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This work is an attempt to unify various known aspects and to present recenﬁé
results on nonlinear partial differential equations giving rise to a free
boundary, mainly defined by the boundary of the region where the solution
vanishes identically. The material is organized in two volumes; the first “%
is devoted to elliptic equations and a second, in preparation, will deal f“
with the study of parabolic and hyperbolic equations.
I would like to express my sincere thanks to Haim Brezis, who encouraged”
me to write this book. Throughout the past ten years he and Philippe Ben11f“
have given me the continuous present of their profound advice and fr1endsh1”
T don't forget the valuable help, during the preparation of this volume
of the many friends who provided material, read parts of the manuscript, =
made suggestions and also gave me their moral suppert and encouragement. L%

2,

particular, I would like to mention C. Bandle, F. Bernis, L. Boccarda, ;5
C.M. Wbrauner, J carrille, A. Damlamian, G. Diaz, J. Hernandez , M.A. Herrenn
R. Jimenez, S. Kamin, B. Kawohl, R.Kersner, P.L. Lions, J.M. Morel, ﬁg

Peletier, M. Pierre, J.F. Rodrigues, I. Stakgold, J.L. Vazquez and L. Veronm
among other friends. Also my despest thanks go to my friend and colleague .,
Alfonso Casal, who helped to improve my use of English. He and my brother'*
Gregorio shared very closely the conception and evolution of the manuscr1ptd
My thanks also go to Josesteban Prieto who made a very good job of the -
figures, and to Pilar Aparicio for her patience, skill and effigiency in ;;

typing the original. S
Finally, I would like to reflect here my sincere thanks to the organ1zerg

of Pitman Advanced Publishing Program, for their cooperation and understanu

ing during the anxious and lengthy period 'of gestation of this voiume.

Madrid
July, 1ydb A
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Introduction

This work is devoted to the study of some partial differential equations
whose nonlinear character gives rise to a free boundary: the boundary of
an a priori unknown and positively measured region where the solution of
the equation vanishes identically.

The formation of this free boundary holds under some adequate balance
between two of the terms of the equation representing the different pecu-
Jiarities of the phenomenon under consideration: diffusion, absorption .
convection, evolution, etc. These particular balances take place neither
in the case of linear equations nor in every noniinear equation. The char-
acterization of these special balances for several classes of nonlinear
equations, important in the applications, is one of the main goals of the
work. This First volume is dedicated to elliptic equations; a second
volume dealing with parabolic and hyperbolic equatians is now in prepara-
tion.

The present work is an attempt to unify various known aspects of a
nonlinear PDE giving rise to such a free boundary and also to present re-

cent results and methods.

Physical motivation

Although in this work the treatment will be of a mathematical character it
seems interesting to mention , at least in this introduction, the physical
motivation of the equations dealt with. The three following statianary
problems form, perhaps, the main context in which the nonlinear equations

in consideration appear.

(A) Reaction-diffusion problems. Consider, for instance, a single. irrever-
sible. steady-state reaction taking place in a bounded domain, @ in RN.
The reactant being cansumed in @ is replaced through diffusion from the
ambient region so that a steady state is possible. Probiems of this type
are discussed in detail in Aris [ 11. A nonlinear system is obtained for
the density u and the temperature T of the reactant. Upon eliminating
T the system can be reduced to 2 scalar problem for the concentration

4



- s+ Af(u) =0 in Q ) (1}

u=1 on a9 (2)

where A is the Laplacian operator, A is a positive constant (the Thiele
modulus) and F(u} 1is the ratio of the reaction rate at concentration u
to the reaction rate at concentration unity. Clearly, the concentration u
must be nonnegative. The given function f{u)} -1is defined for u » 0, is
nonnegative and satisfies f(0) = and f{1) = 1. Moreover, if the
reaction is isothermal or endothermic, f turns out to be monotone in-

‘creasing, which is not usually true for exothermic reactions. In any

case, T may fail to be differentiable or even continuous at the origin.
This is illustrated for isothermal reactions of the form f(u) = s
where q 1s called the order of the reaction. If 0 <g <1, {f is
continuous but not differentiable at the origin, whereas if q=0, f
is actually discontinuous at the origin {recall that f{0) must be zero).
It turns out that the density af the reactant u may be zero in a
closed dnterior region £y called a dead core. In such a set, no reaction
takes place so that @, s wasted. For instance, in a catalyst pellet,
one could just as well to dispense with the region 0, and save that

amount of catalyst. Such a dead core can only occur if the reaction rate
remains high as the concentration decreases, for it may be then impossible
for diffusion to draw reactant sufficiently fast from the exterior of 2
to reach the central part of @, . One of the most important goals of

this volume is to find out when aset where the solution vanishes exists,

to give estimates of its size and location and to study its geometry. If,
for instance, f(u) = TR g » 0, a particularization of the results in
Chapter 1 shows that a dead core may only exist 1if and only if 0 <q <1
and A 1is large enough. This also shows how for the equation (1) the
existence of the free boundary given by a(Q - f, ) - o0 is ambiguous ,
and it takes place only for some adequate nonlinear terms f. (A complete
characterization will be given in Chapter 1).

(B) Non-Newtonian fluids. The second order nonlinear elliptic equation

- d1‘v(|Vu|p°2 Ju) + Au =0 p>1l ,A>0, (3)

where vu denotes the gradient of u and |vu} is the Euclidean norm f?
in RN of the vector Wu , appears in the study of non-Newtonian fluids. ™
Indeed, when studying the Taws of motion of fluid media, Newtonian fluids ™

are usually considered. to be those for wh1§h the relation between the ™
shear siress T and the velocity gradient Fry {for simpiicity we shall here .
restrict ourselves to the plane case) takes the form fﬁ
=u%y-- (4) =

X 2

However , this approximation is satisfactory only for a Timited I
number of actual fluid media. Dispersive media treated according to a =
continuum model do not obay the law given by (4).The motions of such f%
non-Newtonian fluids are studied in rheology {see e.g. Astarita-Marruci jﬁ
[ 11). Usually (4) is substituted by the power rheological law >
s

2 o

cey T s (5) ~

The gquantities u and p are the rhenlogical characteristics of the medium. f@

Media with p > 2 are called dilatant fluids, and those with p <2 aremm
The study%

called pseudoplastics. When p= 2 they are Newtonian fluids. ‘
of the non-Newtonian flow properties of such media having conductivity in =
electromagnetic fields Teads to equations similar to (3) . Consider,:for ~

instance , that the conducting fluid moves in a flat channel, x =zl 75
whose non-conducting walls move aleng the x axis with a velocity = Uy, -
(magnetohydrodynamic Couette flow}. There is no pressure gradient, no -
electric field and the external magnetic field of induction is perpend1cu1anﬁ
to the walls. By normalizing, we arrive at the problem s
-2 -

IE lp %3“ ) + A= 0 3 'in Q= (_'l:]-) (6)

(7) =

u(zl) = 1. x

where X is a positive constant {the generalized Hartmann number). The s

physics of the problem shows (see L.K.Martinson-K.B.Pavlov [ 1 1) that %?
for dilatant fluids (p > 2} , and only for these fluids, and for A Targe -
enough, flow zones appear 1in which the fluid moves at velocity, which vamshm
over the channel cross-section. Again, the regions £, ={u = 0} , now ca11qg

3



quasi-solid zomes, may appear, for adequate values of p, and so the
existence of the free boundary af; - 80 is not automatically derived
for any equation (6). The study of the free boundary in this particular
situation is also contained in the general treatement made in Chapter 1.

{C) Nonlinear diffusion problems. The study of the steady-state of many

different problems governed by a nonlinear diffusion in the presence of an
absorption term leads to the equation

- oglu) + F(u) = g(x) inQ (8)

u = h{x) on 3 (9)

where § is an open bounded set {eventually unbounded), ® and F are
real continuous nondecreasing functfons such that o(0) = £(0} = 0 and

g and W are given functions, Equation (8) is sometimes written in the
so called Fickian diffusion form .

= div{k{u)vu) + flu) = g(x)

-where function k is any primitive of v . Some typical choices of p in

the appiications are the following:
(C1)Flows through porous media (slow diffusion problems) .  Via

I : Darcy's
aw equation (8) holds for ¢ satisfying the additional assump-

tions '(0) =0 and '(u) >0 if u#0 as, for instance, o(u) =|u|m'1u,

m>1 (see Bear [ 11). This same type of ¢ also occurs for nonlinear
heat conduction when the thermal conductivity depends pn  temperature
{seeZeldovich-Raizer [ 1 1), in the spread of certain biological popula-
tions (Gurtin-MacCamy [ 1 ] and Okubo [ 1 1}, in the spread of a thin drop
of viscous fluid over a horizontal plane under gravity {Lace y- Ockendon-
Taylor [ 1 1}, in solar prominences (Ames [ 1] ) and in galactic
civilizations (Newman-Sagan [ 1 ]).

tC.)Plasma physics (fast diffusion problems). Certain mathematical models
of a thermal evolution of a heated plasma lead to nonlinear operators as in
(8). (See Berryman-Holland [ 1] or Kamin-Rgsenau [ 1]). Now the natural
assumptions on @ are @'(0) =+~ and @'(u) >0 iF u#0 as for
instance, ©{u) = [uim"lu with 0 <m < 1.

(C,}) Stefan-1ike problems. Equation(8) is also related to the classic as
well as generalizations of the two phase Stefan problem (see references
in the survey Niezgodgka [ 1 1). Mainly, ¢ fis taken such that p([0,al)= {0}
and @' (u)> 0 for u §(0,a) for some a > 0. _

As in the preceding examples, in the third context the existence of a
subset g where u vanishes has a physical meaning and it depends on the
behaviour of the nonlinear terms @ and f at the origin.

A shoit summaiy
In spite of the general title of this work, by now the reader should be

aware that we shall not study different types of free boundaries here, but
only the one generated by the boundary of a subsetwhere the solution of a
nonlinear PDE vanishes.fead care, guasi-solid zone, etc.). To be more
precise, given any general function u defined on '§ , we introduce the

notation _ .
N{u) = null set of u={x€eq:u~= 0}
S(u) = support of uwu={x€q:u £ 0}.

The free boundary under study is given by
F(u) = free boundary = 3S{u} n aN(u).

when u represents the solution of the nonlinear PDE in consideration.
{Exceptionaily, in some examples the critical value u =20, defining the
free boundary, can be replaced by another constant value u=c, c # 0.

See Theorem 1.14 in Chapter 1).
Although different types of nonlinear PDE's will be considered, for the

sake of clarity in the exposition, a special emphasis will be put on the
Dirichiet problem associated to a concrete quasilinear elliptic second

order equation:

- Apu + flu) =g{x) in 0 {0E)
u=nh on W (De)

where the operator Ap denotes the pseudo-Laplacian operator defined, for

p>1, by



N
= di -2 8 p-2  3u
A u = d]V(]Vu[p w) = 7 =2 (|vul )
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Some remarks on the interest of the above formulation seem to be in
order. First of all, we note that all the results for the (QE)} eguation
are also true for the semilinear equation

- M+ Flu) = g{x). (SE)

Indeed, when p =2 the operator A coincides with the usual Laplacian
operator. We also note that the nonlinear diffusion equation (8) can be
reduced to the semilinear one (SE) when o is strictly increasing (in
that case u 1in (SE) must be substituted by u= w(u} and f by
f=fo m'l)A Although the semilinear equation (SE) is perhaps much more
popular than the quasilinear one {QE), one important reason to choose (QE)
as the general setting is that its generality is very useful in the
applications. The operator A with p # 2 appears in many other contexts
(besides that mentioned of non-Newtonian fluids). It is also used in some
reactfon-diffusion problems (see Aris [ 1 1 p.207) as well as in flow through
porous media {for instance in flow through rock filled dams, Ahmed-Sunada
[171orVolker [ 1 1). It also appearsin nonlinear elasticity (e.g. Oden

[ 11), glaceology (Pelissier [ 1 ]),and petroleum extraction (Schoenaver

[ 11). Equation (QE) has also geometrical interest for p » 2 (see
references in Uhlenbeck [ 1 1).

We also remark that the term g(x) 1s not only present in the equations
for a systematic mafhematica] study but for its interest in particular
formulations such as that associated with the Thomas-Fermi atomic model in
which, in (SE), ¥ is given by f(u) = [u'1%/? (<ae Bresis [97).

Before proceeding further it seems interesting to examine what may be
the reasons for the existence of the free boundary P{u). Recall that in
the case of linear equations the solution of an elliptic equation as {QE)
with p=2, f(s) = s , satisf{ing a Dirichtet condition {DC) corresponding
to data, say g >0 and h > 0, is such that u > 0 on Q. This well-
known fact can be proved in many different ways: strong maximum principle,
Harnack inequality, unique continuation property, and so on. Thus, in
some sense, the existence of the free boundary is a nonlinear typical
phenomenon. However, it doesn't appear in every nonlinear equation (QE).

The analysis becomes clear if, for instance, we reformulate a semilinear

1 2
gquation (SE) as a nonlinear diffusion one. Assume, for instance, f € C%,
F'> 0 and u satisfying (SE}. Then w=Ff(u) satisfies

- np(w) +w =9

where @ = f“l. The operator - Mp(w) has the peculiarity of being non-
uniformly elliptic if o'(0) =0 (i.e. if the f of (SE} is sech'that
F(0) = +=)}, and degenerated in the sense that it loses its elliptic

SRS R PO Ry Ry PRy Nl

it 1 i o

character around the set {w = 0} . where it is hyperbolic. MNote that o
=

apln) = @ (W) aw + o"(w) [vw]®. -

- ; ™

Analogously, the operator Apu is not uniform?y e111?t1c 1f_0p ; i,tbelzgt fﬁ
degenerated around the set. {yu = 0} (in particular in {u= } ).Note ﬂ%
N 5 .

=gyl P-? U3 gufPe). -

u ={Vu Au + - :

e =il 121 Xy A%y 5

It turns out that this degenerated character of the associated operators -

is a necessary condition for the existence of F(u) {recall, for.1nstance, -
that the strong maximum principle also holds for uniformly elliptic operatorsﬁa
with Lipschitz perturbations; see Protter-Weinberger[ 1 1). Nevertheless,

this reason is not enough, and the existence of Flu) 1is characterized by -
the fulfilment of the two following conditions: A
(a) Balance between the diffusion and absorption terms: %?
for the (QE), this is given for the convergence of the following fﬁ
improper integral ﬁ%

£

I —-—-‘—‘“"‘—"‘di/ < + . (H l)ﬂg%

" R o

where F(s) = 5 F(t)dt . Note that if in (QE) is Flu) = |u1q'1u5_»
with q > 0, theh (Hy) holds if and only if 0<g<p-~1. 1In o
particutar for (SE), p is equal to two, and it must be 0 < q< 1, m
but in the case of a (QE) with linear perturbation q=1,it holds if ff
p> 2. . o
{b) Balance between the igizes" of Q and of the solution "u:
this kind of condition (which already appears in many other free
boundaries problems), says, roughly speaking, that the measure of




the set N(g) U N{h . .
{ Iag) (respectively ]iUIILm) must be large enough interest in the study of zero order reactions, as well as in nonlinear

(respec. small enough ;
q >0, it i gh}. If, for instance, (QE) contains f(u)=|u|q*1u, diffusion equations (8) in which @ s not strictly increasing.
e s enough that the radius p of the Targest ball contained . - g onodiFFUS b1
in the set N(g) U N(hlgg) be such that : (c) Singular equations. The study of some reaction-ai fusion problems
p él (the Langmuir-Hinshelwool chemical kinetics, Aris [ 1 1 p- 168}
P> TFGTFEQ (H,) leads to formulations such as the following
- AU b aw k=0 in )

:zere K 1is a positive constant only dependent on the dimension of
.
6). ere the notation N(g), N(h].,)
represents the null set of these functions). In fact an estimateagf
”uIILm is only needed on compact subsets of N(g), i.e. where the
equation becomes homogeneous, which allows a large generality in th
results with respect to g and h. Note that (H,} ds triviall :
satisfied if 9 is unbounded and the support of g and kK are czm—

adl

where, now, » > 0 and 0 <k < 1. Note that even in this case (H,)
holds.
In all the wentioned problems, the free boundary F(u) appears as an

essential consequence of the diffusion-absorption balance.
This same balance can be also interpreted for other problems where F(u)

. pact subsets of @ . i may exist :
e optimality of both conditi i ;
et oy OF BT on 1t;ons will be shown in Chapter 1 when the (d) Fully nonlinear equations of the form F(x,u,Du,D%u) = 0 , including
assum I .. .
e b 8 nond?creas1ng, Nevertheless,similat re- for instance, the Hamilton-Jacobi-Bellman equation (see Krilov [ 1]
- ircumstances which we shall consider in Chapter 2 and 3 and Gilbarg-Trudinger [ 3 11.
a)Equation with a non-mon i
PR S——— oFone per?urbat1on term. OFf particular interest (e) Nonlinear systems 1in reaction-diffusion equations (see references in
(0o ic reactions (Aris [ 1]) and population dynamics Remark 1.8 and Subsection 2.1b.
[11). Inmostof cases, ¥ satisfies f(u)u > 0
(b)The obstacle proplam. In it . (f) Higher order guasilinear equations. particular formulations occur in
_ el .
S "b; s S:FOHQ or complementary formulation it the theory of elastic bars and plates (see Langenbach [ 1 1) and in
problem of finding u which satisfi i ‘ itz- "
vl 25 the relutions jes (DC) as ;p:;milpcon:r?11p;§b1ems (Berkovitz-Pollard [ 1 1 and Brunovsky
allet-Pare .
Usy, - g 7o end the list of problems we shall consider, we also mention some
] Av oz g and (- Au - g)(lp ~u) =0 in 0, (OP) . P . .
nonlinear equations where the existence of the free boundary F(u) is

! derived from a different relation: the diffusion-convection palance (see
Subsection Z.4a). We remark that an adequate convect ion-absorption may also
be the reason for the existence of the free boundary F(u). Nevertheless,

such a given balance is peculiar to some stationary first order equations,
its consideration will be pos tponed

where ¢ is a function (called an obstacle) given a priori and the free
boundary is now #{y - u} (see, e.g. Duvaut-Lions [ 11, Friednan [ 3 ]
and Kinderlehrer-Stampacchial 2 ]). This problem can be reformulated
whenAW =0, as a multivalued equation e

- s + glu) 379 in Q but of hyperbolic character. That's why

(ME) to the second volume of this work.

In the above eguations the Dirichlet boundary conditions can be replacec
In some cases, the peculiar

where B8 s an ade i
uate maxina| monotone graph of R (see Chapter 2 by some others, even involving nonlinear terms

|0| de‘ ﬂ'lt]DnS). “E use OI lutlvah.led q
e uatIO 1S ME 15 2150 OI r Ll',IO 1S W&, be u

[Tl




o
52:2;0:0:.25;?1129d exclusively on 3@ (the Signorini problem, see Sub- _ application of an energy method was given by Antoncev{ 2 1 when considering ’%
; As we have already indicated, the study of the existence of the f | some second orer ?arabOTiC equations. A Tore S¥5t?mﬂtic treatﬁent s R
C boundary is. perhaps, the main goal of this book iﬁ coon tE tree' inc1udingAthe-con51derat1on of sec?nd order alliptic or parabolic equa?1?ns, -
‘ volume has been organized according the tyo maig general n ﬁsyd a Fh15 was made in Diaz-Veron [ 21,[ 31.Finally,the general treatment of quasilinear —
to carry out such a study: th _ ethods available elliptic equations of any order was given by Bernis [21,[ 3] by choosing =,
. and 2) and the Y ¢ sqper and SUbSD1Ut1?nS method (Chapters 1 very sharp energy domains and energy functions. =
f e c0n5tructi0nggiﬁfﬁ;ffffzgfhpiih::ze:uzi;]I:?OZerZ ::?hﬁd Ts.based ?ﬁ In some applications, it is desirable to avoid the existence of the free ﬂi
the solution of the considered PDE, the comparison pri TC]= qoant]y‘W1th boundary F(u) . For instance, in chemical reactions, the existence of a ~
Die to the use of this principle (strongly related tz tEC1P 5115 3?91’Ed- dead core N(u) means that no reaction takes place there and the catalyst s
orinciple) this method is specially useful in the stud :fweac mZX1mum is wasted. The study of nonexistence of the free boundary (Section 1.2) is -
first) order equations. Although the comparison pri 'y1 .sec?n (and 3150 related to the optimality of the above mentioned balances (a) and (b)., as -
cally the unigueness of the soTutfon. : ? inciple implies automatic- well as to the positivity of solutions corresponding to nonnegative data i
nethod can be also applied to some n;nmznzzzns 0 ;?equate arguments‘the ’ g and h. When condition (H,) fails, this result can be interpreted as ;4;
the uniqueness fails. The idea of using supe:easzosugms]ané systems 1? which a strong maximum principle in the sense of Hopf [ 1] and it is proved by -
| different conclusions for the solution {s quite classjza:tgznihtot:er1ve means of the construction of édequate Tocal sub%o1utions. The necessity of ,%
i PDE. Nevertheless, in order to prove the existence of th B eory o the balance (b) between the s1zes of @ and u , 15 proved via a Thest ”%
i F(u) For nonlinear POE on bounded domal N © ' e free boundary maximum principle in the sense of Payne [1] and 1% is based on sharp .
£ a5 suitable interior (or boundany] bai ?s, :uc funct1ons are taken locally estimates of the gradient of u in terms of a function of u. This kind of
g develaps and systemat{zeg e auihorlsr;er unCtTOns. Ouy treatment here gradient estimate is of great interest in the study of nonldnear equa-
E Hernandes [ 1 1. emoir, Biaz [ 4 1 (see also Diaz- tions giving rise to the free boundary Flu). ;%
E The energy method Lo In addition to the guestion of existence, other properties of the free .
% iﬂequa]itieiysatis:1:dri;yszietz:eigsafzjci;z:lninieTe.Ordinar¥ differential poundary are also considered. For instance , with respect to its local- i:
% some subsets, of some differential expressions of tEeV;Z?ui?zn;n:E?ia;; over izati?n, several estimates are given {see sgbsect1on 1.1b and 1.1c). L
" chosen. Such inequalities are obtained _ 1tably A curious properity may occur when thelbehaV1our of the data g and h 1is ﬂ%
&. interpolation results Erer tha;ne by eans Df’ different adequately flat near the boundary of its aull set. If, for instance , we .
% tions of any order, a;d wven Wiii :2 mznztz::céitually av?11ab1e for equa- assume h = 0 on the boundary, in some cases the influence of the external gz
g linear tems of the equation. For instance the; i a?squt1ons on the non- perturbation g{x) is even strictly localized to its support and the sup- ﬂ;
: order quasilinear equation s pply to the general second port of the solution u coincides with that of the g. This property of N
nondiffusion of the support seems to be new in the present 1iterature and 77
- div Alx,u,vu) + B(x,u,7u) = 0 ' can be considered as an elliptic version of the waiting time property 7
which is well-known for nonlinear parabolic equations. -
When both methods can be applied to a particular class of equations, the Ancther property of the free boundary anaiyzed here is its geometry . ”%
energy methods are less general with respect to the nonlinearities (they This is done as an application of the theory of the symmetric rearrangement -
must be majored and / or minored by power functions) and the estimates of a function in the sense of Schwarz (see Section 1.3). A special iso- 5?
; on the tocation of the free boundary are hardly explicit and less precise perimetric inequality is shown with respect to the free boundary : among o
| than the ones obtained by the super and subsolution method. A pioneering all the domains with the same measure, the ball is the set for which the fﬁ
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solutfon of the homogeneous equation and nonhomogeneous boundary condition
as e.g. (2}, has a greater null set (dead core in terms of model (A)). This
result is obtained here via the general inequaltiy

Jﬂf(u)dx < [g*f(v)dx,

where ¥ is a ball of measure |Q| and u and v are now solutions of (QE) on

? and G*, respectively, with homogeneous boundary conditions. This inequalit
is of a great interest, both from the mathematical point of view and from ’
tnat of the applications. Indeed, it allows us to obtain a priori estimates
on different norms of solutions and, in terms of chemical engineering

T1terature, by means of the change u = 1 ~ U, it expresses that the effect-
iveness, defined by

1
e =i fﬂf(u)dxf

where U is a solutfon of (1), (2), is Towest for balls. Physically the
effectiveness represents the ratio of the actual amount of reactant consumed
per unit of time in @ to the amount that would be consumea'if the interior
concentration were equal everywhere to the ambient concentration. Although
such results are already well known in the literature (see references in
Section 1.3) our formulation seems to be more general and the proofs are
different.

For the sake of completeness we also have compiled some very sharp results
on the free boundary, such as the Hausdorff méasure estimates, the behaviour
of the solution near the free boundary and so on. These results have their
?rigins in the works of L.A. Caffarelli and H.W. Alt for variational
inequalities and have been obtained recently by different authors (see
references in Section 1.4) for the semilinear equation (1), (2).

The study of the existence and properties of the free boundary can be
carried out independently of the general theory of nonlinear PDE which
concerns the existence, uniqueness and regularity of the solution. Indeed
most of the results on the free boundary F(u) are cbtained for any so]utio;
u satisfying the equation in some weak sense independently of the way in
which it may be obtained. Reciprocally, in génera1 the existence of this
free boundary bears no relation to any extra difficulty in proving the
existence of weak solutions. Only the obtaining of the sharp regularity of
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weak solutions becomes much more difficult when the free boundary Flu)
exists. In that case some singularities on #(u) can appear making it im-
possible, for instance, to obtain classical solutions even for very smooth
data. Also sometimes the existence of P(u) may cause the absence of
uniqueness in same problems.

Due to this irdependence between the general theory and the study of

F({u) and in order not to distract the reader specially interested in the
consideration of the free boundary, we have postponed the mention of the
general theory to the last chapter, as a kind of Tong appendix. In this
way, sometimes the reader is referred to this last chapter in order to find
some more concrete details. Due to the vast literature on this general topi
this last chapter is written in the form of a survey where only very few
proofs are given but, in contrast, many references are indicated. It is
clear that there we do not try to make a complete revision of the general
theory. Our exposition is obviously motivated by the special nonlinear
equations considered in the book, such as those already mentioned in this
introduction. Some of the results in this chapter such as, €.9., the
accretiveness of the considered operators, will be applied in the second
volume when studying the assoctated evolution problems.

We conclude with a few words on the organization of the results and
references within the text. We follow a number seguence for theorems,
propositions and lemmas; only definitions and remarks are numbered separ-
ately, the mathematical expressions being numbered within each section. In
general, the bibljographical sources of the results are given, with comment
at the ends of chapters. Open problems are also noted at the ends of some

chapters.



NOTATION

 represents a proper open subset of RN which is assumed of boundary 35 smooth
Its measure is indic~
ated by |2| or meas @ and its characteristic function by ﬂﬂ.

enaugh and (unless we indicate the contrdry) bounded.

BR(xo) denotes an open ball of radius R centered at Xy

wy is the volume of the unit ball in RN, i.e. equal to ZWN/Z

JNT(N/2).

The gradient of a function u is denoted by vu and, sometimes, also by
Du = (D1u,...,DNu), i.e. Diu = au/axi. The Hessian matrix of second deriva-
tives is represented by D2y = [Diju]’ Diju = azulaxiaxj,i,j = 1,2,...,N.
Moreover, if u is assumed to be defined on Q we make systematic use of the

sets

N(u) = null set of u = {x € Q:u = 0}

S{u) = support of u = {x € Qwu # 0}

S(u) = {x € D:ulx) # OF.

1]

Finally the free boundary under study is defined by
F(u)= free boundary = 3S(u} n aN(u),

where u represents the solution of the nonlinear PDE in consideration. In
the case of the obstacle problem (see Section 2.2) the free boundary is
defined as the common boundary of the coincidence set {x €{ : u = P} and
the continuation set {x € & : u > ¢}, where ¥ represents here the obstacle.
In the context of the rearrangement results, u(t), u(s) and u*{(x)
represent the distribution function, the decreasing and the radially
symmetric rearrangement of u, respectively, and 0% is a ball centered at
the origin of the same measure as Q. The order relation 5 is also there
introduced (see Subsection 1.3a).
The more common differential operators considered are the Laplace operator

A as well as the pseudo-Lapiacian operataor A[}defined by
N
: ~Z 3 -2 3u
Ayu = div (|wu[? ) = 151 5;;‘(Ivuip 5};), 1<p<am,

In general, L represents a general second order elliptic operator (see (6.4)
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of Section 1.1). The symbel L represents the nonlinear ordinary differential,

operator defined in (3.1) of Section 1.1.

The main functional spaces used in the book are the usualmLebes?ue and ’f#
Sobolev spaces L?DC(Q), Py, Ww™P(a), Ng’p(ﬂ), HMq) and HO(Q) with m € R >
and 1 < p < =, as well as the spaces of test functions p(a}, the space of ﬁj
distributions D'(g) and that of H8lder continuous functions C*(Q), 0 <a s 1.~
Occasionally, some other functional spaces are mentioned: the Orlicz and -

Oriicz-Sobolev spaces 13(q) and N1’a(n), respectively (see Subsection 4.1a); ’é
the space V1’p’q(n) (see Subsection 4.1a); the space of bounded Racon measures.

