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Modeling ... what is the Nuclear fusion?
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@ The nuclear fusion:

Huglear Fusion

—@e

Nuclear Fission

Lage sum
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Atom

@ The plasma: A mixture of particles of positive, negative and neuter
electrical charge can be consider as an ideal fluid for determining the
macroscopic properties.

Particles of low mass: Deuterium, Tritium, He,...
D+T ﬁ 4 He + n + Energy = L Plasma Makes up The
Yy 5 Sun &_.Star;‘_ -
Deuterium

Tritium 4
He
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e Magnetic confinement: One need > 100 * 10°C® to obtain an
equilibrium state.
Axisymmetric geometry: Non axisymmetric geometry:
Tokamak devices Stellarator devices
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Sketch of a Tokamak

The vacuum vessel The vacuum vessel
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o Difficulties: to determinate the conditions on the magnetic field and
on the current density in order to keep the plasma far from the
camera walls.

Unconfined Confined

upstream

N

last closed

i s A way to prevent mechanically
this is to introduce a limiter:

a solid object which determines
the boundary of the plasma
(limiter plays the role of a thin
obstacle for the plasma).

Limiter
(downstream)
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Modelling... the 3D stationary model

The plasma as a ideal fluid and use the ideal MHD model.
@ Assume that the plasma is a perfect conductor (Ohm'’s Law).
V-B =0, (Conservation of B),
V x B =pod, (Ampére's Law),

VP =JxB inQ,, (conservation of momentum)

The electromagnetic variables are: The fluid variables are:
e the magnetic field B and e the pressure P.
e the current density J e magnetic permeability pq.

are satisfied in plasma region.
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@ Sketch:
e REDO=0,UQ,
O, := plasma region (unknown)
Q) := the free boundary
Q, = {x:J(x) =0} :=vacuum region
w := the limiter
e Boundary Conditions:
n*-B=0 ondQ,={x:P(x)=0}
(<= VP||n® and VP(x)LB)
n®-B=0 ondQ). perfectly conducting wall
@ One Integral Condition:
“the current carrying” into the plasma.
° The problem is to find

P:QCR} >R, BJ:QCR —R?
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Modeling... the 2D stationary models

Axisymmetric geometry (Tokamak)

As the magnetic field lines are in toroidal nested surfaces, it is useful to
introduce a new coordinates system:
e Axisymmetric geometry ( Tokamak devices):
Cylindrical coordinates system (r, ¢, z): Let be ¢ the magnetic surface,
then
B-Vy=0
V:-B =0
(MHD) ¢ VxB = puod
VP =JxB inQ, (plasma region)
B = (B, By, B;) (covariant coordinates)

~~

4
_[8< ! a¢>+ (1 atp)] 1P (y) . 9p(p)
ar \ por or dz \ po oz upr? oY oY

Grad-Shafranov equation
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Operator: —L — o (Lo +i Lo
perator: = phor or \ uor or 9z \ yg 0z ¥

Grad-Shafranov equation

Ly =3 (F(9) '+ pore (1) ()

(see Grad-Shafranov equation for Stellarator case [?7?])

e | :=1(r,z) (is a potential flux and unknown function),

e 1B, := aw (r,z), 1B, := aa%, rBy := F (¢) (F is unknown)

e P:=p (l/J) the pressure. In the plasma region p (p) > 0 and in the
vacuum region p (1)) < 0. (p is a prescribed function: p () ~ 512).

e Boundary Conditions: ) = 7y on d(), and 7 is a negative constant.

@ One Integral Conditions: The known total current carrying I,into
the plasma:

/ {2%,2 (F2(p))' +p/ (z,u)} rdrdz = I,
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e Non axisymmetric geometry (Stellarator devices):

Boozer vacuum coordinates system (p, 6, ¢) [Boozer82).
The magnetic field lines becomes “straights” in the (6, ¢)-plane:

» p=p(x,y,z) >0and p=0o0n
the magnetic axis
p is constant on each nested toroid.
» 0 =0(x,y,z) is the poloidal angle,
is constant on any toroidal circuit
but changes by 27t over a poloidal
circuit

v, poloidal flux

d‘VT Yy toraidal flux » (P = (P(X, y, Z) |S the t0r0|da| angle,
is constant on any poloidal circuit.
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In this Boozer vacuum coordinates system,
for a vacuum configuration (i.e. without any
plasma) the magnetic field B, may be writ-
ten in contravariant form as

B, = BopVp x V(0 —t,(0)¢)

4y b e where t,(p) is the so called vacuum rota-
tional transform and By is a positive con-
stant.

