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1. Introduction

It is well-known that the Monge-Ampere operator has many applications in Geometry

and related areas:
L. Nirenberg: Monge-Ampere equations and some associated problems in Geometry, in
Proceedings of the International Congress of Mathematics, Vancouver 1974, ...

Today we also know that the applications arises in many other areas: optimal transportation,
optimal design of antenna arrays, vision, statistical mechanics, front formation in
meteorology, financial mathematics,...

C. Budd and V. Galaktionov,: On self-similar blow-up in evolution equations of

Monge-Ampere type, IMA J. Appl. Math., (2011), ...
In this lecture we shall focus our attention in the occurrence of a free boundary (separating
the region where the solution u is locally a hyperplane, and so were the Hessian D?u is
vanishing, from the rest of the domain).

G. Diaz and J.I. Diaz, Remarks on the Monge-Ampere equation: some free boundary

problems in Geometry, In Contribuciones matematicas en homenaje a Juan Tarrés,
M. Castrillon et al. eds., Univ. Complutense de Madrid, Madrid, 2012, 97-126.

Remark 2.25 of the 1985 monograph, ...
Cortona 1992 Autumn Course (Talenti, Oliker, Serrin, Kawhol,...)

Personal communications to Nirenberg and Caffarelli (Santander Course 1993)




Now (27 years later !!) we decided to formulate the free boundary parabolic and elliptic

problems in connection to the shape of worn stones model (W. J. Fiery (1974), R.
Hamilton (1993), D. Chopp, L.C. Evans, H. Ishii (1999),...)

the points P of the N-dimensional convex hyper-surface XN(t), embedded in RN*!(in the
physical case N = 3), under Gauss curvature flow K, with exponent p > 0, moves in the

inward direction n to the surface with velocity equal to the p power of its Gaussian
curvature).

In the special case of XN(t)=graph of xvu= u(x; t), X in a
convex open set Q of RN, the function u satisfies the
parabolic Monge-Ampere equation




(det Dzu)p
Ut = (Nf2p—1

(14 Duf2) 2

Related problems in 3d-images: V. Caselles and C. Sbert (1996), ...

More in general
Evolution Problem: given a bounded open set Q of RN, a continuous function ¢ on 0Q,
a locally convex function wo, p > 0, and a continuous function g € C([0;+o0)) such that

g(s) = 1 for any s > 0,

find a convex function satisfying,

( (det Dgu)p AR
Uy = in 2 x Ry,
)T ) i
(PP) w(z,t) = (), (z,8) € O x R,
| u(zx, 0) = ug(x). x € (.

To simplify the exposition ¢(x) time-independent.
Formulation of the associate elliptic problem. Difficult (to us) to foresee on purely

geometric grounds (Hamilton, ...), level set approach (Ishi-Souganidis, ...) so that:
here, the parabolic problem regarded as a Cauchy Problem, semigroup theory,...

{Ut‘I‘A’-’.L—O, t >0, Au:_(detDzu)p

u(0) = ug, X = C(Q) 9(Dul)



1
Uy — Un—1 VP .
! L Au, =0 forneN, det D?u,, = (QUDunD B ) in £2.

£

Elliptic problem: under the above assumption on Q, ¢, p and g, find a
convex function u satisfying,

‘ . ) Nt _
| det D%u = g(|Du|) | (e — h)F n €2,
(EP) : )N am
|\ u= on J(2,

where h(x) is a given continuous function on €.
For the evolution problem replace g(|Dx|) by (g(|Dz|))*®.

The operator is degenerate elliptic on the symmetric definite nonnegative matrices:
we assume the compatibility condition

h is locally convex on £ and h < ¢ on 9. (C)

Therefore, under (C) the problem becomes

1
det D?u = g(|Du|) (u— k)" in {2,
U= (p on J12,




The junction F between the regions where [u = h] and [h < u] is a free boundary:
the boundary of the set where detD?u > 0.

Since the interior of the regions [u = h| and [detD?u = 0] coincide we must have
that D2h = 0 on the interior of the set [u = h].

Motivated by the applications, as well as by the structure of the equation, the
occurrence and localization of a the free boundary will be studied whenever h(x)
(respectively u,(x)) has flat regions

Flat(h) = U{x € Q:h(x)= {ps,x) +a,, Po €RY, a, €R}

(, ) denotes the Euclidean inner product in RN

Plan:
2. On the notion of solutions and the

h)=<F, x>+
h)=<F,, x> +a,

3. Flat regions in the stationary_Qroblé \.
o) <Py
4. The evolution problem. Study of the assomated free bouhdary and the

global flatness in finite time.

!1{(11): “\Lduﬁ\{_lunﬁdﬂi




2. On the notion of solutions and the weak maximum principle.

Existence results (in the class of C? convex functions) for the general elliptic
problem

o :

(GE) { det D#u = H(Du, u, ) mn 2,

U= on 00,
are well known in the literature under suitable assumptions on 2, H> 0 and .

Trudinger, N,S., Wang, X.-J.: The Monge-Ampere equation and its geometric
applications, in Handbook of Geometric Analysis, Vol. I, International Press (2008),
467-524.
A main question arises now both in theory and in applications:

what happens if H>0 ?

Certainly, the elliptic degeneracy occurs and in general the regularity C? of
solutions cannot be guaranteed. The so called viscosity solutions or the generalized
solutions are suitable notions in order to remove the degeneracy of the operator. In
fact, it can be proved that for a convex domain both notions coincide (C.E.
Gutierrez (2001)).

Definition 1 (=A.D. Aleksandrov, (1939)). A convex function u on is a

generalized solution of (GE) if
o, (E) = / H(Du,u,z)dx for any Borel set E C Q.

po (E) = |Ou(E)| = meas{p € RY: pe Ou(zx) for some z € E}.



The left hand side have a “classical” sense merely when u is C! and convex.

By the structure of the problem, u must be convex on and consequently u is at least
locally Lipschitz. While for locally Lipschitz functions the right hand side is well defined,
slight but careful modifications are needed to give sense to the left hand side. The

progress in this direction is achieved thanks to the notion of subgradients of a convex
function wu:

given p € RN, we say p € du(z) iff u(y) >u(e)+ (p,y —2) forallyec Q.

