On a Mathematical Model Arising in MHD Perturbed Equilibrium for Stellarator Devices: A numerical Approach

J.I. Díaz¹, P. Galán² and <u>J.F. Padial²</u>

 $^1\mathsf{Fac.}$ CC. Matemáticas (U.C.M.) and $^2\mathsf{E.T.S.}$ de Arquitectura (U.P.M.)

The 2012 International Conference on High Performance Computing and Simulation (HPCS 2012) International Workshop on Fusion Distributed Applications (WFDA 2012)

Modeling ... what is the Nuclear fusion?

by which the sun produces heat and sunlight, and if harnessed on earth, has the potential to provide a clean and unlimited source of energy • The nuclear fusion:

• The plasma: A mixture of particles of positive, negative and neuter electrical charge can be consider as an ideal fluid for determining the macroscopic properties.

Particles of low mass: Deuterium, Tritium, He,...

• Magnetic confinement: One need $> 100 * 10^6 C^o$ to obtain an equilibrium state.

Axisymmetric geometry: Tokamak devices

Sketch of a Tokamak

Non axisymmetric geometry: Stellarator devices

Sketch of TJ-II in the Ciemat-Madrid

The vacuum vessel

The vacuum vessel

• Difficulties: to determinate the conditions on the magnetic field and on the current density in order to keep the plasma far from the camera walls.

A way to prevent mechanically this is to introduce a *limiter*: a solid object which determines the boundary of the plasma (limiter plays the role of a *thin obstacle* for the plasma). The plasma as a ideal fluid and use the ideal MHD model.

• Assume that the plasma is a perfect conductor (Ohm's Law).

$$abla \cdot \mathbf{B} = 0, \quad (Conservation of \mathbf{B}),
abla \times \mathbf{B} = \mu_0 \mathbf{J}, \quad (Ampère's Law),
abla \mathcal{P} = \mathbf{J} \times \mathbf{B} \text{ in } \Omega_p, \quad (conservation of momentum)$$

The electromagnetic variables are:	The fluid variables are:
ullet the magnetic field $llet$ and	• the pressure <i>P</i> .
 the current density J 	• magnetic permeability μ_0 .

are satisfied in plasma region.

Sketch:

•
$$\mathbb{R}^{3} \supset \Omega = \Omega_{p} \cup \Omega_{v}$$

$$\begin{cases}
\Omega_{p} & := \text{ plasma region } (unknown) \\
\partial \Omega_{p} & := \text{ the free boundary} \\
\Omega_{v} = \{x : \mathbf{J}(x) = 0\} & := \text{ vacuum region} \\
\omega & := \text{ the limiter}
\end{cases}$$

- Boundary Conditions: $\mathbf{n}^3 \cdot \mathbf{B} = 0$ on $\partial \Omega_p = \{x : P(x) = 0\}$ $(\Leftarrow \nabla P || \mathbf{n}^3 \text{ and } \nabla P(x) \perp \mathbf{B})$ $\mathbf{n}^3 \cdot \mathbf{B} = 0$ on $\partial \Omega$. perfectly conducting wall
- One Integral Condition:

"the current carrying" into the plasma.

٩

The problem is to find

$$P:\Omega\subset \mathbb{R}^3\to \mathbb{R}, \ \mathbf{B}, \mathbf{J}:\Omega\subset \mathbb{R}^3\to \mathbb{R}^3?$$

Modeling... the 2D stationary models

Axisymmetric geometry (Tokamak)

As the magnetic field lines are in toroidal nested surfaces, it is useful to *introduce a new coordinates system:*

• Axisymmetric geometry (*Tokamak* devices):

Cylindrical coordinates system (r, φ, z) : Let be ψ the magnetic surface, then

$$\text{Operator: } -\mathcal{L}\psi := -\mu_0 r \left[\frac{\partial}{\partial r} \left(\frac{1}{\mu_0 r} \frac{\partial \cdot}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\mu_0} \frac{\partial \cdot}{\partial z} \right) \right] \psi,$$

Grad-Shafranov equation

$$-\mathcal{L}\boldsymbol{\psi}=\frac{1}{2}\left(\boldsymbol{F}^{2}\left(\boldsymbol{\psi}\right)\right)^{\prime}+\mu_{0}r^{2}\boldsymbol{p}^{\prime}\left(\boldsymbol{\psi}\right)$$

(★)

(see Grad–Shafranov equation for Stellarator case [??])

