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1. Introduction

The notion of weak solution of a boundary value problem, on a
bounded domain Ω, is associated to functions in some energy space
satisfying the equation in a weak form, after multiplying by any test
function in such energy space and integrating by parts. Nevertheless,
in many relevant cases in the applications the right hand side datum
is merely in L1Loc (Ω) and a di¤erent notion of solution is required.
For instance, in the case of second order problems the notion of very
weak solution is reduced to functions in L1(Ω) satisfying the equation
passing the second order derivatives to the test functions.

Most of the theory on very weak solutions available in the literature
deals with second order equations. Recently, sharper results have
been obtained, to this case, when the data are merely in L1(Ω, δ),
with δ = dist (x , ∂Ω)). That was originally proved by Haim Brezis, at
the seventies, in a famous unpublished manuscript concerning
Dirichlet boundary conditions (see also his 1996 paper with Cazenave,
Martel, and Ramiandrisoa).
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For more recent references see J.I. D., J.M. Rakotoson (2009), (2010)
and our collaboration with J. Hernández).

The main goal of this lecture is to present some new results proving
that in the case of higher order equations and Dirichlet boundary
conditions the class of L1Loc (Ω) data for which the existence and
uniqueness of a very weak solution can be obtained is larger than
L1(Ω, δ) (the optimal class for the case of second order equations).
For instance, for some stationary onedimensional semilinear 4th-order
equations we shall prove that the optimal class of data is the space
L1(Ω, δ2). Moreover we shall analyze the optimal solvability also for
the case of other boundary conditions: something which, as far as
we know, was not considered before in the literature.

In some sense, the obtained results give an answer to the question
about of the greatest weight pro�le which can support a simple beam
such that its two extremes are horizontally supported (for instance to
a wall) and do not experience any de�ection.
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To �x ideas I will present the results for the relevant model of the
Euler-Bernoulli (�1740) beam model (i. e. a fourth order
onedimensional spatial operator) but most of the results remain valid
for equations of order 2m, m 2 N. In a �rst part we shall consider
the stationary case:

(SP)
�

d 4u
dx 4 = f (x) x 2 Ω = (0, L),
+ boundary conditions (BC ).

Here we are assuming IzE = 1. We shall consider here only the most
classical type of boundary conditions. (BC ) corresponds to two set of
two identities (two at x = 0 and another two at x = L) among the
following possibilities8>><>>:

a0u(0) = 0, b0u(L) = 0,
a1u0(0) = 0 b1u0(L) = 0,
a2u00(0) = 0, b2u00(L) = 0,
a3u000(0) = 0, b3u000(L) = 0.
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Here the coe¢ cients are taken such that ai , bi 2 f0, 1g and
∑ ai = 2,∑ bi = 2 in order to have a simple way to state general
results. Dirichlet conditions (clamped beam) corresponds to

(DBC )
�
u(0) = 0, u(L) = 0,
u0(0) = 0 u0(L) = 0.

If the beam is simply supported at its extremes (hinged beam) then�
u(0) = 0, u(L) = 0,
u00(0) = 0, u00(L) = 0.

Neumann type boundary conditions are as the following ones�
u00(0) = 0, u00(L) = 0,
u000(0) = 0, u000(L) = 0,

but other combinations (with a0 = b0 = 0) are also of interest.
Finally, a very often situation corresponds to a cantilever bar (x = 0
clamped and x = L free)�

u(0) = 0, u00(L) = 0,
u0(0) = 0 u000(L) = 0.

J.I.Díaz (UCM, Dedicated to Monique Madaune-Tort in her 60th birthday.)On very weak solutions of higher order equations September 16th., 2010 5 / 20



Here the coe¢ cients are taken such that ai , bi 2 f0, 1g and
∑ ai = 2,∑ bi = 2 in order to have a simple way to state general
results. Dirichlet conditions (clamped beam) corresponds to

(DBC )
�
u(0) = 0, u(L) = 0,
u0(0) = 0 u0(L) = 0.

