.

21



Proof. Let u.(x,y) be the unique classical solution u, € C?(Q+} M CD(E} of the linear problem

([ —Au, =0 in Q,

uy(0,y) = hy® y € (0,1),

Poro=1< usldy) =y y € (0,1),
u. (2,0) =0 z < (0,b),

| up(z,1) =1 z € (0,b).

Define the function

ui(z,y) if (z,y) € Q4
It is clear that u is a continuous function u € CD(Q) but its gradient has a discontinuity in the segment
z =0,y € (0,1), since j(z) is discontinuous in that segment. All the boundary conditions of P, ; are
tulfilled and also the additional conditions AC, 5. In order to check that u(z,y) is a po—subsolution of
problem F, o ; we will apph Corollary 1.1 of H. Berestycki and P. L. Lions (1979). To do this. if we define

the segment T = {(0,y), y € (0, 1)} then it suffices to check that
ou - 8%4_

u_(xz,y) if(xz,y) e _.
g(az}y):{ (z, vy, ( v Y, ;

— < on T, (71)
on on
where n is the unit exterior normal vector to Q_. In our case, n = e; and then condition (71) is expressed
as du_ du
“(0,y) < —=(0,y) ye(0,1)

ox ox
Byv assumption (68) it suffices to check that
6‘u+

€T

To do that, let us consider the function U_|_(3:, y) =us(xz,y) —y. Then
22



( —Auy, =0 in 0,4,
uy(0,y) = hy® y €(0,1),

Popo=4q utlby) =y y € (0,1),
uy(z,0) =0 z € (0,b),
[ uy(z, 1) =1 xz € (0,b).

We can define., now. the auxiliary function.

and then we get that

—-AU <0 in ﬂ_|_,
U(D,y) =w(y) =hy* —y vy < (0,

4 E(EL y} =0 Y e (D 1}1
U(z,0) =0 z € (0,b),
Ul(z,1) =0 z € (0,b).

"

Thus, by the maximum principle we get that U(z,y) < Uy(z,y) on QL But since U(0,y) = U,(0,y) and

we have that —(O y) > 0 for y € (0,1), we deduce that necessarily. {0 y) > 0 for y € (0,1), which
leads to the required inequality. m

Remark. For the construction of the supersolution we will use a different matching arcument (see
Section 3.5).
23



To finish with the construction of the global subsolution wug. according the previous Proposition, we
must justify the existence of a function ug _(z,y) solution of the nonlinear problem P, g ;, raised on Q_,
and to check that ug _(z,y) satisfies the additional conditions (69) and (68).

Remark. For the special case of a bounded current

O | W=

jlz) <

we can take up _(z,y) = y‘j‘/3 (which corresponds to take 5 = 0 and a = 4/3). Notice that, obviously,
815%{0, y) = 0 for y € (0.1) and thus the above matching argument to extend it to the whole domain

applies.

In order to construct the subsolution for the case of j(z) < ﬁ on (—a,0) we will use some ideas

coming from the study of Fluid Mechanics in the consideration of spatial domains with corners (see. e.g.,
G. K. Batchelor, An Introduction to Fluid Dynamiecs, Cambridge University Press, 1967).

We will try to find the subsolution ug _(2,y) in the form

uo _(z,y) = ¢(r,0) = kr*U(0). for some k > 0. a > 1,

where r = /z2 4+ 32 and 8 = arctan(y/z). Then. the partial differential equation becomes

Q"T
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We will assume r € [0, R), for a suitable R > 0 and 6 € (3, ). The additional conditions (69) will require

¢(r,8) > 0if r > 0 and

5y
G(r,m) = a—:(?",ﬂ} =0 forr € [0,R).

We make now the structural condition on j(z)

jlrcos@) <

{ )7 if @ € [gﬂ'jl for some A > 0 and 8 € (0,1),
—7 cos 2

the partial differential equation (77) leads to the ordinary differential equation

_U”(9) + \}% =\U(0) 6¢< (5.7,

once we assume the constraint

a+ 23 =4/3,
and then
V(O) = — 2 and A= al
(—cos@)s 25




The complemmentary conditions become now
U(g) >0 <€ (5,m).
U(n) =U'(m) = 0.