M(n) (topological dual of the space c®(@): and the Marcinkiewicz space (see o

o

Subsection 4.2a). o -
In general, the nonlinear perturbation of the PDE equation 1s represented

by a real continuous function which is denoted by f. Associated to T we

define F(t) = t f(s)ds. Sometimes the perturbation term is a general maxi-
mal monctone graph g of R2 to which we associate its domain D{g), range R(B)=F§

sections g°,3+,a' as well as its "primitive" i {i.e., a convex l.s.c. and -

proper functian of subdifferential aj = B). See definitionsin Subsections

2.3a or 4.1b. ‘ w%
We also use very often the auxiliary functions ¢ and wu as well as their

inverses n(r) and n{r,u), introduced in Subsection 1.1a, e



1 The free boundary in the Dirichlet
problem for second order elliptic
quasilinear equations

In this chapter, the existence and properties of the free boundary F{u)
given by the boundary of the support of the solutions of the Dirichlet
problem faor second order guasilinear equations is studied. The maximum and
comparison principles are used in order to get sufficient and necessary
conditions for the existence of this free boundary. In Section 1.1 some
sufficient conditions are given via the construction of adequate Tocal
super and subsolutions, for which a systematic study of the case of
symmetric solutions is previously done. As a by-product of the existence
results, several estimates on the localization of #(u) are given. In
particular, it is shown that,under adequate assumptions,the support of

the data is not diffused. Global super and subsolutions are also construc-
ted.

The strict positivity of the selutions is considered in Section 1.2,
showing in this way the optimality of the sufficient conditions. This
is done in two different ways: studying for which nonlinearities the
strong maximum principle holds, and by giving sharp estimates of the
gradient of the solution u 1in terms of adeguate functions of u, which
shows the necessity of an adequate balance between the size of the domain
and that of the selution.

Several applications of the symmetric rearrangement of a function are
given in Section 1.3. As a conseguence of the main inequality (Theorem 1.26)
an isoperimetric inequality is obtained on the free boundary. As ather
applications, the symmetry of the solution and a general sufficient condi-
tion (without monotonicity) for the existence of F(u) are alsc obtained.

The chapter ends with the consideration of the special case of semi-
iinear equations. By means of a Harnack type inequality, it is possible to
show two important conclusions: first, that near a point P where u{P) > 0,
u is uniformly bounded away from O , and second, that it is possible to
control the growth of u away from P € 8 {u > G}. The optimal regularity
of the solution can be obtained in this way. This program is also applied
to the case of a semilinear equation with an x-dependent perturbation which
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appears in some biological problems. With some additional assumptions,it

_is proved that F{u) fis Lipschitz and star-Tike about the origin, as well

as the uniqueness of the solution. Other delicate results on the free
poundary such as Hausdorff estimates, dependence with respect to a param-
eter, regularity and convexity are also collected .

1.1. ON THE EXISTENCE OF THE FREE BOUNDARY.

The main goal of this section is to give some sufficient conditions for the
existence of the free boundary. For the sake of simplicity in the exposition,
the results in this section will concern mainly the Dirichlet problem

- AU Flu) = g{x) in 0 (1
u=nh- on  an (2)

. N
where @ is a regular open set {not necessarily bounded) of ® , p > 1
and the operator Ap represents the pseudo-Laplacian operator defined by

Bl = da‘v([vulp_2 wu)

2 - t
where lE| =(E§ + ...t gﬁ)l/ for every £ = (gl,... EN). We remark tha
N 2
. 940 _ .
Ayu = divive) =} Erail
=l O

Therefore, the equation (1) becomes semilinear if p=2. Throughout this
section weshall always assume the followina condition on f:

f s a nondecreasing continuous real function such that £{0) =0 (3)

" (More general conditions will be considered in the next chapter).
As we said in the Introduction, we are interested -in the study of the
free boundary generated by the unkown boundary of the support of the
solution of (1},(2). To be more precise, given any general function u

defined on T , we introduce the notation

0}

u

xeq:u

N{u) = null set of U

x€Eq:-uf 0

1

s{u) = support of U



Now, if u s any solution of (1},(2), the associated free boundary is the
a priori unknown subset of 1 defined by

Plu) = free boundary = 85(u) n aN(u).

(Note that the sets N(u) and S(u) are well defined even for u € p'():
Schwartz[ 1 1).

A well-known fact of the general theory of nonlinear partial differen-
tial equations is that it is possible to associate differentnotions of
solution to a problem such as {1),(2}, according to the regularity of the
data g and h as well as the boundedness or unboundedness of the domain
2 . A very natural setting corresponds to the case in which the selution
u s sought in an energy space: in our case the Sobolev space wl’P(n) »
defined as customary by

WP) = wetP@ : 2tetPlal, 1=1..N1 .
1

In this case, the boundary condition (2) holds in the sense that

u-h e w%’p(ﬂj (the closure in Nl’p(ﬂ) of the set ¢3(Q) of the infinite-
1y differentiable functions with compact support). With respect to g, it
suffices for it to belong to the dual space w‘l’pl(ﬂ) = (w%’p(ﬂ))" Note
that by the characterization of N—l’p'(ﬂ) (see e.qg. Adams[1 1) it is
enough that g may be written as

s g8 € PR oap w1zt =1

Nevertheless, in many physical examples g does not belong to that dual
space but it is merely in L', Liac or g is even a measure. In spite
of this generality , a study of the existence is possible, specially for
the semilinear case, p=2. A detajled exposition of all this very rich
beyond the scope of this book. Nevertheless, in the
last chapter, Chapter 4, we give a long survey ofi the general theory with
many recent references.

problem goes

The study we shall make of the free boundary has very few intercon-
nections with the general theory of elliptic equations. Indeed, throughout
this chapter we shall only use the two following properties of that general

theory,
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-
a) comparison principle : for i = 1.2, let ug be any solgtion of (1), {?
(2) corresponding to g=91 and h=h' .1 =1,2, then if glc g2 ”‘

in © and h, € hy on 3@ e have Uig Uz in Q. :fﬁ

b) local boundedness of the solution where the equation becomes homogene- f?
ous: for every compact subset § c int{N(g)),any solution u of (1) f?

(2) satisfies u€ L7(D). ii

We remark that a) implies trivially the uniqueness of the solution and ’%
that this holds under very general assumptions on g and h due to the F%
monotonicity of f. For this reason and some regularity results, the prop- n;
erty b) is also verified without any extra assumptions on g and h. In ﬂ;
fact a stronger result holds: U € Cl’“(D) for some o €{0,1) and for any ﬁ;
compéct subset P c int(N(g}). Here Cl’u denotes the usual space of func—é%

tions with a Holder continuous gradient,

o

L% p)={ve c}(D): 3 € >0 15?(11‘ (x)- —a%(": (Y]] < Clx-y|® Va,y€D, Vi=l . N
We also remark that under additional hypotheses on g and h it i poss- -
ible to find global bounds on ||ui1Lm(n) . The easier case corresponds to
when f is bounded, and g.h € L"(q). Then, 1t suffices to use a) and
compare U with the constant M, M= f'l(llg]1Lm + T({| ]|  =}) - Other
sharper results will be discussed later. .
For the sake of completeness of the exposition we recall here two particul.
statements on a bounded domain & , and relative to the variational and L!

bl

=

frameworks.

Theorem 1.1. Lef 0 be a kegular bounded open set , p > 1 . T satisfying o
(3) and Lot F be the primitive of T, Fls) = J§ f(t)dt. Comsider g

and h satisfying f?
1p' N B p' 4

gew P (), fe.g=g0* _21 W, J09 € L" (a) 4 -

i= i 4

and ;g
hew (o) such that F(h(x))e L*(n). (5) ‘“

hon thene exists @ unique U € WOP(Q) venifying (1),(2) dn the sense
that u minimizes the functional ;;
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N
J u = V p - __aH_
(u) = Joliwuf" + Flu) - gou + 121'91- x; Jdx

- . 1,
?n the set K= {v : v-h € Wp°P(Q) such that F(v) € LY(%)}. 1§ foi
i= 1,2, U 44 the solwtion of (1),(2) Corresponding £fo g = gﬁ ,h = hi
as above, then g' £ g*din @ and hlc h® on B0 (mplies Uy < u 1
Finally , u € CL2%(D T
, (D)  for any compact set D c int(N(g)) and

sup{]u(xj[ 1 x €D} g M, with
o'/o
= el all ot g I o
WP (q) [l hl] Nl’p(9)+|l F{h) |} Ll(n)) (6)

for some positive constant C, depending only on p;N,ﬂ and d{D,aN{g)).
[u]

With respect to the L!-framework, and for simplicity in the exposition’
we shall restrict ourselves to the semilinear equation

- Au 4+ Flu) = g{x) dn @ (1*)

with the boundary condition {(2)}. We have

Theorem 1.2. Let @ bhe a regular bounded open set and fet T satisfy (3).
let g and h be such that

g € LY{Q) (4%)

1,1
heW () (and s0 h € LY(30)) such that Ah € L'(Q). (5%)

Then There exists a unique u € Nl’l(ﬂ), solution of (1*),(2) 4n the sense
that the funetion w=u-h € w%°l(n) and satisfies T(w) € LYQ) and
-+ flw) =g+ ah ace.on Q. T4 forn 1= 1,2, u. L8 the sofution of
(1*},{2) connesponding to g = 95 and h = hi as abov; then g1 € g 4n

8 apd hy € hy, on 30 .implies Uy SU; An 8 Finally ,u € Cl’a(D)

for every compact set Do int(N{g)) and sup{iu{x)]: x € D} ¢ M , with

M = C(||9||Ll(m+ “h“Ll(ag)) (6%)

§or some posiiive constant L only depending on N.0 and d(D,3N{g)).
a
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We emphasize that the above results are only particular statements: for
instance, some results for the guasilinear equation (1) are also available
in the L! setting (see Section 4.2) Except in the main result of this
section (Theorem 1.9), in general, we shall state our theorems for the free
boundary F{u) when u fis the solution of (1).(2) 1in the variational
setting. Corresponding versions when u s the solution in the Ll-sense
are left to the reader,

To obtain some qualitative information of the free poundary F{u} we
shall need in 1.lc. not only the local boundedness of u on int{N(g)})
but on the whole domain @ . Results of this nature are also presented
in Chapter 4. They are based on additional hypotheses on g and h
and/or on adequate growing conditions on f. A particular and easy statement
true for any f verifying (3), says that if

g e15(a) with s>Np if 1<psN and s=1 3f p>N (4]

and
hoe WP(o) a L) (57)

then for any U € wl’p(n) satisfying (1),{2) we have u € Cl’“(D) , tor
some o € {0,1) and for any compact subset D < 0 . Moreover

sup{iu(x)] : x € D} & M with
= £ gy e fURI =) iF g eL™(2) and M=C(fgll sHIbl =} {6*%)

in general, for some positive constant C only depending on P and .

The study of the free boundary we shall make is based on the preliminar)
systematic consideration of the particular case in which the solutions are
radially symmetric. There the problem can be solved "aTmost" explicity am
will provide useful comparison problems. This is given in subsection 1.1a
where the one-dimensional case is also considered. Adequaie radial solutio
will be employed aslocal barrier functions in more general problems. The
application of this local barrier as local super and subsotutions will be
different according to whether they are applied around a point xg of the in
rior set of N{(g)u N(h!aﬂ)(interior estimates; subsection 1.1b) or in point
Xy of the boundary of N{g) U N(hlaﬂ) (boundary estimates;subsection 1.1¢




Here we have used the notation introduced for the null set of a function.
Finally, in subsection 1.1d we construct global éuper and subsolutions,
useful to show the compactnessof the support of the solution and of interest
for many other purposes.

1.la. One-dimensional and radially symmetric solutions.

The keystone in the study of the free boundary F{u) for the problem (1),
(2), is the consideration of some simpler problems on balls, for which the
symmetry of the solution takes the PDE into an ordinary d%fferentia1 equa-
tion. '

The main results of this subsection concern the existence of the free
boundary generated by the solution of

- Ut flu) =0 dn  By(0) (7

u=k on  3Bg(0) , (8)

where k s a positive constant. Due to the uniqueness of the solution
{see Theorem 1.1), it is easy to see that the solution u of (7),(8)
must be radially symmetric (see, for instance, the subsection 1.3b). Then,
writing u =u(r) , r=|x| , u must satisfy

-2
1 d , N-1,du,P”
(0 a |

T dyyfuy=0 , re(oR) (9

or, equivalently,

SQuPPay D PRy r) =0, re(oR) (10)

where u' = §g~. One of the majn difficulties in the study of (9) comes
from the fact that, if N > 1 , the equation is not autonomous. That is
why we shall start by studying the simpler case of the one-dimensional
equation:

- af{u')" + Flu) =0 1in {~R,R) (11)
u{zR) = k (12)

It is clear that the one-dimensional version of {9) corresponds to the
case of a(s) =|s;p_25 . Here, we shall consider the general case in
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which a satisfies >
2 € COR) n CMR -{0}) , a'(s) >0 if s#0and a(s)=-al-s) (13).

We shall study the free boundary F{u) for (11},(12) by giving necess- fﬁ
ary and sufficient conditions for the measure of the null set N(u) to be =

positively measured. This leads in a natural way to the study of non- f@
trivial solutions of the homogeneous Cauchy Problem f%
-au)' +flw) =20 (14)

u(g) = , u'(p)=0 {15) f?

2 ’ v

By the results of the general theory (see Theorem 1.1 for afs) =|s|P s

and Chapter 4 in general) problem (11),(12) has a unigue solution u. From %%
(13) it is clear that a(r) = u(-r) fis alsoa solution. Then, u is an -
even function and u'(0} = 0. On the other hand, by the comparison princi- p
ple, u ¢ 0, and then, from the equation and {14), it follows that u is ;%

convex (strictly convex where u'> 0). Then -
| -

u(@) = win u(r) =m. ;
(~R.R) f"'*

Thus. u can vanisl in some region N of {-R,R) if and only if m=0. o

In this case there must exists an £ > 0 such that N =[-g,e] where u =0, f%
ru'(r) >0 on the set (-R, R)-[e,c] and, hence , u must satisfy (14)(15)§%
The existence of a nontrivial solution of the Cauchy Problem (14),(15) {ﬁ
js closely related to the question of the uniqueness of solutions. So,it is ;%
clear that u = 0 is always a salution. Moreover if we assume for 1nstance
a(s) = s and f Lipschitz continuous, it is the only solution, as we ;®
deduce from the standard uniqueness theorems for ordinary differential equa—“
tions. Nevertheless, we shall prove that under suitable hypotheses on a

fg

and f we can obtain non-trivial solutions of (14)(15). First for r €R pa
we introduce the auxiliary functions 55
Alr) = ;‘; a'(s)s ds , (16) ﬂ

and i%
-
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Our main hypothesis will be expressed by assuming the singular function

1/A"Y(F(r}) integrable in r = 0% . This also can be formulated in the

following way: for T > 0 define the function ¢ :{0,»} » [0,+=] by
(T - T—:_lﬁ_._. (18)
PAT(R(s))
Due to the monotonicity of A™* and F, the hypothesis of I/A“l(F(r))

being integrable in r = ot d.e.

$(0F) <+ (19)
is equivalent to the condition
P(T) < 4= for every

lecrer, (20)

where T & = is such that ¢{t_)=+w. (By convention w(+e) =+eif 1 <+w).

Remark 1.1. Condition {19) {or 20)) will play an important role in this
chapter. In order to make clear the scope of such a condition we shall
particularize a and f by taking

a(s) = [s|P2s ,p>1 , fls) =als|%ts Lqg>0,a50 (21)

terms, Some easy computations show that in this case, if r > 0, we have

A < =Ll Ry = A9 (22)
and
P(0+) <+ if and only if q <p-1, : (23)

In addition, if g <p-1
p-g-1

* T TB%TB )p (24)

Now, we return to the Cauchy Problem.
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Lemma 1.3. Assume (3) » (13) and (19). Lety begdven by (18) and define

n = 0 on the nterval [0,9(=)). Then, for every t >0 yihe function

0 if 0 gx <1
u (x) =n{{x~1 Y = (25)

T ni{x-1) if Tex <y=) + 1

is a weak sobuiion of the Cauchy Problem (14) (15).

Proof. We multiply the equation {14) by u' and integrate. Then

X oau'(s)) u'(s)ds = f;‘ Flu(s))u' (s)ds.

Using the definitions of A and F we obtain
j Alu'(s))'ds = j: Fu(s})'ds
and so
ORI GUCHE (26)

The function n= w"l is defined on [0,Y(=}), M€ C2{(0,9p(=))n C1{10,0(=)}

(D) n'{0) = and, after some easy computations, we see that u(x) = nix
satisfies the equation {26). Finally, given T > 0 the function o
u (x) = ni(x - T)+) §5 such that u (0) = u (0) , and satisfies
u, € c2{10, T)ﬁj (t, W=} T)) n C! [0 p (=) + ©). Then, by the autonomous
character of the equation, UT is also solution of (14),(15) on the inter-
vals (0,1) and (1, (=) +T).g

Let's go back to the one-dimensional boundary problem (11),(12). The

following result gives a necessary and sufficient condition for the axistence
of the null set N(u).

Theorem 1.4. Lot ub assume (3) and (13). Moreover, £f ¥ L& defined by
(18) , we suppose that

§04) < o (27)
and
8
wlk) < R- (28)
25



Then the sofution of (11),{12) L& glven by

0 if x| g R - plk)
u(x) = n(L]x] - R+ w(k)1") = . ) (29)
alx]- R+ p(k}) if |x] > R - k),

-1

where T =y . Finally, £f R < ¢{k) zhen u >0 on [-R,R].

Proof. If R 2 @(k) and we take 1 =R - w(k), the function u(x) 1is such
that u(x) = UT(X) if 0gxgR,ulx)= uT(~x) if -R<x <0, and
satisfies the equation (11) in every point of (-R,R} except, perhaps, in
the points <. Moreover,

ul£R) = n{ p(k)) = k.

and, by uniqueness, it fs the unique solutjon of (11),(12). To prove the
second part of the statement, let u be the solution of (11),(12). Then
u'{0) =0 and u(0) =m 3= 0. As in the proof of Lemma 1.3 we have

f; Alu'(s))'ds = f; F(u(s)fds = I; Flu(s)) - F(m))'ds.

Therefore, if X € [0,R] we have A(u') = F(u) - F(m) and so
X = u(x) ds
m -1 .
A (F(s) - F(m))

In particular, if we define the functijon 8 : R" x v+ %' by

0riors) = [12 —p 8
AT (F(s) - F(m)) .
we know that R = o(m,k). But 8(m.k} » ed@-+ e,k) for every £-> U.
Indeed, by using a trivial change of variable and the strict monotonicity
of A"Y we have

a(m,k) = (K= ds , kie ds

mte  ,-1,,5 “dmie -1, .5
A ([ e T (t-€)dE) A (S

= B(mte, k).

F(t)dt)

Then for k > 0 fixed, the function 6(-,k) s a strictly decreasing
isomorphism from [0,k] into [0, w{(k)] {remark that y(k) = 8(0,k)).

Therefore, if R < (k) , for k fixed there is a unique m > 0 satisfying
8{m,k}) = R and so u{x) = m >0 for every X € [-R.R1.
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The above one-dimensional result already points out the nature of the aﬁ
two sufficient conditions for the existence of the free boundary: mﬁ
a) a balance between the diffusion and absortion term. condition p(0+)< +eam,
1.8;_ g <p~-1 in the case of homogenecus nonlinearities (21) ,  and yﬁ
b) g_pplpgpgq@gﬁwgpg_;ﬁg.§j;p§_gf_j¢§tﬁgmgjg_gpg_gf_;bg_ﬁgjgﬁjpgj expressedfj

< R, i.e. -
here by (k) " plg i
Rz(.ﬁ’—'l—)lmﬂ) (1« P (30) "

p p-1-9

in the case of homogeneous nonlinearities.

Now we return to the radially symmetric boundary problem {7),(8). As in

i
the one-dimensional case, the existence of the free boundary #{u), that

is, the existence of nonempty null set H(u) , is related to the existence -
of nontrivial solutions of the Cauchy problem

-7 ity

1 d N1 odu P du . a1y L

Lu) = = - |17 [(r lar Fral flu) =0 {31) -

r dr o

w(0) =0 u'(a) =0 (32) ﬁé

(Again, note that if N{u) # ¢ then the solution of (7) satisfies {32)). J
To state the resulis, we need to modify s1ightly the definition of functioni;
p in (18) : given u > 0, we introduce the function wu 1[0,0) + [0,=] byts

i/p b

' ds = B=L T__ds_ (33) ©

(v) =[f ————=( ) f :

wU IQ A—l(uF(S)) pu 0 F(S)llp -

(note that, now, a(r) =|r‘|p'2 r and then A is given by (22)). ff
The main result of this subsection is the following £
Theorem 1.5. Assume N % 2 , p > 1 , T 4atisfying (3) and j;
& (38) =

{ —_— =< + -

ot F(s)llp o

For eveay u > 0 fet nlr.u) : [U;wu(+m)) + [0,4=) be the function defines:
by n{t.n) = w;l(T) VTR -
27"



(1.
By )1/13 C = J'ﬂ To1) ds olr) € o' (r)r.

( —ds___
p-1 0 Fs) /P (35)

then we have: Hence , if u < 1/N

£ 1§ =21 then Win(r,u)) <0 foar >0
L) 1§ 0 < pu<I/N zhen Linl{r,u)) > 0,and L(n(r:1/N))2 O,f0n r > 0
ALlL) For every t > Q the function nT(r) = n({r—f]+,u) satisfies

Win(r,u)) » Fln{r))(i-u)-(N-1)¢*(r) = {1-pN) F{n(r)) > 0.

Wy M~

EEERERR AR

Lin (r)) <0 {nesp. W(n (r)) » 0} £f w31 (resp. < I/M) , ‘ Analogou51¥, L(n(r,1/N)) >0 and i) fs proved. To conclude, et = > 0 and
: for r >t and l(nT(P)) S0 for D<r<t. ? r 5 t. Making s = r - T we have that
;??: Proof. Let ni{r) = n(r,u) defined by (35). We have that n € C*, n(0)=0 3 L (n( pr-t1 30 = - é%{(ag(s))p 4 %g;%% €0 (s)1  +f(nls)) , s=0.

V
=3

and n{r) >0 if r > 0. Differentiating in (35) we find that ’
+ o . .
1/p 1/p i We also remark that I(n([r-t1 ,u}) €C ((0,¢u(+m)+T)). Using again (37)

n'(r} = {( é%% b F(n(r)) . (36) i we see that , if u > 1 , then m(nT(r)) <0 if r>T.
] In a similar way from the convexity of ¢ Wwe obtain that

So, n'(@) =0, n'(r) >0 if r >0, and n is a convex bijection from

[o,wu(m)) onto [0,®) , d.e. ni{r,u) = + © when r + u,p(m). Moreover , ols) < sv'(s) ¢ (s+1)9'(s) , s=0.
(n ()P = (2 Py PP (3550) L e i wen
|
and differentiating || Lin(rr-t1t, u) » fln(s))(1-uN) >0 if s =rTt>0,
(' (NP = we(n(e)). : (37) : and 1) follows.

i From Theorem 1.5 it is easy to show the existence of solutions.

Then, if we apply the operator I of (31) , we obtai i
2 mn i
I heorem 1.5%. Let p,T and n(r,u) as in the above theorem. hen, for every

Lin(r)) = (1=} (n(r)) (N;l) (JQ%A(D—l)/PF(n(r))(P—l)/p. (38) i RE (O,wI/N(+w)) thene exists a sofutfion uT(r) af (31),(32) such that
1% P _ u (R) = n{R,1/N) . Moresver
From (467, the conclusion 1} is clear. To prove ii), consider the function i 0« ur(r) ¢ nlr1/N) for every r € (0.R), (40
(p-1)/p (p-1 o
olr) = (ﬁ%%) F{n{r)) p-1)/p (39) ; and u ( } >0 vr € [T,R1 , being T < R(1- 1/N1/p)

Proof. Let u (x) u (|x|) be the unique (radially symmetric) solution
of the boundary value prob]em (7),(8) with k= n(R, 1/N). Using part i)
of Theorem 1.5 and the comparison principle we obtain that

0 ¢ u(jx]) & n(}x|,1/M) For [x| < R. Finally, let 7o = = R(1-1/N}P) . Then
uT(R) n(R-19,1) and so by Theorem 1.5, part i), and comparison results

Obviously, ¢(0) =0 and 4{r) >0 4if r > 0. Moreaver, & 1is convex

b?cause, from (3B, ¢'(r) = uf(n{r)), which is a nondecreasing func-
tion of r. So, by elementary results
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we deduce that
n(I]x|- ro]+,1) < u {]x]) for [x] g R
which ends the proof.D

Since those existing solutions of the Cauchy Problem (31),(32) are not
explicit, when studying the formation and Tocation of the free boundary
Flu)  for solutions of {1),(2) it will be more useful to werk with the ex-
plicit supersolution n(r,1/N) instead of the solutions u (r). ‘

The lack of explictness in Theorem 1.5* may be overcome in the case of
homegeneous nonlinearities where, in fact, a solution uge(r) of (31) (32)
with ue{r) > 0 if r > 0 can be exhibited. Indeed; if we assume g < p - 1

then
p-1-q p-1-q p-g-1

= = ‘“1_ J\‘J
nirsu) = K r Sk, =B R TR CTL (41)

and substituting in expression (38)
Ei-g
Lin(ra)) = [(1 -u)C - (N-1)Cou1P™ 71

for some positivevconstants C; and C, depending only on p,g and A.Then
in the case, ug can be found through any root yu, of the algebraic equa-
tion
p-1
p-l-q .
{1 -wiCy - (N - 1)Cop = 0. (42)

Instead of trying to solve (42), inspired by (41}, it is easier to seek
the solution of the Cauchy problem (31),(32) as a function of the form

u(r) = Crp/(P—l“Q) for some C to be determined. Some straightforward
calculations allow us to conclude the following result

Lemma 1.6. Assume p > 1 and f(s) = Alle§1 with A > 0 and
0<qg<p-1. Considen the function

I
u(r) = ¢ r POt , €>0 (43)

and degine

30

1
Ko L= — 2o a)’ p-1-g
A0 o= gp + n(p -1 -0
Then |
_pa__
(p-1-4q°

(43)

(44)

Tn particubar, £f C = K., then ({u) = 0 and if C< Ky o (resp. C > Ky

then IW(u) >0 {resp. l@)<0hu

comparing (42) and (44) we see that a root y, of equation (42) is

_ +p-1-
A T CE e

The hypothesis (34} in Theorem 1.5 is, in some sense, optimal as the

following result shows:

Proposition 1.7. let u > Obe a nontnivial sofution of ithe Cauchy probfem

(3”: (321, d@ﬁfiﬂﬁd at Least on [O,q)l(m)) . Then ”QCQAACUU:,P.!J,
plu(r)) <r  for every v € (0iypu{=)).
Tn panticubwr, Lf

!+ )1/]3 t=

ithe only HDHHQQQILUQ rolution of (31),(32) 46 u = 0.
Proof. Let u(r) >0 be a solution of (31),(32) defined on [0,R].

(45)

{46)

Define

g = ﬁ%ﬁ{ r:uér) >0} . Clearly e <R, and since u € €}([0,R]) we have

u(e) = u'(e) = 0 . From the equation we deduce that u'(r) >0 if
and so u is a bijection from [e.,R] on [0,u(R}] . Then
J“(R) ds - fR u'(ridr
AlRGs)) e ATHF(u(N)
where A"l(s) =[p s/(p—l)]l/p. Mu1tip1y1ng (31) by u' we obtain

p(u(R)) =

Fu(r) () = Flalr))' = At (et + 85 )P

So integrating between ¢ and R we have

r > g,
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Flutr)) = aQu(r)) + 7 AL (i (e))P as > au'(n)).

Then
R

\ R
putr)) = J_ —glridr

dr = R ~
W Fr) Jedr=f-e

which proves (45). Finally, if (46) holds then :1(s)s +o if s> 0, and
(45) is impossible except if u = 0.,

With respect to the symmetric boundary problem (7),(8) we can state a
first result about to the null set N{u) which will be much more improved
in the next subsection. (Note that, for N 3 2 , the homogeneity argument
used in Theorem 1,4 does not work, although solutions of (7),(8) vanishing
in some small ball BT(O) are been given in Theorem 1.5%). '

Corollary 1.8. lef p> 1, f satisfying (3). Assume (34] and k such that

uT(R)=Ig.MMQheuTiA given £in Theorem 1.5%,(this cenduinby haﬂdaféﬁwI/dK)=R)

Then, £f u.£s The solution of (7),(8), at Least N{u)= BT(O}Iﬁ, on the con-
thary, (48] hofds, then u > 0 on (-R,R).u

Remark 1.2. The four last results hold under more general circumstances:
with respect to the diffusion term, it is possible to consider the more
general equation which is invariant by symhetries

- div (a {lwal) yu) + flu) =

[vu]

where a € C'([0,»)) n C({0,»)) , a{0) =0 and a'(r)>0 if r > 0. Note that
gquation (7} corresponds to a(r) = Pl For other dmportant special cases
see Talenti [ 3 ]. Now the operator I. 1is defined by

A (N1, (du

1
(U) N-1 dr a df‘)) (U)

‘and the results can be easily extended to this gituation. With respect tn

the term T we point out that the hypothesis (3) will be weakened in dif-
ferent ways in Section 2.1.U

Remark 1.3. The optimal regularity of solutions can be known through the
explicit solution u given in Theorem 1.4. So, in the homogeneous case, if
q<p-1,u ECl’u with a= {1+q)/(p-1-g), and in fact u € Cz’B with

B =[2(1+q)-p1/{p-1-q) if p < 2(1+q}.
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1.1b. Interior estimates. Local super and subsolutions.