If the beam is simply supported at its extremes (hinged beam) then�
u(0) = 0, u(L) = 0,
u00(0) = 0, u00(L) = 0.

Neumann type boundary conditions are as the following ones�
u00(0) = 0, u00(L) = 0,
u000(0) = 0, u000(L) = 0,

but other combinations (with a0 = b0 = 0) are also of interest.
Finally, a very often situation corresponds to a cantilever bar (x = 0
clamped and x = L free)�

u(0) = 0, u00(L) = 0,
u0(0) = 0 u000(L) = 0.

J.I.Díaz (UCM, Dedicated to Monique Madaune-Tort in her 60th birthday.)On very weak solutions of higher order equations September 16th., 2010 5 / 20



Here the coe¢ cients are taken such that ai , bi 2 f0, 1g and
∑ ai = 2,∑ bi = 2 in order to have a simple way to state general
results. Dirichlet conditions (clamped beam) corresponds to

(DBC )
�
u(0) = 0, u(L) = 0,
u0(0) = 0 u0(L) = 0.

If the beam is simply supported at its extremes (hinged beam) then�
u(0) = 0, u(L) = 0,
u00(0) = 0, u00(L) = 0.

Neumann type boundary conditions are as the following ones�
u00(0) = 0, u00(L) = 0,
u000(0) = 0, u000(L) = 0,

but other combinations (with a0 = b0 = 0) are also of interest.

Finally, a very often situation corresponds to a cantilever bar (x = 0
clamped and x = L free)�

u(0) = 0, u00(L) = 0,
u0(0) = 0 u000(L) = 0.

J.I.Díaz (UCM, Dedicated to Monique Madaune-Tort in her 60th birthday.)On very weak solutions of higher order equations September 16th., 2010 5 / 20



Here the coe¢ cients are taken such that ai , bi 2 f0, 1g and
∑ ai = 2,∑ bi = 2 in order to have a simple way to state general
results. Dirichlet conditions (clamped beam) corresponds to

(DBC )
�
u(0) = 0, u(L) = 0,
u0(0) = 0 u0(L) = 0.

If the beam is simply supported at its extremes (hinged beam) then�
u(0) = 0, u(L) = 0,
u00(0) = 0, u00(L) = 0.

Neumann type boundary conditions are as the following ones�
u00(0) = 0, u00(L) = 0,
u000(0) = 0, u000(L) = 0,

but other combinations (with a0 = b0 = 0) are also of interest.
Finally, a very often situation corresponds to a cantilever bar (x = 0
clamped and x = L free)�

u(0) = 0, u00(L) = 0,
u0(0) = 0 u000(L) = 0.

J.I.Díaz (UCM, Dedicated to Monique Madaune-Tort in her 60th birthday.)On very weak solutions of higher order equations September 16th., 2010 5 / 20



In a second part I will consider the Euler-Bernouilli transient
hyperbolic problem (with a possible damping term)

(HP)

8>><>>:
ρ ∂2u

∂t2 + µ ∂u
∂t +

∂4u
∂x 4 = f (t, x) t 2 (0,T ), x 2 (0, L),

+ boundary conditions, t 2 (0,T ),
u(0, x) = u0(x) x 2 (0, L),
ut (0, x) = v0(x) x 2 (0, L),

as well as the so called (Duvaut and Lions 1972) "quasi-static"
associated problem (now of a parabolic type) which gives the
dynamics decay when λ is large enough

(HP)

8<: µ ∂u
∂t +

∂4u
∂x 4 = f (t, x) t 2 (0,T ), x 2 (0, L),

+ boundary conditions, t 2 (0,T ),
u(0, x) = u0(x) x 2 (0, L).
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We shall see that the optimal weight w(x) in order to solve the above
problems is

δab(x) = maxfmin(a0, a1)d(x , 0)2,min(a0, a2)d(x , 0), a3gmaxfmin(b0, b1)d(x , L)2,min(b0, b2)d(x , L), b3g.