- $\psi := \psi(r, z)$ (is a potential flux and *unknown* function),
- $rB_z := -\frac{\partial \psi}{\partial r}(r, z), rB_r := \frac{\partial \psi}{\partial z}, rB_{\varphi} := F(\psi)$ (F is unknown)
- P := p(ψ) the pressure. In the plasma region p(p) ≥ 0 and in the vacuum region p(ψ) ≤ 0. (p is a prescribed function: p(ψ) ~ ^λ/₂ψ²₊).
- Boundary Conditions: $\psi = \gamma$ on $\partial \Omega$, and γ is a negative constant.
- **One Integral Conditions**: The known *total current carrying l_p*into the plasma:

$$\int_{\Omega}\left\{ \frac{1}{2\mu_{0}r^{2}}\left(\textit{F}^{2}\left(\psi\right)\right)'+\textit{p}'\left(\psi\right)\right\}\textit{rdrdz}=\textit{I}_{p}$$

• Non axisymmetric geometry (*Stellarator* devices):

Boozer vacuum coordinates system (ρ, θ, ϕ) [Boozer82]. The magnetic field lines becomes "straights" in the (θ, ϕ) -plane:

▶ φ = φ(x, y, z) is the toroidal angle, is constant on any poloidal circuit.

In this Boozer vacuum coordinates system, for a vacuum configuration (i.e. without any plasma) the magnetic field \mathbf{B}_v may be written in contravariant form as

$$\mathbf{B}_{v} = B_{0}\rho\nabla\rho\times\nabla(\theta - t_{v}(\rho)\phi)$$

where $t_v(\rho)$ is the so called **vacuum rotational transform** and B_0 is a positive constant.

The covariant form of \mathbf{B}_{v} is

$$\mathbf{B}_{v}=F_{v}\nabla\phi$$

where F_v is a constant (which customary is taken as positive).

Pass form a 3D to 2D problem: *averaging methods* were used [GreeneJohnson84], [HenderCarreras84].

$$\begin{array}{c} \overbrace{f}{f} = \langle f \rangle + \overbrace{f}{f} \end{array}$$
where $\langle f \rangle \left(\rho, \theta \right) := \displaystyle \frac{1}{2\pi} \int_{0}^{2\pi} f d\phi$ is the toroidal averaged .
$$\frac{B^{i}}{D} = \left\langle \frac{B^{i}}{D} \right\rangle + \left(\displaystyle \frac{\tilde{B}^{i}}{D} \right)$$

where B^i are the contravariant components of the vacuum magnetic field, $i = \rho, \theta, \phi$, and

 $D = (
abla
ho imes
ho
abla heta) \cdot
abla \phi$ (Jacobian of change of coordinates system).

Using a suitable assumption (the Stellarator expansion hypothesis), the conservation of B,

$$\frac{\partial}{\partial \rho} \left(\rho \left\langle \frac{B^{\rho}}{D} \right\rangle \right) + \frac{\partial}{\partial \theta} \left(\left\langle \frac{B^{\theta}}{D} \right\rangle \right) = 0,$$

 \Longrightarrow \exists averaged poloidal flux function $\pmb{\psi}=\pmb{\psi}(
ho, heta)$ defined by

$$\left\langle \frac{B^{
ho}}{D} \right
angle = rac{1}{
ho} rac{\partial \psi}{\partial heta} \quad {
m and} \quad \left\langle \frac{B^{ heta}}{D}
ight
angle = -rac{\partial \psi}{\partial
ho} \; .$$

Also, $\langle B_{\phi} \rangle$ and $\langle p \rangle$ are a functions **only depending** of ψ :

$$F(\psi):=ig\langle B_{\phi}ig
angle$$
 and $p(\psi):=ig\langle P
angle\,\simeqrac{\lambda}{2}\psi_+^2$ (constitutive law).