In this section we shall study the formation of the free boundary for the
general boundary problem (1}.(2). As in the radially symmetric case we
shall need the auxiliary functions F and defined in {17) and {33),
respectively. For simpiicity in the statements we shall assume that

f 45 an odd nondecreasing continuous function. (47)

(for f not necessarily odd see Remark 1.6).

Theorem 1.9. Let p > 1, and assume f satisfying (47) as well as

(48)
+ =
&f'F(s l/p
Let g and h satisfy (4), (5) (resp. (4*) and (5%)fon p=2) and Let
e Wi P(a) (resp. u € WL(R)) be the sotution of (1),(2) lresp. (17),
(2)).Then the nutl set N{u) contains at Least, the set of xeNglu Nl

stch that

dze + wl/N(M(e)) . fon some e 3 0, (49)
where d = d(x,5{g) v S(h[an))and M{e) 44 given by the L"-estimate
Hulj . s Me)s (50)
L)
being De = N Bd_E(x).

Before giving the proof of this theorem we shall interpret jts statement
The existence of the free boundary Flu) s assured under the diffusion-
absorption balance given by (48) as well as a balance between the "size"
of the set Nig) U N(hlan and of the solution. This is given by {49).

Note that if u is not glabally bounded then the L -estimate (50) is

such that M(g) + += when e+0 (see theorems 4. 8 and 4.18). Nevertheless,
if u € L™(q) (for instance when g and h satisfy (4*%) and {5%*)),then
M{(e) may be taken independent of € (M(e) =M given in (6**)) and hence

the conclusion is

N(u) = {x € N(g) U N(hiag) d(X,S(g)g'U S(hlag)) > LY. (51)
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o T

where i ugu on 3 , (56} ™

; L= ¥y, (M. | ' LD
i 1/N (52) , thus. (55) follows from the application of the comparison principle on Q . ..
i | - ~ -
i . . . i der to check (56), te.that =0 . Th t of -

In this last case , F(u) 1is assured if, for instance, the radius p of the L ¥n or :r' odc'e (B ) ?0 ¢ d E th onh ?Q n on " & iﬁs © Bﬂ_ £

largest ball contained in the set N(g) U N(hlaﬂ) satisfies p > L. The : is contained in 2 R(XD and so0, _y e choice of M(g) , the expression

Figure 1 shows the estimate on the location of F{u) obtained. (56) holds by the construction of u (recall (56}). Now we shall prove -

) that, if condition (49) holds, then a function wu can be taken, such -

h=#0 : — — e

e } that it satisfies (53) and (54) as well as u € C(BR(xu)) and u(x;xp) = 0.

: f To do this, we define -
Tix @ Xo) = nl]x=-%e|: /N (s7) ™

where nlr: p) = w;l(r) j.e. n is defined by (35). From the Theorem 1.5 =

and the symmetry of u, such a function satisfies (53). Moreover, (54) -
Teads to A
n(R = 1/N) = M(e) 7

and by the monotonicity of 4 (r) with respect to r this condition holds .=

i

. if R =2 wl/N(M(g)). Now, condition (56) is obvious. Analogously, if R
! u(x 1 xq) s a function in wl’p(BR(xg)) N Lm(BR(xo)) fg
Proof of Theorem 1.9. Let xg € N(g) UN(h|,) and Jet R=d-e, ¢ ! b
given in (49). On ghe ball Bpixe) » Tet : - AU flu) £ 0 in Bplxo) ;;
u(x) = u(x: 2P = : : : o7
(x) = U(x:xa) € WT(Bp(xo)) N L (Bplxo)) satisfy P on  a8ylx) e
- Au 2 i R s

p! flu) > 0 mn BR(XO) {53) : we canprove that u(x :Xg) < u{x} a.e. x€Qn BR(xD). Since f has *
: : ., . : 7
u s M) on  3By(xe) (54) been assumed odd, such a functicn ‘g$x..xn), also satisfying u € C{Bp(xo)) o

and u(xq: Xp) = 0 , can be found from Theorem 1.5, by taking 5

where M(e) 1is the constant appearing in (50). It is clear that if u s ' j 7
any solution of (1),(2) then we have : ulx z xe) = - nk - xol /M) T
ulx) € u{x = xp) a.e. X ER N BR(xo) {55) and R such that ;%
Indeed, Tet Q@ =0 n BR(xn). From the choice of xo and R we know that E - R D UN) s Me) -
0= - Ap” + flu) < - Apﬁ-+ f@) in 6. T or, equivalently, R 2 wl/N(M(éz) . Finally, by Theorem 1.1 u € C*(@) a"d’ff
: . then 0 = u{xe: xo) € u(xo) ¢ U{xg: %) = 0 , which ends the proof. The o
On the other hand, on the boundary 30 we have the inequalit ' proof for solutions u €W ’1(9) is the same. It suffices to remark that h
quality ,

condition (56) follows from Theorem 1.2 {u e Cl’u(§3) and hypothesis (SO»héi
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Corollary 1.10. tltet p>1,A>0and q >0 . Let g and h satisfy
(4) and (5) hrespectively. Then, Lf q <p -1, the null aset of the
solwtion of the problem
- by =g g (58)
u=h ‘ on R (59)
satisfies the estimate

N(u) = {x € N{g) uN(h| ) : d(x:5{g) U S(hlag)>€+L(€) fon some €30},

where
p-l-g 1
p -1-g '
ey = llel g T s pgliesta) P (60)
N,A A ptPTH (qpHi(p-1-q)

and M) satisfies (SQ).D

Remark 1.5. As it has been pointed out in the Introduction, the problem
(58),(59) appears very often in the study of single isothermical g-order
reactions (there is p=2, g=0 on & ,and h=1,i.e.

N{g) u N(h|an) = and S{g)u S(h[an) =30 ) The number A ds an
important parameter and, as we can see fin (60)>the measure and location
of the null set N{u)} , there called "dead core", depends on i . In
particular, we note that the null set N(u} "tends" to the whole domain

Q@ when X+ +e . Some deljcate estimates of N{u) in terms of A
will be given in Section 1.4.

Remark 1.6. The simplification made in Theorem 1.9 by assuming ¥ as
an odd function, can be easily removed. Indeed, the only change to be made
is to construct the local subsolution u{x:x,) in a different way. To

do that, we first extend the function wp to the whole R in a natural
way , i.e., if == <0 we define

' o (p-1 y1/per __ds

wu('r) (pu A )7
Now, it is clear that wu((—W,U))‘:[—m,O) and then, if we make the assump-
tion : :

el _ds
G o

ds ds
max fp. %, [y —8 1 <t 6
0 F(S)llp IO"‘ F(s)llp < ( 1)
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instead of (48) then we can define n{r:u)} for r <0 as the inverse
of ¢u . Finally, it suffices to take

u{x : xg) = n{=[x - xo] : 1/N}.

We Teave the details for the reader.D

Remark 1.7. A curious phenomenon appears if the balance between the dif-
fusicn and the absorption terms is such that not only assumption (48) holds,

but even more, if

te_ds
I" F(s)l/p

In thiscase, for instance, the estimate (51) can be replaced by the "uniform

o

estimate”
N{u) > {x € N(g) v N(h|,.) :ﬁX:Sm)USWHQ)auuUﬂ},

which expresses that the null set of the solutjons corresponding to dif-
ferent data g and h, with the same set N(g) U N(hlan), contains at
least the subset {x € N(g) u N(h],o) = d(x : 8{g) usth| )} > P (+e)}
i.e, with independence of which are the values of ¢ and h when their
respective supports are fixed.n

The method used in the proof of Theorem 1.9 has a local character and
this allows us to apply it even in the case in which there s no global
comparison principle on the whole domain € . This situation occurs very
often when the function f depends also on Xx:

Proposition 1.11. let B € L%Oc(n) ,p>land T, gand h as in

Theoirem 1.9. Given A> 0 £Lef N denote the sel

n)\={xe: f: o(x) A}
Let u e WOP(Q) be a weak sofution of the problem
- Apu + a(x)f(u) = g in y]

(62)
u=nh on 3%
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Then, if (48) holds, the null sef of u satisfies the estimate

N(u) olx €{N(g)u N(him)).n fz)\:d(x,[S(g]BEQ;JS(haQnBVQA)U(BQA-BR)]);E+L(e)

fon some € = 0},

where L(g) = WA/N(M(E)) and M(g) £s gdven by (50).

Proof. It is the same as 1n Theorem 1.9 but choosing in this case X,
belanging to (N{g) U N(hlaﬂ)) n ﬁk , and R >0 given by

Ro= dixes (S(glpg) v Sthlag nagy) ¥ (3% - 2el)= ©
Note that any solution of (62) satisfies
- Apu + Af{u) €0
on the set N{g) n QA . We also use in this occasionthe fact that

,-M(_E,) &£ UIBQ);—BQ ES M(E)

jn|

Remark 1.8. The above result is of particular interest in some problems
leading to equations such as (62} for instance, the following:

i) B1o1ggjgaj_pogu1a§lq__ In Gurney-Nisbet [ 1 1, the equation (62) for
p=2 and f(u) = (/2 if u %0, is introduced to midel the asymptotic
state of a biological population. The sign of 6 describes the hostile
oy favourable effect of the environment on the population, 8 >0 or

8 < 0, respectively. A systematic treatment of this equation is given

in Schatzman [ 1 1 {see also other references in this work}, under the
assumptions: @ = RN » 0 20 with compact support and 6 € CO’Q(RN) such
that

hT ax) >0, and {x€R: 8(x) <0}fp
{ x|

There, the compactness of a solution of (62) is proved by constructing a
global supersolution with compact support {see also the subsection 1.1d).
This conclusion can also be obtained as an easy consequence of Proposition
1.12. Other results on the free boundary Tor this equation can be found in
Section 1.3.
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4i) nenlinear elliptic systems. Weakly coupled nonlinear elliptic systems ;;
such as, for instance, oA
o

- au+ n(v)f(u) = g(x) o

- AY + m{%x,u,v) =0 f?

oy

1ead to the equation (62) for p=2 and g(x) = n(v(x)}. Such -
systems , with f satistying (48) , play an important part in the ™
.study of non-isethermal simple chemical reactions (see e.g. Aris [ 1] and }ﬁ
Diaz-Hernandez [ 1 1) as well as in some predator-prey systems (see ;%
Hernandez [ 111} The Proposition 1.12 gives some estimates on the ;g
location of the null set of u. Some “a priori" information on the set ;%

a, = xen: n{v) » A} can be obtained , for instance, from the peculiar ;é
form of n (case of chemical reactions) or by the maximum principle for é@

i

v (case of predator-prey systems). (See details in the mentioned works). = .

oy

Other interesting generalizations of Theorem 1.9 are related to some ’
other diffusion terms. In this sense, it is very easy fo extend that result &7
to the solutions of the more general (invariant by symmetries ) equation

- div (& T vul) vu) + f{u) = g. (63) =
Indeed, the comparison principle and the Tocal boundedness of the weak
solutions are still true, now in the framework of the Orlicz-Sobolev spaces N
(see Chapter 4) and the local super and subsolufions can also be constructed

o
{see Remark 1.2). i

We can alsc replace the operator Ap by a general second order elliptic E;
linear operator L as the one given by Y
N L

= 3 Diag(0pu) + 2 D, (by(x)ia) + clx)u (64) g
ig=1 4 M =1 o

where Dj = B/ij , and the functions a5 bj and c are such that o
1 (65) 4

’m = + Db, , :

aij’bj € W (p) ,ce L{n) and c DJbJ £0 on © -

and there exists A and A €15 (0) , A(x) > 0 satisfying 7
loc | (66) (é

Ax)ELZ 2 ) aiﬁ(x) £k 3 A(x)[g]%For every EE€ RL,EZD %5

il &

-
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We recall that the existence and uniqueness of weak solutions

1,2 - :
ue€ W () n L (Q) of the semilinear problem
- Lu+ flu) = g in ) (67)
u=nh on an {68)

can be easily obtained under the above conditions on L . We refer
reader,again, to Chapter 4 where, in fact, a complete alternative to
Theorem 1.1 can be found through the comments made there. With respect
to the free houndary F(u) we have:

Theorem 1.13.  Suppose (65),(66). c(x) < 0 and assume that f s an odd
nondecreasing function such that

d . '
o Fzg§17§'< oo (69)

where F 4a the paimitive of f , F(0) =0 . Let g and h satisfy (4)
and (5)  respectively for p=2. Then the null set N(u) of any weak
sofution of (67),(68) saiisfies

N(u) o {x e N{g} U N(hlan) 1 d{x,5(g) u S(h]an))z g+ Litg) forsome e >0

whene L () = Wﬁ(M(E)) for some suitable u>0Q and M{e) given in (50).

Proof. As in Theorem 1.9 the main difficuity is the construction of the
Tocal supersolution u(x:ix,) defined on BR(XQ) for each xq€'N(g)u N(h[ad-
This will be done by means of a radially symmetric function u{x:xy) = n{r},
r = |x - %] , such that m 0 ,n" >0
r = |x| and we have '

. Setting x, = 0, for simplicity

X.X: X. X4
Ln(r)=n (r)i%aij(x) 123 + ”r(r)[1=jaij(x) SIS Jas (x)+ XDjaij(x)xi+

i r? i 13
+ b, .b.

§ 5 (x)x;11 + n{r)t § Dybs(x) + c{x)]

Using the assumptions (65),(66), and since c 5 0 , we have

- ! .
Latr) s - wenttr) - 2l i)
for some K; > 0 ,{note that , by (66) , } aij(x) x]‘xjr-2 £ A" where

A" = ess sup A{x) on BR(xn)). Therefore, it suffices to take n(r)

a0

as a nontrivial solution of the Cauchy problem

Car) - ke B L)) = 00
n(0) = n'(0) = 0

where K2 = KI/AO . The existence of such a solution is assured by assump-
tion (69). In fact, as in Theorem 1.5, 7 is given by the inverse of wu ,
defined in (33), for some u > 0. We leave details to the reader.

Note that in the above results L is not necessarily uniformly elliptic
{(» (x) » Ao > 0}. The hypothesis {65) can also be avoided by the
considaration of functions f not necessarily monotone {see Section 2.1)
With respect to general nonlinear diffusion terms we refer the reader to
subsection 1.2¢ for‘fhe sfﬁdy of the free boundary

We chal] end this subsection by referring to some contexts in which the
free boundary 1s slightly different. For instance, sometimes £(0) # 0,
or, in other cases, it is known that the external perturbation g{x) s
identically a constant k » 0 on a positively measured subset of @ .
This happens 1n the study of non-Newtonian fluids moving in a flat channel
under the action of a constant pressure gradient {Hartmann Flow). In this
case, the velocity g satisfies

K T SRR
where X and P are positive physical constants (see Martinson-Paviov [1 1)
As in the case of the Couette flow (P = 0), mentioned in the Introduction,
the physics of the problem shows that for dilatant fluids {p > 2) quasi-
solid zones may appear where the velocity is constant but, now, non zero,
u=P/A .More 9generally, we have

Theorem 1.14. Let g and h satisgy (4) and (5) , nespectively, and
asaume that thene exists k € R -{0} such that

N(g - k) has a posifive measure

let p>1 and T be a nondecrteasing continuous function satisfying
F(a) = k ,fo4 some 8 E R , as well as

ds <+ ' (70)
Jot (J;+af(t)dt~ks)1/p
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Then the sofution of (1) , (2) satisfies

u(x)=a a.e..in{x € N(g —k)'U N(h.—klaﬂ):d(x,S(gvk) US(h—kiaﬂ))2€+ L{e)
for some £ > 01,
where Lig} = WI/N(M(5)+ la]) with M(e) given in (50).

Proof. It suffices to apply Theorem 1.9 to the function w=u-a . Note
that w satisfies

—pr+%(w)=§ in 9

and w=nh on 30 ,where §=4g -k, fi=h-k and %(s) = f(s +a)- k
The function ¥ 4s still a nondecreasing continuous functionsatisfying
f{0) = 0 and hypothesis (48} (due to (70)).EI

It is easy to see that in the semilinear case (p =2), condition (70}
implies that the slope of the functjon f at the point s =a must be
infinity. This happens in some formulations of the Stefan problem (see
an analogous point of view in Bertsch-DeMottoni-Peletier [ 1 1). In
cantrast: to this, if p > 2 condition (70) holds for any Lipschitz

continuous function ¢ and no special behaviour of f in r=a is needed.

In this case, Theorem 1.14 holds because the operator Apu degenerates
near the set {x € Q: vu = 0}.

1.1c. Boundary estimates. Non diffusion of the support.
The method of lacal super and subsolutions used in the proof of Theorem 1.9

can also be applied in order to study the vanishing of the solution at
points of the boundary of the support of g and h]BQ . It seems .natural
that the effect of external influences may make difficult the vanishing of
the solution at these points. Nevertheless, we shall see that this efféct
appearsunder suitablg additional assumptions on g or h, respectively.

In contrast with the results of the above subsection, now we shall need
the local boundedness of the solution in @ and not only in int N(g} .
For this reason, we shall assume the stronger hypotheses (4%*) and (5%*)
on the data. They can be weakened if some additional growing conditions
on f are known (see Chapter 4).
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We first consider the vanishing of the solution
as(g) n aN(g).

u

in a point X,, of

Theorem 1.15. Assume p > 1 and fet fbe an odd nondecreasing continuous

function satisfying the integral condltion (48). Let g and h satisdy

(4%%) and (5%*), respectively. Considern xo € 35(g) n aN{g) and assume

that there exists R > 0,y and us > 0 such that

L {-n(lx - xo

sup)) € a(x) < Wn(]x - xof:ua)) a.e.

XE QN ﬂBR(Xo)(H)

-

NEGESEVES B Ry Ry g RYRY

where n(r:y) = w;l(r),wu given in (33) and Il &8 the differential opest- -
aton defined in  (31). Moneover, we assume one of the following conditions .

ala 0 Bplxe)) = Nlh|o)

oL

d(xu,as(hlan)) >Rz max{wul(M) JPUZQM)}

whese||ulj € M [for <nsiance, WM given in (6%*))
sofution u of (1),(2) we have

—n([x =Xo|iu1) € u{x) € nlix-xo| ) a.e.

Tn pacticular u(x,) = O.

Before proving the above result, we shall try to clarify the meaning

Then, 4or any

XEQN BR(XU).

{(72)

(73) ""\

of the statement. First we note that (72) holds if 3(q n BR(XQ)) is the %
whole {or a part of) 30 , where h = 0. This is the case 1f, for instance, /~»
Bp(xo) > and h=0 on Q. If condition (72} fails, then the region {?
where inequalities (71) hold must be sufficiently large, depending on the

with A >0 and q > 0, the hypothesis (48) s equivalent to g < p - 1.

.
bounds M on the solution u. In the particular case of f(s) = A[slqél s fé

i
Using Lemma 1.5, instead of computing the functions n(r:u), we Tind that

condition (71) can be expressed as
_Pa__

1
K% -xolP T 6 g(x) % Kalx-xe [P aie

and (73) means that

g
R = d(x0,5(n| )} > M” 8 max {Cy,Cq}

xEQnBRuo)

(74)



for some C,,C, > 0 and K;,K, satisfying

1 np-1) _ e
K'[ = D\C? - Cp 1 P (Pq + N(P l_q)) 1 ,i-= ]_,2_<_—,7 kLz'- al\f\/’\;ﬂ;)

! (p-1-q)°
In this case, any solution u of (58).(59) satisfies
- Cllx—xnlp—q"l < u(x) g Cz|x _xolp—q-l a.e. xe€gAn BR(xD). (76}

In subsection 1.3, we shall show that the inequality (76) is optimal.

Proof of Theorem 1.15. Let x, € aN(g) . From the considerations of

—> Theorem 1.5a we know that the function atfxied = n(]x - xo|:m2) satisfies

- Aﬁﬁ + (1) = L{u) » g{x} 2.e. x€ BR(xo) ne

On the other hand, if §=an BR(xo) , on the boundary 3Q we have

—_ ~

ugu on A

—s Indeed, if (ZZ) j.e. if al@ n BR(XD)) Ndﬁaﬂ), then it §s trivial
because on 3@ u=0 and , by definition, U > 0. When (72) fails, we
can write ofi= (32 n ae) v (a8 - 3@} . As R = d(x.S(h| o)) it is
clear that -

=
u

D=usgu on 30 N a0,

On the other hand, if x € 20 - 3@ then |x -%,|= R and so, using the
boundedness of u and hypothesis {73) we have

ueMgnR:u, )=1u

(recall that wu is nondecreasing and that P(r T Hl) F wai(r)). in
any sase, by comparison of solutjons on © we conclude that

u(x) € W(x : x,) a.e. x€ . Analogously, defining

ufx : xp) = -n{|x - Xg]* m) » the ineguality u(x : xo) s u(x) a.e.

XEQ is proved, which ends the proof.

44

Remark 1.9. It is clear that assumptions (71) and. (73) may be simplified
i g=0 and h=0 in.8 and 3@ , respectively. Indeed, in this case
any solution u of (1),(2) is such that u 2 0 in @ and {71) can be
replaced by

0 s:?(x) < ) n(]x - %xo|tu2l) a.e. x€QN BR(xo).

Note also that, from the results of Theorem 1.5 we know that necessarily,
yz £ 1, and that, in fact, the conditionW(n{r;uz)} 2 0 is assured if,
for instance, uz € 1/N.U

The above results can be applied to obtain giobal consequences. For the
sake of simplicity we shall only consider a particular case in which we
shall get the curious fact that, under suftable hypotheses, the support of
the solution coincides with that of the function g if, for instance,h = 0.

Theorem 1.16. Assume p> 1 and Let T be an odd nondeciedsing continuous
function satisfying (48) . Let g and h satisfy (4%*) and (5*%*)
nespectively and assume that there exists R > 0, yy and €{0,1/N] auch
that

-(l—ulN)f(n(d(x,aS(g)):ul))sg(x)gklfuzN)f(n(d(x,aS(gj)uz)) } o)
a.e. x€S{g) . d(x,as{g)) < R.
In addition, we assune That
4w d(s(h] o) » s(g)) > Rz 2 max{wﬁl(M) ) wugM)} {78)

where M3 |[ul] = (for instance M given by (6%*)]. Then, {§ u L5 any
sobution af (1),(2), we have

u(x) = 0 4 x € N(g) and d(x,S(hlaﬂ)) > R.

In parntionlar, L§ h

0 on 8, then
supp u = supp g.

Proof. First, we claim that u =10 on 35(g). Indeed, let x; € 2S(g).
If X, € 30 n 35{g) the conc¢lusion is obvious by (78), so let Xp€35(g)- 3%,
and consider the ball Bp(xe). It is clear that, for every x €20 Bo(xo)
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d{x,35(g)} & |x -xo|, because Xgq €3S(g). Then, by (77), the monotonicity L

of the functions f and mn, and the relation (35) , we have that

g(x) < (I~} F{n{ |x-xo]su2) )& L{nC]x-xo}:1)) 2.e. x €QN Ba(xo)

{recall that L {n{r ; w2)) » 0 because us% %— and that g(x) = 0 fn

BR(xn) n N(g)) . On the other hand, from (78) we know that
d(xu=5(hiag)) > max{ wugM) s wuz(M)} .

Hence, hypothesis (73) is satisfied and u{x,) = 0 by Theorem 1.15. Thus
u=0 on 235(g). Now consider the region 0 = {x € N{g) : d{x,5{q)) < R}
with R given by (78) (see Figure 2). On this set the solution of (1),(2)

satisfies
- Apu:# flu) = 0 in .
On the other hand
u=0 on  98%.
Indeed, Tet 30 = 9,0 U 3,9 U 252 where 2,0 = 36 N 30 , 9,8 = 35(g) N &

and 9;0 = {x € N(g) : X € 30 , X £ 00 and d(x,35(g)) = R}. It is clear
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that u =0 on
and so we have that

maX{wul(M) ,wuz(M)} > wllN(M).
where M3 [|u]| . Then, from {78) we know that
d(2af2, S{hl,g) U s(a)) = L

and so u=0 on agﬁ , by the Theorem 1.9. In consequence, from the
uniqueness results in Q we deduce that u =10 in Q , which proves
the theorem.

If, for instance, ¢ > 0, h > 0 and f 1is given by
then the condition (77

Remark 1.10
f{s) = )LIS]q—1 s with , A»0 and 0D <q<p-1

leads to the inequality
hg

0 ¢ g{x) £ K d{x, aS(g))p"l_q a.e.

for some suitable constant K> O.E

We can also study the vanishing of the solution u
of the boundary of the set S(hlaﬂ).

Theorem 1.17. Assume p > 1 and Let f be an odd nondecieasing continuous
function satisfying (48). Let g and h satisfying (4*%) and (5%*)

hespectively.
such that the boundany datum h veniflfes

- n{ 1% - xp] s 1/N) & h(x) & n{]x -x¢]|:1/N) X € 82 N BR(xn) (79)
where wlr:n} = ¢;1(r) and R satisfics
d{x0,5(8)) = R 2 ¥y (M)
whene M2 llulle(g) . Then, fon any sofution u of (1),(2) we have

- nl]x=xp] :1/N) ¢ u(x)g n(|x=-xg}:1/N) ae. X Elﬁ n Bplxo).

In panticwlar, ulxg) = 0.

918 U 328 . Moreover the function ¥, is decreasing in u

)

x € 5{g) . d{x,85(g)) <R

at points Xp € 0

Considen Xy € 30 N N(g) and assume that these exists R >0
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Proof. It suffices to compare u with the auxiliaryfunctions

Tlx @ xg) = 0{[x - xp]:1/N) and ulxixe) = -v(|x - xo]:1/N) in the set

g =an Bp(xo). Note that g =0 in § and that on 20 we have ug u< U
by the hypothesis (79) and the choice of R._

1.1d. Solutions with compact support, Global super and. subsolutions.
Fon different purposes, it is sometimes {nteresting to exhibit global super

and subsolutions, i.¢., now defined in the whole domain Q. There is a
whole method which proves the existence of the solution from the exijstence
of such super and subsolutions (see Chapter 4 ), In our case, it is not
necessary because of themonotonicity of f (assumption {3)}); nevertheless,
it is useful for some variants of equation (1) such as the equation (62},
in the case of biological populations (see Schatzman [1 1). It is also
useful, when £ 1is unbounded and the equation is not coercive in order

to find solutions in Wl’p(ﬂ) (see Remark 4.1).

Theorem 1.18. Let 0 be a hegular set (not necessarnily bounded). Assume
p > 1 and fet f be an odd nondeereasing continuous function satisfying

ds

for =S ke
0 F(s) 1/p
where F s the puimitive of f. Let g € L°(q) and he W ’p(ﬂ) n L)
with compact Auppa&t S{g) and S(hi , hespectively. Then theie exists

a unique u €W ’P(ﬂ) n L) , AotutLon of (1),(2) having compact support.
Moreover, for every Xg € S(g)u S(hlag).the function U(x) = B{|x - Xo])
is a global supen (sub) sofution of (1),(2) with & def.ined by

TSl
- Kor P i 0<rs Ry
G{r) = { n(Ry - r) if Reg © € Ry (80)
10 if Ry €7,

whene B (xu = (S(g) U s(hlgg , Ko,k and Ry are some suitable posdiiive
canétaniz and n{r}) = n(r:1) = ¢1 (r) » w degined by {33).
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Proof. First of all, we shall prove that we can chocse K,,K; and R; such
that the function U(x) = G([x - X,]) is a supersolution of (1),(2).Without
loss of generality we can assume x,= 0 . We also recall that the function
nir} = wil(r) is a C? function defined in the interval [0,p,(+=)) and
such that n{0) =n'(0} =0, n(r) >0 and n'(r} >0 if r >0 and

()P s fe))) =0 i (0,(=)) (81)

(see, for instance, Lemma 1.2 ) . In order to have TS wl’p(ﬂ) , and U
with compacf support, it is enough to choose ¥;,K, and R; such that

U e cl{), or equivalently, that G e€C!([0,=]}) and G'(0) =0 . This
leads to the conditions

B
- KRPE = (R - Ry) | (82)
B
Kq E%T R“p-l = n'(Ry - Rq) (83}

Now we shall impose the'.condition that
- APU+ £(U) = ¢ in Q {84)

for some § s g. First, we consider the region @, = U BR (0) , where
it n p—

R, 1is such that S{g)u S(hlaq) < f. As U >0 , we have that f(u) = D.