Other notion of solutions are available for other type of fully nonlinear equations with
non divergence form. The most usual is the so called viscosity solution:

Definition 2 (= P.L.Lions, M.G .Crandall, L. Caffarelli, I. Hishi, R. Jensen, R.
Newcomb, .... (since 1983)). A convex function u is a viscosity solution of the
inequality

det D?u > H(Du,u,¢) in Q
if for every C? convex function ® on Q) for which

(uw— ®)(zg) = (u— P)(x) locally at zg € Q2

one has

det D®(zq) > H(D@(xo),u(:vo), a:o).



Analogously, one defines the viscosity solution of the reverse inequality
det D*u < H(Du,u, ) in O
as a convex function = on 2 such that for every C? convex function ® on ) for which
(2 — P)xg) < (u— P)(z) locally at zp € 02

one has

det D2¢>(x0) < H(D@(mo), u(zy), (xo)).
Finally, when both properties hold we arrive to the notion of viscosity solution of
det D%z = H(Du,u,2) in .
Note that the convexity condition on u and are extra assumptions with

respect to the usual notion of viscosity solution

Crandall, M.G., Ishui, H., Lions, P.-L.: Users guide to viscosity solutions of second
order partial differential equations. Bull. Amer. Math. Soc., 27 (1992), 1-67.

This is needed here because the Monge-Ampere operator is only degenerate elliptic
on this class of functions. In fact, it can be seen that the convexity is only required
for the correct definition of supersolutions in viscosity sense.



A very simple (and important fact) was used in our precedent arguments: if
21 € C? and 2y — 2y € C? are convex functions on a ball B then

det D%u, > det D%%; in B.

This simple mequality can be extended to the case 2y and 2z — 21 convex function
on a ball B, with 2y = 2z, on dB, by the “monotonicity formula”

fruz (B) = phu, (B) (17)

(see [42]). So that, the Weak Maximum Principle can be extended to the class of
generalized solutions

The results of this section apply to the case of a general increasing function fe C(R) satisfying

f(0) =0 detD2u=g(|Du|)f(“_h) in .

Theorem 2.6 (Weak Maximum Principle II). Let hy,he € C(Q). Let uy,uz € C(Q)
where wuy ts locally convex tn (). Suppose

—det D?uy + g (|Dus|) f (w1 —hi) < —det D*ug + g(|Dug|) flug — ko) inQ (18)

tn the generalized solution sense. Then

(uy —ug)(z) < s;{;;[ui —ugly + sgp[hi —holy, xz€Q. (19)
In particular,
|u1—u2|(x)§s$1p|u1 —up|+ sup |k — ha|, x €, (20)
Q 9!

whenever the equality holds in (18).



A first consequence of the general theory and the Weak Maximum Principle 1s the
following existence and uniqueness result:
Theorem 2.8. Let ¢ € C(00) and assume the compatibility condition (4). Then

there exists a unigue locally convex function verifying Notations of the manuscript:

det D%z = g(|Du|)f(u —h) in Q, sorry !!
U= on 082,

in the generalized sense. In fact, one verifies
hiz) < u(z) < Uy(z), z€, (21)

where U, is the harmonic function in Q with U, = ¢ on 910

Proof. First we consider the generalized solution of the problem

—det D*u+ g(|Dul) [ f(u— h)] ,=0 i@
{ u= on ).

Since H(Du,u,2) = g(|Dul) [f(u — h)]_I_ > (0 we can apply well known results in the
literature. In particular, from [43], it follows the existence and uniqueness of the

solution %. The second point 1s to note that, by construction, the own locally convex
function h verifies

—detD*h + g(|Du|) [f(h—R)], <O n Q.

Therefore, by the Weak Maximum Principle and the assumption k < ¢ on 0Q we get
that

h<wu @,



whence

flu—h)], = flu—h)

concludes the existence. The umqueness also follows from the Weak Maximum Prin-
ciple. Fmally, since % 1s locally convex, the arthmetic-geometric mean mequahty
lead to

0 < det D% < %@ﬁqmg

whence the estimate

h(e) <u(z) <Uy(z), 2€Q

15 completed by the weak maximum principe for harmome functions. ]

Remark 2.9. 1) As it was pointed out in the Introduction, no sign assumption on A
1s required in Theorem 2.8. The simple structural assumption (4) implies that 2 < u
on 2 and therefore the ellipticity, eventually degenerate, of the equation holds. Thus,
the ellipticity holds once & behaves as a lower “obstacle” for the solution %. We note
that these compatibility conditions are not requred a priori in the Weak Maximum
Principles because there we are working with functions whose existence 1s a prior
assumed.

In the next section we shall prove a kind of Strong Maximum Principle which under
suitable assumptions will avoid the appearance of the free boundary.



3. Flat regions in the stationary problem.

In this section we focus the attention to a lower “obstacle” function A locally convex

on () having some region giving rise to the set NP
MHHA
Flat(k) = | |Flat,(k . i
W=URatat)
where / 4 -
Flat,(h) = {z € Q: h(z) = {pa, @} + a,, for some p, € RY and a, € R}.  (23)
Since
w(y) — (P ¥) + o) = ul(z) — ({Po, @) + an) + (P — Po, ¥ — T,
thus

pcdu(z) & p-—psc€dul)—({Po2)+a)),

the equation of the elliptic problem (EP) becomes

1
det D%u,, = Ag(|Dul)ug, @ € Flat,(h), Uy = 2% — ({Pa, @) + as)

Assumption g(|p|)>1 leads us to study for the auxiliar problem



det DU = AU?  in Bgr(0),
U=M=>0 on JBg(0),

for any M > 0. From the uniqueness of solutions, 1t follows that U 1s radially sym-
metric, because by rotating i1t we would find another solutions. Moreover, by the
comparison results U 1s nonnegative. Therefore, the solution U 1s governed by a
nonnegative radial profile function U{z) = U(|z|) for which some straightforward
computations leads to

(25)

. N—1 .
detD2U(a:):ﬁ”(r)( Uf’")) - ()] (26)

Remark 3.1. For N = 1, equation (25) becomes
U(r) = AU*

whose annulation set was studied in [26]. Note that for N > 1 equation (26) does not
coincide with the (N — 1)-Laplacian considered in [26]. m

We start by considering the initial value problem

Tl—N

(IVP)=(27) — [WE)"] =aue)F, Ao
U(0) = U'(0) = 0.