As in [HenderCarreras84] we obtained a Grad–Shafranov type equation for ψ

$$-\mathcal{L}\psi = \mathbf{a}(\rho,\theta)F(\psi) + F(\psi)F'(\psi) + \mathbf{b}(\rho,\theta)p'(\psi)$$
(1)

$$egin{aligned} \mathcal{L}\psi &:= rac{1}{
ho} \left\{ rac{\partial}{\partial
ho} \left(\mathsf{a}_{
ho
ho} rac{\partial \psi}{\partial
ho}
ight) + rac{\partial}{\partial
ho} \left(\mathsf{a}_{
ho heta} rac{\partial \psi}{\partial heta}
ight) \ &+ rac{\partial}{\partial heta} \left(\mathsf{a}_{ heta
ho} rac{\partial \psi}{\partial
ho}
ight) + rac{\partial}{\partial heta} \left(\mathsf{a}_{ heta heta} rac{\partial \psi}{\partial heta}
ight)
ight\} \end{aligned}$$

The coefficients:

$$\begin{split} \mathsf{a}_{\rho\rho}(\rho,\theta) &:= \rho \left\langle \mathsf{g}^{\rho\rho} \right\rangle(\rho,\theta), \mathsf{a}_{\theta\theta}(\rho,\theta) := \frac{1}{\rho} \left\langle \mathsf{g}^{\theta\theta} \right\rangle(\rho,\theta), \\ \mathsf{a}_{\theta\rho}(\rho,\theta) &:= \left\langle \mathsf{g}^{\rho\theta} \right\rangle(\rho,\theta) =: \mathsf{a}_{\rho\theta}(\rho,\theta) \end{split}$$

and where $\langle g^{i,j} \rangle$, $i, j = \rho, \theta$ are the averaged components of the Riemannian metric associated to the vacuum coordinates system (all those coefficients are 2π -periodic functions in θ).

$$\mathbf{a}(\rho,\theta) := \frac{B_0}{\rho F_{\nu}} \left[\frac{\partial}{\partial \rho} (\rho^2 t(\rho) \langle g^{\rho \rho} \rangle) + \frac{\partial}{\partial \theta} (\rho t(\rho) \langle g^{\rho \theta} \rangle) \right]$$
(2)

and

$$\boldsymbol{b}(\rho,\theta) := \frac{F_{\nu}}{B_0} \left\langle \frac{1}{D} \right\rangle (\rho,\theta). \tag{3}$$

We remark that b > 0 and that usually function a has not any singularity.

- In the vacuum vessel: $-\mathcal{L}\psi = a(\rho, \theta)F_{\nu}$ in Ω_{ν}
- In the plasma region, the following

Grad-Shafranov equation holds:

$$-\mathcal{L}\psi = a(
ho, heta)F(\psi) + rac{1}{2}\left(F^2(\psi)
ight)' + b(
ho, heta)p'(\psi) \quad ext{in } \Omega_p$$

(see Grad-Shafranov equation for Tokamak case [??])