So the condition (84) holds §f, for instance,

o - R A EL @ P s el rer

that is, if

p
N(KIE%T) s> [lall o (85)

In the region @, ={x € 0
(81), we have that

< |x] < Ry} we know that g = 0 . Then, using

- Api+ £(U) = - (1n'[p“2n')' + f(n) + ﬂ;—l— (n")P7L.

In conclusion.as n' 3 0 the condition (84) holds in the whole domain
where
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il

[“9“;_“’ if x| € R s XER
alx) = %%h%h%ﬂﬂmlifRﬁlMsm, X €8
l 0 if Rys x| » x€ERQ

and assuming that ¥, satisfies (85). In order to have
: u 86
hlag ¢ Ulag (86)
we note that since G 1is non increasing, it suffices to require that
= N
6(Ro) 2 [Lull | =(qy > ulg ~ (recall that h=0 on N (R - BRD(X°)))'

Hence, it is enough to have
M < H(R1 - Rn) ) (87)

where M 2 ll”"Lm(n) . Finally, to show how the constants Ki,K, and Ry
can be chosen verifying (82),(83),(85) and (87), we can proceed as follows:
We shall first choose R;,K, and K, in terms of Ry , which will be later
fixed only in terms of g,h and || ul[, . From {87), and recalling that the
function y, = n“l is nondecreasing, we take

Ry = Rg t QJL(M)- (88)

This choice allows us to take
A

K = 0t 2 Ry P

5o that(83)is verified. In consequence, (82) holds if we cheose
p-1
Keo= M+ n' {0 (M) P Ro . (89)

AT7 the conditions are now reduced to (85) and BRG(O) = S(g) U S(hlgg)’
which is satisfied if Ro 1is Targe enocugh that

1/(p-1
(!lqncafqgn{iil(;§§-1>—pm , dian(s(g)u S|, )t > (90)

where M is any positive bound of || u]| =such as,for instance,the one given
in(6**) To end the proof of this theorem we shall show the existence of a
solution of (1),(2)(the uniqueness is again a trivial conséquence of the
comparison principle). Let Ry and Ry be given by (90) and (88),respec-

Rgx max {
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tively, and define © = {x €9 : Ix| € Rit 1} . Let ue€ w1=P(n) n L)
be the unique solution of the problem

. lad
- Apu + f(u) = g in R
u=h on a0 N an
u=0 o on a0 - a0 .

Obviously the functions U{x) = G{|x|) and u(x) = -G{1x|), with G defined
in (80) and the constants taken as before, are still super and subsolution
of this problem. Then, u(x) < u(x} g u(x) a.e. x € Q . In particular,
u(x) = 0 on the set {x € 0 R s [x] ¢« Ry+ 1} and so the extended
function u, defined by u = 4 in @ and u=0 inQ - g, is such that

u e wl’p(ﬂ) n L7(q) and satisfies (1)’(2)‘u

Remark 1.11 The compactness of the support of the solution of (1),(2)
can also be obtained by means of Tocal super and subsolutions, and even by
obtaining a sharper estimate of the location of the support of u, better
than thatderived in the above theorem: S(u)c BRl(xo) n @, Ry given by
(88).D

Remark 1.12  With respect to the case of unbounded data, for instance .
ge L) and he wl’l(ﬂ) with Ahe LY(Q) , the construction of global
super and subsolutions is much more delicate because, in general, the sol-
ution is not bounded in S(g}u 5(h1aﬂ)' Nevertheless, if g and h]an
have compact supports, the existence of a unique L'-solution of (1*) (2)
with compact support can be obtained in the following way: first, the com-
pactness of the support of any solution is established by using the func-=
tions =G{|x-X,|) as super-subsolutions, now in the set & - BRQ(X“) .
where Ry is such that S{g) U S(hlan) c BRD~1(X“) , and by replacing the
conditions (82) and {83) by

MZT](RI'— Ru) .

Here, M is any bound of u in the set N{g)u N(h[ag)such as, for instance,
that given in (6%) (this also holds for unbounded domains). Finally, the
existence of such a solution is proved as in Theorem 1.18. We remark that
this can also be applied to L!-solutions of (1),(2).':l
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Using some elementary differential geometry it is possible to construct
global super and subsolutions much petter adapted to the peculiarity of the
data than the ones exhibitad in the above thearems. To explain this in a
simple way, we shall only consider equation (1*) and assume that

5(g) s a bounded and convex set of rY. {91)

Given R > 0, let Vp be a tubular neighborhood of the boundary a5(g),
defined by the usual parametric representation

% = x{w,t) = o+ tnw w € 85(F) , te€ {-R,R)

where T(w) is the outward normal unit vector on 3S{g) at w. Let
VE = {x = x(w,t) € Vp with t>0}

Theorem 1.19  Let f be an odd nondecreasing continuous real function sat-
T B

Mﬂymg (62). Let g€ L™(@) such that it verifies [97) and Let

ue C %) n W (Q) be the unique solution of the problem

~hu+Flu) =g in Q

u=270 on E1Y:
Considen the function u{x) € Cl’u(n - 5(g)) degfined by

n(Ri-t) 4§ x €Vp s x =wt tile) L weds(g) 0 <t
u(x) =
0 i xeq-S{g) , d{x,985(g}) > R

where Ry 04 suitable positive constant and n = wil, ¥y given dn (33). Then

T .5 a supensolution in the set @ - S(g) , 4.e., u g U .in the setf- S(g).
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Proof.- First of all, we recall that §f we denote by sN1 the hypersurface
of R N-1 given by 3S(g) , of outward normal unit vector n , then the
Laplacian operator can be expressed as
Au = ———-+ (N - 1) H + Agu
an?
where H s the mean curvature and A is the Laplacian in the induced
metric of gh-1 {see, e.g. Sperb [ 1 ] p.62). Then, in VEI we have

CMu (@) = - n(Re- t) + F(n(Ry- 1)) + (N - DH (R - t).

Thus, since m satisfies n" = f(n) (see Lemma 1.3), we conclude that

-au 4+ f(u) =g in o - S{g),
where
(N-1)H n'(R-t) if x€ VEI

alx) = |
if x €0 =5S(g) , d(x.35(g)) = Ry.

But H > 0 because 5{g) is assumed to be convex. Then, g = 0=g a.e.
in @ - S{g) . On the other hand, in order to have

ugl on a{ e - S(g))
it is enough to choose R; such that

Re s M M llull, (s2)

Indeed, on  9q 0 3{0 - 5(g)) we have u=10¢ u . Moreover,
a(a - s{g)) - an = 35(g) and on this part of the boundary we have

u e Mg ulx) =nlRy)
if R, satisfies (92). Then the conclusion of the theorem follows by

applying the comparison principle on the set 2 - S(f).u

Remark 1.13 Arguing as in Theorem 1.18 it is possible to choose KysKas
R, and R; in a suitable way so that the function
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Ky if x €S(g) , d{x,5(g)) 2 Rg

K- Kat2 AF X € VR s X mw- th(w) » w€aS(g), 0 ¢ t € Ry

u(x) = nRy- t}  if x € Vﬁl , x =w+ th{w) , weds{g), 0 <t s‘R1
0 if x € @-5(g) , dx.95(9)) > Ry

,..is a global supersolution of the above semilinear problem. On the other
‘Cﬁiéfmhzﬂhand, it would be interesting to know if this kind of argument can be
; %ﬁj;“‘” applied to quasilinear operators such as Aju for p# 2.

@Hﬂ%ﬂ

1.2. NONEXISTENCE OF THE FREE BOUNDARY. POSITIVITY OF SOLUTIONS.
In some applications, it is desirable to avoid the existence of the free

boundary  F{u). This is the case i chemical reaction-diffusion equations,
where the existence of m(u)} (and, then, of a nonempty null set N{u) ,
there called dead core) means that in N{u) no reaction takes place and
the catalyst is wasted. To simplify the exposition, we shall work with
nonnegative solutions and we shall show that they are strictly positive
when the diffusion-absorption balance given by assumption (48) of Section
1.1 fails (Subsection 1.2:.a), as well as when (48) is verified but the
balance between the "sizes® of @ and u does not satisfy the relation
given in Theorem 1.9. {Subsection 1.2b} . The results are due to Vazquez

[ 6] (1.2a) and Bandle-Sperb-Stakgold [ 1 1 {1.2b).

1.2a. On the diffusion-absorption balance. A strong maximum principle.

For the sake of simplicity, we shall only consider nonnegative solutions
of the elliptic problem (1),(2) of Section 1.1 and assume that @ 1is a
connected open set of TRN. The following result shows that
(48) of Theorem 1.9 is necessary in the sense that if (48) fails,
then u >0 in N(g)u N(h]ag), except when g and h vanish identically
This is a

hypothesis’

in 0 and 30 , respectively, in which case u=0 in Q.
strong maximum principle in the philosophy of E.Hopf (see e.g. Gilbarg-
Trudinger [ 1 1). We recall that a rough result was given in Proposition
1.7. for symmetric solutions.

Theorem 1.20. tlet p > 1 and f be a continuous nondeciensing real function
satisgying F(0) =0, f{r) >0, 4 v >0 and such that
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45 L iw
Jot Flm \ (1)

where F is the puinitive of F, F(0) = 0 .let e Co(@) ,us 0,
satistfying [in some weak sense} the equation
- Apu + f(u) = 0 in 2.

Then, either u =0 .in 0 or u Lo stnictly positive in @ ,{.e. for every
compaot subset K < @ there exists a comsfant v= u(K) such that u>v> 0
Ln K.

The main idea of the proof is to construct an adequate Tocal subsoTution
which is done by means of the following auxiliary result '

Lemma 1.21. Let p > 1 and f be a continuous nondecteasing function with

F(0) = 0 . Then, {or any positive numberns ©,ry and v, there exists a

wique ¥ € Cl’a([O,nil) asolution of the boundawry vafue probfem
PR v PR 4 f(v) = 0

vir:y) = v, (3)

D<r<ry (2}

vy =0

and V.v',v" = 0 . Moreoven, if T satisgies (1) , Zhen v'(0) >0 and
0 <vir) <vi 4n (0,r1).

Proof. The existence part follows from standard arguments. For instance,
the method of super and subsolutions can be applied because, by the com-
parison principle, any solution v of (2},(3) satisfies 0 < v g vy (see
-Chapter 4, or ,e.g. , Boccardo-Murat-Puel [ 2 1). The uniqueness of
v 1is a consequence of the monotonicity of f and the strict monotonicity

of the function s [s|p"2 s. On the other hand, if we define

w(r) = v () PR v
from the equation (2) we obtain that
(™" wlr))* = & flu(r)).

It follows that e'erw(r) is nondecreasing, hence w{r) ¥ 0 and so

v'(r) >0 for 0<rsr,. Let ry be the largest r for which v(r)= 0.+

[ro.ri]
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Necessarily , 0 ¢ rg< vy ,» Vv 1is an one-to-one function from

‘i)*Q;
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e N TR )
But-
Fo)' = #ludvt = [(v)P D) - alv)Pir v
so that
el D - FD (e - (5)

If v'(rp) =0, the integration of (5) from r, to r gives

ar - %91}
(pglj' e %p—ls Flv{r)) » e P72 (v (r)P.
In consequence
1/p 1jil—y ri-
™ A (\")dr ] e P—l ( ! FO)(PI_ r‘o) < +

ro pu(r) 27 P

7
. which contradicts (4). Hence, v'(r,) < 0 and this implies r,= C. There-

fore, v'(0) > 0 and v{r) >0 for O <rgr.

Proof of Theorem 1.20. If we assume, contrary to the theorem, that u

vanishes socmewhere in @ but it {s not identically zero, then the set
g(u) = {x ¢ :u(x) >0} satisfies 5(u) £q , i.e. Suynnts .
Let x, be a point in 5(u) that is closer to aS(u} than to B8R, and
consider the largest ball BR(XO) contained in S(u). Then u(y) =0
for some y € 8B while u >0 din B. WNow we shall use the above Temma
to show that vu(y) # 0 , which is impossible at the interior minimum y.
Consider the annulus G = {x e1RN : R/2 < |%x - Xg|< R} = @ . We know that
u>0 in G. Let U= inf {u(x) : |X - Xo¢|= R/2}. We have that U > 0.
Consider also the function

u(x) = v(R -1x - %41,

where v s the solution of (2),(3) corresponding to ri= R/2 and
v;=U . Ifwe choose 8 > 2(N-1}/R it is clear that u satisfies
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and

usu on aG.

Then, by the comparison principle, u<u on G and, since by Lemma 1.21
v'(0) > 0 , we conclude

tin it L fuly #t6- x)) - uly)1> 0. Yx,e G

Thus, vu{y) # ¢ , and the proof ends._

We briefly collect in the following some remarks on the above theorem
(we refep the reader to Vazquez [ 5 ] for details). First of all, it is easy
to see that the result remains true if u is merely a subsedutdon. The ?%
reguiarity assumed on u can be cbtained, for instance, from Theorem
1.1, Moreover, in the semilinear case (p=2) it is easy to see that the
regularity obtained in the Ll-seeting (Theorem 1.2) is also enough and that
the Laplacian operator A can be replaced by a general second order uniformly
elliptic operator L. Finally, a boundary-point version of the above strong
maximum principle holds as in the classical case. So, under the hypotheses
of Theorem 1.19,if u € C'{ 2 U {x,})for any paint Xo € 3% such that X
satisfies an interior sphere condition and where u(x,) = 0, then

%%(XU)>D H

where v 1is an interior normal at Xo.

1.?b  On the balance between the data and the domain. Gradient estimates

In Theorem 1.9 it was shown that if,for instance, u€L™(Q),(48) implies
u(xe) = 0 for any x, € N{g) U N(h]Bﬂ such that d(x,,5{g)u 5(h1an > L,
with L = 1/ (M) , wu given in (33) and where M is any bound of [Jull,in
the set N(g)u N(hl
and L are such that such a point xo does not exist. In this way, an

This conclusion is empty when the mentioned sets
adequate balance on the set N(g}u N(hlan) and the bound M 1is assumed

for the existence of the free boundary F(u). This is the case if, for
instance,
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p = "Ul/N(M) (6)

where p denotes the radius of the Jargest ball inscribed in the set
N{g) U N(hlaﬂ). We also recall that a sharper result is obtained assuming
the inequality

uolo) % M (7)

where u, is any solution of the Cauchy Problem {31)(32) with up(r)>0ifr>0,
seelemma 1.6 if f(s) = A|s|q1§ , for some A > 0, q > 0 . The main goal

of this section is to prove that such a kind of balance between the ¥size"
of the domain and of the data, i.e. of the solution, is also necessary

in some sense.

We have already seen, in Theorem 1.4, that in the particular case of
N=1 and g = 0, condition (6) (which coincides in this case with (7))
is necessary. This fact is in contrast with the case of N > 1 where sev-
sral criteria ofadifferent nature can be proved but, unfortunately, none
of them are formulated exactly.in terms of inequality (7).

In order to simplify the exposition we shall assume that

g=z0 on 0, and h 0 on 3 .

Obviously we shall only consider the case in which {(48) holds. Otherwise,

we apply Theorem 1.20 . A first, rough, result uses Proposition 1.7

concerning symmetric solutions.

Proposition.1.22. Llet p>1 and f as {n Theorem 1.9. Let k > 0 and
2ot R be the nadius of the smallen ball containing Q. Then .if u £s the
soluwtion of

- by U Flu) = 0 i 8 (8)

U= k on an: (9)
and if

R < gu(k), - (10)

the strnict {nequality u > 0 hofds in 0 .
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Proof. Let Xy €1RN such that BR(xﬂ) > . Without loss of generality fé
we can assume xo= 0. Let u € C1%(B,(0)) be the solution of the radially
symmetric problem ﬂ?
3

- Apu + f(u) = {) in BR(O) iy

u=k on BBR(D). ™

oy

Then, from Proposition 1.7 we know that i

0 <ulx) gk for every X € BR(D).

But applying the comparison principle to u and EJQ we obtain that u ¢ u

a.e. in @ (recall that u<u on a2 ), andso u>0 in @ . -
A sharper resuit is contained in the following theorem ”Z

. IQ“,-:T:,

g

Theorem 1.23 Let § be a convex damain.in]RN and Lek X be a point at y
which the mindimwn u(xm) =m0 of u, solution of (8),(9), cceuns. Then{kiﬁ

P
LS

[
i

-1 1/P k ds ey

d{x ,a0) » (EHHP B 7

" P ™S e(t)dn) P -

Tn panticubar, the null set N{u) is empty L4 =
o

D < lpl(k): . (11) »*‘”\ﬁ
where p 45 the nadius of the fangest sphese iﬂég&ibed in @ and P L8 N?
given in (33) of Section 1.1.

The proof of the above result is based on the gradient estimate

[7u(x)| < GE'/P (Uee)ant? & (12)

Such an estimate is proved by a special(the best for scme authors)maximum -
principle, following some.arguments started by L.E.Payne (see e.g. the =

systematic treatement of the monography by Sperb [ 11 or the survey by é@
Payne [ 1] and the references therein to the works by Payne-Philippin, o
Payne-Stakgold, Sperb-Stakgold, etc). The proof of (12} involves many .
tedious calculations. This is the’ reason why we shall only prove it in ﬁ;
the particular case of p = 2 . The general case can be obtained as in o

Sperb [ 1] Chapter 7 (see, in particular, p.117 et sec, 1. Here P
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we shall follow Mossino [ 1 ], where only the regularity W 5(Q) , for

every 1 ¢ s <=, is required on the solution u. We refer the reader to

Subsection 1.4 Tfor other related gradient estimates and the1r app11cat1ons.

Theorem 1.24. Let f be a continuous real function with f(O) 0. Lef Q
be a bounded xegufar (30 € C?) open sef of 1RN, k>0 and u € NZ’S(Q),
for eveny 1 £ 5 < =, satisfying
- Au + f(U) =0 AR Y | (13)
u=k on N

Then, for every X€ Q ,

L] ¢ 40%(t)de - alu(x) -m) (14)
with m=min u and
Q
o = min{0,(N-1) min H{x) 3% (x) 1, : (15)

XE3N
and where H s the mean cwwatwie of 2. (In particular o =0 £f N=1 on
H> 0 e.g. {§ % is convex). Moreover, Lf N=1 ,the equality in (14) holda

lxif Proof. Let J : @ >R  be defined by

W}Q«m§4

P plid Crenns

nw‘b&; ax) = & fwula]? - ) de + auln) (16)

{ o will be given by (15) as we shall Jjustify later)}. By differentiating
J (in the sense of distributions),we obtain

ad = 12 4 (x - Au) u. an

z-( X BXJ

A
- In particu]ar, aJ € 15(q) for every l<s <=, andso J€ C?in) . But

32
B 9% 1 |ul® E (

)Z

z[;; (0 ~Flu)) 2= 32-{[
J J

mlm

aX BX
J

by the Cauchy-Schwarz. inequality. Hence, by (17), for almost everywhere
in {x : vu(x) # 0} , we have

“‘f“)) %JJ_— + ol a- fu)

1 J
&‘];Vulzg(a zax
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Thus, choosing @u such that

2]

alo - f(u)) >0 in
we have

B .9 ae. din { W # 0}

TVWf LW axg
where Wy = (o - f(u))(au/ax ) is bounded in T . because by the Sobolev
embeddings, u & cua) . Now we prove that, for suyitable o, the maximum
of J cannot be attained at P on 3R. Suppose, on the contrary, that
the maximum were attained at P on 3@ ; then

3(P) = Max 3= Max 5242 - fK f(iyat + ak.

1] n
Since u=+k ond and us<k in Q, it follows that du/3v > 0 on 3

From (13) we find that

- 3
fan Iﬂf(u) >0 , so that v (P) >0

But, by the regularity of 3a and u, in a neighborhood of 8@ we have

3 _ 8u %y

"y (o - F(u) %5'= %%'[“ - (N-1)H %%

because, everywhere on 82 , 0= - Au + flu) = - (p%u/av?) - (N-D)H(Bu/ V)
Thus, we will have ald/av(P) < 0 by choosing o such that

o < (N=1) m;s? H(x) -g-‘\‘; (x).

But, if - 3d/av(P) <0 , J cannot attain its maximum at P. Therefore,
the maximum of J in % is attained at some point P of 0 where
= 0. Two cases are possible: a) If vu(P) = 0 , then

apy=- [UP)e(t)ate au(P) = Hax =8P () dtwou(pr) svP e, Vu(P')=0}
m

Choosing o <0 we have J(P)—é(m and the maximum of J is attained at every
point P'e @ for which u{P') = b) If wvu(P) # 0 , we consider the
set Q= {xeqn: |Vu(x)| > g} for 0 <e < [wl(P)| . is an open subs
of @ and containg P. 1In Q the coefficients of the operator

A- +{2/|vu|?) § wj(a-/axj) are bounded, and we have
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Thus, by the maximum principle (see e.g. Gilbarg-Trudinger [ 1 1) d =d(p)
in QE . Therefore

vx e @ . wulx) #0 = J{x) = }P).

By continuity, & =J(P} 1in S ={ XE®n :Vu(x) # 0r. Let P' € o where
u(P*) =m . If P €S, then J(pt) = J(P) . If P' &S, there exists

a largest ball B centered at p* in which vu = 0 . This ball cannot
reach pp since u =K >m on o0 {otherwise uZ constant in Q). Thus

TNnT =T is a connected set, in which u(x) =m , yu(x) = 0, d{x) = J(P;).
As B intersects S, we get again J(p') = J(P).

Sa, in both cases, the maximum of J on 7 1is attained at every point
P of o where u(P) = m. That is, (14) is valid if a 1is sujtably chosen,

e.g., satisfying (15) . Finally, if N =1 we have o = 0 and then

2
dd _ du d%u _ £(u))

= = o ‘T =0 . Thus J 1is constant in g and J = om= 0.

=]
Now we return to the consideration of the general problem (8),(9).

Proof of Theorem 1.23
straight segment joining X, and x;

Llet x €00 and let r be theé arc length on the
. There is always a point Xx, on this

segment such that u(x,) =m and u(x) > m for all points between X; and
x, . Then, by the estimate (14) L

Loew CRq UL PRI Rt ar)
-

Y e G _CY‘:-’..-.'E
b, QL— £
o

and, after separating variables and integrating from x, o x;, we obtain

P"Jrrla'&:j gwr £ u&‘r‘l»"
R, VAT e ';;Lr:‘_,b s b

ul
Ve < [de st
Ju EE%J""

8¢ Jyu | < GEPMPU R R0 P,

p-l )UPIk ds
P (S E(n)an) P
Since X: s an arbitrary point of 3R we obtain the first part of the

d{xgs%1) =d(xs,x,) > (

theorem. The secaond part follows by considering the case where m = 0 and
observing that p 2 d(xm,aﬂ ).D

Remark 1.14. If @ fis a ball the necessary conditions {10) and (11) are
the same. For general domains ~ondition (11) gives a sharper result.

Take, for instance, the case where f < R? is an equilateral triangle of
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height H. If we do not worry about the regularity conditions on am,Theoran:z
1.23 guarantees that the null set is empty if H/3 < ¥ (k) , where . Prop- ‘
osition 1.22 guarantees this only for H/2 < Pi{k). As remarked in Bandle~
Sperb—Stakgn]d {1 1, the estimate {11} can be somewhat extended, if @ is

strictly convex, by using the methods described in Sperb [ 1 7 Section 6.1. >

I
L)

i
ey

Other different necessary condition will be obtained in the next subsection >
(see Theorem 1.28 ).n -
1.3. SOME APPLICATIONS OF THE SYMMETRIC REARRANGEMENT OF A FUNCTION. =
In preceding sections we have obtained sufficient and necessary conditions 7
for the existence of the null set of the solutions of nonlinear elliptic >
boundary value problems by using as auxiliary functions some suitable radi- 7
ally symmetric solutions of the same aquation but only definad on some in- 77
terior balls B8 of the original set © . In this section we shall also “

obtain some information om the null set MN{u)} of the solution u, by using ~»
a radjally symmetric solution on a ball B of the same equation {or a sim- -7
plified version of it},but now the relation between B and will be that
hoth sets have the same measure. The relation between both solutions u fa
and v will be given through an already classical but always useful tool: ﬁﬁ
the symmetric rearrangement of a function {(also called the Schwarz symmetri{%

3

L

zation).

The main purpose in defining the symm
@ open in R, 1§ to replace u by another function u* whose Tevel ..
cets {xe Q*f: ux(x} >t} are balls which have the same measure as the1evgg
s g(x) » £} of u. First of all we shall recall the defini—;%

etric rearrangement of afundtionu:ﬂé&

sets {x € @
tions as well as some well-known results in the literature. o

Definition 1.1. Llet u be & neal-valbued measwiabfe function degined in a
measwiable subset @ of ®N | we shatt catt ult) the distribution function”

ot u (on of |ul], where Cs v felevendly, movies loenla
u(t) = meas {x €@ :julx)| >t} - .

The Heoreasing nearangement of U wilt be denoted by u and .is defdined as -
the function U:[0,+e] - [0, =]given by ,;
67"
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uls) = inf{t » 0 : u(t) sl

Finally, we shall call u* the(spherically)symmetric rearrangement of U,
which {4 defined on the ball 0% {centered at 0 and with the same measure
than Q) by

wH(x) = laylx|Y)

wheie wy i the volume of the unit ball in 1RN.

Some of the first properties on u, U and u* can be derived directly
from Definition 1.1. So, u(t) is a right-continuous function of t, de-
creasing from u{0) (= meas, of support of u) to wu{+w) =0 and jumping
at every value t which is reached by u on a set of positive measure:

plt-}-u(t) = meas {x € & :ju(x)|= t} .

When p decreases strictly, U 4s the decreasing function which extends to
the whole half-line [0,+»] the inverse function of u. In any case, U can
also be defined as the smallest decreasing function from [0,+e]into [0,+x]
such that u{u(t)) = t for every t > 0. Hence, u(s) is the endpoint of
the interval u-l(s) ={t>0:yu(t) =s} if s Ties 1in the range of u ,
i(s) =0 if s> pu(0) and u(s) =t if ult) <s <p(tT). It is also

clear that the functions u, U and u* have the same distribution function.

In general u and u* are only right continuous, but U and u* are
continuous if u s a continuous function .(See Figures 4 and 5)
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Figure 4.
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We summarize below some other properties of the spherically symmetric
rearrangement of Uu.

Theorem 1.25. Llet u: @+ R be an integhable function. Then
L] For every Bon%§—TzaAunab£a real function F one has
ISR

Tl L R Hm\ww: poey T

JgFtluldx =fg, Flu*)dx.

In panticutar, if u € L3() then ur € L3 for 15 <=,
i) For eveny u € LP() and velP () . p+1/pt =1,

fQuvdx < Jgw uFvFdx

iii) For every  U.V, W€ LM R"Y) and nonnegatives we have
I
HRNx]QN
) 1§ §:00,m] +[0,m] s a convex Lower semicontinous function such Lhat
jl0) = 0, then for every U, VE LI(Q) satisfying jnj(u)dx,fnj(v)dx <

we have

u(x)v{x-y)u(y) dxdy < [ o wF(x)vE(x-y)w(y)dx dy
R xR

T 30Cue-v¥) e < Jit{u-v) )
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considered. Finally, in Subsection 1.3c; the Theorem 1.26 1is applied to
study the existence of the free boundary for a class of elliptic equations ™

with a general nonlinear diffusion term.

ol 16 u eWlP(a) then u € WlP(a%)  and

S gnel 9 P < [glvulPdx .

a 4
=
: 1.3a. A general result. An jsoperimetric inequality for the null set. .
By obvious problems of length, the proof of the above theorem goes beyond % The main result of this subsection is lrelated to the obtaining of some
the scope of this book. For a detailed proof we send to the monographs : ! a priori bounds for solutions of the general elliptic problem o

. Polya- Szegol 1 1, Bandle [ 1 IMossino [ 2] and Kawohl [ 7] (see more precise

i references "in Section 1.5). : - div Alx,u,vu) + flu) =g, in | (3) f“
% The results summarized in the above theorem have many different i u=0 on 30 () -

consequences and applications as we shall show in following subsections.