Obwviously, U(r) = 0 is always a solution, but we are interested in the existence of
nontrivial and non—negative solutions. It will be useful the following result

We shall show that the behaviour of u depends strongly on the exponent p

Nep34

Lemma 3.2. Assume Np > 1. Consider the function

U(r) = ATe=1CrFe=t, >0, (28)

where C 18 a positive constani. Let

Cpn = ((2NP)N_1(Np +1) ) T |

(Np— DF =%
Then,
p1—N N 1 1 e _2N
— (V)T + A (U)F = ¢ [1 (;\mf_?c N) ]"””"‘i- (30)
Therefore,

(1) #f C < )\Npp—icp?N the function U(r) is a supersolution of the eguation (27),
— e

() #C = )\Npp—icp?N the function U(r) is the solution of the eguation (27),

(1) # C > )\Np"—icp,N the function U(r) is a subsolution of the eguation (27).



Since Np > 1, the function

U(r) = AMe=2C_ rFeoT, 7> 0, 31
p?

enables us to construct functions vanishing in a ball B, (0)
vr(@) = U2l = 7]4), ©eRY, (32)

which solves )
—det D?w,(z) + Ao (2))? =0, «¢€ RY.

Moreover, given M > 0, 1t verifies
v.(x)=M, |¢|]=R,

once we take

Np—1
M 2Np _ i
T=R—U_1(M)=( ) PN
CoN
with _
1 M P
A> A, = . 33
B R2H (Cp,N) ( )

Now for the solution of (EP) we may localize a core of the flat region Flat(u) inside the
flat subregion Flat, (h) of the datum h(x).



Theorem 3.3. Let h be locally convex on ). Let us assume that there exists Bg (xg) C
Flat, (k) with

0 <u(@) — ({(Pa, @) +ay) <M< mﬁax(u — k), @€ IBgr(xg), (34)

where u s a generalized solutton of (7), for some M > 0. Then, if Np > 1 and

Np—1

1 M P
A A=
> (on)

one verifies

0 < u(@) — ({Po»@) +ao) S ATTC (|| — 20| — 7] )™7F, @ €Br(xo), (35)

where
M TR . )

T (CmN) [A* -4 zN] ’ (36)

once we assume that
Np—1
M 2Np 1 )
( ) AT < R < dist(zo, 90). (37)
Cp.N

In particular, the function u is locally flat

w(x) = (po, ) + a, for any x € B, (zq).



Remark 3.4. We have proved that under the above assumptions the flat region of
1s a non—empty set. Obviously, Flat(k) C Flat(u) whenever (34) fails, even if Np > 1.
We shall examine the optimality of (35) in [24] following different strategies carry out
in [26] for other free boundary problems. u

Remark 3.5. We point out that the above result applies to the case in which p = 1

and ~ = 0 (the so called “dead core” problem) as well as to cases in which = is flat
only near 92 (take for instance, h(z) = (p,, %) + a, In  and ¢ = k on 90). H

‘Theorem 3.3 gives some estimates on the localization of the points inside Flat(%)
where 2 becomes flat too. The following result shows that if 2 decays in a suitable way
at the boundary points of Flat(k) then the solution z becomes also flat in those points

of the boundary of Flat(k). In this result the parameter A 1s irrelevant, therefore with
no loss of generality we shall assume that A = 1.

Theorem 3.6. Let us assume Np > 1. Let g € OFlat, (k) such that

h(z) — (Do @) + @) < K|z — 20|77, 2 € Br(zo) N (RY \ Flat(k)),

and
0< max {u(z)— ({pa@) +as)} < CR¥e-1 (39)

| —xo|=R

for some suitable positive constants K and R and u is a generalized solution of (7).

Then
u(®0) = (Pa> %0} + o (40)



FProof. Define the function

Viz) = u(@) — ({Pa> ) + aa),

which by construction is nonnegative in IBr (o) (see (39). In fact, the Weak Maxi-
mum Principle implies that V is non negative on Br(xp). Then

— det D2V {z) + (V(x)) e — det D%u(z) + (u(a:) — ({po,, x) + a,a)) -
—(u(m) —h(x))® + (u(x) — ((Pa,x} +an))®
Cp K# (h(x) — ((pa,x) + a,o,))?

CpKP |z — a0 W1 , x € Bg(xg),

IA

IA

where we have used the classical mmequality
1 1 i L.
(a+ b)r < Cg (aﬁ + bE) for some positive constant Cyg,

as well as (38). Moreover, if we take C << Cyy , and then K such that
C,K?» <C* |1
p o N Cp,

~det D2V(z) + (V(z))* < — det D2U(|z|) + (U(|z[))*, « < Br(zo),

uIH

whence

for Ui{r) = Cle — xo |% (see (30)). Finally, by choosing R satisfying (39) one has
Viz) < U(|z|), x < IBr(xo),
whence the comparison principle concludes by comparison
0 < V(@) < Cle —wo|™%, @< Br(xo),

and so wu(xg) = ((pa,xo} + aa). 1



Remark 3.7. The assumption (39) is satisfied if we know that the ball Br(zq) where
(38) holds is assumed large enough. The above result is motivated by [26, Theorem
2.5]. By adapting the reasoning used in previous results of the literature (see [1, 3, 27])
it can be shown that the decay of hiz) — ({pa, x) + aa) near the boundary point xg
1s optimal 1n the sense that if

2Np

h(z) — ({pa, ) + as) > Clz — 20| ™=  in a neighbourhood of g

then 1t can be shown that
u(zg) — ((pa,xo) + aa)) > Cle — as0|N2:—1 for  near zg.

This type of results gives very rich information on the non—degeneracy behawvior of
the solution near the free boundary. This 1s very useful to the study of the continuous

dependence of the free boundary with respect to the data h and ¢ (see [27]). ]

Now we examine the case in which the solution cannot be flat (i.e: the free boundary
cannot appear) independent on the “size” of €Q: obviously it will require the condition

Np <I.
|




Lemma 3.8 (Hopf boundary point lemma). Assume Np < 1. Lef u be a nonnegaiive
wviscosity solution of

—detDzu—I—u% >0 n (2
Let xg € O) be such that u(xg) = llﬂglclgfu(m) and
€2
i) u achieves a strict minimum on QU {xq},
i7) 3 Bri(xo — Rn(xo)) C Q, ( 0Q salisfies an inierior sphere condilton al xq).
Then

u(xg — 7n)

lim inf > C >0, (41)
T—0

T

where n stands for the outer normal unit vector of ) at xo and C is a positive
constant depending only on the geometry of 900 at xg.