Notice that the potential V() is singular only for § = §

Z. On the other hand. we will need to match this

subsolution with other function which is positive for 8 = % Then. we will construct the subsolution in

two different pieces
IOOLLMO){'AUYY
\&78\' Zovie

v1(0) if 6 e (§,m™— Ro).
vo(@) it 6 € (m — Ro,m).

9)= A S 1
(rCﬁqy5 \‘ i
e
N 13
| o0 T IEE A

A
-\X;O Fgre Q
; S e:=n 0
| H= VY o2#d
A i i — >
| !
= t >
/B L n ©
o
buu.vrrlaw;;
lovyee
Zond

for some Ry with m — Ry € (5, 7). and with v9(8) € [0,1] such that

1

{—vg(m o = Aa(6) 0 € (7 — Ro,m),
0,

vo(m) = vh(m)
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By the contrary. v1(f) must take into account the singularity of the potential V(@) on the interval

(5.7 — Ro).

[n addition, we must guarantee the good matching with the function u.(z,y) defined on Q.. as
indicated in the above Proposition. This means that we want to have

since we lequlle ~=(0,y) <0 for y € (0,1), and since ug _(0,y) = kr“U(ﬁ)\g:%. we have

dug

0,y)=..= —Ar*"1U’(6
o (0,y) r

< 0.

(6)]5—;

mlq

Before to present the details on the construction of v1(#) and vo(8) it is very useful to consider an
auxiliary nonlinear ODE of eigenvalue type,
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3.3. Bifurcation diagram for a singular eigenvalue ODE problem.

Since the equation (79) can be undertood as a nonlinear eigenvalue problem it is useful to start by
considering the following auxiliary related problem:

Ul(s) " (30)

—U"(s)+ Y _ = \U(s) se(—R,R),
U(+R) = 0,

where the positive constants Vg and R are given. We will show:
Theorem 26 Given the positive constants Vy and R then
i) there is a bifurcation from the infinity for \ near M\(R) = ( %}2 (the first eigenvalue of the linear
problem with Vo =0),
ii) the bifurcation curve is strictly decreasing (which implies the uniqueness of nonnegative solutions)
iii) the curve is not C' for a suitable value A = \* > M (R) corresponding to a “flat solution™ (i.e.
the solution U is such that U'(£R) =0 and U(s) > 0).

lvealloo

Make m = —1/2 in the Figure.
The nodal solutions can be constructed as in

I

I

I

I

I
()| — — - —

Diaz-Hernéndez-Mancebo (2009) for a related problem.

N fal
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Then new thing. with respect the above reference, is that instead to consider

~U"(5) +VoU(s)™ = AU(5)? s (—R,R), 1)
U(£R) = 0, A
with —1 < m < g < 1, is that now m = —1/2 and ¢ = 1 and then the former bifurcation diagram pass

to be the one indicated before 4

lualloo 4

()




By multiplying by u and integrating by parts. we get that there nontrivial solutions may exist only if

A> )N = f—;, the first eigenvalue to the linear problem

i — ' —R.R).
{ uw =M in (—R,R), (82)

u(£R) =0,

To show the qualitative behaviour of solutions of problem (80) we make the change of variables

Vo 3
UN Vy (:‘f} — T u(ﬁmj

where u is now the solution of the renormalized problem

P(L) { u(+L) =0, ¢ &4
where
1
L=VAR f(u)=u— 7

Notice that now the role of the “eigenvalue™ A is transferred to the length of the new interval L = VAR.

We introduce )

Fr) = /:f(sjds — % N

and note that f(s) < 0if0<s < 1:=7r; and f(s) > 0if 1 < s.

On the other hand F(s) < 01if 0 < s < re = 42/3(= 2, 51) and F(s) > 0 for s > rp.
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By multiplying by v/, integreating by parts and denoting p := ||uHLm for u € (rp,00) we get that a
function u is a positive solution of problem P(L) if and only if

7.y = e

and p and L > 0 are related bx the equatlon

for |z| < L,

V() =
where v : [rp, +00) — R is given by ’}(P” —\/—f (Flu

Moreover
W' (£L) = FV2/F(p).