The covariant form of B, is
B, =F V¢

where F, is a constant (which customary is taken as positive).
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Pass form a 3D to 2D problem: averaging methods were used
[GreeneJohnson84], [HenderCarreras84].

rapidly varying part
f={(f)+ f

27

fd¢ is the toroidal averaged .

where (f) (p,0) := gy

-5

where B’ are the contravariant components of the vacuum magnetic
field, i = p, 0, ¢, and

= (Vp x pV0) - V¢ (Jacobian of change of coordinates system).
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Using a suitable assumption (the Stellarator expansion hypothesis), the

5 (0(5)) 5 ((5)) -

= 7 averaged poloidal flux function 1 = 1(p, 8)defined by

B\ 19y B\ 9y
<o>—pa9 and <o>—‘ap'

Also, (By) and (p) are a functions only depending of :

conservation of B,

F(p):=(Bp) and p(yp):=(P) =~ %t,bi (constitutive law).
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As in [HenderCarreras84] we obtained a Grad—Shafranov type equation for

2

—Lyp = a(p.0)F(¥) + F(9)F' () + b(p.6)P' () (1)

1[0 ap\ o I
£¢fp{w<%wﬂ*apGWw)
0

oY 0 o
*w(%@)+w<%w>}
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The coefficients:
a0 (0.0) = p (&) (0.0). 200(p. 6) == - (£" ) (p.6),

200(0.0) := (&) (0.0) =: 30(0.0)

|~

and where (g'J), i, j = p, 0 are the averaged components of the
Riemannian metric associated to the vacuum coordinates system (all those
coefficients are 27t—periodic functions in 6).

o(p.0) 1= 2 | S (6Pele) (&) + g letle) ()| (2

and
bio.6) = () (0.0) 3)

We remark that b > 0 and that usually function a has not any singularity.
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@ At any place, := toroidal component of current
density, (L is elliptic [Padial92]).

o In the vacuum vessel: | —Ly = a(p,0)F, in Q,

@ In the plasma region, the following

Grad-Shafranov equation holds:

Ly =alp.OF (¥) + 5 () + b(p.0)p/(p) Oy (%)

(see Grad-Shafranov equation for Tokamak case [?7])
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@ In the plasma region, the following Grad—Shafranov equation
holds:

and the problem is to find i and F, such that

1
(P){—cwz alp. 0)F () (F3(9)) +b(p,0)p' (¢) in O
+Boundary Condition  + One Integral Condition

e Boundary condition: 903 is assumed to be a perfectly conducting
wall= ‘ §p = 7y =constant< 0 on BQ‘

@ One Integral Condition, “The current carrying’ into the plasma:
for any s € [essinf i, esssup ]

/{¢>S} 13 (F2(y)) +bp (¢)] pdpd® = j(si. [+ 1)

"We will replace the £ operator by the Laplacian one, A."

A
In this work, we will consider | p(¢) := 51/)3 (constitutive law).and the

ideal Stellarator condition =— .

J.I. Diaz!, P. Galsn? and J.F. Padial? ( On a Mathematical Model Arising in MHD P«




On the existence and regularity of solution of problem (P)

Given: Q) C IR? bounded and regular set,
F, €R, F, >0,
A€ER, A>0,
vyeER, v<0,
a, bel®*(Q), b>0ae inQ, a#0.
To find: (v, F) u: Q — R, F:R — R" U{0} such that
F (s) = F, for any s < 0 and satisfying

—Au = aF(u(x))_|_% (F2 (u(x))) 4+Abu, (x) in Q,
u—7 € Hg(Q),
T(F?(u(x))" + Abuidx =0

{xeuu(x)>s} for any s € [essigf u, esssup u|
Q
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Existence of solutions.