As some direct consequences, we remark that i) implies that where A(x,u,E) is a Caratheodory function satisfying

% IG Juldx sflE!G(s)ds : Alx,uE)- £ 3 [£|P for (xauE)e@ xR « RV, for some p >1, (5) .
J for every measurable G < ©, and that inequality iv) shows that the ; and f is such that
rearrangement operation is a centraction from LPa) to tP(e*x) for ; ‘ . o . .
every 1< p<w. Finally by v) it is easy to see that if u € w%,p(ﬂ) f s a continuous nondecreasing function, f(0) = 0. (6) "
then U € wl:p(ﬁ’]n|)’ for every §>0. Hence u€C°(18.|all) « A i By using techniques of symmetrization, we shall obtain a suitable com-
ue€ w§=P(g) the rearrangement concentratesat the origin s=0 the discon- i parison between any solution u of (3),(4) and the solution v of the -
tinuities of U (and analogously foy u*).We also remark that an analogous simplified problen | L;
version of Theorem 1.25 holds for the increasing rearrangement of u de- )
fined by {i(s) = u*(|Q|- s). ; - AVt f(v) =g, in o* (7) ;i
The main goal of this section is to give some applications of the symme- v =0 on 0% (8) -
tric rearrangement to the study of nonlinear elliptic equations. This will )
allow us to study the way in which the geometry of @ influencesthe size : where o is a ball of measure meas @ « += and g s @ radial func- 7
and geometry of the free boundary #(u) . In particular, as one of the tion satisfying an adequate relation with g,. 7
different applications of a general inequality (Theorem 1.26), in Subsec- . Due to the symmetry of the problem (7).(8) it is not difficult to check =
tion 1.3a, we shall obtain an isoperimetric inequality for the null set . that the solution v of (7),(8) must be necessarily a radial function (see T
Nlu) of the solution u of the problem ' - . for instance, subsection 1.3b). This will allow us to compare any sol- -7
. ation u of {3).(4) with v by means| of the following relation o
- Apu + flu) = 0 in Q (1) { \ -
. Definition 1.2. Let G be an open set of R and ¥, ¢ € L'(G) . We say
u =k on 3f - (2) i fhat the concentration of ¢ Ls Less tth on equal io that of ¢ (d0) 46
In terms of the chemical engineering model, this isoperimetric inequality . jt bls)ds < ft 7(s)ds , fon every| t € [0, meas G 1, (gy
means that the domain § where the region of absence of reaction N{u) \ ¢ ¢ ot
is the greatest, corresponds to the case in which £ is a ball. In Sub- . on , equivalently , if -
section 1.3b, the symmetry of the solutions and of the null set N{u) are . -

67 .
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A

JBF(D)‘I’*(X)(IX 3 IBY‘(

The main result of this su

g, elP(a) , @20
)
g2 € LP(a%) and g

Let uE w%’p(ﬂ) be any
be the sofution of (7), (5]
particulan

fnf(u(x))dx < fn* fv
Finaly, 4§ T = 0 zthen u*

As a direct consequence
bounds of several norms of
f{u) 1in general;

Theorem 1.27. Under the 5

bsection is the following

Theorem 1.26. Let p > 1 and assume (5}, (6) as well as

a.e. on 9,

"

]
\ Then £f g% < go we have Flu*)

ix) )dx

£V a.e. on QF.

any solution u of (3).(4) if f

fon any convex nondecreasing neal function © we have that

oa(flu(x)))dx & fou

ess sup u(x» < Bs5 s

XE X &
and
f < || f
I e )
Finally, £ £ =0 | uj
L

We postpone comments

a(f(v{x)))dx

ets Now T _

HJE Trs 6 feelly fuec riom ipnoy Lhen
B Hwdy, € fvilg = :
u L9 ) S R——— . R
g:,ﬂ%’( )

| shon everny 1 €5 g4 o .
L () Y

(o ax)

on the above theerems and their proof

0) y*(x)dx , fon eveny r € [0, meas GI.

< fIvil o forevery 1&s gt
) L

in

(11)
(12)

nonnegative sofution of (3}, (4),and Let v
< flv) . In

(13)

of the above theorem we can obtain a priori .
0, or of

ame. hypotheses of Theorem 1.26, if 9% 5 4z then

(14)

{15)

(16)

order to explain their application to the qualitative study of the free.

boundary F{u)} for soluti

taining of an isoperimetric

68

ns of {1),(2) and more concretely to the ob-
inequality for the null set N{u). The classic

isoperimetric ineguality, already well-known by the Greeks, states that if
volume A and if the surface area of

D is a bounded domain of R\ with
9D is given by L, then we have the relation

L le}l/N A(N-1)/8; (17)

moreover, the equality sign holds if and only if D s a ball. In other
words , among all domains of given volume the ball has the smallest surface
area. Such a principle has many different applications to problems of
Mathematical Physics (see e.g. the books by Polya-Szego [ 1 1, Bandle[ © ]
andMossino [ 2 1). With respect to the free boundary r(u) it seems natu-
ral that if v verifies (1),(2) on a ball &* , the infiuence of the
boundary perturbation (2) has a minor effect on the behaviour of v aon
q*. Thus, the measure of the support of v will be Tess than or equal to
the support of any solution u of (1),{2) on a set @ of the same measure

as a* . This is the conclusion of the following Cesult:
_,-g\fl*l"lci]y i o

Thearem 1.28 Lot A and T salisfy (5) and (6) nespectivelyy” Foi
k>0, fef u be any nonnegative sofution of Lhe problem
- div Alx,u,vu) + f(u) =0 4n @ ' (18)
u=k on B0 (19)

Finatly, Lot @* be a ball of ihe same measure ah Q ,and fot v be the

sofution of
- Apv + f(v) = 0 in o* (20)

v=k on an# (21)

Then, <f v > 0 on O the null set N(u) < empty. If,moreover, £10) = 0
then

meas N{u) < meas N(v). {22)

Proof. The functions U{x) = k - ulx) ., ¥(x) = k - v(x) belong to N%’p
wl’p(n*) and satisfy

- div A(x,U,v0) + F(u) = f(k) in @ (23)
U=0 on 3%



L

Y

and } p < li-'l(k) s .
| =y
Cdiv(wv P o) + FV) = f(k) in @k (24) ) where p is the radius of the ball of measure {@| and ¥, is defined by (33) -
V=0 on 50 ' ' of Section 1.1. MWe also remark that the integral condition (48) of Theorem .
' 1.9 dmplies automatically that f_l(o) = 0. 4 Py
. .

respectively, where A(x,r,g) = - A(x,k-r,-f) and f(r) = f(k) - f(k-r).
[t is clear that A and T satisfy (5) and (6) , respectively. Then,
applying Theorem 1.27 to U and V (for the choice 9;= g,= F(k)) we

tom,
-

Now we return to the proofs of Theorems 1.26 and 1.27. There are several
! different proofs of Theorem 1.26,a1l of them illustrative of the kind of -

get that g tools involved in the theory of the symmetric rearrangement of a function. -

; The first of them is quite clear , but the information we have about <=

B(FLU(X))dx ¢ [, a(F(V(x)))dx (25) ) the regularity of u, solution of (3),(4), does not allow us to justify =

9 § :

completely all the calculations: N

We also remark that by the comparisen principle we have 0 < U< k.0 gV ¢ k. -
Now, let us assume that v > 0 on % . Then, 0 g ¥(x) < k a.e. x € g* First (heuristic) proof of Theorem 1.26. For the sake of simplicity we .

< .8. -

shall only consider the case p=2 and g;= a¥ . Let us integrate both

and, by Theorem 1.27, stuce V i covilt .

- wstoviliavers 0 Q¥ - sides of equation (3) over the Tevel set {x € Q: u(x) > t}. It is clear ™
£s55 supﬂ@(x) < ess supx: x» ﬂk) - : that if we assume that any solution u is smooth enough, the boundary of 7
“55"ﬂ1iﬁil“"*“ﬁ“5f ) . . ! the above set is {x € @ : u(x) = t} for a.e. t,and the inner normal >
07<7ulx) a.e. on @ and the nuli seF N(u).1s ?mpty. Finally, . to this boundary at a point x is exactly u{x)}/|vu(x}|. In fact, -
given ¢ > 0,let ¢E(t) be a convex real function satisfying since we suppose U = 0 on 32 , we have that -
s {rl =0 if Osrs ¢ F(k) - e, and g (F(k) = 1. : d(aq, {u=t}) » t/L . i
' -
Then, by (25) : where L is a Lipschitz constant far u. Now, we assume that the set of T
J@E(f(u(x))dx < f @E(f(v(x))dx < f dx = meas {x:f(V(x)) »f(k)-}. all the levels t for which {u = t} contains critical points of u, has -
- -~ * - ~ ,‘ A3 . . . . -
FV(x) )5F (k) -€) Q (FV(x))2F(K) e} 3 1.d1m:ns10na1 measure zero (which holds if u s very smooth, e.g. <
Therefore, T : u'e C°n) ; see Talenti [ 1 1,02 1). By the Gauss theorem 7
mees(u=k) = [ 8, (FlK)) < o (FUx mdx ¢ meas [x:F(V(x)) >F(K)-¢ : ”
U(x)=k F Flk -] div Alx,u,vu)dx = [ Alx,u,vu)- (dx) (26) =
fulx)=k} ( U(x))2fk)-e . fwt) tu=t) |v l )
Letting ¢ + 0. we obtain in the limit that.(since f-l(O) = 0} ) ! where t is assumed such that the level set {u > t} does not contain any g
- - ; critical point of u and Hy, ; represents the {N-1)-dimensional measure.
- - = = * . = el

meas {U=k} < meas {x:F(¥(x)) f(k)} = meas [xea* : V(x) = kj. : Hence, from equation (3) and the ellipticity condition (5) {for p=2} we
1 . r"'
which proves the second assertion. ) ; get o
Remark 1.15. Using the negative criterion for radial solutions given in ' . f[u L¥UIHN 1(dx) f{u>§$l(x) - Flu))dx. (27) -
Proposition 1.7 (note that, in this case , it coincides with the particu- Consider now the distribution function w(t) of wu. It is an easy matter ﬁ;

larizations of Proposition 1.22 and Theorem 1.23), we obfain that if u ’ to find that if u is smooth and t dis such that no critical point of u
is a solution of (18),(19) then N{u) is empty if

i
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is in {u > t} (i.e., for a.e. t > 0 ) we have
1
) = f o Hy L (dx) (28)
Tu=t) ;Vu[ N~1
(see e.g. Bandle [ 1 1p.52). Applying the Schwartz inequality to (28) we
obtain

g O €82 ub) = 8 € L (0] [l By L) (29)
u=
Mow, by the classical isoperimetric 1nequa11ty (17)
Hy g €23 ux) =t} > N wi/M ey =t/ (30)

(recall that H {u t} is the "surface area" of 2{u> t} and that the
value of {u >t} 15 exactly wu(t)). Thus from (29) and (30)

2/N ult )Z-Z/N -1 (31)

I |Vu|HN 1(dx) =TT

{u=t}
for almost every t > 0. The inequality (31) gives an estimate from below
of the left-hand side of (27). The right-hand can also be estimated in
terms of p ,and not only of u ,by means of the property i1} of Theorem
1.25 which gives

I R R (O S A F RO LR

{u>t} {u=1}
From (27),(31} and (32) we get

1L e e - 41 eienss ()
w

for almost every t > 0. Hence, by integrating with respect to L, we

have

U(ss)-ulsy) < s1,-242/Ny f g:(s)ds - f ( u(s))ds]dr

Z/N Is;

for every s;,5; €(0, IRI with s, > s,. Here |@| = mezs @ . Finally, by

the monotonicity of *u we derive
~g—‘;(5) S—;%/—NsZ‘LZ/N [j g.(8)de - [ f(u(adde] . (34)

With respect to the so]ut1on v of (7),(8) it is easy to check that v
can be obtained as v(x) = V(uwy[x] Ny, where now Vv is taken as the

72

flu(s))ds (32)

solution of the ordinary differential equation

-5y = ﬂ,%"”‘_ SN (S G (a)eo - f° F(V(e))de] (35
v(lal) =

Now, let us consider the set

= [tel0,]afl ¢ j: Fli(s))ds > f; £(V(s))ds} .

From (34) and (35) we obtain that,since U and v are absolutely con
tinuous,

- d—ds (i(s) - ¥(s)) <0 a.e. on J. (36

Hence, if a = inf {t : t € J} , it is clear that a > 0 and

P - I
72 #(i(s))ds = [2 F(i(s))ds o (HaEpe > [T

:F
f/\

It is also clear that f{G(s))} - F(¥(s)) is a positive S§£¢G$i¥£iﬂ@ﬁe&5:k¥

+rg real function on J. Then (a ,|n|led.
0= aﬂlﬂj) > V(lﬂ]) = ( which is a contradiction. Finally, if f =0 th
conclusion u* ¢ v follows by integrating in (34) and (35) from s to
lo] and remarking that U(|g|) = v(|e|) =

But again this implies that

‘o
In order to give a complete proof of Theorem 1.26 we first give the
precise notion of the solution of (3),(4) we shall use:
Definition 1.3. Assuming (5),16) and (11} , we say that u is a (weak)
solution of (3],(4) 4
uE Wl Pra) . AGou,w) € LP (@) . flu) e Li(R) and {37

ng(x,u,vu)-VW dx-+jnf(u)w dx = jgg w dx (38

for every W€ W%’p(ﬂ) n L7(e).

Remark 1.16. An existence result for such a class of solutions is given,

for instance. in Brezis-Browder[ 2 ] (see also Theorem 4.3 ).Cl

"
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We shall need the following lemmas:

Lemma 1.29. let u € w}’p(n) be a nonnegative solution of (3),(4) in the
above sense. Then the function

f AlX,u,Vu} vu dx (39)
{ulx)>t}

&5 a decrensing Lipschitz continwous function of t 4Ln [0,0) , and the ine-
quatlity

o(t) =

(t) (t . :
0 < -2 [AGxu,vu)-7u e fh Tuls)ds - [y FE(s))ds (40)

{u{x)>t} ‘
holds forn a.e. t > 0. Here n{t) s the distibution function of u: and

5155 are the deoreasing iearrangementso g, and u ‘respectively.
(\/6{‘ 1oL damisstocivn & Mogsivie Pog 4 D) ] + n '
proof. Given t, h > 0 we introduce the function Tt,h R+ R by
Ti,és)=0 if Ogsst, Ttih(s)=s—t if t-:s‘st+h,Tt,h(s)=h if s>t+h. (41)

Let u € w%’p(ﬂ) be a non-negative solution of (3),(4). Then
e h(u) € N%’p(n) n L°(q) and substituting -in (38) we get

~e(t+h)+a(t) = [A{x,u,vu)-vu dx=j(grf(u))Tt,h(u(x))dx =

[t<u(x )gtth}
= f(gx—f(u))dx + h (gl_f(u))(gﬁgodx
{u(x)>t+h} {teu(x)et+h}

Hence

0 < - L (ateen)- a(e)=] (9, Fludde + [lg,-Flw)oxe L

{u(x)>t+h} [t<u(x)gt+h} ]
for some positive constant L independent of t and h. Then, we obtain

that

- g (t) = [(ga-Fu))dx
{u{x)>t}
for a.e. t > 0. On the other hand

g;(x)dx =I gl(X) ]]{U(X)>t}dx-§ IS?E(X) H{U*>t}= Il:(t)ggs)ds
{u(x)>t}

where T is the characteristic function of a set. Moreover
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[ Hude = 7 = [ etitsnes

{u(x)>t}
which endsthe proof.

Lemma 1.30. Let 2 € Wi°P(a) , 2> 0 . Then &f

one has

L/N
NmN

p(ey (DN du ) L7e

foi a.e. t‘> 0, where wy A the volume of the unit ball of 1RN.

Remark 1.17.
are monotone and continuous on the right

In the above statements th

functions of bounded variation and, in ¢
and ¢'(t) are well defined for a.e. t

Now we shall give two different proofs

First proof (Talenti[ 21}- From Jensen’

I
o
=y
N
o
o

p{t) = meas{x €n: z{x)>t} ™

sy

_d pdl/p
©a J{£¥§l>t}x) (42} -

.*"».‘H
o
e functions p{t) and q,(t)'=f|vz|13dx,r_a

i {z(x)>t},
In particular, they are AN
nsequence, the derivatives u'(t) =
>0 (see, e.g, Riesz-Nagy [11)., =

of Lemma 1.30.
s inequality for the convex function’ .

¥y

a(s) = 1/51/{p~11 , we obtain i
£
|vz]P dx _ 01 ;%

o ( Lte 20 <tanyy o fo(1vz[” ) |ve| | - u(tth)iu(t)

g vzldx - 4 % f|vz]dx [vz]dx -
{t< z{x) <t+h} te z(x) ¢t+h} .

.
Hence, we obtain the inequality .
(d/dt)flvz|P dx -~
{z(x) >t} u'(t) e
ol Targory jva[ ) € TIEE Jvelax (a3)
{z{x) >t} {z(x) >t} 7
for almost every t. On the other hand, we shall prove the farmula s
- é% [ |vz]dx 3 N wé/N p(t)l"l/N for a.e. t> 0. (44) -
{z{x} »t}. -
So the conclusion (42) is a consequence of (43),(44) and the monotonicity -

of & . To prove (44) we shall use the Flleming-Rishel formula and the

isoperimetric theorem. The Fleming-Rishel formula reads T
Total variation of ¢ = j:mP{x erV . [6(x)] > akda e
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provided that ¢ is integnablie over 1RN

andjthe left side is finite; here

tot.var. ¢ = sup {f | pdivw dx :w € (C;('RN))N, max |w| <1}
R

and P stands for perimetler in the sense of De Giorgi,namely p(E) is the

total variation of the ch

racteristic function of E (it is easy to see

that the perimeter of a smooth open subset of, FZN agrees: with the (N-1}-

_dimensional measure of the boundary). By applying these formulas to the

function

z(x) - t
¢t(x) =

if x s such that z(x)> t

if xgo orif z(x} <t

for any fixed t > 0, (note that ¢, € N%’p(ﬂ)), we obtain

[ lvz[dx = j+mP {xegq:z(x) »aydx for t > 0. {45)
{z t

x) >t}

By taking derivatives and
(see also Mossino [ 21)

P{xeq: z{x) >t

we obtain the wanted {neq

Second Proof.This follows
First, we shall prove the

- e < (-
{t<z*}

which holds for any z €

Theorem 1.25, z* € W%’p

flvz*dx < (u(t)
{tez*¢t+h}

= {p(t) - u{t+h)

where T
th g l
Ty h(z*) e WrP(a*) beca
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using the De Giorgi’ isoperimetric thecrem

ality (44).D

, with slight changes, an idea of P.L.Lions [ 11,
inequality

@ ()P (- & TlvzlP a0 P (46)
{t<z}

N%’p(n) and for a.e. t> 0. By property v) of

q*). Then, by Holder's inequality

L u(en)) MR gl P atP -

{t<z* ¢ t+h}

)1/D‘( fg* IVTtsh(z*)ip)ljp

is defined by (41) , for any t and h > 0. Note that

use Tt h is a piecewise c! real function with

€ LT(R) and then the chain rule is justified (see Gilbarg-Trudinger
). Moreover, T, h is nonnegative and non-decreasing, which implies
inequality v) of Theorem 1.25

t.h
[ 1]

that T, ,(z*) = Ty h(z)*. S0, using

t,h

' ]
[ 19zt dx < G(elplen)) P57, (@) [PV P=(u0) ) P vz Pan)
{t<z*<t+h} 1] ’ {t<zgt+hl

(47)
Finally, (45) follows by multiplying by 1/h and passing to the Timit when
h 4 0. To conclude the proof, it suffices to show that

R LT ARG (48)
[t<z*]
for any z € N%’p(n) ., in which case the conclusion (42) fellows from (45}
and {48). Estimate (44) is a trivial conseguence of the Fleming-Rishel

formula (see (45)) and the fact that, in this particular case,

P {x €0 : IZ*(X)I> al= NluﬁfN u(A)l—l/N

{a direct computation which shows (48) can be made when u(t) is continu-
ous).ﬂ

Lemma 1.31. let u € w%’P(g) be a nonnegdtive solution of (3),{4]. Then
the decreasing reanrangement U 0f u s absolutely continuous on (0,10]1
and satisfies

- %%(5)£ (ﬁ"jjﬁ"%ﬁijj7ﬁ—)p/(pml)[f§§1(9)de —ji f(ﬁ(e))de]ll(P%l)
a.e. s € (0,la]) (49!

proof First we remark that if z € wi’p(n) and Alx,z,vz)r vzel'(g) th

d d P
- Alx,z,vz)-vz dx » - 0% [|vz|" dx a.e. t>0 (50
di '£z>t} dt {L>th

Indeed, by the assumption {5), A(x,z{x},vz{x)) vz(x)> lvz(x)l-D

a.e. X E § . So, it suffices to integrate this inequality on the set
{x €9 t<z(x) ¢ t+h} and then take the 1imit as h + 0. Then, using
Temmas 1.29 and 1.30, and (50) applied to z=u , we obtain that



—u'(t)
Nl () (- D7 D)

Jvl-l(t)g (s)ds- fll t)f (a(s ))ds)l/(p_l)

t >0 (51)
and t, , 0 ¢

for a.e.

By integrating (51) between t, t,< t.¢ ess sup u , we obtain
1 ta ~(N-1)p/t{p-1)
to-Ta8 /8 p/(p;l) ft1U(t) ( o
(Nwy™™)
(52)
Now, the idea is the folbowing: as wu(t) wit)dt s du(t)
(in fact the above inequality becomes a equality if u'(t) does exist for

Descombes [ 11,p. 131} and then, for every

is nonincreasing,

every t, see , e.9.
0g tlgtzsessnsup u

- 1/{p-1)
tatig zﬁ—a17ﬁsé7(5:Iy jutzli (N-20p/Mp=L1( 175, (g)an -f"r(ito) )do)ar
h ’ (53)

A rigorous proof of (53) can be obtained by using some of the results of in-
tegration theory. Indeed, it is not difficult to show that if v is a non-

increasing function and & is continuous and nonnegative, then

(2 alo(e)) vt < - PO a(s)ds (54)
a v(a)

(see a proof in the Lemma A.1.l. of Mossino [2 1). Then (53) is a conse-

quence of (54) applied to w(t) = u(t} and

o(r) = v ODPNG)0 g gyap 1" (i(e))ao) M ().

[¢]
It is clear that @ € C ((0,]Q[1). Then we need to check that o{r) » 0,

or equivalently, that the function

X(r) = 7 Gile)de - [ Flulo))do

satisfies X » 0 on (0,|]]. From the inequalities {40) we deduce that
x(u{t)) >0 a.e. t € (0, ess sup u).

of u(t] , we deduce that

In fact, by the right-continuity

¥{p(t)) = 0 for every t €10, sup ess ul.

This proves 5 0 on (o, meas supp ul when p is continuous. In the
general case, we introduce the function u(t) = meas {u » t} . We have
that  x(u{t)) = 0 on (o, ess sup u 1 because p{t-h} - u{t) if h -+ 0.
78

() (a1
95, (ohdo - ecicay o (Ehat

ot e e

it e e e o

then u(s)

|
|
|
Then we need 10 prov% that ¥

s € (u{t), n(t))

s e (u{t) () = (s'ss")
i
= Guls) - F(i(s)
|
is non increasing oni (s'
constant on this intérva].
x{s') = 0 and
In this way (53}
To prove (49),
that meas {0 €0, |ﬂ|
meas{8 €(0,|Q])
Then, making ta= u(s,)
member of (53) we deﬁuce

Finally, let

£ )

is}comp]ete1y proved.
let 0 <5y <5, glal
u(e) > u(sz)} ¢

and t,= G(si

u(s;)-e-u(sy) g“"‘I7N”%7TE'TY Slr -(N-1

Since £ 1is arbitraﬁy, we deduce (49) by taking s,.=

1/h and letting h ¢ 0. Note that the
(and then the existence of du/ds a.e.

the integrand in (5§) helongs to L;DC(Q,

of u e P(@)., |

Lemma 1.32. Let goi€ LP (%) be a sadial function such that g% = ga.
Then if, v 4is the decreas.ing

v e We*P(ar)
neanrangement of v we have that v € ct

= 1 1 1P/ (p-1)
| -
N(Qﬁ/NS(N /N

fon evehy s E(O,|$i)-

]
Proof. By uniqueness v(x) = v¥(|x])
= |x| we have |

|
!

t

> 0 on thelintervals of jumps of u,i
for t € [0,ess sup u)} If
= 0 and,in consequence, x(s) =

Therefore x
x(%“) 2 0 which implies that

- u(e) > uls,) - €} » meas{e €(0.|a]): u(e) »

be ihé sobution of (7),(8]).

= ;I'( lex‘

s €(u(0),1(0))=(|supp uf
X(U(O)) + IZ(O) G;(9)do >
with t > 0.

,s") because g, is nonincreasing and U(s) i

(s} s concave on {s',s"}.

| x(s) =0 on

absolute continuity of u

(0,]2]1) and v satisfies

N). Then if s =y rN

(s'.s").

)p/MP-lk;E g1(0)de-J" £(i(e))de) dr

e

e,

e. on ™

el

0.~

Then, the function =

oy
Py
i
s
o)
Pty

oy

such that U(s2) < u{s,}. We have ™
s, and for any € > 0 g

(s1)} > s 7
Y- € , and estimating the second o

1/{p-
(55) =

(L’/Q

s1t h, mu1t1p1y1ng by

on (8, IQI)
can be obtained from the fact thah;
|@]). {This is also a consequence;;

P

o
Lot~

s

s

Faiad
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By ‘ﬂi ‘ By

B By

s

i

(=%

dv_dv N-1
dr ~dg ' ©

_dgde P a
dr

= s (gs ds

After some routine computations we check that

fies (56

d ,dv, P2y
s Ugl @ (Mey

B TAPPRURCE LT

—
v dv) o mé/N

) then it satisfies the eguation

UN _(M-1)/Nyp d¥, P2y
s A e

ds

+ Lﬂill.|91, b-2 d

d

(N- 1)/N |dv|p dv

ds

+ f({") = 52(

%

Using the uniqueness, (56)| is proved. The regq

consequence of the

some a>1 and then v €

Now, we return to the proof of Theorem 1.26
Proof of Theorem 1.26. It suffices to note th

and the assumption gT

2L Gils) - Ws)) <

We can then apply the same argument (in this

heuristic proof. This 1s

and v ‘o

< gg we have

regulafrity results , show
229 (g, ]a)) < ({0,

% a.e. s € (0,

possible because of

:
i

i

One of the most important consequences of ﬂ

estimates given in Theorem 1.27. To prove them

sical result.

Lemma 1.33. fet y,ze LY

Ancheasing and

j y(s)ds g j z{s)d

Vi

80

,ép [ —‘ebgl\‘
Then, fon every contlnuoud convex 5uncixon @

(Toulovse ThZ ole

60& eveiy

S|<

icase cofrect)
i -
the absolute continuity of u

0,M)sy and 2320 an% suppose that y(s)

p(N_l)N(P-l)mE/NS[(N—l)p—N]/N

if a function v(s) satis-

S(N_I)N(P-l)mﬁ/Ns[(N—l)P'N]/N+

).
larity v € €1{ ]O 2|1} is a

(ing that veW ’a(ﬂ*) for
[2] 3,

at by lemmas 1.31 and 1.32,

|2}1-

as in the

heorem 1.26 is the a priori
we need the following clas-

A8 non~

E {0,M].

we have

jt o(y(s))ds ¢ jt @(z(s t € [0,M].

\qfnu‘wuw e By a Fogen L)
For simplicity, we assume @ € C',

Jds fon every

Proof. the general case then follows
by approximating ¢ - by smooth functions. Since ¢ is convex , we have

g(a) - ofb) » @'(b){a-b) ¥ a,b € R . Thus

f: (o(2(s))- @ly(s))}ds zj:w'(y(s))(z(s)-y(s))ds for every t € [0,M].

Let w=z-y. Since the function w%(s) = @'(y(s)) {is nonincreasing, by the
sacond theorem of the mean value for integrals (see e.g. Apostol [1 1) there

exists a value £ €{0,t] such that

I

1t uis)u(s)ds

0

w015 wis)ds + u(t) J { w(s)ds

[

Pp(t) ff’w(s)ds + [{0)= W t)]fE s)ds = 0

and the assertion is estab]ished.D

The proof of Theorem 1.27 results from a trivial application of Theorem
1.26 and temma 1.33.,

To end this subsection, we shall make some comments on applications and
extensions of the abave results (see also the corresponding bibliographical
notes in Section 1.5}.

Remark 1.16% The praof of Theorem 1.26 can alsc be used to show that, given
any nondecreasing function F, if u s any solution of (3).(4) then we

have the explicit inequality
ur g W a.e. on o*, (57

where w € wﬁ’P(g*) satisfies

-AwW= in  QF
p gz

is the
In this way, inequality

(here g, 1is assumed as in Theorem 1.26). It is clear that if v
solution of (7),(8) then Ogv¢w a.e. on Q%
(57) gives a less exact estimate of u*(and thus of f{u*)) than the one
Nevertheless, inequality (57) has the advantage of

(see Talenti[31).

given in Theorem 1.26.

being more easily explained It is also interesting to



I

) | 5
= | "\
note that if f § 0 the explicit inequality u* < v a.e. on ¥ is not ~1.3b. On the symmetry of the solution and/or its null set. -
true in general. (See a counterexample in Chiti[1 1 for the linear case The symmetric rearrangement of a funckion is also very useful in order
p=2, f(s) = s and Yazquez [3 ]for the semilinear eqUation)CI ‘ to show the symmetry of the solution of elliptic equations on balls of IIN. R
: The first result is related to variatjopal problems. More concretely, o
Remark 1.17° The inequality (13) in Theorem 1.26 is of considerable interest !+ let @ bea ball of R" and consider the problem ' =
in the model of chemical reactions. Indeed, if u 1is the solution of the ? . .
problem (20),(21) (or , more concretely, of the problem (1),(2) of the } R #ful =0 m " (58}
Introduction) the quantity : u=0 on Ao . -
=

where f 1is not necessarily nondecreasing.