Notice that, for instance for the Dirichlet problem
[a = (1, 1, 0, 0),b = (1, 1, 0, 0)], we must take δab(x) � δ2(x) with
δ = dist (x , ∂Ω).

A possible plan for the rest of the lecture:

2. Necessary and Su¢ cient conditions for the existence of
solutions for the stationary problem.

3. Perturbation results for the stationary operator in
L1(0, L : δab).The semigroup approach for the parabolic problem in
L1(0, L : δab) and remarks on the hyperbolic problem in L2(0, L : δab).
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2. Necessary and Su¢ cient conditions for the existence of solutions
for the stationary problem.
To �x ideas I will consider now the case of Dirichlet boundary conditions.

De�nition. Given f 2 L1Loc (0, L) a function u 2 L1Loc (0, L) is a
solution of (SP) in D 0(0, L) if�

u,
d4ζ
dx4

�
D 0D

= hf , ζiD 0D

for any ζ 2 D(0, L) = C∞
c (0, L).

We introduce now the space associated to the boundary (BC ) as

V = fζ 2 C 4([0, L]): ζ satis�es (BC )gW
4,∞(0,L)

.

For instance, for the case of Dirichlet boundary conditions
V = W 4,∞(0, L) \W 2,∞

0 (0, L).
De�nition. Given f 2 L1(0, L : δab) a function u 2 L1(0, L) is a
"very weak solution" of (SP) and (BC ) if for any ζ 2 VZ L

0
u(x)

d4ζ
dx4

(x)dx =
Z L

0
f (x)ζ(x)dx .

J.I.Díaz (UCM, Dedicated to Monique Madaune-Tort in her 60th birthday.)On very weak solutions of higher order equations September 16th., 2010 8 / 20



2. Necessary and Su¢ cient conditions for the existence of solutions
for the stationary problem.
To �x ideas I will consider now the case of Dirichlet boundary conditions.

De�nition. Given f 2 L1Loc (0, L) a function u 2 L1Loc (0, L) is a
solution of (SP) in D 0(0, L) if�

u,
d4ζ
dx4

�
D 0D

= hf , ζiD 0D

for any ζ 2 D(0, L) = C∞
c (0, L).

We introduce now the space associated to the boundary (BC ) as

V = fζ 2 C 4([0, L]): ζ satis�es (BC )gW
4,∞(0,L)

.

For instance, for the case of Dirichlet boundary conditions
V = W 4,∞(0, L) \W 2,∞

0 (0, L).

De�nition. Given f 2 L1(0, L : δab) a function u 2 L1(0, L) is a
"very weak solution" of (SP) and (BC ) if for any ζ 2 VZ L

0
u(x)

d4ζ
dx4

(x)dx =
Z L

0
f (x)ζ(x)dx .

J.I.Díaz (UCM, Dedicated to Monique Madaune-Tort in her 60th birthday.)On very weak solutions of higher order equations September 16th., 2010 8 / 20



2. Necessary and Su¢ cient conditions for the existence of solutions
for the stationary problem.
To �x ideas I will consider now the case of Dirichlet boundary conditions.

De�nition. Given f 2 L1Loc (0, L) a function u 2 L1Loc (0, L) is a
solution of (SP) in D 0(0, L) if�

u,
d4ζ
dx4

�
D 0D

= hf , ζiD 0D

for any ζ 2 D(0, L) = C∞
c (0, L).

We introduce now the space associated to the boundary (BC ) as

V = fζ 2 C 4([0, L]): ζ satis�es (BC )gW
4,∞(0,L)

.

For instance, for the case of Dirichlet boundary conditions
V = W 4,∞(0, L) \W 2,∞

0 (0, L).
De�nition. Given f 2 L1(0, L : δab) a function u 2 L1(0, L) is a
"very weak solution" of (SP) and (BC ) if for any ζ 2 VZ L

0
u(x)

d4ζ
dx4

(x)dx =
Z L

0
f (x)ζ(x)dx .