Thus. u'(=R) = 0 corresponds to the case in which the maximum of the solution is 7.
In fact we have:

Theorem 28 e define with F(r) = 5 - 2\/r. Let rg = 42/3, Then the mapping v [rp,+o0) = R
has the following properties

(E) Y€ C[TFi DO) nct (TFe o0 )}

(ii) For any p > rg v'(p) <0,

(iii) ¥' () — =€ as p | rE. for some £ > 0, ¥

m

(1) limy, ., oo y(p) = 5. L*
So, qualitatively, function 7 is described by the following figure
Lo

dr
— F(r))V/2

[




Proof of Theorem 28. The proof of property i) is exactly the same than the one presented in D-Hernandez-
Mancebo (2009). For the proof of (ii) and (iii) we have

/ . : H(M - 9(?")
Tk = [u Flw —Fr)

—3\/_ and differentiating we get for, any £ > 0

where 6(t) = 2F(t) — tf(t)

,-—m

, 3
6 (t) = _V < 0.
Hence 7/(u) < 0 for any p > rg (which proves (ii).
For the proof of (iii) it suffices to see that as p | rp, the integrand of 7'(u) converges pointwise to
(—=F(r))=3/2 near r = 0 and in our case (—F(r))~%/% behavies as r=%/* near r = 0 and thus 7/(p)
converges to a number —¢ as pu | rp, for some & > 0.
Finally. to prove (iv) we note that

iyt

‘ dt Udt
’T(Ju} = _/ 3 \ :/ —
2Jo (H(1=t))12 Jo V1I-2

2| =

Moreover. we have

H}:if dt
V2Jo (45((1-8) - Fn(1- \ﬂ)

and if © — +oc by using Lebesgue’s Theorem we get Him  y(p) = =

p— oo 2

Now we define Lo = § and L™ given by 32



dr

L* = ) = _ )
Tre, f/ {F ik \f/ o r+ /2 \

re = 423 (= 2,51).

It can be computed that y(rg) = 2,09 [G.Diaz, 2022: Gaus-Lobatto rules. Rehuel Lobatto (1797-1866)]

Corollary 28 Let

1 ([T dr 2
\F = = . 93)
= ([ =) @

a) if A € (0, (%1 ) there is no positive solution,
b) if A € l‘ A1) there is a unique positive solution uy.v,. Moreover duy v, /On(£R) < 0 and

[urvoll = (_r.m) :( )§ ~HVAR),
c) if A\ = \{ there is only one positive solution Ups vp- Moreover uai%{iR) =0

1V 3
H“A{.,VDHLW{_R?R): )\—?

A A



d) if X >"A:, there is a family of nonnegative solutions which are generated by extending by zero the
function uyy v, outside (—R, R) (and which we label again as (BYRT ). In particular, if X = Nw with
w > 1 we have a family Si(\) of compact support nonnegative solutions with connected support defined

by
1
u}i-.VD (:C) — _21’[‘)&;.,1"0(\/;:3 - -‘3}
w?
where the shifting argument z is arbitrary, among the points z € (—R, R) such that support of uy y,(.) C
(=R, R). Moreover, for X\ > A{ large enougimwe can built, similarly, a subset of S;(A) of compact sup-

port nonnegative solutions with the support formed by jcomponents, with j € {1,2,..,N}, for some
suitable N = N(X) and then the set of nontrivial ana~nonnegative solutions of P(\) is formed by
S(A) = U?‘;]S-{)\). In any case those solutions satisfy that
1 1 [(414)7
TV *
HU}HVDHLW(_R?R] - w_% u')‘i?VD”Lm(—R,R) - w_% ( )\;c ) ! .fﬂr "‘Tl'y W= /\/)1'] > 1
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Remark 30 Once that we know that for A > A\{ we have that

1
uy v, (2) = —%HALVD(\/;«T - 2)
W

then we get that tie bifurcating curve A is not Ct at X = A] since N'(A\j—) = € < 0 and N'(A\[+) =
—g(fi%, with C = 4434 L'ﬁ)?/ 3. In addition, for A > A} we can express other norms (different than the

L -norm) in terms of A. Fowinstance we have that

|4 vo ||LM(—R._R) =CAE

for a suitable constant C' > 0 independent of A, This proves that — 0 as A = +o0.

u) | H
AVo L>=(—R.R)
Thus, the qualitative description of the bifurcatiornds as indicated in the indicated. figure

llulloo ,

()
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3.4. On the construction of a partially flat subsolution (lI).