_ 1
e = TﬁT-fo(u(x))dx
Theorem 1.34. Lot ' be an .integhabfe real function such that L[ts prinitive.,

!

is called the effectiveness, and represents the ratio of the actual amount l
—— 1 F s a Borel-measunable function. Assume that there exists a unique

|

of reactant consumed per unit time in Q to the amount that would be con- wl p(ﬂ) 0 55 Th . -
. : ] . } u ’ s uz0,satisfyin - en, sl = y*, f.e. .
cumad if the interior concentration were everywhere equal to the ambient . ¢ ZLaﬂl . dé%ﬁ I ot . " Vﬁ&%&i#eﬁslzq ) c;x e -
£b ha Aymmetnio a act, U LA SRR LI A ( .
concentration. A high effectiveness is desirable in most applications. ‘ g ymn ¢ and, £n § an function of |x| =
If.for instance, f{1) =1 and u=1 on 3R,it is clear that e ¢ 1 and ! Proof. If uE€ w%:P(Q) satisfies (58)} it realizes the minimum of J, =
that a near-optimal domain @ is a thin annulus of very large radius (with ‘ ' 1 5
volume equal to the preassigned value |@]). In the other sense, it was J(u) = minld(v) . Jv) = E-IQIVVID dx + [oF(v)dx, -
conjectured by Aris that the ball would give the Towest value of e, since o vells *P () : o
the center of the ball is Ffarther from the boundary than any interior point T where F is the primitive of f such that F(0) = 0. The inequality v) -
of a domain of equal volume. By using the same change of unknown variables of Theorem 1i25 shows that if u* s the symmetric rearrangement of u 4
as  in the proof of Theorem 1.28 it is easy to see that this conjecture : then u* € W;°P(a) and Py
is now a consequence of the conclusion (13) of Theorem 1.26. Previous p p .
Lo folvu*[F dx g [ |vu]" dx,
proofs are related o the semilinear case p=2: Amundson-Luss [1 1 for Y] Y] ey
Al
fls) = s, and Band]e—;perb-stakgo1d [11 for ¥ nondecreasing and u smoathEj On the other hand, by i) of Theorem 1.25 . i
Remark 1.18. The above results can 8150 be obtained in certain different “
. N . [ Flu*)dx = [ F(u}dx

formulations: x-dependent perturbations of the form  8(x)f(u) (see equation f Q =
(62)- in Section 1.1);  not necessarily bounded (for instance 2 =R -G and, then, J(u*) ¢ {u) . Finally, by the uniqueness, u = u*._ o

. s

with G bounded or & =’RN); solutions understood not necesaarily in the
variational sense as, for instance, in the L!-seeting or in Orlicz-Sobolev .
spaces, . . Corollary 1.35. Let Q be a ball of PN,k:zO and Lot f be a continuous
nondecheasing real function. Then the sclution u € Nl’p(n) of the problem 7

- Apu + f(u) =0 in 0 (59) ~
u=k on M (60)
83"

82 ’ o
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is nadially symmetiic and, in fact a non-decreasing function of {x|.

Proof. By the comparison

ution u € Nl’p(n) and that 0 g u g k a.e.on Q.

U=k-u verifies UZ€g

- b+ FlU) = 0

with f(r) = -f{k-r) and it suffices to apply

principle we know that (59)(60) has a unique sol-
Then,the function
We'P(a) and

in [}

Theorem 1‘34'n

Remark 1.19. The above simple argument alsoc applies to more general equa-

tions of the form

- div A({vu) + T(u) 5 0 in 1 .

Indeed, it suffices to apply the general ineguality

Sq B vu|)dx < [oG(1vul)dx

instead of the one given

Tenti [31 and Duff {11).
ible to obtain some other

Kawhol [7 ]).EI

An important ingredien
of the solution. After %
is well known that this a
Jocally Lipschitz continy
N=2 and p=2 , is due t

Theorem 1.36. let Q be

bounded negative functioy

Aofution of

- Au + flu) =0

Then, necessardly, w s 4

to |x].

Proof. As in the proof ¢

awult) < (-5 g

By Alyino-Lions-Trombetty

84

in v) of Theorem 1.25. (See Polya-~Szego [1 1 Ta-
Using other types of rearrangement it is poss-
symmetries, different from the radial one (see

t of the proof of Theorem 1.34 was the unigueness
he important work of Gidas-Ni-Nirenbery [1 1, it
ssumption is not necessary if the function f is
aus. A better result, for the particular case of
o P.L.Lions [ 1 1:

a ball of R2. Let T be a measwuable, Zocally

p and Lot u € H2(Q) n HI(Q) be a non-negative

n Q (61)

pherically symmetiie and decreasing with respect

f Lemma 1.31 (see {51)) we have that

~f(u)dx  for a.e. t>0 (62)
u>t}

[1],the equality holds a.e. if and only if u is

radial and non-increasing. Now, if we multiply {62) by -f{t) and integrate

between 0-and M, where M > max u , we obtain
Q

“F(u)dx ) (- Ty f()dt

M M
ar [ —f(thu(t)dt « J (]
0 ¢ {uxtl

But we have
M M
- J, f(eu(t)dt = - I, F(t)(-du(t)) = - [oF{u)dx
where F(r) = f: f{s)ds , and
M
J “f(u)dx = - f(s)(-du(s)).
{u>t} t
Then
MM d 1 M 1 ,
f Uy -f(s) (~du(s)))(- ;ﬁ?(—f(t))dts 5( fn(-f(s))(~du(5)))zsg-({i(u)dX) .
In conclusion, we have proved
grf (-F(u))dxs ([ ~Flu)dx)? (63)
Q Q

and the-equality holds only if u i5 radial and decreasing. Then using

the Pohozaev identity (see Lemma 2.30)

- dp (Quye
jﬂgg(u)dx = QIBéB“) ds ,
where n is the outward unit normal to a2 , we have
1 3u 1 u P 2
[ Flu)> & {f I=={ds) = 5= fr (- £ds) % _T'( { -f(u)dx)?.
Q 8 0 an 8 50 an 8w Q

Comparing with {63) we conclude the proof easi1y.m

Remark 1.20. The above proof is an adaptation of a similar result of
Crooke-Sperb [1 1. The case of higher dimensions seems to be open.;
Remark 1,21. Let u satisfy

- AU + flu) =g in @
u=190 on 90 .

If g is a radially symmetric Ffunction and, for instance, f is strictly
increasing, it is clear that the unique solution will also be radially

8t



symmetric and so also itsnullset N(u). Nevertheless, we remark that, in
general, the mere symmetry of the boundary of the support S{g) of g

does not imply the symmetry of the support S(u) of the solution u. Indeed
it is not difficult to construct a non radially-symmetric function g satis-
fying the growing condition (77) of Section 1.1 in some strict part T of
the boundary of its support. In this case, the solution u must vanish on
I but not on the rest of 35{g) if g is suitably chosen (see Figure 6 ),

Figure 6

1.3c. The free boundary for equations with a general nonlinear diffusion

term.
We have already seen several existence criteria of the null set of the
solution of second order quasilinear equations of the form

- Apu + flu) =g (64)

More general absorption terms were discussed in Proposition 1,11 (see also
Section 2,1).Anether generalization was given in Theorem 1.13 for the case
of a general linear diffusion (see also the comments made about the non-
Tinear equation (63) of Section 1.1). The main goal of this subsection is
to study the formation of the free boundary
ue wl’p(n) n L7(q) solution of the equation

F(u), for any

86

- div A(u,Vu) + f(u) = g in o (e5)

u=h ' on @ (66) |

The main idea will be to obtain an adequate relation between u and Vv,
where v s the solution of (20).(21}. In this respect we remark that the
structural assumption (5) made on the term A(u,vu) in Theorem 1.26 gives

only a negative result (see Theorem 1.28). Roughly speaking, iF the absorp- g

tion term f is fixed, the assumption (5) says that the diffusion term of
(85) is faster than that of the equation (64) and so, it is possible to
show that the null set of the solution of (65)(66) is the empty set, even
though the null set of v, solution of (64)(66)}, is of positive measure.

In consequence, condition (5) must be substituted by another of a different
pature,expressing that now the diffusion term of (65) is slower than that
of the eguation (64). A natural condition in this direction is

[a(r.e}] < C1g|p"1 for every (r,g5) € R x'RN, for some C>0 {67)

Nevertheless, one cannot expect, in general, to obtain the corresponding
inequalities opposite to those given in Theorem 1.27 f(v) 5 f{u*) (where
u* dis the symmetric rearrangement of any solution of (65) vanishing on 9%

and v is the corresponding radially symmetric sciution of the associated

oy
oty

)

o

-3
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equation (64)}. The main reason for this is that the isoperimetric inequal- "
ity makes the method followed in the proof of Theerem 1.27 irreversible. In -
spite of this difficulty, the relation flv) g f(u*) holds if u fis f?
radially symmetric: 9
broposition 1.37. Let @ be a ball of R'. Let A(r.g) satisfy (67) and 7
f  be a continuous non decreasing real funciion. Given K 0 fet u and 7
v be.n w%*P(g) and satisfy g
e

- div A{u,vu) + flu) = K inQ (68)fé

and
- Chpy Tyl = K iR (69) ~»
nespectively. Let us assume that U =u*. Then T(v) < T(u*) -
87



As in previous sections we postpone the proof of this result in order
to explain (roughly) how it can be applied to the study of the free bound-
ary of (65)(66).

Theorew 1.38. lLef Q be an open negufarn set of ’RN ,p > 1 and consdder

ge LP (n) and he wl’P(n). Let u € Nl’p(ﬁ) n L7(@) be any nonnegaiive
sobution of the paoblem [65)(66). Asasume fhe growing condition (67), a4

well ah ;

"the comparison principle holds for the problem (65) (66", (70)

"any sofution of (65) on a ball and vanishing dn the boundary

coincides with L8 symmetnic heasrangement (71)
Finally suppose that
d
[ =7 <te (72)

0" F(s)V/P
wheae F 44 the primitive of f with F(0)=0. Then the nuff set N(u) of
U safilsfies
N(u) > {x € N(g) U N(h{an) : d(x,S(g} U S(hlaﬂ))> LY.

where L = $1/N(M), M s any bound of || ull_ and b, A degined in {33)
of Seetion 1.1.

Proof. As in the proof of Theorem 1.9, by (70) it suffices to show that
given x,€ N{g) u N(h[aﬂ) and R = d(xp,5(g) v S(hraﬂ)), i u(x)=ul{x:x,)
satisfies

- div Alu,vu) + Flu) =0 in BR(xn)
u=M on BBR(XU).

then U(xg) =0 if R > L. 1In order to prove this,note that without
Tass of generality we can assume C = 1. Consider v € Nl’p(BR(xo)) sat-
Tsfying ‘

- Apv + flv) =0 in BR(xo)

v=M on BBR(XG).
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Then, by Proposition 1.37, we have f{M-v) g f(M-u). But (72) impiies that
F_I(O) = 0 . Then, arguing as in Theorem 1.28 we obtain that

meas N(v} < meas N(u). Moreover, if R => wllN(M) , by Theorem 1.9 we
know that v{xp) = 0 and that meas N{v) > 0. This proves that measN(u):
Finally, by (71) U is a non-increasing function of |x| and we deduce
that necessarily uU{x) =0 a.e. X € Bs(xo) for some small enough € > 0

Remark 1.22. A comparable result, but without the assumptions (70),(71),
will be obtained by means of an energy method in Section 3.1.{2l

Proof of Proposition 1.37. Let u satisfy (68). Since the right hand
side of (68) is a constant, the proof of Lemma 1.29 gives us that

d ) U(t) -
- f A{u,Vu)-vu dx = fo [K-f(uf{s))lds ,

dt sty

where u and ‘U are the distribution function and the decreasing re -

arrangement of u. Moreover, since @ is a ball and u is symmetric (and
so |vu] is constant on the level set {u =t}),it is not difficult to

show (see e.g. Talenti[ 3 ] p. 362 ) that u satisfies (42) with the

equality sign, j.e.

_Gwl/pt L d P g P = /N (N-1)/N
(- a9 (- I j{u>tivu| dx) Ny nlt) for a.e. t >
On the other hand, using the Schwartz inequality on the set{xeR:t<u(x)stt

the assumption (67), and passing to the Timit as h + 0 , we obtain

- é% f Alu,vu)+vu dx < - é% f !Vu[pdx a.e. t>0,
{u>t} {u>t}
(again, it suffices to consider C=1 in {68)). In conclusion, as in
Lemma 1.31, we obtain now that
= . 5 - 1/(p-1)

- %%'(5)? (—1m %ﬂ-f5fﬁ )p/(p Uy [ (&-F(u(e))de] a.e. se(0,]s
N(uN 5 0 )
(:
Finally, the conclusion holds as in Theorem 1.26 by noting that if
VE w%’p(ﬂ) satisfies (69) , then its decreasing rearrangement satisfies

(73) with the equality sign (Lemma 1.32).D



1.4. FURTHER RESULTS ON THE FREE BOUNDARY FOR SEMILINEAR EQUATIONS.
The analysis made in the previous section can be completed by considering

some other questions such as the regularity and measure properties of the
free boundary. This kind of property
the general setting we are considering and this is why some simplification

seems to be hard to establish in

is needed. In this-section we shall only consider some semilinear problems
such as for instance,

- au+ f(u) =0 in 0 (1)

u=1 on wn (2)

where © is an open bounded set with regular 30 and f {is a continuous
nondecreasing function such that f(0) = 0.

Due to the semilinear character of (1}, precise information on the
behaviour of solutions near the free boundary will be obtained as a con-
sequence of the main result of Subsection 1.4a, relative fo a Harnack
type inequality. This inequality is also proved for solutions of the equa-
tion with an x-dependent absorptian term. The Tocally finite character of
the perimeter of the support S{u) and the zero Lebesgue measure of the
free boundary #{u), are some of the consequences of the Hausdorff measure
pstimates given in Subsection 1.4b. The stability of the free boundary with

respect to a parameter A 1in the equation, is considered in Subsection 1.4c.

Finally. some remarks on the convexity and other geometrical properties
gf the free boundary are made in Subsection 1.4d.

The results of this section are due to Phillipsf 2 1, Friedman -Phillips
[ 11 s Spruck [ 1] and Alt-Phillips [ 1 1.

1.4a. On the behaviour of solutions near the free boundary.

The results of this subsection concern mainly nonnegative solutions of the
homogeneous semilinear problem

—au+ul=0 in [ (3)

u=h on  an (4)

where © is an open bounded set with 30 locally Lipschitz, 0 < q <1 ., and

90

o

~

h € HY(R) ,h > 0. We recall that the existence and uniqueness of the sol- *»
uytion u € H}(@) can be obtained, for instance, by minimizing the func- fé
tional f?

o) = 13 10Vt ]9 dx (5) -~
on the convex set X = {v € H'(2) : v-h € H ()} . Due to the assumption {?

0 <q< 1, the free boundary Flu) may exist depending on the "sizes" of fﬁ

@ and h (see Theorem 1.9). By standard arguments of regu]ar1ty,uecz’ (D)
for T < @ and some 0 < §<1. Moreover, if D is such that u(x}»t4inp f#
for some f > 0, then u € ¢™(D) . In this way. a loss of regularity is

expected to occur at the free boundary F(u) (see examples in Section 1. la)ﬁ\
The study of the behaviour of u near F{u) is then of a great interest, °

M}

and will be carried out Tocally. The main ingredient in such a study is
the following Harnack  type inequality,controlling (in a weak sense) the 7
behaviour of u near a point X, € F(u) by means of the average of u f?
over 9B, (x,) 5%
1 Z
he, et IBBP‘EX[:"); | o s
where B (xu is the closed ball with radius r, and center x , and f?
a the surface area of the unit ball in ‘R iz

Lemma 1.39. Let 0 <q<1. Then, thene exist consdants Cq, T>0 , de- -
pending only on N and q such that if u > 0 satisfies the equation (3) ;&

An Br = Br(D), agd o
fousc el n -

SB,{.

then T
I

x)21f u fan X €8y ©(8) -

o

Remark 1.23 A crucial point in the proof of the above result is the -

homogeneity of the equation (3). Due to this property we can rescale the ps
domain and solutions: if u € Hl(Br) satisfies (3} in B.s then for every .
s > 0, the function u>, defined by



. s ' s
is such that uS € H (Br/s) .and satisfies (3) on Br/s (note that

4
[ glg-2)

3.(v) = J, (v

r/s

for every v € Hl(Br) » if J,. denotes the functional (5) on B instead
of on @ ).
B

Proof of Lemma 1.39. It is enough to consider the case r=1 and the local
solution of (3) on B, defined by

W) = AL s /(1)
r
Note that

WA f ou=4 . (10)
B o, 2B,
We first determine a constant C,> 0 so that, if faB us C, , then

N

u(0) 3 % f u . Since au= f(u), from the representation formulas (see
B
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Gilbarg-Trudinger [ 1 T}

. 1 N-1 ~

§ u-u{0)=Cfau dx={ {§ uBr Glr)drs T uw)®

3B, B, o 3B, 3B,

where G(r) = ~Tog r if N=2and G(r) = r>N-1 if N33, Cand Care

constants and where the ast inequality holds because 0 < g < 1. Hence,if
1

Fous (ZI)TTE (11)
2B,

then u(D) » %’ {aB u. S0, it suffices to take C;= (2511/(1~q)_
1

Now, let x € 81/4(0). Since u is subharmonic

ul0) < CN) §f u (12)
BBI/Z(X)

Using (11) to estimate u(0) and assuming further that

f u s 2 Bene,
38,{0)

92

we get, from (12), that

u = Z_Bcl.
8By /2(x)
Hence, by {11) we have

1
u(x) =5 f ( u.
x)
By
Finally, estimating the right-hand side by (11),(12) we obtain

a(x) > Be) Y f for % € By (q)

u
38,(0)
provided

§ w3 Cpemax(1,28Be(N)) = oo
3B, (0)
Before giving some applications of this result, it is interesting to s¢
a similar Harnack inequality, true for semilinear equations satisTying
the homogeneity property in a weak sense. This will be applied to the cast
of a x-dependent absorption term in the equation:

~ared=0 L uz0, (13,

where 0 < q < I{For the existence of F(u) see Proposition 1.11).

Lemma 1.40. Let 0<q<1,0¢8¢ Mand u> 0 satisfying (13] in Th
batt By. Then

- - M
G ud)l B (f ua)t Y- (1-a) g O-r), (14
aBr 9B,

- 1/{1- ;

Tn parnticulan, 4f § 5 v ds 3 eore/ (1 A cy= [(1-q)M/N] M(1-6)
r - I
positive {n a nelghbowthood of the onigin.
Proof. Let m(r)=fBB u ds. Then
r

fouds=g (XL BLBgs o g e(utds <

roar
3B 3B, ar? aB,.

r r

g Mf u? ds ¢ M m? (1
BBr



by Jensen's inequality. Also,

m'({r) = § gg ds = —l—ﬂ- f Au 2 0
BB wyr B

Integrating (15)
N1 m'(r) ¢ M j: S'N—lm(s)q ds < %— N m(r)9.
Hence
. M q
m(r) < Nr m{r) (16)

Integrating (16) from r to 1 gives

m(1)t  m(r)t-9
1-q 1-q

M
gﬂ(l'rz) ] L

I-g
which shows {14). Finally, we note that, if ul(x) = A u{Ax) and u sat-

isfies (13) on B., taking X=r we have
-t o+ a(kx)(uh)q =0 in B;.

Then the second conclusion of the statement is an easy consequence of {13)
and (10).D
A first consequence of the above lemmas is the following:

Corollary 1.41. Let U be a nonnegaiive solution of equation (3) (resp.
(13)) on the ball Br(O) and suppose that 0 € F{u). Then
2

f uds € o 170 .
38,{0)

(co given fn Lemma 1.40). Moreoven thene exists C = G(N,q)(zesp C{N,q,8))

such that
2

0 < u(x) < C[x[l*q X EBL, (17}

Proof. The first part follows obviously from Lemma 1.39 of 1.40, respec-

tively. Now, let x € Br/z(o) and set R =[x|. Let w{x)} be the harmonic

function on BZR(D) satisfying w =u on 3B,p. Then by Lemma 1.40,

_g_

(ZR)l > f uds= § wds= w(0)x Ciw(x)2 C u(x) ,
BBZR BBZR
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i

ced the classic Harnack's inequality {for w) and the subhar~%;

~

where we have u

monicity of u. Hence ) e
1_2_ 5 & JES
ulx) s cx|7% . =T oy +

=,

Remark 1.24. The inequality (17) gives a direct proof of the continuity of

the solution on the free boundary #(u) (and then on B, Den) as well as,
that wu(P) = 0 for every PE€ #(u} . Indeed, by (17} we have that X
2 ~

0 < u(x) £ Cx - Pll"q for x such that |x-P| < d(P.3q)/2. =

< £ <

We also note that (17) coincides with the inequality obtained in Section 1$%
to estimate the location of the free boundary.D T?
£

. : verage,
Next, we derive lower estimates of growth for u, in a sense of a g %é

near  F(u). o
Proposition 1.42. Let u be a nonnegative sofution of equation (3) (resp.”.
(13})) on Q o B (xu) and suppose that 0 € #{0) and that B (xD Y xu >O;

(respB (xq) = {x; U(X) >0} n (x: 6(x) > A}for some A > 0)- The" gﬁ
U ds 3 CrZ/(l—q) (1r”
BBr(Xu) E

for some C > 0.

proof. Again, by scaling, it suffices to assume r=1 (see (10)}. Since 4,

is subharmonic o
supu < G f u ds (19",(:
B1/2(xo) 81 (x0) _ s
We claim that f%
supu > (%02/(1“q) Kyaa (20}

P

Bl/Z(X ”

= i tisTia

d in (43) of Section 1.l,and A =1 if u sa -

where KN y Was defined in (43) 2 (o) | e

(3). Indeed otherwise, if we define v(x} = KN’AIX | ) 2

ugyv on Bl 2(xu Moreover, by Lemma 1.6, v satisfies - Av + v :f?

on Bllz(x") Then by the comparison principie u £V in Bllz(x“)’ a cops
tradiction, since u(xe) > 0. The combination of (18) and (20) proves the

o
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S

result.
a

Remark 1.25. It is clear that (18) implies that
2

supu > C |x-—xn|1“q (21).
XE3B (Xu)
r
This ineguality shows a kind of nondegeneracy of u on the sat
S(u) = {x €@ : u(x) > 0}, in the sense that u cannot be uniformly small

in some neighborhood of any point of §(u)‘ A similar result will be proved
Tater (see Theorem 1.44).D

Another important growth estimate js related to the correct balance bet-

ween u and |vu| near the free boundary F{u). 1In this respect we first
recall the estimate

[Vu(x)|* < a%f Wt for xed@ (22)

given in Theorem 1.24 for the functions solutions of equation (3) and
constant on 3Q

In the next subsection we shall rieed estimates Tike (22)
but when u is:merely alocal solution of (3). This is the content of the
following result due to Phillips [2].

Lemma 1.43. Let 0 < q <1 .Given k > 0 zthere exists an e = e(k) > 0
Sduch that, Lf u satisgies equation {3) .in BET(XD) fon some v > 0 and
Xy € F(u), then

AL L fu> 0} 0B (x) (23)
FT) ST RO Lokt

u

1.4b Lebesque and Hausdorff measure .of the free boundary.

Application to domains of boundary having nonnegative mean curvature.
It seems natural to expect the free boundary F(u) with a zero N-dimen-
sional Lebesgue measure. We shall prove this by a stronger result about the

density of the boundary points of the strict support of u , §(u), defined
by

96

)

S(u) = x€ @ u(x) >0} ={u>0} (24)

Theorem 1.44. Let u be the solution of (3), (4). Assume O € F{u) and

By (0) = Q. Then there exist &y > 0, C>0 and y € BBE(O) such that
r

2 .

-9 (25)

uly) = Ce

for evary e < ggr . Moreoven, there exists 8 = 8(N.q) €(0,1/4) such that
By (¥) <S(u). In particular

|S(u) 0 B, (0} oy

x> (5 i 2e < gof- (26,
IBZE(O)l
Proof. Take e<r/2 ,let yo€ S(u) n BE(O) and define

w(x) = u(x8 - BO=a) e _ gz on S(u)n B (ya) (27
2N

where K 1is a positive constant to be chosen. By the regularity results,

(3 O(y,) = int (B .
we C(Stu) n B {yo)) n C(S(u) N Bl(yo)) » where B2(yo) = int { (yo))
Furthermore,

2
po=(1-9) - q e 1ok T on

Su) n BY{yq).
1 {u) n Bl Yo

We shall prove that Aw » 0. Let us set K = (1-q)/(1+q)? . By Lemma 1.4

there exists g,> D such that

2 . p 0
B L LR OR
u 2

Hence

2 - S B (0), if 2e < ey
Mz (1-9)l- g (G;T‘+ Ky +1-Kl=0 on s{u) n E( ) ’

since w(ye) = u(yﬂ)l-q > 0 , by the maximum principle, w > 0 at some
a(3u) n B_(yo)). But w<0 on F(u),so there exists
; i ¢ 219 with
a z e 3B (y,) such that w(z) >0, i.e. u(z) » Ce
(i-q) . i -q)* +q}2] . Finally, if we Tet yo + 0, then a sequence
; e holds by continuit
of points z conyerges to some y € 3B_(0) , and (25) holds by

point of

9



7 IF(u)nBr(xu)1

6) , let C=m
l,( E_)z/(l-Q)
i'tc

o

To prove (2
and define 8 =

in {C,Col}, where Cy is given in Lemma 1.39,
. Then

uly) > £(40) %/ (178 (4 9) ¥/ (1°0) - ¢, (g0c) %/ (10

Since u s subharmonic

fon U > Co(dne)?/(1-a)
4pe(y)
From Lemma 1.39 {(or Lemma 1.40), it follows that Bee(y) = S(u}. Hence
|S(u)n B,_(0)] [Bgc W) _ o 4 g
18, (0)] By ()] E o

Remark 1.25. MNote that, by Proposition 1.42, we know more than (25) .

Indeed, ggp (u )2 K(Ehz)z/l_q for some constant K > 0 -and for every
X
€ < Egl. be ’
in]
Corollary 1.45. Let u be the solution of (3), {4). Then |F(u}| = 0.

Proof. From a well-known result of measure theory (see e.g. Munrce [1 1),

it is enough to show that no point of F(u) can be a density point of F{u).

Now, by Theorem 1.44, if xy€ #(u) , then
[4) 08, (xa) | B, (xa)-B ()|

Bl (B W)

4
lBr(Xu)l

if qu(xo)x: Q and y, 0 and e; are taken as in Theorem 1.44.
a

<1 - (%JN <1,

The above result can be improved by using some other measure different

from the Lebesgue measure which allowsus o distinguish among the zero Lebes-

gue sets. That is the case ofthe Hausdorff measure. We recall the exact
notion:
Definition 1.3. Given a «eal mmber a > 0, the a-dimensional Hausdonfg

owten measure of a sef E < RN is given by '

#(E) = c(a) 1im (inf § diam (Ej)a), (28)

d+0

where the fnfimum <5 taken oved all countable coverings of E by sets E.
with diam(Ej) <d and where ’
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cla) =220 (RY G+, T

1§ a=0 , B°(E) = cardinality of £ and
Finally the Hausdorff dimension of E 4

g dim E = inf {a €R : #°(E) = 0},

Systematic treatments of the Hausdorf
by Federer [ { 1. Rogers[ 1 land Falcong
Hausdorff measure of F(u) is the foll

Theorem 1.46. Let u be the solution ¢
HN—l(F(u) nD) <+ =

fon each D with D<= Q.
The main idea in the proof of the ab
show first that if 0 € Flu) and B4F(O

1im

the gamma function. v
f a<0, BE) =wif E# 6.
degined by -

i

f measure are available in the booké%
r [ 1. A first estimate on the =

owing: )
§(3),(8). Then -
>

(29) -

Y

ve result, due to Phillips[ 1,75t
c Q , then >

S

#VHr() n8.(0) € € op

for some positive constants M and C.

1{0 <u sﬁezl(l'q)} n BZr(OH

[

and thus the 1imit infimum is finite,
in the statement, D can be assumed to
sult is lengthy and will not be given h
Theorem 1.46 are the following:

i) [Flu)]= 0 and |S{u)| = |interi
i1) S(u) has Tocally finite perime
We recall that if E <@ is a Borel
perimeter in & if the indicatrix functi
this case its perimeter P(E) is defined
giusti [1 1. We also recall that if E
boundary 8E, then P(E) is the surface

Much additional information on the free boundary F{u) can be obtained
through adequate Hausdorff measure estimatés. This is the case of the e

[{0<d sﬂéz/(1+q)} ﬂBZP(O)i .
(3007

— .