Proof. Let 4 = 2o — Rn(zg) and Bg = Br(y). As it was pointed out before, equa-
tion (7) leads to the study of the differential equation

1-N / 1
—|@0)"] = @()7, r>0

for radially symmetric solutions. We consider now the classical solution of the two
point boundary problem

P

;N {(@’(r))N]’: (B(r))?, 0<r <B,

2
B(0) =0, @ (%) = >0,

¥

o e

(42)



The exastence of solution follows from standard arguments and the umqueness of
solution can be proved as in Theorem 2.6, whence

P =0 = P(r)>0 = &"(r) > 0.

Then

0<P(r) < Py, 0<r<%.

We note that the singularity at » = 0 must be removed by the condition

1-N

e (43)

Let rq be the largest » for which ®(r) = 0. We want to prove that ro = 0 by proving
that 7o > 0 leads to a contradiction. In order to do that we multiply (42) by » &/ (r)
and get

Lim
r—0

[((I)’(r))NH]f = (N+1)(@() 7' (1, 0<r< %.

Next, since ®'(rg) = 0 = ®(ry), an integration between rg and r leads to

ot _ PN+ 1) ~1 _ p(N+1)(N-1)
(@)™ = B @) 0 f (B(s))"F ~2ds
p(N +1) el

ST (em) T r<r<y.

<
- 2

Because Np < 1, a new integration between ry and — yields the conjectured contra-

2

diction because

By B / i B
00 = / = / ’ ¥'(r) —dr < (N+1) (p—(N-I- 1)) fz PN ldr < co.
Bt +1
sp(N+1) 70 (@(T)) p(N+1) p 70




So that, we have proved ®'(0) > 0 and also

0<®(r) < @y, ¥(r) >0, 0<r<%,

aswell as & (0) =

function w(z)

0 (see (43)). Hence, straightforward computations on the C* convex
o(R

— & —y|), defined in the anmulus O = By \E%, prove

det D%w(z) = f(v(x)), reQ,
w(z) = &y, xe@B%,
w(z)=10, ¢ dBg.

Moreover, by construction
u(e) >0, ¢€dBz = ul@)zw(), cIBg,
for ®; small enough. Then the Weak Maxamum Principle of Proposition 2.4 imples

(u—w)(z) >0, 2€0.

that leads to
u(zg — ) > ®(R -R(1l- T))’ r <)
T T
whence
tminf 22" 5 g0y > 0
T—0 T



Our main result proving the absence of the free boundary 1s the following

Theorem 3.10 (Hopf’s Strong Maximum Principle). Assume Np < 1. Let u be a
nonnegative viscosity solution of

—detDQu—l—uﬁ >0 n L

Then u cannot vanish at some xg € () unless u s constant in a netghborhood of xq.

Proof. Assume that 2 is non—constant and achieves the minimum value z(xzg) = 0 on
some ball B € £2. Then we consider the semi-concave approximation of z, 2.e.

> — 2
u (x) = E1{1‘g§f7 {u('y) + %} , x¢&€ Bs (£ > 0), {44)

where B, = {z € B : dist(a, 8B) > £+/1 + 4suppg |u|}. For £ small enough we can
assume zg € B:. Then % achieves the minimum value in B., and u{zq) = 2" (2q) = 0.
Moreover, #* satisfies

S
—detD%u. +uf >0 on B. (45)

(see, for instance [43, Proposition 2.3] or [6, 16] for general fully nonlinear equations).
By classic arguments, if we denote

Bt ={ze B.: «(z) > 0},

there exists the largest ball Br(y) € B (see [30]). Certainly there exists some
zo € OBr (%)M B; for which 2(z;) = 0 is a local minimum. Then, Lemma 3.8 implies

Du®(z) # 0

contrary to
Du®(z0) = 0, (46)

as we shall prove in Lemma 3.13 below. Therefore, 2 is constant on B C 2, .e.

u (y) = u (o) = u(zp), v < B.



Finally, for every ¥ € B we denote by % the point of 2 such that
£ = 1 =~ 2
w(y) = u@ + 5z lv -9l

whence

—_—

u(wo) = u (wo) = g(y)—u(y)+ 5 lv—3f* = u(wo)+ sl Zu(z) = =
So that, one concludes

u(y) = u (y) = v’ (xo) = u(zo), w€ B.
Corollary 3.11. Assume Np < 1. Let u be a generalized solution u of (7). Then if
u(2g) > h(xg) or det D?h(z0) > 0 at some point zq of a ball B C Q then u > h on
B, consegquently the equation (7) is elliptic in B. In particular, if p(zg) > h{zg) at
some xg € 08 or det Dgh!xo! > 0 at some potnt xo € 8 the problem (5) 1§ elitpiic
non degenerate in path-connected open sets ), provided the compatibility condition (4)
holds. PR

lo)
hlxo)

L= (%a,x0) i

deth ) >0

*  Npgr M Np<4d
Proof. From Theorem 3.10, both cases imply » > h on B. Finally, a continuity
argument concludes the proof. L]

Remark 3.12. Straightforward computations enable us to extend Lemma 3.8, The-
orem 3.10 and Corollary 3.11 to the general case g(|p|) = 1, since we know that
u € WH°(0)) (see the comments of Remark 2.9). O]

Y.



4. The evolution problem. Study of the associated free boundary and the global

flatness in finite time.

We start by considering the existence of solution of (2) by means of the accretivity of
the operator. The defimtion of the operator uses odd increasing functions f € C(R),
such that f(0) = 0. Then, we say u € D(A) if u € C(Q) is a locally convex function
on {2 prescribing ¢ € C(90Q2) on 0 and there exists a nonpositive continuous function
v 1 £2 such that z 1s a generalized solution of

f_l( —detDZu) B o
g(Dwf)  — 7 0
©u = on 92,

or equivalently
det D?u = £{{ — g (|Dul|)v) in 2,
w = (P on J02,

for a more precise sense. Then we denote by Az the set of all such v € C(Q).

Theorem 4.1. The operator A is T-accretive on the Banach space X = C(Q) equipped
with the supreme norm. In pariicular,

[ [2e1 — u2]+|| < sgp | [221 — uz + = (Aug — Aug)]+

||u1 —u2|| < sgp ||u1 — o + E(.Aui — Au2)|

>

(48)

?

for e >0, u; € D(A).