Notice that the potential V() is singular only for § = 7.
subsolution with other function which is positive for 8 =
two different pieces

n the other hand. we will need to match this
. Then. we will construct the subsolution in

(1E O

-

bown e~y
1&7‘@( Zovig

g B v1(0) if@E(%.ﬂ'—R{)).
Hie)= { vo(@) if @ € (m — Rp, ). _/,_.f--”"df

% ] —
o \ \ 1
N \/ | 9 S .’_\ -
)] ( . ) ( . Cos B) ~ N\ =
A
\‘\ | .\ \(7— -
VA = ). 0 X %%
- 0:1 b
: Hz=VY a2+
I — 'j—— = :
pa MK, n ©

L e
beuvclayy
low el
e o~

Zoné

for some Ry with m — Ry € (% 7). and with v9(8) € [0, 1] such that

_ ‘b = e 71-..



Proof of Theorem A. We recall the change of variable

uy v, (z) = (E) i u(VAz),

A

which links the question of the distinguished eigenvalue \* = (o:*)? = Qlﬁ’y(’rl:)? with a special length
L* for which the solution is flat on the boundary.
The computations rp = 42/3 (= 2.51) and v(rp) = 2,09 allows to see that the corresponding L* leads
to A" = % and thus a” = % and R = 5 !l!!!
This corresponds to the case 3 = 0 thanks to the reciprocal relation

Ja

B=2-"1
| 2

Moreover we must take A small enough (in fact 4 = %) and there is a kind of strange miracle!!!!!

V. _I—rT o o i
[#=%{op=e]
(Notice that although Hu;\% | 1= > 1 there is no d;ﬂiculty with this since we can take wy _(z,y) =
o(r,0) = kr*U(#). for some k > 0 small enough).




It we consider the case of 3 € (0, %) (ie. a* € (1, %)) then the problem is not autonomous (it appears
V() = —=

Toasd)? ). the corresponding R > 0, given by the equation \* = (a*)? = ﬁ*}r(r r)2. is such that

R > 5 and we must truncate V/ (8) on an interval (m — Ry, 7).for instance by taking Ry < R such that

“A=qu(?T—RO) =1.

: et
L
|
|
|
|
|

W oA

|
|
|
| l
|
I

\"W—g) ke ?@'
N-K 1
% pepier
V(@) VA

fi <a<3le pe(o)%__ﬂ

We see that the matching between v1(6) and v2(6) must take place at # — Rg. 50




The construction of v(#), in the so called "boundary layer zone”, can be carried out as in the one-
dimensional problem with a distributed potential V(6). Indeed. given h € (0,1) we take v1(6) as the
solution of

{ —0{(6) + 7= <0 6 < (Z,7m—Ro),
vi(5) =h, vi(m— Rg) =1
Notice that using that
cos @ < —{— —0).if 8 ¢ (g T),
then the structural assumption on V' (8) implies that
ArPB C
1](91 E :IB T B . —TTB'
2500 — ) (0 —3)
and we can take o
Y-
—o}(6) + 22 =0
with the above boundary conditions. v1(0)

Thus. we can prove that

and that
vi(m — Ro) > 0 > vh(m — Ry).

(*Cubist description™ [the coin at § = 7 — Ry is far to be real but it is enough for our purposes).



Finally. the boundary inequality

ug _(xz,y) =krU(0) <1lify=1
holds for & small enough such that
EH U (0) < 1, where H = \/a? + 1.

and the proof is completed.

Notice that the estimate from above on Q_ is trivially satisfied since ug _(2,y) is an harmonic function.
|

3.5. On the construction of a partially flat supersolution.

We make the structural assumption

‘ A ‘
ilz) = — for x € (—a,0) and j(z) =0if z € (0,b),

with
0< 8 <1/2and A > 0 small enough.

Thus. we already know that the existence of a flat subsolution implies the uniqueness of the solution.
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We concentrate our attention now in finding sufficient conditions for the existence of a partially flat
supersolution, i.e., being flat only on the cathode region [—a,a] x {0}.