Finally Q
=0{1) as e~+0 (31)ff

b

Which leads to the conclusion becaus%?
he a_bal],The proof of this deep ress
ere. Some direct consequences of o~

or of S{u)]
ter in § . e
set, then £ is said to be of finite’’
on T_ has a bounded variationjin {7

by P(E)F:VQ CﬂE), see Federer[1]ol7
is a compact manifold with smooth &

e

area of 3F in the classical .sense. /7

o
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28 8 i

estimate

HN—l(

F(u) 0 Bo(xo)) <" [{u > 03 0 3Bp(xo)] ()

which will allow us to priove that F{u) has a nonnegative mean curvature
(and even that p(u) is convex if N=2), when u is the solution of (1),
(2) and a0 is assumed to have a nonnegative mean curvature. In order to

explain the utility of

estimate (32) we shall state it more precisely

Theorem 1.47. Lel u be fhe solution of (3),(4), corresponding to h =1 .
Assume. that

3N has anonnegative mean curvaiwre . {33)
Then, fon any subdomain B of § with piecewise smooth boundary 3D « @
and with HNdl(F(u) n ab) = 0 we have

;oa"t ¢ ogpas™t o (34)

D nE(u) abn{u>0}

Before giving the proof) of the above theorem, we shall give a first

application.

Theorem 1.48. Assume (33) , and Let u he a sclution of (3), (4) connes-

ponding £o h = 1. Then
cwwatuie.

overy C2-postion of F(u) has a nonnegative mean

Proof. Suppose that a smpoth portion of F(u) 1s given by Xy = o{x'),

where x' = {x;,..
Take 3D n {xy < o(x')}

e >0 . Then (34) yields

R

s XN-l) varies in a ball Ek sand u >0 9f xy< o(x').

where xy = o{x*) - et{x') , ¢' >0, ¢ € C}(Bp) »

Lo 7] 2112 < [ 1 - 5|22,

R

From this, we deduce that| V-ve/[1 + |Vm12]1/23 0 , and the assertion

follows (see,e.gT,Gilbarg—Trudinger [11p. 356)

‘o

Now we return to the proof of estimate (34). This will carried out by
using, in a fundamental way, the auxiliary function

100

pu) = [ —1 (35)

45
o (2r(snHE
where F(t) = IE f{s)ds = [1/(q+1)]uq+l . (Note that y = ¢, , where ¢, is-

given in (33) of the Section 1.1). If wu is any solution of (}), after
some easy computations. we obtain that in the set {u > 0} we have

nou) = o) LI (36)
where
- fu) ¥{u)
o) = O (37)

where f(u) = ud, 0<qg< 1. MNote that ¢(t) is a positive C! function of
t away from t=0, whereas near t=0 , ¢(t) ~ constant > 0. MNow, we
recall that by Theorem 1.24.

Ivu[2 < 2F(u) in @ .
Then

[vo(u}]| <1 (38)
and, in consequence,

Ap(u) = @ in {u > D} . (39)

That {38) and (39) lead to estimate (32) can be proved, formally, in the
following way. Assume #(u) smooth and let x, € F(u). By the Green's
formula

ap{u) = .vw(U)-vciHN'l +
{u>0} NBp{x,) F(u) nBpxo)
+J vy (u)-vdHNdl

{u>0}naBR(xo)

Using (38),(39) and assuming that |wp(u)| - 1 if dis(x,F(u)}+ 0, we
obtain (32)'u

101



Now we shall make the above observation rigorous . We shall need the
following estimate on the Mausdorff measure, due to Alt-Phillips [ 1 1 .
Theorem 1.49. Llet u be the sofution of (3)},{4) with h = 1. Then

_ 1 - [ap(u)]?
aplu) = dx+11{u>0}¢(u) o > : (40)
whene di 4 ahsolutefy continuous with respect to dHN'1 LF (u)
(L means "restriction to®). More precisely,
dr=da"lipu) , + elx)d AV E (u) g b 0 € B(x) < C, (41)

(F(u)red.and F(u)s.In defined as in Fedewen [ 1 1. Chap.4), and

D gyt (1) e Ly (42)

Now we shall integrate by parts correctly:
Proposition 1.50. lLef D be as.in Theonem 1.47. Then

Al[J(.U)'\)dHN-l (43)

[ oagp(u) = f
D apn{u>0}

Proof. The equality (43) is Jjust the Green's formula for a function
w(u(x)) whose Laplacian iis a measure. We shall establish it by approxima-
tion. Let q;(u)E. be a mollification of y(u). Then, since AP 1is a meas-
ure

A(W(U)E) + Ap{u)  as measures. (44)

Moreover , Ap{u)(aD) = O due to (40),(41) and the assumption
HN_I(F(U) n ab) = 0. Then, from (44},

Joalple) )+ [ aplu). {45)
D € )
By the Green's formula for smooth functions we have

IRUIORENMCORS vaghh, (45)

For any small 6 > 0 , let V be any open neighborhood of F{u) n 3D with

f a1l <5 on (3D - V) n {u > 0} we have V{p(u) ) + vplu)
Vnab &
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uniformly as. e -~ 0. On the other hand,

(ab - V) n {u=0} {is compactly coptained in int {u=0},

hence, if e 1is small enough,

(vp(ul ) =0 on (3D - V) n

2

A

(u=0} . &

5

From {38) we deduce that | vw(u)el ¢ 1 ,/ and, therefore,if g is small eneug&;

VS v(p(u) ) vl <5 . A

Vnad 2

We now break the integral on the right-hand side of (46) into 8D nV and IM;
3D - V and we obtain, letting e + 0 and then &8-+0 , blﬁ
[ vlw(w) ). vd HN—lvrj vplu) -d HN"'1 (47) ‘n

2D N 30 n{u>0} <

o

Taking e~0 in (46) and using (45) and (47), the assertion (43) is provedéf

Finally the proof of Theorem 1.47 is

following combination of Theorem 1.49 and Proposition 1.50.n

Corollary 1.51. T4 D s as .in Theonem
f d VL4 f o d gVl

Dn'F(u)r‘ed 3D nF(u)s‘Ing

gp(u). vd HN

= - jap(u)dx +f
3D n {u>0}

D n {u>0}

ARy

obtained from (38),(39) and the

1.47 then o
AY ‘:39!

= (48) o=
-1 *"“”‘
- u "o, 5

We shall end this subsection by recalling an improvement of Theorem 1.47f%

{both of them due to Friedman -Phillips

[17). Let T be an open halfspace (7

with HN'l(BH n #(u)) = 0 and denote by y the outward normal along 9H.

Let D be a convex domain in Il with pie
30 nal # ¢ in an open neighborhood of
F(u)red is the set of points of F(u) w
exists, we can state:

cewise smooth boundary, such that {5
3D n 1 ; then, recalling that 7
ere the exterior normal to S(u) ¢

o

Theorem 1.52 Under the foregoing assumpiions s
ar"t < aght o, (49)

{u>0}N 36 nall #(u) oqn o~

with staict inequality £ |{u>0tn D[ > 0. i
o




1.4¢c. Regularity of the

free boundary and dependence with respect to a

parameter in the equation.

The first regularity
of {2),(3) 1is due to Al
"flatness condition" at
Lo funct]
Theorem 1.53. {(2a) Supp

Tocally , a C

result for the free boundary F{u} of the solution
t-Phi11ips{ 1 1 and says that if u satisfies some
the origin in the direction ey> then F{u) s,
on.

se U 46 @ solution of (3) in B,(0) and 0€ F(u).

There exist positive constants, o ,B > 1,00 ,7¢ and C depending on N and

q 4uch that {x : Xy >
Lhat Bp/4(0) n rlu} 4

apl N Bp{0) = N(u) with o €ogand p € Ty oP Amplies
a ghaph of a clo®  gunction o dn the direction

. [ LI
ey 3 moreover , if % (xl,..., xN—l)’

[velx')|'s Cu for x| <§ . (50)
X1 - X3
|ve(x}) - velx3)] € Co| 5 |% gan |xi].ix3] < %—. (51)
(b) T4 N=2 and £f
{N{u) n BL(O)|

1im sup ———————— > 0 (52)

r+0 IBF(O)

1,0

then there exisis a p >

0 such that Bp(D) n #u) 48 a €7 graph.

Some more information on the graph ¢ giving the free boundary F(u)
can be obtained when the solutien u is constant on 3@ .Before giving such

a result we shall first

gbtain seme estimates on the lecation of * F(u) when

there is a parameter A fin the equation. We shall use the notation

Q; = {x €9 : d(x

,30) > 6} s 6> 0

Theorem 1.54. Llet 0 be a regufar bounded open set of RN LA > 0. Let f
be a continuous nondecieasing function such that £(0) = 0 and

with F primitive of £, F(0) = 0. Then , 4§ U £s the sofution of
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- A+ AF(u) =0 in 8 (53)
u=1 on o8 , {54)

the nutl set N(u) must satisfy the esiimate

< N{u) QY (55)

8. c C
J-.,-I——L ____'.__?_
VA A 23 A
fon some positive comstants vy ,c, and c, Lndependent of A and for X Large
enough.

Proof. First we establish the crude estimate

g, cNu) ca , (56)
Kz Ky
Vi vE
where K,,K, are positive constants independentof A . Indeed, to prove the

second inclusion it suffices to show that
|| vull, ¢ Kiv/R (57)
for some constant K;. Since the function w(x) = ul(x/v/X) satisfies

-Aw+ Fflw} =0 in ot = (/% x € q)

and by the standard regularity f(w) € LW(QA) , we have that || || < K
{(see ,e.qg.,Chapter 4), for some constant K., and (57) holds. We also reca
that the first inclusion in (56) was obtained in Theorem 1.9 (note that
WA/N(M) = K,//x for some suitable constant K,).

Now we shall prove the first inclusion in (55). Let y € 8@ and let
BR(xﬂ) be a ball in @ with y € BBR(XD) . Let U be the solution of
(53),(54) on B instead of on 2 . By the comparison results, u < U a.e.
and by the uniqueness U 1is a nondecreasing radially symmetric function
U=U(r) s r=|x=x%y|. The function U satisfies

- ur(r) - By war(u(n) = 0,
and so the function

7(s) = U(R - ?%%.+ ﬁ%:) ( yo to be determined)
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P

verifies

cze o A= 7o mz) =0
pVAt s

. p=R-yo//A . (58)

$ince U'(r) > 0 , the support of '7Z(0) consists of one interval,namely
0 <5 < vo. From (56) applied to U 1in Bp(xe), we have vp< Kz2.K» inde-
pendent of A . Multiplying both sides of (58) by 7'(s}, we get

Lzsnzae + = @sn® = rris)
p/i + 5

Hence
] 273! C H 2 ]— H
[(Z'(s))21" + — (Z'(s))? » 5 [F(Z(s))]"
Vi
where C>» O s independent of A . From this we obtain

Cs Cs
[(z)2 e 1055 e IR

Integrating and using the relations 7'{0) = 0 and F(Z(0}) = 0 , we get
_Cs Cs
(N2> ke g% e M r(zie) 10t -

- 7 (s-t)
= %-F(Z(s)) - 5%_ e T Bt

Recalling that Z°(t) > 0 we get
C 1/2 1 1/2
7'(s) » (1 - 7r ) 5 F(2(s))]

Now we consider E(s) solution of the Cauchy ProbTem

. . £ 172, 1 1/2
£ (5) = (1 - ) [ 7 F(Z(S))]
£ (0) =0
Such a function £ can be built in the following way. Consider the problem

n'(t) =l %F(n(t))]lfz for t<0
n(@) = 1.
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There exists a unique|solution of this system as long as n(t) > 0 and 4t
determinas a unique positive number y such that n{-y} = 0. Letting
£(r) = nlytr) we have

E'(r) =0 F(E)]' for O<r< vy, E{0)=0,Er)>0 for O <r<y

and E(y) = 1. Finally we take £&{s) = g(s(1 - C//X)I/Z). Since U{R)=1

means Z(ye) = 1 , weiconc1ude that
|
Yo(l - L )1/2

£ Y -
VA i

!
Recalling that u g Ui, we deduce that

N(u) = Bp_y xixed 2 Bpyyr _epalie) -
!

Thus, the first pa%t of (55) follows. [To provethe second pari, we intro-
duce the following sh%11 Q : the inner bdundary is a sphereSﬁ in RN -
which contains a poinﬁ y € 80 , and the [outer boundary is a sphere SR con-
taining @. Let V be the solution of (53),(54) for the shell @ . Again,
by the comparison and}uniqueness resultsy ¥V = V(r) , r =|x-x,|for some
Xp € ® , Vi(r) g0 bnd V <u a.e. o Q . The function

F(s) = V(R + L - S
AN

i

can be analyzed simi!?r]y to Z{s). Thus we find that

t
is) c B+ oYY L a gty
%
and this yields the iecand part of (55) if we Tet y vary over an in the
above construction.ué

We end this subsection with a result dueto Friedman -Philiipsi{ ] im-

proving Theorems 1.53 and 1.54 , when f(s) = s9. We shall assume now that
32 have a C1
by x = a{x') (x' =|{(x1s..0axy_q) » x° 7 2(0)).
the inner normal to 3@ at &{x‘).

*® Jocal parametrization in neighborhood of a point x* given
We also denote by v(x')
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Theorem 1.55. Thete exist positive conéiani% O1,0: Auch that for ang A
sufficiently Lange, £f U satisfies (53) with f(s) = sq, D<qg<l,
and (54), then F(u) s @ cls0n surnface; ﬁun&henmone, in tenms of Local
coohdinates % = @(x'), Flu)n BR(Q(O)) chn be represented {for small
enough R | Lindhe form {x = a(x') + k(x',kb vix') with k(x',x) sai-
isfying, as a function of X',

v, k| < cAT (x" € Bylx))

and

|k _ £ Ci
ch>02(8,(0))

Remark 1.26.The above result fmproves Theorém 1.54 in the sense that now we

know that the free boundary F(u) is a smopith surface parailel to 3n at

a distance C/v> + 0{1/A), for some constant C independent of A .
More information on| the dependence of { #{u) with respect to A is

given in the next sectioh.

|
i

1.4d. Geometrical properties of the free boundary.

From Theorems 1.48 and 1,55 it seems natural to expect some stronger geo-
metrical properties such!as, for instance, the convexity of the free boun-

dary #{u),u solution of (1) (2), assuming 'Q to be a smooth convex domain.

We shall prove that property, but only in the special case of two-dimensio-
nal domains @

We first study the_covponents of the null set N(u) . Here by a compo-
nent of N{u) we mean a|maximal connected subset of N{u). Note that any
component is necessarily|a closed set. ; '
Theorem 1.56. Lot © be @ fwo-dimensional copvex domain, u sofutioen of (3),
(4) with h = 1 and Let {T be a componeni aﬁ!N(u) with nonempty intesion.
Then T 44 a closed convex domatin with Cl’d boundary and

dist (T,N(u) - T) » 0. (59)

Using now Theorem 1.55 we obtain:
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Corollary 1.57. Let @ be a two-dimensional convex domain and u sofutilon
of (53} with f(s) = s9,0<q<1 and (54). Then £f X L8 sufficiently
Lange »N(u) s a convex domain with ¢ boundary.

Proof of Theorem 1,56. Let Q be an inferior point of T and let 1,,1,be
rays initiating at Q and Fforming an angle less than w . These rays in-
tersect 3T for the first time, say at P, and P,. We form the trian-
gle G = {P,,P;,Q} and claim that

fu>0tnG=¢ (60)
Indeed, otherwise Theorem 1.52 gives (assuming first that

#L(EP, np(u)) = 0)

§ dgt<f dgt - (61)
PiB,n{u>0} FLu)redflﬁ

On the other hand, from Corollary 1.51and (39}, we obtain a contradiction
with (61).

If H”'l {F,P, nF{u)) > 0, since H?;i (p{u)) < = , then we can find
Py, P, with P, e 0P and [51—P1| arbitrarily small so that

ALF ., ar(u) =0 and {Fy,P,Q} still violates (59) (since {u > O}

is open). The previous argument can then be applied to {P;.P,,Q} in order
to derive a contradiction.

Having proved (60), we now denote by T the union of segments Q P,
when 1, varies over all possible directions. From {60) it follows that

T, 1is convex; in partijcular, 23T, is Lipschitz continuous. Since N=2,
we can apply Theorem 1.53 (b). It then follows that 8T, is in gl

and u > 0 in some (@ - To)-neighborhood of 3T,. Hence T = T, and (59)
holds.n

The study of the free boundary for the equation (53) depending on a
parameter X is completed with the following result(like the above one, due
also to Friedman-Phillips [1 1).

Theorem 1.57. Let @ be a fwo-dimensional convex domain and u satisfy:
(53) , with F(s) =s%,0<q<1,and (56). Then the mutl set Nu) 4s
eithen a closed convex domain with cls®  poundany , on a single point, oi

empty -
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The convexity of the free boundary #m{u) for the exterior probiem has
been shown in Caffarelli-Spruck [ 1 ]{see also Kawohl [ 5 1) with no re-
striction on the dimension of the space. More precisely, let G and @
be convex sets in RN, N1, with G strictly contained in ¢ , and let
u be the unigue solution of

- fhu o+ flu) =0 in 2-0G (62)

u=1 on G ,u=0 on B30 ., (63)

where f s a continuous nondecreasing function such that f(0) = 0. Then
in the above references it is proved that the level surfaces (8{x : u(x)>th
t €[0,1)) are convex. We remark that the same conclusion is true for the
solution u of

- pau+ f{u) =0 in ®L g (64)

u=1l on 38 (65)

assumed that f satisfies the hypothesis

I g < 4 oo

0" F(s)?
Indeed, by Theorem 1.9 {or Theorem 1.18) we know that the support of u
is bounded. So, there exists R > 0 such that G c S{u)c BR(O) and
then, by uniqueness, u coincides with the solution of (62),(63) corre-
sponding to @ = BR(O). It is also interesting to note that the proofs
of Theorem 1.56 and of the above property are completely different.
On this occasion, the convexity of the level sets {x : u{x) > t} is ob-
tained by showing that u{z) » min{u(x), u(y)} for every x, y€ £ and
z=x+ {1 -2y, A €(0,1).(See details in the cited reference, already
compiled in the book by Friedman [ 3 1). Finally we remark that problem
{3),(4) with h=1 cannot be reduced to an exterior problem 1ike (62),
{63). Indeed, if u satisfies (3) on a convex set @ and with u=1 on
a2 then the tentative change of variable U = 1-u reduces the problem
to

AU

- f(1 - U} inm Q-6

o
1]

1 on 3G and U=0 on |,
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where G 1s, for instance, a ball G = BR(XQ) contained in the set MN(u) -
(note that U =1 on N(u)). The impossibility of applying the result of ..
caffarelli-Spruck [ 11 is due to the fact that now A €0 in contrast ™
with the case of equation (62). o
A weaker property that the convexity of F(u) is the starshapedness of ‘f
this free boundary with respect to a point x® E'RN, assumed the domain to ™
be starshaped with respect to that point. We shall prove this for nonnega- "™
tive solutions of the x-dependent equation -
#7,

- A+ 98(x) W =0 in RN. (66) .,

L.
The above equation has been cansidered in Remark 1.8. We recall that if, :
for instance, 0 <qg<1 and ’
o,

8(0) <0 and lim inf B(x) >0 (67) =
[X|+=

FaiY

then by Proposition 1.11, any nonnegative solution of (66) has compact }5

support. o~
Thearem 1.58. Let 6(x) be a Locally Lipschitz function satis fydlng (67)3¢h
as well as =
x+va(x) = 0 (68)‘;é

H
ale= 0} s a Cl’u suiface . (69)T§

Then the support S{u) of any nonnegative sofution of (66) consists of a -
single stwilike component about the oniginm,and Flu) &8 Lipsehitz. 55

We first need a preliminary result. o

Lemma 1:59. Under the hypoiheses o4 the above theorem the function
u179(x)/|x|2 i deoneasing along nays from the onigin and tends to zero
at F(u).

Proof. Set ofx) = ul—q(x) and w=7raQ. - % , r = |x|. Then assuming”

u € C* we have g

aw = rdp), =
Q. _ivol? L% 109
= U*q)r eY‘ "1 [~ o r o, + ; lé:]‘ 2 "(5" Xj ‘-PJk} . { e



But
N N
J',E=l %507 Ly et ad
so that
N 2p N 2, W
) ;EF-XJ ) k "k, oo Vel
Jak=1 k=]
Moreover
Vool ? A [Vl ®
o ro. o + 2 ra

Inserting this equality into (70) we have

N O W
- (1- 29 kk [vio] *w
Mw o= (1 8 - q P
Walr & -1qr b T T o

But by (68) r 8. > 0 , and then
M

N
—‘172 TJ—' Lvel2
Aw -+ .
(1—q kzl [0} 1__q ® wz20.

On the other hand, w tends to zero on F(u)e 3S(u)} due to the following
inequality, proved in Spruck [ 11 by using the assumption (69)
, 1g
[vo| = (1-q) Lol < Cu ®
(note that such an inequality was proved in Theorem 1.24 for the Dirichlet
problem). Then , by the maximum principle, we obtain that w< 0 on S{u)
and that gives the conclusion, since

;g:(%)=r3w<0 in  S{u).
r

Finally the restriction u € C? can be easily removed to u € CZ"3 by
standard approximation arguments.n

Proof of Theorem 1.58. Lemma 1.59 already shows that S{u) is a single
starlike component about 0. To show that F(u) 1s Lipschitz it suffices
to show that if we choose a new origin x, sufficiently close to 0, then
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¢/r2, (now r = Ix—xol) is decreasing in a neighborhood of 35(u). Let § >0
and A > 0 such that {x : 0 <u < &} < {x : &> A}, Then by the proof of
Lemma 1.59, w < Daond{x = 0 <u <6} . Let lxol be so small that

W= (x—xo)- Vo-20 = w = del 96| on {u = &}

By assumption, x-V8 > 0 on {8 2 0}; hence, we may also asslme (x—xo)- Vo >0
for Ixol small. Repeating the argument of Lemma 1.59 we obtain that w < 0
in {x : 0 <u < 8}, which says that ¢)/r2 is decreasing near 9S(u) as

required, o

Remark 1.27. The starshapedness of the free boundary F(u) for solutions of

the exterior problem (62), (63) has been obtained in Kawohl [4] by using a
rearrangement method. (See also Kawohl [1] for another proof using the
starshapedness function S(A,x) = u(Ax) - u(x), A€ (0,1) xefQ~-B). =®

1.5. BIBLIOGRAPHICAL NOTES

The study of the free boundary F(u) for solutions of nonlinear elliptic
problems seems to have its origins in certain results on the compactness of
the support for some special variational inequalities (Berkovitz-Pollard [1:
Auchmuty-Beals [1], Brezis-Stampacchia [21). After this, a systematic study
for general second order variational inequalities on unbounded domains was
made in Brezis [7], by means of the comparison principle.

Concerning semilinear e1liptic equations, it seems that some particular
solutions with compact support were first known in the study of stationary
solutions of the porous media equation with absorption {Martinson-Ravlov
r21). Independently, and at the same time, a systematic study of solutions
with compact support of semilinear equations in RN was made by Benilan-Brez
Crandall [11.

The treatment of quasilinear equations was started, from a physical poin
of view, by Martinson-Pavlov {1] and, mathematically, in a more geheral
formulation, by Diaz-Herrero [11, [2].

The free boundary F(u) for bounded domains was first studied in the con-
text of some particular problems in chemical engineering, (Aris [1]).
Mathematically, the free boundary #(u) in bounded domains was first studied
in the context of variational inequalities (Bensoussan-Brezis-Friedman (1
and then extended to general (single or multivalued) second order nonlinear
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equationé by Diaz [4]. We also mention in this context the early works of
Bandle-Sperb-Stakgold {17, Brauner~-Nicolaenko [1], Diaz-Hernandez [1] and
Stakgold [2].

Section 1.1. The results of this section develop some ideas of Diaz [41; in
particular, that of deriving the existence and location estimates on #(u)
from the existence of nontrivial solutions of the associated homogensous
Cauchy problem was already proposéd. The study of the autonomous Cauchy
problem is well known (the proof of the necessity in Theorem 1.4 follows
Bandle-Sperb-Stakgold [1]). For the nonautonomous problem, it seems that
only the case of homogeneous nonlinearities had been considered before (Diaz-
Hernandez [11). We point out that local super-solutions for general second
order semilinear equations were already exhibited by Evans-Knerr [1] in the
study of some parabolic problems. Nevertheless, such functions are not
radially symmetric (see Lemma 2.39).

The ordinary differential equation (31), with other initial (or boundary)
conditions, has been largely considered in other contexts such as, for
instance, in the study of particular solutions of the porous media and other
nonlinear parabolic egquations (see the references to the works by Aronson,
Atkinson, Gilding, Peletier and many others compiled in Diaz [71); the study
of removable singularities of nonlinear elliptic equations (see Veron [3]
and the references therein); etc. Another nonautonomous ODE,.amply treated
in the Titerature, is the equation u" = a(t)uq (see, for instance, the works
of Fowler, Kiquradze, Taliaferrn, Chanturia and others in the survey by Wong
[1] and the recent treatment by Peletier-Tesei [11, [2]). Ye also mention
here the results concerning nonosciliatory salutions of higher order ODEs of
Kiguradze {11 and Svec {13, [21.

Returning to the problem in PDEs, we point out that Theorem 1.9 can also
be applied to the minimal surfaces equation (see (20) of Section 4.1 and
Remark 1.2). It also holds for functions g merely in L}oc(n) or M{g)
(bounded measures on ). Thus.sharp estimates on the Tocation of F(u) when
g€ L1 were used by Gallouet-Morel [3] as a first step to derive an existence
theorem for data g € L%DCGRN). Remark 1.7 follows Vazquez [1]. More recent
references on the applications mentioned in Remark 1.8 are Aronson [1], Pozio-
Tesei [11, [2], Peletier-Tesei [11, [2] and Badii~Diaz-Tesei [1]. Theorems
1.13 and 1.14 seem to be new (a complete proof of Theorem 1.13 is given in
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Section 1.2. The strong maximum principle given in Theorem 1.20 is due to f

Section 1.3. In Definition 1.1 we follow the usual notion of distribution

piaz [61). -

The boundary estimates given in Subsection 1.ic and, in particular, the ff
property of nondiffusion of the support’ (Theorem 1.16), may be understood asfﬁ
an elliptic version of the waiting time property, well known for the porous ~
media and other nonlinear parabolic equations (see, e.g;, Knerr £11). The «Fﬁ
results of this subsection seem to be new in the literature. f%

Theorem 1.18 is taken from Diaz-Herrero [2], where the previous results f%
of Benilan-Brezis-Crandall [1] were generalized (in fact in Diaz-Herrero [2]§ﬁ
the pseudo-Laplacian operator considered is the one given by (6) of Section ;5
2.4). MWe also mention the approach of Veron [2] and Barbu [1] who consideres
semilinear equations as a second order evolution equation. Estimates on theQ%
support of the solution of the semilinear equations with g = § (the Dirac .~
delta} are due to Morel (personal communication). The compactness of the %%
support may also be proved for other nonlinear equations not satisfying the f%
assumptions of Theorem 1.18 but of a rather particular formulation. This is}%
the case of the Thomas-Fermi model (see Lieb-Simon [1] and the results of {;
Benilan and Brezis presented in Brezis [9]1), as well as that of the vortex (%
rings equation (Fraenkel-Berger [1]). A very complete survey of these and
other variational problems with potentials can be found in Friedman [3]. '
Finally, we remark that Theorem 1.19 comes from an idea of Moet [1] for

A
variational inequalities.

Vazquez [5] and can be understood as a nonunique continuation property. A
partial result, in this direction, may be derived asymptotically from the {
results of Bertsch-Kersner-Peletier [1] for the porous media equation with
absorption.

The positivity of bounded solutions given in Theorem 1.23 is taken from
Bandle-Sperb-Stakgold [1]. As indicated, their proof uses some gradient
estimates called "the best maximum principle" by Payne. The proof is taken 77
from Mossino [1]. Another positivity result can be found by adapting a o~
result of Bandle [2] for parabolic semilinear eguations. o

ey

function; decreasing and symmetric rearrangement of a function u by using
lu| instead of u. Nevertheless, for same purposes (see Theorem 2,22}, some—;;
(4
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times it is interesting to work with the signed rearrangement of u (see



details in Mossino [21). For other different rearrdngements, refer to the
books by Bandle [1] and Kawoh1 [7]. Theorem 1.25 contains several basic
properties of the symmetric rearrangement. Property (i} is easy to prove

by using the Lebesgue-Stieltjes integral with respect to.dp (see, e.g.,
Hilden [1]). Properties (ii) and (1ii) are due tc Hardy and Littlewood and
to Riesz, respectively (see a proof in Hardy-Littlewood-Polya {21). Lnequal-
ity (iv) was proved in Crandali-Tartar [1]. Finally, we comment on the
important property (v). The observation that the Dirichlet integrai

Q [vu|“dx diminishes under symmetrization, assumed u = 0 on 3was one of the
starting points in the study of isoperimetric inequalities in mathematical
physics (see Polya-Szego [11). There are several proofs of property (v}
according to the regularity assumed on u. Here we only mention the proof of
Talenti [1] (by using the Fleming-Rishel formula) as well as those of Lieb
[11 {for p = 2) and Berestycki-Lieb [1] {derived from some arguments which
are more elementary). Other references relating to a more general inequality
can be found in Kawohl [7].