J.I.Díaz (UCM, Dedicated to Monique Madaune-Tort in her 60th birthday.)On very weak solutions of higher order equations September 16th., 2010 8 / 20



Remark 1. It is not di¢ cult to show that ζ 2 V implies that
jζ(x)j � cδab for any x 2 (0, L) and so the above identity is well
justi�ed.

Main result: Theorem 1.

(Su¢ ciency) Assume that a2a3 = 0 if b2 = b3 = 1 (respectively,b2b3 = 0
if a2 = a3 = 1). Then, for any f 2 L1(0, L : δab) there exists a unique
very weak solution of (SP) and (BC ). Moreover we have the estimate
(weak maximum principle)

24L4 ku+kL1(0,L) � kf+kL1(0,L:δab) , (1)

where, in general, h+ = max(0, h). Moreover u 2 C 3([0, L]).
(Strong maximum principle) Let f 2 L1(0, L : δab) with f � 0 a.e.
x 2 (0, L). Then the very weak solution satis�es )

u(x) � C kf kL1(0,L:δab) δab(x) > 0 for any x 2 (0, L),

for some C > 0.
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(Necessity) Assume that f 2 L1Loc (0, L), such that f � 0 a.e. x 2 (0, L).
Then if Z L

0
f (x)δab(x)dx = +∞

then it can not exists any u 2 C 3([0, L]) satisfying (BC ) being also
solution in D 0(0, L) of (SP).
Remarks.
1. It is possible to give a physical meaning to the solvability (necessary
and su¢ cient) assumption f 2 L1(0, L : δab). For instance, for the
Dirichlet case it means that the momentum function of the shear stress at
any interior point x with respect the two extremes must be an integrable
function.
2. Theorem 1 extends many previous works in the literature: Aftabizadeh
(1986), Gupta (1988), Agarwal (1989), O�Regan (1991), Bernis (1996),
Pao (1999), Yao (2008)...
3. The weak maximum principle was �rst proved in
Chow-Dunninger-Lasota (1973) but under a non-quantitative version.
Estimate (1) is new in the literature.
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4 The strong maximum principle extends to fourth order the previous
results by Morel and Ostwald (1985) and Brezis-Cabré (1998) It
shows the complete blow up (in the whole interval (0, L)) when
f /2 L1(0, L : δab) and we truncate it generating
fn(x) = min(f (x), n). Indeed, now the problem can be solved for fn
since L∞(0, L) � L1(0, L : δab) but un(x) � C kfnkL1(0,L:δab) δab(x)
implies that un(x)% +∞ for any x 2 (0, L).

5 It seems possible to extend the above result to the case of several
dimensions BUT ON BALLS AND UNDER SYMMETRY
CONDITIONS ON f . The maximum principle is false on some
ellipsoidal domains (conjecture by Hadamard 1908: proofs by Du¢ n
(1949), Garabedian (1951), ...)

6 The existence result holds also in the more general class of Radon
measures f 2 M(0, L : δab): something very useful to justify the
engineers study in with the weight on the beam is concentrated in
isolated points. Notice that although the usual Radon measure space
(without wieight) M(0, L) is a subset of the dual space H�2(0, L) it
is not always true (see Brezis-Browder (1982)) that the duality
hf , ζiH�2(0,L),H 20 (0,L) coincides with the
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implies that un(x)% +∞ for any x 2 (0, L).

5 It seems possible to extend the above result to the case of several
dimensions BUT ON BALLS AND UNDER SYMMETRY
CONDITIONS ON f . The maximum principle is false on some
ellipsoidal domains (conjecture by Hadamard 1908: proofs by Du¢ n
(1949), Garabedian (1951), ...)

6 The existence result holds also in the more general class of Radon
measures f 2 M(0, L : δab): something very useful to justify the
engineers study in with the weight on the beam is concentrated in
isolated points. Notice that although the usual Radon measure space
(without wieight) M(0, L) is a subset of the dual space H�2(0, L) it
is not always true (see Brezis-Browder (1982)) that the duality
hf , ζiH�2(0,L),H 20 (0,L) coincides with the
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hf , ζiM (0,L),C 0([0,L]) =
R L
0 ζ(x)df duality.