FProof. It 1s a mere application of Theorem 2.6. ]



Certainly, one has
D(A) C 5/‘{;’0 = {w € C(Q) : w locally convex on Q and w = ¢ on 0 }.

In fact, we have

Corollary 4.3. The operator A satisfies D(A) = fi(p as well as the range condition

R(I+4=A4) D D(A), ==>0.
Crandall-Liggett generation theorem (see [15]) and Corollary 4.3 enables us to
show that A generates a nonlinear semigroup of contractions {S(¢)}+>0 on X and

S(tyuog = lim (I+=4) " ug  for any uo € D(A) = X,,, (49)

En—+t

uniformly for £ in bounded subsets of |0, co[. Furthermore, the mapping ¢ — S(¢)uo 1s
continuous from [0, co[ into X. In general the semigroup generated by such accretive
operators A can be regarded as the so called “mild solution” of the Cauchy problem

e + An = 0, i > D,
{ u(0) = ug, (50)

(see [15]). A different characterization is possible.
Proposition 4.4. Assume ug € D(A) C X. Then

u(z,t) = S(Huo(x), €, 0<t<T <o, (51)

satisfies (PP) in the viscosity sense.



Remark 4.5. Since u(?) € D(A) the property
0 < det D2u(t),

holds in the generalized sense a.e. £ > 0. Note that a prior1 we merely know that
S(t) (TA)) C D(A) and so the time derivative u; must be understood in a large
sense. Nevertheless, 1t 15 possible to apply different regularity results according f see,
for instance, [19] and its references. In any case, at least u; 1s a nonnegative measure
and u(-,1) 1s a locally convex function. [

Our results on the free boundary begin by studying how a possible region of
flatness of the mitial datum g shrinks when ¢ increases. We start by considering the
interior points of Flat(zg). As in Section 3, for ug € {2 we denote

Flat(ug) = U Flat, (z0)

where

Flat, (ug) = {x € Q : up(z) = {ps,2) + a, for some p, € RN and a, € R}.



Theorem 4.6. Let Np > 1 and
B (xzq) C Flat,(ug) (52)
for some R > 0. Then there exists t* = t*(ug) > 0 such that

'U'(xmt) - <pa;x0> + Qe s 0 S i< t*)

where is the solution of (PP).

Proof. We need a suitable local separable supersolution U{x,%) = U(|z|)»(¢). The
time function 7(¢) is given by

77 () = S(n(t))Np, ¢ > 0, for some & > 0, (53)
whose solution is s
1 S T Wp—1
(t) = — — & 54
O oy T N1 “D
Note that n(¢) blows up at
Np —1 1
t* (6> ??(O)) = Np—1 -
S (o))"
The spatial dependence is given by the function
U('r) = 5NP—1CP}N?«- Nzi;l_1 , r > 0,
(see (31)). In [25] 1t 1s proved the regularity
Dz € L= (0,00 : L=(Q)).
Then the convexity of the solution enables us to choose 7(0), § and R such that
max oz = n(O)S“P—icp,NRNQE—i . (55)

BR(mo)Xﬁ+
So that, we consider now the function

Viz,t) = wu(x,€) — ((pa,x> + a.o,)



for which
V(m,O) = 0, x < BR(.’Do),

(see (52)) and
Viz,t) <Ulx,t), (2,t) € Br(ag) x [0,8*(8, 1}'(0)[
hold (see (55)). On the other hand, we have that
529DV 0) 21, (5,0) € Br(eo) x [0.6(5,000)|

for a switable choice of . Therefore, one has

—% < —6(detD2V)" in Br(wo) x [0,#*(8,7(0)) |,
and
(detD2V)"  _ (detD2U)" *
Ao ST D gy B [0eGmO)]

Thus, by the comparison principle
0 < V(a,t) <Ula,t), (2,%) € Brlzg) x [0,£*(6,7(0))],

BRemark 4.7. 1t 1s easy to see that the above argument gives a simple estimate on the
shrinking of the free boundary

Fo(t)y = 3{(x,t) : u(x,t) = {po,x}) + a.} (56)

from the rest. Essentially,

lim sup dist (fa(t),Fa(O))t_Npi—i = C,

t—0

for some positive constant C. ]



The next result shows that if uo(z) — ({pa, x) + aa) arrives to some points of the
boundary of its support flat enough, let us say (38), then there exists a “finite waiting
time” for those points.

Theorem 4.8. Let Np > 1 and let xg € O be such that
ugl(e) — ({pa,x> + aa) < Kle — zg| Nzg—i, x € Brizg), (57)
for suitable positive constants K and R. Then, there exists t = t(xq) such that

w(xo,t) = (Po, o) + e 0 <t <1,

where u ts the viscosity solution of (2).

4
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Proof. Asinthe above proof we use a local separable supersolution U(z, £) = U je[)n(?),
where (t) was given in (53) and

Ur)=Crfe=1 ¢ >0,

for C > 0. Then

AN o o = Py
)+ s(ue) = 1(5_0) N

for C € ]O,éﬁ Cpxi| (see (30). Then the reasonings are similar to those of the
proof of Theorem 4.6 because now (57) provides the inequality

V(z,0) < U(a:,(l)

before derived from (52). ]



Remark 4.9. A similar waiting time result was obtained by Choop, Evans and Ishii
(1999) [see also the previous version by Hamilton (1993)] for the special case p =1 and
N = 3 (parametric compact surfaces) under a global formulation on the assumption on
the initial datum (two principal curvatures vanish on a subregion). Essentially, they
assume

w e CH[0;+0)).

Note that for this special case the condition (57) becomes
ug(x) — ((pa,x} + a,) < K|z — zol*, @ € Brlxg). (58)

In particular, any C4 partially flat function satisfies (58) at all points of the boundary
of F,(0) (see (56)). So, our result can be regarded as a local and generalized version
of the result of [14].

]
K. Tso (1985) and then B. Chow (1985) studied |
problem (PP) (for parametric compact surfaces) and
established that the surface I, converge to a point as t
1 T, for some suitable finite time T.




We continue our study on the evolution of the free boundary by showing that, in
the case of a bounded domain 2, in most of the cases F,(#) 1s shrinking.