(★)

 In the plasma region, the following Grad–Shafranov equation holds:

and **the problem is to find** ψ and F, such that $(P) \begin{cases} -\mathcal{L}\psi = a(\rho, \theta)F(\psi) + \frac{1}{2} \left(F^{2}(\psi)\right)' + b(\rho, \theta)p'(\psi) \text{ in } \Omega \\ + \text{Boundary Condition} + & \text{One Integral Condition} \end{cases}$

- **Boundary condition**: $\partial \Omega^3$ is assumed to be a *perfectly conducting* $wall \Rightarrow | \psi = \gamma \equiv \text{constant} < 0 \quad \text{on } \partial \Omega$
- One Integral Condition, "The current carrying" into the plasma: for any $s \in [essinf \psi, esssup \psi]$

$$\int_{\{\psi>s\}} \left[\frac{1}{2} \left(F^2(\psi) \right)' + bp'(\psi) \right] \rho d\rho d\theta = j(s_+, \|\psi_+\|_{L^{\infty}(\Omega)}).$$

"We will replace the \mathcal{L} operator by the Laplacian one, Δ ."

In this work, we will consider $\left| p(\psi) \right| := \frac{\lambda}{2} \psi_+^2$ (constitutive law).and the ideal Stellarator condition $\Longrightarrow | j \equiv 0 |$.

On the existence and regularity of solution of problem (P)

Given: $\Omega \subset \mathbb{R}^2$ bounded and regular set, $F_v \in \mathbb{R}, F_v > 0,$ $\lambda \in \mathbb{R}, \lambda > 0,$ $\gamma \in \mathbb{R}, \gamma < 0,$ $a, b \in L^{\infty}(\Omega), b > 0$ a.e. in $\Omega, a \neq 0.$ To find: $(u, F) \ u : \Omega \to \mathbb{R}, F : \mathbb{R} \to \mathbb{R}^+ \cup \{0\}$ such that $F(s) = F_v$ for any $s \leq 0$ and satisfying

$$(\mathcal{P}_{I}) \begin{cases} -\Delta u = \mathbf{aF}\left(u\left(x\right)\right) + \frac{1}{2}\left(F^{2}\left(u\left(x\right)\right)\right)' + \lambda b u_{+}\left(x\right) \text{ in } \Omega, \\ u - \gamma \in H_{0}^{1}(\Omega), \\ \int \frac{1}{2}\left(F^{2}\left(u\left(x\right)\right)\right)' + \lambda b u_{+} dx = 0 \\ \{x \in \Omega: u(x) > s\} \text{ for any } s \in [\text{ess inf } u, \text{ ess sup } u] \\ \Omega \end{cases}$$

(4)

Theorem (Diaz, Padial, Rakotoson 1998)

Suppose that $\gamma \leq 0$. Then there exist $\Lambda_1, \Lambda_2 > 0$ such that if

$$\lambda \|b\|_{L^{\infty}(\Omega)} < \Lambda_1$$
 and $\Lambda_2 < \inf_{\Omega} |a|F_{v}|$

there exist a couple (\mathbf{u}, \mathbf{F}) with

$$\boldsymbol{u}\in V(\Omega):=\left\{ \boldsymbol{v}\in \mathcal{H}^{1}\left(\Omega
ight):\Delta\boldsymbol{v}\in \mathcal{L}^{\infty}\left(\Omega
ight)$$
 , $\boldsymbol{v}_{\mid_{\partial\Omega}}\leq\mathbf{0}
ight\}$,

 $F \in W^{1,\infty}(] \inf_{\Omega} u, \sup_{\Omega} u[), \qquad F(s) = F_{v}, \ \forall s \leq 0$ solution of (P). Moreover, u satisfies that $meas\{x \in \Omega : \nabla u(x) = 0\} = 0$ i.e. u has not flat region and F is entirely determined by u.