Theorem (Diaz, Padial,Rakotoson 1998)

Suppose that v < 0. Then there exist A1, Ay > 0 such that if

AMIbl[ oy < A1 and Ay < i?)f|a]Fv

there exist a couple (u, F) with

ve V(Q):={veH (Q):AveL”(Q),

F e wh(] i(n)fu,s;:)pu[), F(s)=F,, Vs<0

solution of (P). Moreover, u satisfies that

meas{x € Q:Vu(x) =0} =0 ie u has not flat region
and F is entirely determined by u.
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For the numerical simulation, from the hypothesis of the existence
result,we will consider a "relative size"on the parameters A and F,:

fixed b, then A small enough == Al|b|| =) < A1,

fixed a, then F, large enough — A, < i?)f |a|Fy,

for a suitable A1 and A»
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Remark (Diaz-Padial-Rakotoson, 1998)

Derivating the integral condition with respect to s, we can obtain explicitly
the unknown function F in terms of the one dimensional decreasing
rearrangement of the unknown function u (we will denote by u,) and the
relative rearrangement of the function b with respect of the unknown u
(we will denote by b, ), that is

d 1
e / §(F2 (u(x)))'+ Abuidx =0
{xeQ:u(x)>s}

4

ol

F(t)=|Fu(t) = [F& - A/()Hab*u (Ju>ol) da}

and

+w\>—-

F(u(x) =|Fulx) = [Fg _ A/O”*(X)ab*u (|lu> o)) d(f]

J.I. Diaz!, P. Galdn? and J.F. Padial? ( On a Mathematical Model Arising in MHD P«




Remark (...)

Thus, we can rewrite the original problem (recalling (P;)(4)) with two
unknown u, and F as a new nonlocal problem (P.) with only one
unknownu:

—Au=aF,(x)+A[b(x)— by (Ju>u(x)|)] inQ,
(P*){ u—y € H}(Q),

(5)

Notation:
lu>u(x)|=meas{y € Q:u(y)>u(x)} = f{yEQ:u(y)>u(x)} dy.
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One dimensional rearrangement

Let u: Q C RY — R be a measurable function and let Q. :=]0, |Q|[.
The Decreasing Rearrangement of u is the following decreasing real

function uy : QO — R:
=meas{x € O :u(x) > c} = |u> o (distribution function of v)
uy (s) :==inf{t e R: m, (¢) < s} (decreasing rearrangement of u)

u(0) := esssupu := [|uy || () = v++(0),

u(]Q]) := essinfu, M := essinfu, M := esssupu .
0 0 0

On a Mathematical Model Arising in MHD P«
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my (0) := meas{x € Q: u(x) > o} = |u> o| (distribution function of u)

uy (s) :==inf{t e R: m, (0) < s} (decreasing rearrangement of u)

Example

Let be u: Q) = (—2,5) — R, such that

(x+2)(x+1), x < -1
u(x) = 0.3 —1<x<1 , u:Q.=(0,|Q|) — [essinf u, esssup u]
1 —X Q Q
§+€ 1<x
. .

T ‘
|
-

0.2 02 \\,

0.4, 0.4 L

% 15 1 05 o 05 1 15 2 25 3 L
The function u The rearrangement u..

Figure:P.Galan
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Relative rearrangement

Let b € L1(Q) and a measurable function u in ), we set
w: Q) ]0 |Q][— R

s—|u>us(s

/b(x )dx + / blfu—u.( () dt , forse Q.

{x:u>u.(s)} 0
The Relative Rearrangement of b with respect to u is

2016) in )
ds 7—0 o e

bey(s) :=

Remark: If u has not flat region then s — |u > u, (s)| = 0 and
d
b*us::—/ b(x)dx|
() ds J{x:u>u.(s)} ()
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Numerical Approximation

@ We compute the numerical solution of (P,) [5] using the finite
element method combined with a fixed point algorithm.

o Let Dy be a partition of Q) such that D, = {Q,-},’-V:e1 C O, where Q;
are rectangles and N, the number of finite elements in the partition.
Then the finite element subspaces V), is defined as