Theorem 4.10. Let Np > 1 and assume xq such that

ug(20) = (P, @0} + @

Then there exists t > 0 such that

.

w(zo,t) > (Pa, o) + @, T >1, (59)
where u ts the viscosity solution of (2).
As a matter of fact, 1t 1s enough to show that
w(zo, 1) > (Pa, o) + a, (60)

because since u; > 0 we get (59) for any ¢ > t. In order to prove Theorem 4.10 we
shall use other smtable supersolution based on the self—similar solution of the Cauchy
problem associated to the case g(s) = 6, for suitable § > 1. We start by pointing out
that by arguing by adimensionalization we get:



Lemma 4.11. Let u(x,t) be a viscosity solution of
u; = (detDiu)” in RN x Ry, (61)
Then the change of scale ' = La, t' = Tt allows to define

uf(xf’ tr’) — LngN_pi T_ Npi—i u(x, t)
which s also a wiscostty solution of (61). O
A more deep conclusion on the self-similar solution of (61) is the following

Theorem 4.12. Assume Np > 1. Then, there exists a family of convex compactly
supported similarity solutions of (61) giwen by

The proof of Theorem 4.12 requires the analysis of the correspondent phase—plane
system

’ i
dg NP3 o 1q]P
4 _ 122 A +nat]|

) & . [3 (1) + ngv |
A _ &

\d?’]—q,

where ¢ = (AN (Sign A/ ) By simplicity, we do not present here the details but
send the reader to [25]. In any case, we can indicate that the proof 1s a non-difficult
variation of some results in the literature (see, for instance, Bernis, Hulshof and
Vazquez [7] and Igbida [35]). See also Daskalopoulus and Lee [18] for the case of the
“focusing problem” associated to (61). C. Budd and V. Galaktionov (2009) [blow up case].



Proof of Theorem 4.70. As in the proof of Theorem 4.6 we can assume that the so-
lution 2z has bounded gradient

Du e L°°(€2<]0,%])
for any given ¢. So that V(x,?) = w(x,?) — ({pa,x) + a.) verifies
Vi(z,t) — 5(det DI V(x,#))" = 0,

for a suitable § > 0, that we suppose here 4 = 1 to simplify the notation, otherwise
the needed modifications are simple. Let xq € {2 such that

ug(xg) = {Pa.Xoy + a.-
Then we consider ¢ and 2 for which
'u,l:|a: —za|, 80, 8) <= Viza,t) forany ¢ > 0 and @ € Brizg)
for some R > 0 (see Theorem 4.12). Since
u(’ro,t;a',,ﬁ) = 0

for any ro > 0 once that ¢ 1s large enough, we conclude the result. ]

Our last goal 1s the study of the asymptotic behavior of % as ¢ — oo from a
peculiar point of view. We start by proving that if Np > 1 then the stabilization to a

stationary solution requires imnfimte time. From now on, any locally convex function
on {2 such that det D“h = 0, a.e. in Q will be called flat convex function. By simplicity
we assume ¢(|p|) = 1.

To be compared with the results by Tso (1985),

Chow (1985) and Chopp, Evans, Ishii (1999) for
“parametric compact surfaces”.




Theorem 4.14. Assume that Np > 1. Let h a flat convex function on Q such that
w < h on Q. Then for each ug € D(A) such that ug < h on Q and ug < h in some
set QU C Q with positive measure, there exists a positive constant Cry such that

lim inf (h(x) u(x,t))thi—i > Coy if Np > 1,

breo e Y, (62)
lltm inf (h(z) — w(z,t))e’ > Co if Np = 1,

—+ 00

where u ts the viscosity solution of (2). Amlogously, let h be a flat convex function
on Q such that ¢ > h on OQ verifying ug > h on Q and ug > h in some set ' C Q
with posttive measure, there exists a posttive constant Cqy such that

hmhﬁummﬂ—g@nﬁﬁzzth, if Np > 1,
lim inf (u(z,t) — h(z))e’ > Cqy if Np =1,

t—roo
\_‘_("l/ h[.)
Ne g1

ze . (63)




Proof. If h be a flat such that ¢ <k on Q. Then, one has
h: = (det DZR)"

whence u(z, 1) = u(x,t) — h(z) verifies

() = (detD2u)”  in Q x Ry, o)
. 64
u<0, u#0 on (00 x Ry) U (Q x {0}),
in the viscosity sense and
u(x,t) <0, (x,1) € QAx Ry,
Here the key 1dea 1s to consider the awahar problem
{ SO+ (ko) =0, 120, (65)
$(0) = 1 $(co) =
whose solution 1s
i
2 g ]TmE

e~ m?t, if Np = 1,

where k 15 a positive constant to be choosen and m 1s a positive constant such that
h —ug > m in some Bog C Q. Let ¢(21) € C? a non positive function such that



Pl(zy) =0, x ¢ Bog,

—m < (xy) < —I;—l and " (z1) >0, x € By,

—% <i(z) <0 and '(z) <0,  a¢c By \Bg

Then the function
W(x,t) = ¢(E)b(z1), (2,1) e Qx Ry,
verifies
( Wi(x,t) <0, (x,%) € Bor x Ry,
Wix,t) =0, (@,t) € 3 x Ry,
| W(e,0) = 0)b(@) > —m > (ug — k)(z), @ € B,
| Wiz,0) = ¢(00p(21) = 0> (ug — h)(z), z €0\ Bag.

because $(0) = 1. Moreover, from (65) we get
Wile, t) + (— det DIW (2,8))" = r(,t)
where

r(x,t) > { (kqﬁ(t))Np + (_(¢(t))Np) (%'"(21))" > 0, x € Bg,

for ¢ > 0, provided k& 1s large. Then, from (64), comparison results lead to
u(e,t) —h(z) < Wiz, £) <0, (z,) € Q xRy
In particular,

() — u(z,t) > %gﬁ(t) >0, (2,8) € B x Ry

¢ (tyb(xs) + ($(&)) (=" (21))® > 0, z € 0\ Bg,

(66)



We may repeat the reasoning with a flat function h such that ¢ > k on 99 So,
the function u(z,t) = u(z,t) — h(z) verifies

@), = (detD?@)"  in Q xRy,
{ u>0,u#0 on (00 x Ry)U (9 x {0}),
in the viscosity sense and
u(z,t) >0, (x,t)eQxRy.