Main ideas of the proof:

The existence part can be obtained by using the associated Green
function associated to the boundary conditions since formula

u(x) =
Z L

0
G (x , y)f (y)dy (2)

is well justi�ed: it is not di¢ cult to show that jG (., y)j � Cδab(y)
(use, for instance, Stakgold (1998)). The regularity and, specially, the
L1�estimate (weak maximum principle) is much more delicate and
require several ingredients. The �rst one is the following
"conservation formula":

Lemma 1. Let f 2 L1(0, L : δ2) and let u be any very weak solution
of (SP) and Dirichlet BC. Then

24L4
Z L

0
u(x)dx =

Z L

0
x2(L� x)2f (x)dx .
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Remarks.

7 Notice that bδ(x) := x(L� x) � δ(x). Analogous "conservation
formula" for other boundary conditions.

8 Several proofs: Bernis (1996) by using Green expression (2). A
shorter one is by taking ζ(x) = x2(L� x)2 as test function in the
de�nition of very weak solution and by checking that ζ(4)(x) = 24L4.

9 By interpolation it implies that u 2 C 3([0, L]).
Lemma 2 (Chow-Dunninger-Lasota (1973)). Let f 2 L1loc (0, L) such
that f � 0 on (0, L). Let u 2 C 3([0, L]) solution of (SP) and (BC ).
Then u(x) � 0 for any x 2 (0, L).
The new key ingredient is an abstract result due to M.G. Crandall and
L. Tartar (1980) applied until now only for hyperbolic conservation
laws and Hamilton-Jacobi equations.
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Lemma 3 (Crandall-Tartar (1980)). Let X ,Y two vector lattices and
λX ,λY be nonnegative linear functionals on X and Y respectively.
Let C � X and f , g 2 C imply f _ g 2 C. Let T : C ! Y satisfy

λX (f ) = λY (T (f )) for f 2 C . (3)

Then (a)) (b)) (c) where (a), (b), (c) are the properties:
(a) f , g 2 C and f � g imply T (f ) � T (g),
(b) λY ((T (f )� T (g))+) � λX ((f � g)+) for f , g 2 C,
(c) λY (jT (f )� T (g)j) � λX (jf � g j).
Moreover, if λY (F ) > 0 for any F > 0, then (a), (b), (c) are
equivalent.
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Application to prove the L1�estimate:
C = X = L1(0, L : bδ2), Y = L1(0, L),
λX (f ) =

R L
0 x

2(L� x)2f (x)dx , λY (F ) =
R L
0 F (x)dx .

T (f ) = 24L4u (u very weak solution of (SP) and (DBC )).

Then the identity (3) coincides with Lemma 1 and property (a) is
given by Lemma 2. So we get (b) which is the wanted L1�estimate.

The proof of the strong maximum principle uses the Green expression
(2) and the estimate that jG (., y)j � Cδab(y).
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3. Perturbation results for the stationary operator in L1(Ω, δab). The
semigroup approach for the parabolic problem in L1(Ω, δab) and in
L2(Ω, δab) for the hyperbolic problem.
Many extensions of the above theorem are possible. For instance, the
nonlinear problem

(NLSP)
�

d 4u
dx 4 + β(u) = f (x) x 2 Ω = (0, L),
+ boundary conditions (BC ),

arises in many di¤erent frameworks: the linear case β(u) = ku
corresponds to the so called elastic beam (Boggio (1908), Hadamard
(1908),.... Monotone non decreasing functions β(u) were used in
McKenna-Walter (1987), Lazer and McKenna (1990),..., in the modeling
of suspension bridges.
Remark 10. A quite curious fact (Dunninger (1981) Swers-Kawhol
(2005): the strong maximum principle for the linear equation

d4u
dx4

+ ku = f (x)

and boundary conditions a0 = b0 = a2 = b2 = 1 is only true for
k 2 (�k0, k1), for some k0, k1 > 0 depending on L. This also holds for the
case of Dirichlet conditions: the associated Green function G (x , y) can be
explicetly built (for instance by means of the use of Mapple) and it can be
shown that if k is large enough then G (x0, y0) for some (x0, y0) 2 [0, L]2.
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Nevertheless, in terms of abstract operators on the Banach space
L1(Ω, δab) we have
Theorem 2. Let A : D(A)! L1(0, L : δab) the operator given by(
D(A) = fu 2 L1(0, L : δab) \ C 3([0, L]) : d

4u
dx 4 2 L

1(0, L : δab) and u satis�es the (BC )g
Au = d 4u

dx 4 if u 2 D(A).