Since we only need the inequality > in the equation it is enough to use that

A
(—rcos@)B

j(r.8) = > Vp for z € (—a,0).

We will search the supersolution by some matching arguments in three different regions:

AJ

x Y
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In the first region Q_ will construct the subsolution u° (z,y) in the same form than the subsolution,
1.e..

A~
u’ (z,y) = é(r,0) = kr*U(8). for some k > 0, a > 1,
e
and thus with U(6) solution of | o
0 & -~
gl Vo _ 7 T m = |~
Uu"(8) + m = \U(0) QE(?, ). B ' ! .

So that. no boundary layer need to be taken into account. This means that, in terms of the proof of
Theorem A. U(6) = v9(8).

As before, if we consider the case of 8 € (0, %] (i.e. @ € (1, %] then the corresponding R > 0. given by
the equation \* = (a*)? = ﬁﬂ(?y]z. is such that R > § (R= 3 ifa* = %) and thus
T
!
— ) <
Vs ( 2) <0

The matching with the second region will follow a different argument. In this part the supersolition must
be superharmonic and it is searched in the form

T
’Hg_?g(ﬁij) = Kr®sin(af), 6 € (85, )
with tanf, = b. It is not too difficult to check that

—;\ug_,.‘? = Kala —1)r*?sin(a8) > 0.
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The matching is now more delicate. For a H'-matching we must have:

ME{D"y) = ’Hg_?g (0,3}} y € (0,1),
Vul (0.y) = Vul 4(0,y) »e(0.1).

The first condition holds if
E sin(&f

The second condition (once we allow the formation of singularities with a good sign) leads to

)cot(""“j)

3 al/(-

b | =

8]

, T K Qm T
2y s , — all(—
U(‘))_ kacoa( > ) nb(g)

—

0s( 5
n(

,.\_-,|

But. &F € (7, %Tr) C (0,7) so that cot(%7) < 0 (see the figure).
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Thus we must investigate for which a € (1, g] we have some kind of Robin type boundary inequality

h @ - = | #=4 ( I
O 2 | [2=g{efp=o]
N
- i _

~ 2 Q &

XY

-U'(3) am . :
—=— < a(—cot(—)). (Robin inequality )
U(3) 2
This condition trivially holds if a = % (since. in that case, U'(5) = 0). Then by continuity in . there
exists o € (1, %1 such that (Robin inequality) holds for any a € (1, %) . which justifies our assumption
in Theorem C., S P
i B R L/T
— S el et

Finally, in the third region. we prolongate the above function u+ [:c y), by a kind of interpolation
argument (remember that we must have the boundary condition u+ 3(b,y) =y, for any y € (0,1)). Then
we define

u’i?g(m,y) = C3rsin(af) + Car® sin(alp) if (z,y) € Q4 3,
with tanf, = b. It can be proved that uE'I_JS(:c}y) is a super-harmonic function (—;\uﬂ_:3 = 0) and that

(if b is large enough) the positive constants C5 and C5 can be chosen such that uﬂ_za{m,y) satisfies the
correct inequalities on the boundaries

ul 5(b,y) >y, foranyye(0,1),
uﬂﬁ(m}(}) >0 for any z € (0,b),

and it correctly matches with u{irg(a:, y) (generalting, at most. a “good signed” measure) on the matching
boundary 6 =0;,. g



3.6. Idea of the proof of the unigueness of partially flat solutions.

We start by considering the associate parabolic problem

(u—Au+ 2 =0 t>0, 2 e (—a,b), ye(0,1),
u(t,z,0) =0 t >0, z€(—a,b),
PPopju =4 Uboml =1 t>0, z € (—a,b), (105)
u(t? :C? _a) — :gf:].J 3 t > 0? y e (0? 1)?
u(t?gj?b):y t>0? ye(oj]‘)?
\ u(oamy) :u[}(aj}y) xe(_a’:b): Yy e (O:l):
p 2 / y . 1’ » . — _L
up € M(v):= {-u e L°(0:0) ‘ such that u(x,y) > Cdé(z,y)” in Q, for some C > O}, ve |0, 3|

The following result gives the continuous dependence of solutions with respect the initial data (imply-
ing, obviously, the uniqueness of solutions) as well as a smoothing effect with respect the initial datum.