Now, we consider a non negative function < (x;) € C* such that

w(xl) = 0: & QEZR;
% <) <m and P(2) <0, «cBg,
0<ah(zy) < % and  ¥"(z1) >0, z € Bor \ Br,

where m 1s a positive constént such that 20 — A > m in some Bgg C 2. Arguing as
above one proves that the function

w(e,t) = p@yb(er), (2,8) €0 xRy,
verifies
wy(2,%) + ( — det D2w (e, )" < 0 in xRy,
{ w<a on (90 % Ry) U (30 % {0}),
provided k 1s large. Then, we obtain
u(z,t) —hiz) Zw(zx,t) =0, (z,6)e QxR,.

In particular,

u(z,t) — h(z) = %q&(t) >0, (2,%) € Bog x R, (67)



Note that, 1in particular, Theorem 4.14 implies a kind of non flattened global
retention property:

{ ug(z) < h(x), 2 € Q' CQ = wule,t) < h(z), e Q forall ¢ >0, (68)

h(z) <ug(x), Q¥ CQ = hiz) <u(zx,i), ec foralli >0,

holds. Clearly, the second retention property also follows from z; > 0.

Our final result in this paper shows that when Np < 1 the asymptotic behavior is very fast.
It is the property of finite global flattened time. Again, for simplicity, we assume g=1.

Theorem 4.15. Let hiz) = {p,z) + a on Q and suppose @ = h in the definition of
the operator A. Assume Np < 1. Then for each ug € D(A) such that ug < h on Q)
there exists a time Ty, depending on h —uq, such that

u(z,t) = (p,2)+a, 2€Q, t>To.

where u ts the viscostty solution of (2). To be compared with the results
by Tso (1985), Chow (1985) and
Chopp, Evans, Ishii (1999) for
“parametric compact surfaces”,

but now for “graph surfaces” and
Np<l.

ﬂb




Proof. Let us denote up(z,t) = u(z,{) — h(x). As in the proof of Theorem 4.14 one
verifies (64), thus

(up); = (det D2up)”  in Q x Ry,
up, <0, up 0 on (00 x Ry ) U (Qx {0}),
1n the viscosity sense, whence
un(e,t) <0, (2,8) € Qx Ry
In fact, if ug = h one derives the coincidence
up(2,t) =0 for any (2,1) € O x R,

So that, suppose
Uy S hf, Uy % h.

It 1s clear that the “finite flattened time property” i1s strongly based on the imtial
value problem

m@’(#) = (20@®))"F, >0,
@(0) =0

whose solution is

Np o ﬁ
o) = (2 & Np)) =
m
provided Np < 1 and m i1s a positive constant. Then, for each Ty > 0 the profile
function
& (Ty —1) if 0 < ¢ < Ty,
T@) = 0 otherwise,
satisfies

T'@m+ (27@))F =0, >0 (69)



On the other hand, for R > 0 large, we consider the function
Cley=2""1af —R*) <0, 2}
which verifies
—m<{(x) < -M<0, 2€Q, -m=min{, —M=max¢
{ det D?¢(z) =2V, 2 <. e =
It enables us to define
Viz,t) = T(#)¢(z), (z,8)e Qx Ry,
for which v(z,%) <0, (2,¢) € 30 x Ry and V(z,0) < —8(Ty)M, « € 2, whence
v(x,0) < (uo — h) (), x=€Q,
provided Ty = @1 (||h, — u0||OOM_1). Moreover, for each (z,f) € {2 x R} one has
ve(, ) + (—det Div(x,i))p < —77(#)m + fp_l (—Z(T(t))N) =0
(see (69)). Thus
vi(x,t) — (det D2w(z,))” <0, (x,#) € Qx [0,T).

This function V' can be considered as an eventual test function for the wiscosity
solution us, (see (64)), then, arguing as in the proof of Theorem 2.4, we deduce

v(z,t) < upl(z,t) <0, (z,8) € Qx [0,T],

whence the fimte global flattened time property holds. L]



Remark 4.16. We end by pointing out that our methods can be applied to the borderline
cases for (9) and (11). This will be made in two future papers in which the Monge-
Ampere operator is replaced by other nonlinear operators of the Hessian of the unknown

such as the k' elementary symmetric functions

Sk[MD?u)] = > Aip A, 1<k<N,
1<ig Cip <l Cip SN

where /\(szu) = (/\1, . ,)\N) are the eigenvalues of D%u. Note that the case k = 1
corresponds to the Laplacian operator while 1t 15 a fully nonlinear operator for the
other choices of k. The case &k = N corresponds to the Monge— Ampere operator.

Remark 4.17. Some of the above methods (and other different ones as the applications
of the symmetric rearrangement) can be applied to other fully nonlinear parabolic

equations arising in image processing such as the

Ju
% Blewrn(w) [Vl

Vu :
o pis? i 520
curv(u) = div <||Vu||) B(s) = { _ﬁ_llf_s)P Zf sS< 0.

L. Alvarez and J.I. Diaz, Geometric flows and implicit discretization (to appear).




1]

(2]
3]

[4]

(6]

[7]

(2]

(9]

[10]

[11]

[12]

[13]

[14]

Aleksandrov, A.D.: Almost everywhere existence of the second differential of a convex
function and some properties of convex surfaces connected to it, Uzen. Zap. Leningrad.

Gos. Univ., 37 (1939), 3—35. (Russian)

Alvarez, L.: On the behavior of the free boundary of some nonhomogeneocus elliptic

problems, Appl. Anal, 36 (1990), 131-144.

Alvarez, L., Diaz, J.I.: On the retention of the interfaces in some elliptic and parabolic
nonlinear problems, Discrete Contin. Dyn. Syst., 25(1) (2009), 1-17.

Ambrosio, L.: Lecture Notes on Optimal Transport Problems, Mathematical Aspecis
of Evolving Interfaces, Springer Verlag, Berlin, Lecture Notes in Mathematics (1812),
(2003), 1-52.

Ampeére, A.M.: Mémoire contenant I’application de la théorie, J. [’Ecole Polytech-
nigue, 1820.

Barles, GG., Busca, J.: Existence and comparison results for fully nonlinear degenerate
elliptic equations without zeroth-order term, Comm. in P. D E., 26 (11&12) (2001),
2323-2337.

Bernis, F., Hulshof, J., Vazquez, J.L..: A very singular solution for the dual porous
media equation and the asymptotic behaviour of general soliutions, J. reine und angew.

Math., 435 (1993), 1-31.
Brandolini, B., Diaz, J.1.: work in progress.