Then,
i) 9 C > 0 such that

C kukL1(0,L:δab) � kAukL1(0,L:δab) for all u 2 D(A),

ii) 9 ω 2 R such that A+ωI is a m-accretive operator in
L1(0, L : δab), i .e. and for any λ > 0 and f 2 L1(0, L : δab)

(I + λ(A+ωI ))�1f




L1(0,L:δab)

� kf kL1(0,L:δab) .

In consequence we have
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Corollary 1. For any β maximal monotone graph of R2 there exists a
unique very weak solution of the equation

d4u
dx4

+ωu + β(u) = f (x)

satisfying (BC ). Moreover


h(f � Au +ωu)� (bf � Abu +ωbu)i



L1(0,L:δab)

�



hf � bf i




L1(0,L:δab)
.

Corollary 2. Given u0 2 L1(0, L : δab) and f 2 L1(0,T : L1(0, L : δab))
there exists a unique mild solution of the parabolic problem

(HP)

8<: µ ∂u
∂t +

∂4u
∂x 4 = f (t, x) t 2 (0,T ), x 2 (0, L),

+ boundary conditions, t 2 (0,T ),
u(0, x) = u0(x) x 2 (0, L).

Moreover we have the following continuous dependence inequality

ku(t)kL1(0,L:δab) � e
tω(ku0kL1(0,L:δab) +

Z t

0
kf (s)kL1(0,L:δab) ds).
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Remark. This results improves many results in the literature
Damlamian (1978), Friedman-Oswald (1988), Root (1991), Cholewa
(1992), Bernis (1994, 1995,...), Cui (1996), Davis (2001),
Galaktionov-Pohozaev (2002), Gazzola-Grunau (2009),... The
comparison of solutions was shown here by �rst time in the literature.

In general the operator A is not T-accretive (see Remark 10),
nevertheless it is possible to show the following result:

Theorem 3 (eventual positivity) Let f 2 L1(0,T : L1(0, L : δab)) be such
that f (t, x)! f∞(x) in L1(0, L : δab) as t ! +∞, with f∞(x) > 0.
Then, for any u0 2 L1(0, L : δab) there exist a time T0 � 0 (depending on
u0) such that u(t, x) > 0 for any t � T0 and for any x 2 (0, L).

Finally, concerning the hyperbolic problem, the semigroup approach
only works e¢ ciently on Hilbert spaces (counterexample by W.
Littman (1963)).
Theorem 4. Let u0 2 H20 (0, L : δ2), v0 2 L2(0, L : δ2) and
f 2 L2(0,T : H�2(0, L : δab)). Then there exists a unique weak
solution u 2 C ([0,T ] : H20 (0, L : δ2)), ut 2 C ([0,T ] : L2(0, L :
δ2)), utt 2 L2(0,T : H�2(0, L : δab)) of the problem

(HP)

8>><>>:
ρ ∂2u

∂t2 + µ ∂u
∂t +

∂4u
∂x 4 = f (t, x) t 2 (0,T ), x 2 (0, L),

+ Dirichlet boundary conditions, t 2 (0,T ),
u(0, x) = u0(x) x 2 (0, L),
ut (0, x) = v0(x) x 2 (0, L).
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The proof results of the application of the results by Brezis (1971, 1973)
and Haraux (1978) to the vectorial operator built through the maximal
monotone operator A+ωI now on the Hilbert space H = L2(0, L : δ2).

.

THANKS FOR YOUR ATTENTION
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