Remark

For the numerical simulation, from the hypothesis of the existence result, we will consider a "relative size" on the parameters λ and F_{v} :

fixed b, then λ small enough $\Longrightarrow \lambda \|b\|_{L^{\infty}(\Omega)} < \Lambda_1$,

fixed a, then F_v large enough $\Longrightarrow \Lambda_2 < \inf_{\Omega} |a| F_v$,

for a suitable Λ_1 and Λ_2

Remark (Díaz-Padial-Rakotoson, 1998)

Derivating the integral condition with respect to s, we can obtain explicitly the unknown function F in terms of the one dimensional decreasing rearrangement of the unknown function u (we will denote by u_*) and the relative rearrangement of the function b with respect of the unknown u(we will denote by b_{*u}), that is

$$\frac{d}{ds} \int_{\{x \in \Omega: u(x) > s\}} \frac{1}{2} \left(F^2 \left(u(x) \right) \right)' + \lambda b u_+ dx = 0$$

$$F(t) \equiv \boxed{F_{u}(t) = \left[F_{v}^{2} - \lambda \int_{0}^{t_{+}} \sigma \mathbf{b}_{*u}\left(|u > \sigma|\right) d\sigma\right]^{\frac{1}{2}}_{+}}$$

and

$$F(u(x)) \equiv \boxed{\mathcal{F}_{u}(x) = \left[\mathcal{F}_{v}^{2} - \lambda \int_{0}^{u_{+}(x)} \sigma \mathbf{b}_{*u}(|u > \sigma|) \, d\sigma\right]^{\frac{1}{2}}_{+}}$$

J.I. Díaz¹, P. Galán² and <u>J.F. Padial² (</u>On a Mathematical Model Arising in MHD P

Remark (...)

Thus, we can rewrite the original problem (recalling $(\mathcal{P}_I)(4)$) with two unknown u, and F as a new **nonlocal problem** (\mathcal{P}_*) with only one unknownu:

$$(\mathcal{P}_{*}) \begin{cases} -\Delta u = a\mathcal{F}_{u}(x) + \lambda \left[b\left(x \right) - \frac{b_{*u}}{u} \left(\left| u > u\left(x \right) \right| \right) \right] & \text{in } \Omega, \\ u - \gamma \in H_{0}^{1}(\Omega), \end{cases}$$
(5)

Notation:

$$u > u(x) | = \max\{y \in \Omega : u(y) > u(x)\} = \int_{\{y \in \Omega : u(y) > u(x)\}} dy.$$

Definition

Let $u : \Omega \subset \mathbb{R}^N \to \mathbb{R}$ be a measurable function and let $\Omega_* :=]0, |\Omega|[$. The **Decreasing Rearrangement** of u is the following decreasing real function $u_* : \Omega_* \to \mathbb{R}$:

$$\begin{split} m_{u}(\sigma) &:= \max\{x \in \Omega : u(x) > \sigma\} = |u > \sigma| \text{ (distribution function of } u) \\ u_{*}(s) &:= \inf\{t \in \mathbb{R} : m_{u}(\sigma) \leq s\} \text{ (decreasing rearrangement of } u) \\ u_{*}(0) &:= \operatorname{essup} u := \|u_{+}\|_{L^{\infty}(\Omega)} = u_{+*}(0), \\ u_{*}(|\Omega|) &:= \operatorname{essinf}_{\Omega} u, \quad \hat{m} := \operatorname{essunf}_{\Omega} u, \quad M := \operatorname{essunf}_{\Omega} u. \end{split}$$

$$m_{u}(\sigma) := \max\{x \in \Omega : u(x) > \sigma\} = |u > \sigma| \text{ (distribution function of } u\text{)} \\ u_{*}(s) := \inf\{t \in \mathbb{R} : m_{u}(\sigma) \leq s\} \text{ (decreasing rearrangement of } u\text{)}$$

Example

Figure:P.Galán

J.I. Díaz¹, P. Galán² and <u>J.F. Padial</u>² (

On a Mathematical Model Arising in MHD P

Relative rearrangement

Definition

Let
$$b \in L^1(\Omega)$$
 and a measurable function u in Ω , we set
 $w : \overline{\Omega}_* =]0, |\Omega| [\rightarrow \mathbb{R} \qquad s - |u > u_*(s)|$
 $w(s) = \int_{\{x: u > u_*(s)\}} b(x) dx + \int_{0} \left(b|_{\{u = u_*(s)\}} \right)_* (t) dt$, for $s \in \Omega_*$.