We will use strongly some Hilbertian techniques, so we will consider initial data and we will prove
that if two solutions are in the class u,v € M(v). i.e. with § "u,é "v > C then we can estimate the
L?*(Q)-norm of 6 " [u(t) — v(t)]4+ for suitable vy € (0,1] in terms of the L?(Q;d)-norm of [ug — vg)+.

Notice that this implies, authomatically, an estimate on the L*(Q)-norm of [u(t) — v(t)].
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Theorem 34 Let ug,vg € L1(Q} N LQ(Q:ES). Let w, v be weak solutions of PPap juy and PFgp ju,.
respectively such that u(t),v(t) € M(v) for some v € (0, %1 Then, for any t € (0,00), we have

— . _ 2441 -
[6770ut) v | o0 < CEF w0 — vl 20 (107)
with
3y .
8l :—1‘1’111’1{?,1} (108)

]
A

and for some constant C' > 0 independent of t. In particular. up < vo tmplies that for any t € [0, +o0)

u(t,:) <wv(t,-) ae inQ

and .
E (109)

677 (ul(t) = v(t))]| o q < CE

o — UDHLz{g;a] .

As an application, we will prove the uniqueness of the positive solution for the stationary problem

P, ; presented in Theorem 25.

Proof of Theorem 25. Let us call us and v two solutions of F,  ; in the class M(v). By taking ug = U
and vy = v as initial data in PP, j ; ., and PF, j ; .,. 8ince u,, and v, are obviously respective solutions

of the mentioned parabolic problems. we get that u,, — v, satisfies

167" (too — vmuHm; <5 |(too — Voo )+ || L2(02.6)-

Making ¢ /" +o00 and reversing the role of u., and v,,. we get that u., = v



Idea of the Proof of Theorem 34. Without lost of generality we can use the notion of mild solution on
LY(Q).ie. ueC([0,T); LY (Q)), for any T > 0: j(z)u=? € L(Q x (0,T)) and u fulfills the identity

t
ul-t) = S(t)uo(-) — f S(t— ) (X ooyt °(-v5) — AuP)ds, in L'(Q), (110)
0

where S(t) is the L! (Q2)-semigroup corresponding to the Laplace operator with the correponding Dirichlet
(stationary) boundary conditions.
We shall need need some well-known auxiliary results. The firs one is a singular version of the Gron-
wall's inequality which is specially useful in the study of non-globally Lipschitz perturbations of the heat
equation:

* H. Brézis and T. Cazenave. A nonlinear heat equation with singular initial data. J. Anal. Math.,

68. 277-304. 1996.

Lemma 35 Let T > 0, A > 0, 0 < a,b < 1 and let f be a non-negative function with f € LP(0,T)
for some p > 1 such that p’. max{a,b} < 1 (where ;; + % = 1). Consider a non-negative function
w € L=(0,T) such that, for almost every t € (0,T),

t

olt) < At + f (t— 5)"t f(s)p(s) ds. (111)
0
Then, there exists C' > 0 only depending on T, a,b,p and ||f||L:°(l],T) such that, for almost everyt € (0,7°),

o(t) < ACt™®. (112)

We shall also use some regularizing effects properties satisfied by the semigroup S(t) of the heat
equation with zero Dirichlet boundary conditions.
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Lemma 36
1. There exists C' > 0 such that, for any t > 0 and any ug € LZ(Q).
V5 (t)uol|z2(0) < Ct = ||uol|z2(q)- (113)
2. There exists C' > 0 such that. for any t > 0 and any ug € Li(fz).

Ful ;
|S(t)uollL2(0) < CT % |lugll L1 (q)- (114)

3. There exists C > 0 such that. for any t > 0, any m € (0,1] and any ug € L2(: 6%™),

1S(t)uollz2(a) < Ct % |luollp2(a.57m). (115)
4. There exists C > 0 such that, for any t > 0, any p € [1,+oc) and any ug € LP(Q,6).

1S (t)uol|ze () < Ct™27 |luol| L2 (0.6)- (116)

Proof. Properties 1 and 2 are classical (see e.g. L. Véron. Effets régularisants de semi-groupes non-
lineaires dans des espaces de Banach. Ann. Foc. Sci. Toulouse 1. 171-200. 1979).