Vi ={vn € C(Q): o, € PL(Q) ¥i=1,2,...,Ne}

and Vg = V, N HE (Q), where Py (Q;) is the set of polynomials
Y. ¢ipj (x) g; (y) where p; and g; are polynomials of degree < 1.
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o Let u,go) € Vj, such that u,(70) — 7 € Vo, =
the discretized problem consists in solving, for any k =10,1,2,...;
find 0™ € Vj, such that o™ — 4 € Vg

and
(V (k+1) Vvh> = (gisk), vh> for all v, € Vi, (6)

where gh(k) € V), is an approximation of the function
WY o L g2y (,00 (k)
aF ((uf )+2 (F2)" () + b (u )+
(k).

Note that when solving problem (6), we first need to compute the function g,
the right hand side
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Computing the function g

The used algorithm is the following:

1. Start with a given function ui(,o) € Vj, (without flat region).

2. Step k. Given u,(Ik) by (6)
Then, uf}k) has not flat region.

a) Obtain an approximation of the distribution function m (. Let
Up

T = {ty = maxq u,(Ik) > t; > ... > tp, = 0} a mesh of interval
[0, maxqy (u)].
We sort the array of mapping of u,(Ik) on x in the mesh of Q)

k
m, 0 () =) (0 > 6l ST ]
(Whete the weighted function is taking accordingly either x € Q) or
x € Q).

weight(x)
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b) Obtain the decreasing rearrangement (ufgk)) . Since u,gk) has not flat
*
: k _
region, (ui(l )> ()=m (}{) ().
* Uh

3. Obtain the relative rearrangement b, () .
().

Since u,gk) has not flat region, =>-compute b(u(k)> by discrete
h *

integration and differentiation.
1°integrating b over {x € () : u,(,k) (x) > (u,(,k)> (s)} for all s € Q)

2°differentiating with respect to s, with (uigk)) (s)eT.
*
Compute F := Fu(k). By trapezoidal integration role for any t € T.
h

Obtain glsk) . We derivate %F2(k) in T, = by lineal interpolation of
Up

!
(%ngw) and F w0 = up) (x) in the mesh of ) —>compute

gfgk).Solve discretized problem (6) by Conjugate Gradient.
#) Stopping criterion.
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Numerical Approximation

Numerical simulations

@ The authors have implemented their own code using the C language
to solve the PDE by using the finite element method, as well as for
the determination of distribution function of averaged poloidal flux.

@ The partition Dy used by the finite element method consists in a

regular rectangular mesh with h = 3% i.e., 4096 elements and 4225

nodes.

@ The associated linear system is solved using Conjugate Gradient. The
CPU time consumed to compute the full algorithm is less than one
second on an Intel Core i7 at 2.67 Ghz processor.

@ The test problems: O = [-1,1] x [-1,1], ¥ = —1.5, F, = 10,
By=1A=15A=10,A =20,A =40,A = 42,

By 5 (sin 7x - sin 7ty +2)

) =T et
F, 1
b(x,y) =

By (x2 + y2 + 1) (cos (arctan (y) +2))
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A = 1.5 = converging (very fast) A = 40 = divergent (oscillating)

A = 10 = converging (fast) A = 42 = divergent (oscillating)
A — 2C . 7 [BAY
2.2 T
—1=15
——1=10
2 —1=20
———1=40
——1=42

1l v

20 25 30 35 40 45 50
iteration number

On a Mathematical Model Arising in MHD P«

J.I. Diaz!, P. Galdn? and J.F. Padial? (



A = 1.5 = converging (very fast)
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A = 10 = converging (fast)
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A = 20 = converging (slowly)
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A = 40 = divergent (oscillating)
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The methodology concerning the numerical results of this work can be
applied in many different contexts:

@ Action of a limiter.
@ Current carrying Stellarators models
@ Evolution problem, where even time implicit schemes could be

considered due to the fast convergence of the algorithm of the
stationary model.

@ Nonlocal formulations arising in Tokamaks

That enhancements on the code that could require a more powerful
computing platform and the possibilities of distributing the execution of
the problem in parallel or distributed tasks could be designed in the light
of similar works in the literature on parallel computing for nonlinear elliptic
partial differential equations.
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