The **Relative Rearrangement** of b with respect to u is

$$b_{st u}(s):=rac{dw(s)}{ds}=\lim_{\sigma
ightarrow 0}rac{(u+\sigma b)_st(s)-u_st(s)}{\sigma}\qquad ext{ in }\Omega_st \;.$$

Remark: If u has not flat region then $s - |u > u_*(s)| = 0$ and $\boxed{b_{*u}(s) := \frac{d}{ds} \int_{\{x: u > u_*(s)\}} b(x) dx}.$

- We compute the numerical solution of (\mathcal{P}_*) [5] using the *finite* element method combined with a fixed point algorithm.
- Let D_h be a partition of Ω such that $D_h = \{Q_i\}_{i=1}^{N_e} \subset \overline{\Omega}$, where Q_i are rectangles and N_e the number of finite elements in the partition. Then the finite element subspaces V_h is defined as

$$V_{h} = \left\{ v_{h} \in C\left(\bar{\Omega}\right) : v_{h|Q_{i}} \in P_{1}\left(Q_{i}\right) \; \forall i = 1, 2, \dots, N_{e} \right\}$$

and $V_{h0} = V_h \cap H_0^1(\Omega)$, where $P_1(Q_i)$ is the set of polynomials $\sum_j c_j p_j(x) q_j(y)$ where p_j and q_j are polynomials of degree ≤ 1 .

Let u_h⁽⁰⁾ ∈ V_h such that u_h⁽⁰⁾ − γ ∈ V_{h0}, ⇒
 the discretized problem consists in solving, for any k = 0, 1, 2, ...;

find
$$u_h^{(k+1)} \in V_h$$
 such that $u_h^{(k+1)} - \gamma \in V_{h0}$

and

$$\left(
abla u_h^{(k+1)},
abla v_h
ight) = \left(g_h^{(k)}, v_h
ight)$$
 for all $v_h \in V_{h0}$, (6)

where $g_h^{(k)} \in V_h$ is an approximation of the function $aF\left(u_h^{(k)}\right) + \frac{1}{2}\left(F^2\right)'\left(u_h^{(k)}\right) + \lambda b\left(u_h^{(k)}\right) + .$

Note that when solving problem (6), we first need to compute the function $g_h^{(k)}$ in the right hand side

The used algorithm is the following:

- 1. Start with a given function $u_h^{(0)} \in V_h$ (without flat region).
- 2. Step k. Given $u_h^{(k)}$ by (6) Then, $u_h^{(k)}$ has not flat region.
 - a) Obtain an approximation of the distribution function $m_{u_{i}^{(k)}}$. Let

 $T = \{t_0 = \max_{\Omega} u_h^{(k)} > t_1 > ... > t_{hz} = 0\}$ a mesh of interval $[0, \max_{\Omega}(u)]$.

We sort the array of mapping of $u_h^{(k)}$ on x in the mesh of $\overline{\Omega}$ $m_{u_h^{(k)}}(t_i) = |u_h^{(k)}(x) > t_i| \approx \sum_{\{x:u_h^{(k)}(x) > t_i\}} weight(x)$ (where the weighted function is taking accordingly either $x \in \partial \overline{\Omega}$ or $x \in \mathring{\Omega}$). b) Obtain the decreasing rearrangement $\left(u_{h}^{(k)}\right)_{*}$. Since $u_{h}^{(k)}$ has not flat region, $\left(u_{h}^{(k)}\right)_{*}(\cdot) = m_{u_{h}^{(k)}}^{-1}(\cdot)$.