Property 3 was established in

*J. Davila and M. Montenegro, Existence and asymptotic behavior for a singular parabolic equation.
Transactions of the AMS, 357, 1801-1828, 2004,

Theyv used the function vy 1= ugd™. i.e.

15(t)6~™vg|| 2y < Ct™ %

|’U0||L2(n)-

Property 4 was proved in
* Ph. Souplet, Optimal regularity conditions for elliptic problems via Lﬁ-spaces. Duke Math. J., 127
(2005), 175-192.

"
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Proof of Theorem 3] (continuation). By the constant variations formula. we know that for any ¢t € [0, T],
t

u(t) —v(t) = S(t)(ug —vo) + ] S(t—s)(h(u(s)) —h(v(s))) ds in Q, (117)
0

where h(z,u) = j{:r}u_]/z. By the convexity of the function uw +— v~ 12 and the assumption that
u(t),v(t) € M(v), we deduce that
h(z,u) — h(z,v) < Cj(z)6 2 (v —v)L in Q. (118)

Thus, if we denote w := u — v, we get for any 7,t € [0,T] with 7 < ¢

t
w, (t) < S(t—T}w+(T)+Cf S(t— 5)(G(z)6 > ?w. (s)) ds. (119)

T

We multiply (119) by the weight 6=, with 4 € [0,1] to be chosen later. and take the L?>-norms. Then,

2)§- 1B+l

167w (8)] 2y < 1677 S(t — T)wy(7)]| L2(q) +Cf 1S(t - +(8)]|L2(q) ds.

Let us fix s, > 0 and let us call ¥ := S(t — s)j(z )6_('G+U”w+(5). Then, by Hélder inequality,

9 @2 @2 i 5 ]_"F'
0 U5e0 = | =—dz < —dz Ve dx
L f <([5e) (o)

(note that the limit cases vy =0 and v = 1 are allowed). Then, applying Hardy inequality.

1=
167" %|z2(@) 20y [l z2(0)



By property 1 of Lemma 36. to tgs. we get

t—s .{mw—(ﬁ-knu

5B+ g s)w(s)||z2(q) < C(t — s)"2||s ( | J wy(s)| z2(0)- (120)

-

Analogously. using property 4 of Lemma 36. and that j € L?(Q) (remember the assumptions made in
Theorem 23)

-

- _ t\ . (21 _
1677 (t)w (0)]| o ey < Ct %||s(;);<m}w+(m\|mm <ot ) ) pa  (121)

In order to apply the singular Gronwall’s inequality. we must relate the weights 6~ and §3v/2 keeping
in mind that v € [0,1]. To do that. we apply property 3 of Lemma 36 for some m € [0,1]. We shall take

/2 =v+m. (122)

Indeed. if (3 + 1) € (1,2]. then we take v = 1. m = 31/2 — 1 and we apply point 3 of Lemma 36 to the

initial datum:

t— s . _ o t— s . i _m oy
||S( 5 )J(a::né D0, (5)l 2y = ||s( 5 ) (@)6 = Dy (s)]| 20y < CE—s)"F (|6 wo(s)|L2(a)-
(123)
On the other hand. if 3/2 € [0,1]. we can take v = 3r/2 and thus. since S(¢ — s) is a contraction in

L2(Q). we get

t— s . — i
s (552 3@)6= " (9)llzacay = s

t— s

) 3@ T (lzacy < 15w (o)llzacey. (124

which corresponds to (122) with m = 0. In other words,

~v = min{1, 3v/2}

and
m = max{3r/2 —1,0}.



Collecting the previous inequalities. we arrive to

a1

t
~ ) _2y+1 _mo o
107w (t)|[ o) < CET 73 |‘w+{0)‘|L?(ﬂ;d}+C[ (t—5)72[|07"ws(s)] L2
0

Thus. we can apply Lemma 35 with a = @ = [% %} b= and A = Cllw,(0)[ z2(q.s) to deduce that

3 241
|0 Tw—l-(t)HL?(QJECt : ||w+{0)||L3(ﬂ;é}'
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Thanks for

your attention
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