Brandolini, B., Trombetti, C.: Comparison results for Hessian equations via sym-
metrization, J. Fur. Math. Seoc. (JEMS), 9(3) (2007), 561-575.

Budd, C., Galaktionov, V.: On self-similar blow-up in evolution equations of Monge-
Ampere type, IMA J Appl Math., (2011), doi: 10.1093/imamat/hxr053.

Caffarelli, L.: Some regularity properties of solutions of the Monge- Ampeére equation,
Comm. Pure Appl. Math. 44 (1991), 965—969.

Caffarelli, L., Nirenberg, L., Spruck, J.: Nonlinear second-order elliptic equations. V.
The Dirichlet problem for Weingarten hypersurfaces. Comm. Pure Appl. Math., 42
(1988), 47-70.

Caffarelli, L., Salsa, S.: A Geometric Approach to Free Boundary Problemas, American
Mathematical Society, 20056,

Chopp, D., Evans, L.C., Ishii, H.: Waiting time effects for Gauss curvature Hows,
Indiana Univ. Math. J., 48 (1999), 311-334.



[15]
[16]
(17
18
[19)
[20)
[21]
[22]
(23]
(24
[25]
[26]

[27]

(28]
[29]

Crandall, M.G., Liggett, T.M.: Generation of semigroups of nonlinear transformations
on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.

Crandall, M.G., Ishii, H., Lions, P.-L.: Users guide to viscosity solutions of second order
partial differential equations. Bull. Amer. Math. Soc., 27 (1992), 1-67.

Daskalopoulos, P., Hamilton, R.: The free boundary in the Gauss curvature flow with
flat slides. J. reine angew. Math., 510 (1999), 187-227.

Daskalopoulos, P., Lee, K.: Free-boundary regularity on the focusing problem for the
Gauss Curvature Flow with flat sidesMath. Z., 237 (2001), 847-874.

Daskalopoulos, P., Savin, O.: C** regularity of solutions to parabolic Monge—Ampére
equations, fo appear.

Diaz, G.: Some properties of second order of degenerate second order P.D.E. in non-
divergence form, Appl. Anal, 20 (1985), 309-336.

Diaz, G.: The influence of the geometry in the large solution of Hessian equations
perturbated with a superlinear zeroth order term, work in progress.

Diaz, GG.: The Liouville Theorem on Hessian equations perturbated with a superlinear
zeroth order term, work in progress.

Diaz, ., Diaz, J.I.: Finite extinction time for a class of non—linear parabolic equations,

Clomm. in Partial Fquations, 4(11) (1979), 1213-1231

Diaz, G., Diaz. J.I.: On some free boundary problems arising in fully nonlinear equation
involving hessian functions. I The stationary equation, work in progress.

Diaz, G., Diaz. J.I.: On some free boundary problems arising in fully nonlinear equation
involving Hessian functions. II The evolution equation, work in progress.

Diaz, J.1.: Nonlinear Partial Differential Fquations and Free Boundaries, Vol. 1 Elliptic
Fquations, Res. Notes Math, 106. Pitman, 1985.

Diaz, J.I., Mingazzini, T., Ramos, A. M.: On an optimal control problem involving the
location of a free boundary, Proceedings of the XII Congreso de Feuaciones Diferen-
ciales y Aplicaciones /Congrese de Matemdtica Aplicada (Palma de Mallorca), Spain,
Septembre, (2011), 5-9.

Fiery, W.J.: Shapes of worn stones, Mathematika, 21 (1974), 1-11.

Gangbo, W., Mcecann, R.J.: The geometry of optimal transportation, Acta Math., 177
(1996), 113-161.



[30]
[31]
[32]

[33]
[34]

(35]
(36]
[37]
[38]

[39]
[40]

[41]
[42]
[43]
[44]

[45]

Gilbarg, D., Trudinger, N.S.: FElliptic Partial Differential Fquations of Second Order
Springer—Verlag, Berlin,(1983).

Goursat, E.: Lecons sur I'Integration des Equations aux Derivées Partielles du Second
Order a Deux Variables Indepéndantes, Herman, Paris, 1896.

Guan, P., Trudinger, N.S., Wang, X.: On the Dirichlet problem for degenerate Monge—
Ampere equations, Acta Math., 182 (1999), 87-104.

Gutiérrez, C.E.: The Monge—Ampere equation, Birkhauser, Boston, MA, 2001.

Hamilton, R.: Worn stones with at sides; in a tribute to Ilya Bakelman, [Discourses

Math. Appl., 3 (1093), 60-7S.

Igvida, N.: Solutions auto—similaires pour une equation de Barenblatt, Rev. Mat. Apl.,

17, (1991), 21-30.
Lions, P.L.: Sur les equations de Monge-Ampere I, II, Manuscripta Math., 41 (1983),
1-44; Arch. Rational Mech. Anal, 89 (1985), 93-122.

Monge, (G.: Sur le calcul intégral des équations aux differences partielles, Mémoires de
l’Académie des Sciences, (1784).

Nirenberg, L.: Monge-Ampeére equations and some associated problems in Geometry,
in Proccedings of the International Congress of Mathematics, Vancouver 1974.

Pucci, P., Serrin J.: The Maximum FPrinciple, Birkhauser, Basel, 2007.

Talenti, G.: Some estimates of solutions to Monge—Ampeéere type equations in dimension

two, Ann. Sc. Norm. Super. Pisa Cl Sci. (4) VIII{2) (1981), 183-230.

Trudinger, N.S.: The Dirichlet problem for the prescribed curvature equations. Arch.
Ration. Mech. Anal, 111 (1990), 153-179.

Trudinger, N,S., Wang, X .-J.: The Monge-Ampeére equation and its geometric applica-
tions, in Handbook of Geometric Analysis, Vol. I, International Press (2008), 467—-524.

Urbas, J.I.LE.: On the existence of nonclassical solutions for two classes of fully nonlinear

elliptic equations. /ndiana Univ. Math. J., 39 (1990) 355—382.

Villani, C.: Optimal transport: Old and New, Springer Verlag {(Grundlehren der math-
ematischen Wissenschaften), 2008.

Vazquez, J.L.: A strong Maximum Principle for some quasilinear elliptic equations,
Appl Math Optim., 12 {1984), 191-202.



Thanks
for your attention



Gaspard Monge
(1746 - 1818)

André-Marie Ampere
(1775 - 1836)

G. Diaz
(1949-)

J.I Diaz
(1950-)