3. Obtain the relative rearrangement b_{(u_h^{(k)})_*}.
Since u_h^{(k)} has not flat region, ⇒compute b_{(u_h^{(k)})_*} by discrete integration and differentiation.
1° integrating b over {x ∈ Ω : u_h^{(k)} (x) > (u_h^{(k)})_* (s)} for all s ∈ Ω_{*}
2° differentiating with respect to s, with (u_h^{(k)})_* (s) ∈ T.

Compute $F := F_{u_h^{(k)}}$. By trapezoidal integration role for any $t \in T$. Obtain $g_h^{(k)}$. We derivate $\frac{1}{2}F_{u_h^{(k)}}^2$ in T, \Longrightarrow by lineal interpolation of

 $\begin{pmatrix} \frac{1}{2}F_{u_h^{(k)}}^2 \end{pmatrix}'$ and $F_{u_h^{(k)}} \Longrightarrow u_h^{(k)}(x)$ in the mesh of $\overline{\Omega} \Longrightarrow$ compute $g_h^{(k)}$. Solve discretized problem (6) by Conjugate Gradient.

4) Stopping criterion.

Numerical Approximation

Numerical simulations

- The authors have implemented *their own code* using the *C language* to solve the PDE by using the **finite element method**, as well as for the determination of distribution function of averaged poloidal flux.
- The partition D_h used by the finite element method consists in a regular rectangular mesh with $h = \frac{1}{32}$, i.e., 4096 elements and 4225 nodes.
- The associated linear system is solved using Conjugate Gradient. The CPU time consumed to compute the full algorithm is *less than one second* on an Intel Core i7 at 2.67 Ghz processor.
- The test problems: $\Omega = [-1, 1] \times [-1, 1]$, $\gamma = -1.5$, $F_v = 10$, $B_0 = 1$, $\lambda = 1.5$, $\lambda = 10$, $\lambda = 20$, $\lambda = 40$, $\lambda = 42$,

$$a(x, y) = \frac{B_0}{F_v} \frac{5(\sin \pi x \cdot \sin \pi y + 2)}{\sqrt{x^2 + y^2 + 1}}$$
$$b(x, y) = \frac{F_v}{B_0} \frac{1}{(x^2 + y^2 + 1)(\cos(\arctan(y) + 2))}.$$

$\lambda = 1.5 \Longrightarrow$ converging (very fast)

$\lambda = 10 \Longrightarrow$ converging (fast)

$\lambda = 20 \Longrightarrow$ converging (slowly)

$\lambda = 40 \Longrightarrow divergent (oscillating)$

The methodology concerning the numerical results of this work can be applied in many different contexts:

- Action of a *limiter*.
- Current carrying Stellarators models
- Evolution problem, where even time implicit schemes could be considered due to the fast convergence of the algorithm of the stationary model.
- Nonlocal formulations arising in Tokamaks

That enhancements on the code that could require a *more powerful computing platform and the possibilities of distributing the execution of the problem in parallel or distributed tasks* could be designed in the light of similar works in the literature on parallel computing for nonlinear elliptic partial differential equations.

References

- Almgrem F.J. and Lieb E., 1989. J. Amer. Math. Soc. 2, pp. 683–772.
- Alt H.W. and Luckhaus S., 1983. Quasilinear elliptic-parabolic differential equations of parabolic type, *Math. Z.* Vol. 183, pp. 311–341.
- Bear J., 1972. Dynamics of fluids in porous media. *New York: American Elzevier Publishing Company Inc.*
- **Blum, J., 1989.** Numerical simulation and optimal control in plasma physics, *John Wiley & Sons, New York.*
- **Boozer A. H., 1982.**Establishment of magnetic coordinates for given magnetic field *Phys. Fluids* 25, pp 520-521.
- **Brezis H., 1973.** Opérateurs Maximaux Monotones, *North Holland*, American Elsevier publishing company.
 - Díaz J.I., Nagai T. and Rakotoson J.M. 1998. Symmetrization on a bounded domains. Applicatons to chemotasxis sytems on R^N, J.D.E., vol 145, 1, May 1 1998

Diaz J.I., Lerena M.B., Padial J.F.

- **Diaz J.I., Padial J.F. and Rakotoson J.M., 1998.** *Nonlinear Analysis Theory Methods and Applications* 34 pp. 857–887.
- **Diaz J.I. and Rakotoson J.M., 1996.** On a nonlocal stationary free-boundary problem arising in the confinement of a plasma in a Stellarator geometry, *Archive for Rational Mechanics and Analysis* 134 pp. 53–95.
- Díaz, J.I., 1992. Modelos bidimensionales de equilibrio magnetohidrodinámico para Stelleerators, Informe no 3 Formulación. CIEMAT Reports Madrid, December.

Freidberg, J.P., 1982. Ideal magnetohydrodinamic theory of magnetic fusion systems, *The American Physical Society, Rev. Moderm Physics*, Vol. 54, No. 3, July 1982.

Greene J.M., Johnson J.L., 1984. Determination of hydromagnetic equilibria *Phys.Fluid* 27, pp 2101-2120.

- Hender T.C. and Carreras B.A., 1984. Equilibrium calculation for helical axis Stellarators, *Phys. Fluids*, Vol. 27, pp. 2101–2120.
- Lions J.L., 1969. Quelques méthodes de ré solution des problèmes aux limites non linéaires, *Dunod Gauthier-Villars*, Paris.
 - **Mossino J., 1984.** Inégalités isoperimétriques. *Collection "Travaux en cours"*, Herman Paris.
 - Mossino J. and Rakotoson J.M., 1986. Isoperimetric inequalities in parabolic equations, *Annalli della Scuola Normale Superiore de Pisa*, Serie IV, Vol XIII, N 1.
- **Mossino J. and Temam R., 1981.** Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in Plasma physics *Duke Math. J.*, 48, pp. 475–495.
- **Nelson D.B and Grad H., 1978.** Heating and transport in Tokamaks of arbitrary shape and beta. *Oak Ridge Report* ORNL/TM-6094.
- Padial J.F. 1992

- Rakotoson J.M. and Temam R., 1991. Arch. Rational Mech. and Anal., 109 pp. 213–238.

- **Rakotoson J.M., 1988.** Some properties of the relative rearrangement, *J. Math. Anal. Appl.*, 135, pp. 488–500.
- **Rakotoson J.M., 1995.** Strong continuity of the relative rearrangement maps and application to a Galerkin approach for nonlocal problems, *Applied Math. Letters* 8 (6) 61-63.
- **Rakotoson J.M., 1999.** Galerkin aximation, strong continuity of the relative rearrangement and application to plasma physics equations, *Diff. and Integral Equations* 12, 1, 67-81.
- **Rakotoson J.M., Seoane M., 2000.** Numerical approximations of the relative rearrangement. Applications to some nonlocal problems, *M2AN, Vol. 34, n 2, pp. 477-499.*
- **Talenti G., 1991.** Rearrangement and P.D.E. in W.N. Event, editor Inequalities fifty Years from Hardy *Marcel Dekker Inc.* pp. 211–230.

- **Temam R., 1984.** Navier-Stokes equations, Theory and Numerical Analysis, 3rd rev. ed., *North-Holland*, Amsterdam.
- **Temam R., 1975.** A nonlinear eigenvalue problem; equilibrium space of a confined plasma, *Arch. Rational Mech. Anal.*, 60 pp.51-73.
- Simon J., 1987. Compact sets in L^p(0, T; B),, Annali di Pura ed Appl, CXLVI, pp 65-96.
 - **Diaz J.I., Lerena M.B., Padial J.F., Rakotoson J.M., 1999.** Nonlocal elliptic-parabolic equation arising in the transient regime of a magnetically confined plasma in a Stellarator, *CRAS* série I, vol 329, numéro 9, pp.773-777.