It seems that the first application of rearrangement technigues to obtain
a prioni estimates of solutions of PDEs was given by Weinberger [1] for
linear equations. A sharper result, containing the comparison u* vy of
Theorem 1.26, was proved by Talenti [11, [2] for Tinear equations and, later,
by Talenti [3] for nonlinear equations (see also an alternative proof in
Lions [1]). The general comparison f{u*) < f{y) of Theorem 1.26 was first
shown by Chiti [1] and Lions E1] for the linear case and later by Maderna [1],
Vazquez [3] and Mossino [2] for nonlinear equations. The proof given here is
inspired by earlier ones and makes precise some delicate points as, for instance,
the proof of (53)).

An earlier and different proof of Theorem 1.28 for the semilinear equation
and f H81der continuous was given by Bandle-Sperb-Stakgold [11. We remark that
for the exterior problem such a result is not true, in general. In this case,
the inequality similar to (14) involves some capacity terms {see Diaz [6]).
Lemma 1.33 is due tokHardy—Litt]ewood-Po1ya [1] but the proof given here
follows Bandle-Stakgold [1].

The results of Subsection 1.3a may be easily generalized to other equations,
in the Tight of the works by Alvino-Trombetti {11, 21, [3], Talenti [4] and
Trombetti -Vazquez [1]. We alsc mention the work by Alvino-Lions-Trombetti
[1] in which it is proved, essentially, that if u* = v then necessarily u is
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radially symmetric (this is used in the proof of Theorem 1.36). A work
related to the proof of Thearem 1.36,. for guasilinear equations and in any
dimension, is that by Mossino [3]. Theorem 1.38 seems to be new. We point
put that assumption {71) holds if u is regular; this can be checked by

applying the maximum principle to Uy

gection 1.4. The careful study of solutions of free boundary problems near

the free boundary was started by Caffareili [11, {3] for the obstacle probl
(taking, for instance, q = 0 in equation (3)) and, Tater, systematized by

Alt-Caffarelli [1] for a problem in jet flow theory {for g = -1 in equatior
{(3)). (See Friedman [3] for a very complete treatment of such a problem.)
The results for the semilinear equation (1) are due to Phiilips [23, Alt-

Phillips [1] and Friedman-Phillips [1]. We refer the reader to those works
for some more general formulations, remarks and bibliographical references

Concerning Subsection 1.4d we remark that the convexity of N(u) for two
dimensional domains (Theorem 1.56, taken from Friedman~-Phillips [1]) has
recently been generalized by CaFfarelli-Friedman [1] {strict convexity of
function of u} and by Korevaar-Lewis [11 and Kawohl [6] (for domains of
arbitrary dimension). Many other geometrical properties, including star-
shapedness, the exterior problem, guasilinear equations, among other topic
as well as an abundant literature, can be found in the recent monograph by
Kawohl [7].

To end this subsection we mention that, to the author's knowledge, prob
that seem to be unexplored included the followingz the numerical appreoach
to the free boundary F(u); some general stability results on F(u) with res
to f.g.h and 03 and the study, near the free boundary, of degenerate quasi

Tinear equations.



2 The free boundary in other second order
nonlinear equations

The existence and properties of the free boundary F{u)are examined for some
second order nonlinear problems under formulations or assumptions not
contemplated in the first chapter.
suitably applied.

Again, the comparison principle will be

The chapter starts with the consideration of several semilinear equations
with nonmonotone perturbation, in Section 2.1. The extension of the results
of Chapter 1 to general multivalued equations is made in Section 2.2, where
the perturbation term in the equation is now assumed to be a general maximal
monotone graph of’Rz. This allows the consideration of the obstacle problem,
of the zero order reactions and of a general stationary porous media equation
with absorption, among other examples.

In Section 2.3 the perturbation term has a singularity at the origin and
is a decreasing function. "A new phenomenology appears as a result of the
lack of uniqueness.

Equations non-invariant by symmetries (or nonisotropic) are considered in
Section 2.4, in which we examine the existence of the free boundary when
originated by a suitable diffusion-convection balance. Alsc, some previous
results are extended to fully nonlinear equations. The free boundary
associated with solutions of the Hamilton-Jacobi-Bellman equations is also
considered. 3

Finally, other boundary conditions are treated in Section 2.5 as well as
the probiem of thin obstacles, also called the Signorini problem.
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2.1.EQUATIONS WITH A NONMONOTONE PERTURBATION TERM. ;3,
The main goal of this section is to point out how the free boundary F{u) .

studied in the last chapter also appears when the perturbation function ~
£ 1is not monotone or more precisely, when f may be decreasing for some ﬁ?
real values. The main difficulty in the study of this problem comes from .

the fact that the comparison principle cannot be applied and so wany (ﬁ,
different sclutions may exist. In any case we shall restrict ourseives fﬁ
to the consideration of nonnegative solutions u > 0. -

A first nonmonotone equation which can be gasily studied corresponds to :;%
the case in which f is bounded from below by a nondecreasing function Ty —~

The main tool to be used is the fo]lowing compariso? result. A;
Theorem 2.1. Let p>1,geW P () and hew P(a) , g0, h>0. -
Lot f be a real continuous gunction Aatikfying -

3f, nondecreasing and continuous with Fo(0) = 0 and such that } () m

0 ¢ folr) € f(r) fon every r % 0.

Let now Ug€ wl’p(n) be any nonnegative sokution of the problem 7
P

- Apu + Flu) =g in Q- (2) f%

u=h on o0 {3) @

e

Then 0 € Ug € Ug iR ﬁ.n -

With.respect to the free boundary F(u) associated to any solution of
(2),{3) we can ndw state the following result as a consequence of the .

-
above theorem (proved in Chapter 4) and Theorem 1.9. o
Corollary 2.2, Unden the hypotheses of Theorem 2.1, if 4n addition ~
ds (4) &

It <o,

0t Fols)HP -

whene Folt) = jt fo(s)ds , and if u .ia any nonnegative sofution of (2),(3)53
0
ithen o

N(u) > {x eN(g)U N{hl o)+ d(x,S()U S(hlyg)) > & + L(e)} | (5 -

whene LE).4s given by L = wl/N(M}(E))““Lthwl/N degined from £, by (33) 0625
Seation 1.1 and M(e) s any bound of the supremum of up on the set D_ ii
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of N(g) v N(h{aﬂ) defined as in Theorem 1.9.

In the rest of this section we shall study some more concrete nonmonotone
problems for which assumptions (1) and (4) are verified, as well as some
others in which the inequality (1) only holds in a neighbourhood of the ori-
gin. In these cases much more precise information will be obtained. In
Subsection 2.1a the relations among the null set of two different solutions
are considered. A nonlinear system in which (1) holds locally is studied
in Subsection 2.1b. Finally, some equations in which f is even negative
for some real vaiues is analyzed in Subsection 2.1c {unidimensional case)
and Subsection 2.1d (radially symmetric solutions in ‘RN).
2.la. A nonmonotone semilinear equation in exothermic chemical reactions.
As we have already pointed out in the Introduction, the study of a single,
irreversible, steady-state reaction taking place in a smooth bounded domain
2 of R » leads to the semilinear problem

- Au + Af(u) =0 in 0 (6)
u=1 on  9q. ()

If the reaction is exothermic then f s not monotone and, then, some
natural assumptions are the following (see Aris [11).

flt) = t9.(t)  is Ogt<w,0<q<l. (8)
mg Fi(t)«M  forsome O<cmgM<ew (9)
[£1(t)] ¢« K for some K. (10)

The existence of classical solutions u € CZ’S(Q) of (6),(7) can be

obtained by different methods. For instance, a solution can be found by
minimizing the functional

t

]

3(v) = [o(FIve |2 +F(v) )dx . F(t) = [T f(s)ds (11)

on the convex set ¥ = {v € H{2) : v =1 on 3n). In the following we
shall call the solutions of (6),(7) obtained in this way, minimizer solu-

tions. They are also classical solutions, due to the regularity results

120

(see Chapter 4). Me also recall that the uniqueness of solutions is not
S ’ - . - - a
true in general and that a sufficient condition n th1s‘sense is

HE) 12}
fi{t) + i }l >0 , 0<«<tgl {

(see Chapter 4}. ‘ _
Althought the uniqueness of solutions is not assured, we can obtain some

jnformation about the difference between the solutions: o £
Theorem 2.3. a) Tf wi,ws ate wo solutions of (6),(7) corresponaing L0
1. and A2 nespectively, and Lf Ay € Az oWz € wy then elther Wz = Wi

1
and Ay = A OL Wy < W1 on {w2 > 0}. "

b) T§ u,v wie fwo sofutions of (6),(7) with u £ v,u v , then

N{v) < int N(u) , 1i.e.

13)
d(N{v) , ‘Y SNy 0. {

i =W, (X
proof. a) Suppose there exisis a peint Xp€ @ such that 0 < w;(xg)=wsl(

If A < Az, then
Alwz - wi){xe) = {Ap-Ap}F(wa{xp)) >0

i i i . If
which contradicts the fact that we- w; attains its maximum at Xg
}\1= Az then

Mwy - W1) = Az ¢lx) (wa- wi)

where
f(Wz)“f(Wl)

Wa — Wi

if wWa - Wy # 0
C(X) ) if Wy - W1 T 0.

By the strong maximum principle for linear equations (see e.g. i;1ba;i—
Trudinger [ 1 1) wa - Wy = 0 in a neighbourhood of Xp- Hence the s

{x :+ w, =w,} s open and, consequently , Wz = Wi.

b) Set G ={u < t} for some small t > 0. By part a)

v2u+d on aGt , for some & > 0.
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Suppose (13) s not true. Then, for any € > 0 there is a unit vector e
such that the function

VE(X) = y(x + ge)
satisfies

vE(xE) =0« u(xs) at some point X E){Gt (14)
Mow, if & is small enough (depending on § ) then
v>u+-6—>u on 3G

- 2 t”
On the other hand
= f(u) s Av = f(ve) in Gt

and, in fact, by the assumptions (8),(9).(10}), f(s} 1is monotone increasing
in s 1in the range of u{x) and ve(x) s X € Gt , provided that t fs
sufficiently small. Then, by comparison, we conclude that Vo u in Gt,
which contradicts (14},CI

It is clear that our function f 1in consideration satisfies

flt) » m to s D<g<l

and so we are able to apply the Theorem2.1 and Corollary .2, assuring
in this way the existence of a null set MN(u) , if A 1is assumed large
enough. The following theorem gives a sharp comparison result with res-
pect to other nonlinear terms in the equation.

Theorem 2.4. Suppose ' and ¥ satisfy  assumptions (8),(9) and (10),
and Lot uw,a be minimizens of the probfem (6).(7) fon f and ¥ respec-
Lively. 1§

F(t) > £(t)  fon all 0<t<l (15)

then u<udn {x €0 :u(x) >0} and d( (u) :
Proof. Let J(v) given in (11) ,

N(ﬁ)) > Q.
ft s)ds and

0

Jv) = [ (3 lwv|? + F(v))dx
Q
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We have
F(t) - F(s) < E(t) - F(s) it Des<tel
consequently
Fmin(u,u)) + F(max(u,u)}< Flu) + Flu) (16)

at each point x for which u(x) > u(x). If 0(x) < u(x) then equality

holds in (16). Thus, provided that the set {U > u} s non empty, we have

fFmin(u,0)) + [F(max(u,d)) < fof(u) + JoF(u)

and hence
J(min(u,0)) + Imax(u,u)) < J(u) + I(u). (17)

However,since max(u,u) and min{u,0) belong to K, we must have

J(min(u,u)) = J(u) . J{max(u,u}) = Jd{u)

{Note that, in contrast
We can

contradicting (17). We have thus proved u > U
with Theorem 2.1, and ¥ are not assumed to be non-decreasing).
now proceed as in Theorem 2.3 in order to deduce that u > d in
{x€ Q: u>0} and that N(u) = int N(u). 4

Finally, it is important to point out that the regularity result and

dependence of the null set N(u) with respect to the » of Subsection 1.4c’

were established byFriedman-Phillips [ 1] for f satisfying the general
conditions {8),(9) and (10). In addition, the convexity of the null set
for two-dimensional convex domains {Theorem 1.56) as well as the classifi-
cation of those nuil sets (Theorem 1.57) were also given without any mono-

tonicity assumption on f.
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2.1b. A nonlinear system.

Nonlinear systems involving monotone terms were considered in Remark 1.8
as applications of the results for an x-dependent scalar equation. Here
we shall study a different nonlinear system of a different formulation.
invalving nonmonotone perturbations, in the following way:

- a0 4 F{u(x)) =0, i=1,..n, din R, (18)
where u = (ul,...,un) , N=2 and the n functions fi :R"+ R are
the gradients of some function F € ¢}( R" -{0})}, namely '

folu) = Bl ey a0 and f(u) =0 iF u=0  (19)
1
Nonlinear systems Tike (18) arise in several branches of mathematical
physics (see,e.g, references in Brezis-Lieb[1 ]).
The existence of a nontrivial solution u of (18) was proved in

Brezis-Lieb [t ] under very general assumptions of F such as, for instan-
ce,

Tim |u]™P[F(w)| =0 ,

lul+=

p = 2% = 2N/{N-2). (20)
The solutions u are found in the class of functions

p=tjuetd ®), werz®) | Fue ' ®)  and

meas{|u| > t} <= for all t»> 0} .

These solutions verify {18) in the sense of distributjons { p') and
moreover, minimize the action

3

n;
Wh =g B Ly IR+ [y Fvds

in the sense that 0 < J{u) < J{v) for all ve Ln LToc , vEO and
v satisfying (18) in the sense of distributions.
If, in addition to (20), it is assumed that
flu)» u >t |u|q+1 for all ue R" , Jul <8, q>0 , (21)

then the above solutions u of (18) are more regular, as the mentioned
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' . 2.5 mpNyan
authors have shown, because they must satisfy that u €l W]DC (R3] for

a1 s <w (andso wel €301 Vo < 1) as well as

Tim u(x) = 0. {22)

wer @Y1 and
e

We remark that assumption (21) is a sort of vectorial version of
hypothesis (1). Nevertheless, (21) s only assumed for small vectofs u',
in contrast with (1). The following result shows how the information given
in (22) may be used, jointly with (21), to assure the existence of a free
boundary. .
Theorem 2.5. Assume that (21) holds with 0 <gq < 1and Let u €L w
flu) € L{ satisfying (18) in the sense of distributions. Then u(x)

oc
has compact support im R
Proof. First of all we note that

- Aul? = -2u +8u - 2}vu|? € 2u -(-F(u))
Then by (22) we have that
ajuz v zcpu[ c0 in o Tx| >R

. _ 5 s
for some large enough R > 0. Then , the function w(x) = |u(x)|* is a

bounded nonnegative subsolution of the scalar equation

g+l
42w f =0 din {x|> R}- (23)

Finally, the conclusion holds by using the comparison principle for egquatio
(23) aswellas Theorem 1.9 or 1.18.D

2.1c. Equilibrium solutions of a degenerate parabolic equation in biolo-

gical population models. . ‘
In the above examples of this section the monotone perturbation f satis-

fied a “positivity" assumption

flu)u >0 . (24
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Ndw we shall consider a special, but very illustrative, example of a non-
monotone problem in which (24) fails. More precisely, given L > 0 we
shall study the one-dimensional semilinear problem

= Uy, + Flu) =0 in Q= (-L,1) (25)

Ux
u(+l) = 0 (26)
where
fu) = F™ , f(r) = r(1er){a-r) L 0 < a < (m+l)/(m3), m> 1. (27)

Problem (25},(26) appears in the study aof the equilibrium points of the
degenerate parabolic equation

Vt - (.Vm) + fl(V) =0 (27)

XX
arising in some biological population models (see references in the work
Aronson-Crandall-Peletier [ {] from which are taken the results of this
subsection).

First of all, we remark that, as in 2.1b, the majoration of ¥ (hypoth-
eses (1) and (4)) only holds for small values of u. MNevertheless, we
shall see that for adequate values of L the free boundary F(u) way

appear, modifying in a substantial way the structure of the set of equil-
Tibrium points of (27) in contrast with the nondegenerate case (m=1) for
which  F{u) (see e.q. Smoller-Wasserman [1 1).

In the analysis of {25)(26) we shall exploit the one-dimensionality of
the problem by reducing it to a Cauchy problem. So, if u{x} > 0 in
(-L,L), then there exists %, € (-L,L) such that 0 < u(x) < u{x,) for
x € (-L,L) and clearly u'(x,) = 0 {recall that any solution u of (25)
is u e Cz’ﬁ and satisfies it in a classical sense}. Conversely, let us
conditioens on x, € {~-L.L) and ;16'R+ which guarantee that the
solutijon of the initial value problem

cannot exist

seek

T Uyt flu) =0 (28)

m
ulx ) = u ,

u'(xe) = 0 (29)
is also a positive solution of (25),(26}. If p =1 then u=1 is the
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unique solution of (28Y{29) (recall that f(1) = 0). If u>1, then f(s)>0
for s >1 implies that any solution of (28),(29) is convex and hence
cannot satisfy u{2L) = 0. Thus (28),(29) has no solutions satisfying

the boundary conditions unless p<l. Consequently, we censider only w €(0,1).

To solve (28),(29) we integrate the equation in the usual way. For sim-

plicity, we shall first recall that if v = ul/m then (28) Tleads to
e = ' (30)
= (V) * Falv) =0
V(Xe) = U VI(Xo) =0 (31)
Now, we multiply (30) by (vm)' and integrate the result using (31). Then
LMy + nFi(v) = Ay (32)
where
1 (s 1wt w3, m
F(r) = j: M1 (s)ds = - =53 ol % r2-{1+a) o5 rta e 1 (33)

Since f,< 0 on (a,1) , F1 is strictly increasing on (a,1). Thus, if
u>a , we can integrate (32) to obtain

(m) 1/2 u nm"l

2 Y (Fulu)-Fan)
The integrand in (34) has a singular point at n =y, but Filu) - Fi(n) 2
> 6(p - n) for some § >0 and 7 near u, sO the singularity is inte-
grable. Equation {34) defines v jmplicitly as a function of [ %o~ x|
as long as 1f F(u) < 0, then there exists a unique v €l{0,a)
such that Fi(v) = Fi(u) and Fi(n) < Fa(u) In this
case {34) represents a periodic solution of (30) whose values lieinfvsul.
Thus, in order that (34) represents a positive solution of (25),(26) it

177 dn = %o~ x| - (34}

v £ H.
for nE(v,u).

is necessary that Fi{u} > O.
The sign of F, is determined by the sign of

+3 m+3
H(r) = r% - (1+a) o5 a oy - (35)

It can be easily checked that H has a unigue root o €(a,l) if and only
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. : m+l .
.1f H(1) <0 or 0 <a <3 In this case,

Fr <0 on (0,o) and Fy >0 on (a,l),

hence we may restrict our attention to the range o cu < 1.
For ue€Elo,1) we have Fyi(n) < Fi{u) for all n €{0,u). Thus we can
extend the integration in (34) down to v=0. Define
. m-1 .
Mu) = (B2 T——mdn . asu<l (36)
! (Fl(u)'Fl(ﬂ))
If u = o the integrand in (36) may have a second singularity at n = 0.

However, - Fi{n) = 62nm+1 for some & >0 and 1 >0 near 0, so
RO e e

near n = 0. Since m » 1 this singular-
ity is integrable and A is well defined on [u,1).
For a positive solution u of (25){26), u=0 only at xL. Therefore

Au) = [xo- L] =[xet L]

from which we conclude that x,= 0. To summarize , we have proven the
following result:

Proposition 2.6. Suppose 0 < a < (ml)/(m+3). Then u is a positive
sabution of (25),(26) 44 and onby if

e 1 72
My (Fal-Fam)

dn = [x{.for [x] <L,

where u €[a,l) and L R’ aie refated by the equation
AMu) =L ‘ {37)
and o £8 the unique hoot of H in (a,l).n

In view of (37), there is a positive solution of (25)(26) for a given

interval {(-L,L) 1if and only if L is in the range of A ,i.e. Le A{[a.l).

When L = A{u) we write u(x,A) for the corresponding positive solution.

The multiplicity of these positive solutions is the same as the multiplici-
ty of the roots of A(u) = L, which is determined by the shape of the graph
of A . The next result shows that the graph of A{p)} always has the gen-

eral features indicated in Figure 7.
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Proposition 2.7. 1) A €C[x1)n cMe,1)s  2) Alw)+e and A(p)s = as
ptly 3y Aw) > == as pio and  4) A'(n) has a unique oot

Ho E(U-;l) ‘a

%

Ly

Lo

E ‘ !
: '. .
o I L
Figure 7.
The proof of Proposition 2.7 is rather technical, and we omit it {we
refer1n\Aronson—cranda11-Pe]etier [ 1] for the proof). Some remarks about

the interpretation of this result are the following. Define Lg= A(ue)
and L,= Ale). Clearly Lo >0 andby 2 ) A([a,1}) = [Los+e). Moreover

no solutions for 0 <L <Ly
Alp) = L has one solution for L =L, and for L> Ly
' two solutions for Ly< L & L,

1t is interesting to note the dependence of Ly on m. Let us write
Fi = Fi{n,m), o =alm) and Ly = L,(m). Then

ofm) m-1
= (I 1/2 n dn
Li(m) (2) [ 0 (—Fl(n:m))}'/z

1f a€ (0,1/2) , then a(m} is defined and continuous for m » 1.Moreove

=
as m-+ 1, Fi{q:m) = Fi(m,1) . Since - Fi(n;l) = an®/2 + 0(n?} for suf-
ficiently small n>0, (—Fl(n:l))_l/2 is not integrable at n= 0. It

foliows from Fatou's lemma that

Tim Li{m) = o -
mel

12



Propositions 2.6 and 2.7 provide a complete characterization of the set
of positive solutions of (25),(26). For 1, g L Tet u+(L) denote the
largest solution of L = A(m) and for Lg ¢ L g L, let u;(L) be the

smallest solution (so y,.(Lo) = p (Lg))- We distinguish the following
cdses

0 <L <« L. There are no positive solutions.
L =1L, There is a unique positive solution u(-,p {Lq)).

Lo <L & Ly There are two positive solutions p(-,L) = u(-,u (L))
and q(+,L) = u(-u, (L)) with p < q everywhere on (-L,L).

L> L, There is one positive solution gqf-,L) = u(-,u+(L)).

Since u(-,u) depends continucusly on u and ”t(L) are continuous an
their domains, p and q are continuous functions of L on their domains.
Note also that the nonexistence of the small positive solution p for

L >L; is due to the nonlinearity of the diffusion (m > 1). (See Smolier-
Wasserman [ 1] for the study of the linear case).

Another effect of the nonlinearity is that u(-,a) = u(-,p_(Li}) ge-
nerates families of nonnegative solutions of {25),(26) on intervals (-L,L)
with L > L;. To show this,note that for p €(c,1] we have F (u)> 0
so that, according to (32), (V™)' (#(u).n) # 0 . However Fi{a) =0 , so
(WM (#ala)se) = (V™ '(2L,a) = 0. It follows that u(x,a)extended to
0 for L > |x] »L: is a solution of (25),(26) for L > L,and so is

u(x-hsa) for |x-h| < L,
U{x3h) =
0 for |x-h| > L,

provided|h] ¢ L - L;. More generally, we may piece several such solutions
together if their support are disjoint. Let n be a positive integer and
L>nl,. For each n-vector ¢ = {&,,... gn) which satisfies

“le 1 - Ly B b Ly g By~ LisT=lsounel and g +lig L (36)

the function
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u(x-gi,a) for |x-g;] € la
U(x3E) =

for |x-g;| > Ly for 4= l...n

3

is a nonnegative solutien of (25).(26) . We shall use Pn(L) to denote the ~

n s gs !

collection of functions u(-,£) where & €R satisfies (36). ~
Clearly, a nonnegative solution of (25),(26) is either positive or ~
betongs to some P (I). We thus have: o
Proposition 2.8. For L > L,, Let n be the integral part [ L/Ly] i

LJL;. Then, with P(L) = 3 P.(n) we have that the set EX(L) of atl O

the nonnegative and HUH-iiLULﬂﬂ sofutions of (25),(26) is given by

Ex(L) = {q{-,L)} up(L}-

Remark 2.1. If L/Ly > [L/Lyl=n then P_ s a true n-parameter family iz

;E;;;W;;—_h =L/l . P contains only U( L) s = ({-1)L; + Ll/2 i
Combining Propositions 2.6, 2.7 and 2.8 we obtawn the complete descr1p;;

tion of the set E{L) of nonnegative equilibrium soTutions of the para- é;

bolic equation{27) with homogeneous Dirichlet conditions. . 7
Theorem 2.9. E(L) = {0} 46 0 <L <Ly E(L} = {0,p(-,L), al+:L)}
4 L, <Ll <Lt s and finaety E(L) = 0003 u PIL) g6 La< Loy

333003

2.1d. Non-negative radial solutions of a normonotone semilinear equation i?
T

in R 'RN ”

An interesting result about the compactness of the support of the radial -~

solutions of the non-monotone equation f?
_m+fu =0 in R : (3

u(x) + 0 as x| e (38)5%

o

is given in Peletier-Serrin (171 as a byproduct of the discussion of the ;;
uniqueness of radial solutions of (37),(38) . The basic assumptions made ;%
on the function f are the following: k?
131 =



f dis locally Lipschitz continuous in (0;+=) |, (39)

§
jof(s)ds <0 forsome &>0, (40}
1im f(s) =0 =
lin (s) and  F(0} =0 . {41)

In order to show the compactness of the support of the radial solution,

they maki some additional assumptions on the primitive F of ¥,
F(t) = ju f(s)ds. Let

1

o4

B

inf {u>0: flu) <0}
inf {u >0 :-F(u) < 0}.

In the following, we shail always assume

B >0 (42)

Note that o > 0 implies B > 0. Moreover the condition g > 0 can be
satisfied even when f 1is not everywhere non-positive near u = 0,(a = 0).
0f course, for such a possibility f must be rather special near u = 0,
the behaviour of

2 _ s 1 - 1
- U%sin = =
u when sin o> 0

flu) =4 1 1
- usin & when sin G0

i; an example of this situation. We also remark that the function f
given in the study of (25),(26) satisfied o > 0 . Since the solutions can
have compact support,the unigueness of radial solutions of (37),(38) i§
studied in the mentioned work in the class of non-negative and non-trivial
functions.As in the above situations, here we shall restrict ourselves to
the question of the study of the support of solutions. Among the radial
solutions , (37),(38}) can be formulated as

-y - Lﬂigl-u' + fu) =0 r>0 (43)

u'(0)=0-, Tim u(r)=0 , ux0 on rs30. (44)
. r+e

The main result about the compactenss of the support is the following:
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Theorem 2.10. Assume the hypothesis (42) and Lot u be a solution of

(43),(44), Then , the condition

i sufficient fon u Ao have compact stppont. Moreover, if a> 0 ,eondiiio

{45) s also necessary.

Remark 2.2. Condition (45) has bean already used in Section 1.2a. to find

sufficient conditions for the existence of the free boundary when T s

assumed non-decreasing and f(0) = 0.
We need some preparatory Lemmas.

Lemma 2.11. lef u be a sofution of equation (43) ona finite interval

[ro.r1] © [0,4=) and Lot u > 0 on (ro.r1). Then
1 1 y(r)”
DLui(r)? - Flun1-T 0t (ro) ™= F(uo)d ==(N-1) f, T drs (A
0

where U; = u(ri) , 1=0,1.
proof. Multiply equation (45) by u', and integrate over {ry.ry)-{Note
that in the one-dimensional case (e.g. eguation (25)) the right hand side

of (46) is identically zero).U

Lemma 2.12. Let U be a nonnegative s0fution of (43),(44) . Then u's O on
[0,0) .. Equality hofds at a point v .if and only Lf wr) = 0 . In con-
sequence, either u >0 on [0,2) or u>0 on [0,a), and u=0 on [a,
for some a > 0.

Proof. Llet E be a critical point of u(r) , with & € (0,@). Then ther
are three cases to consider :i) f(u(g)) < 0 , ii) flu(g)) » 0 and §i1)
f(u(g)) = 0. 1In case (i) the equation shows that u"(E) < 0, so gis a
strict maximum, in case (ii) we get u"(E) > 0 hence § is a strict
minimum. Finally, if f(u(g}) =0 , and if u(g) » 0, by the uniqueness
of the initial value probiem for ordinary differential equations (applied
at the initial point r = £ ) we see that

u(r) = u(g) = constant , r € [0,»).

This violates the condition u~+0 as r == and so (i1i) cannot occur
if u(g) » 0 . Thus the isolated critical points in (0,») are either



\ 'iagﬁgr:: :
4
strict local maxima or strict Tocal minima. We now treat two further cases. proof. By Lemma 2.12 it suffices to assume u >0 on [0,a) for some 7
First, suppose that there are no maximum points in {0,=)}. Then, obviously maximal a > 0 which may be finite or infinite. If a < +wthen (47) e
\ (since u(0) >0 and u~+0 as r =}, we have u everywhere nonincrea- follows by setting ry=a in (46). Next suppose a =e. We let rypreo 7
g sing s indeed with u'(r) ¢ 0. Second, suppose (for contradiction) in (46). The right-hand side converges to some negative Hmit, or to -e=. =
that there is at least one maximum point Z in (0,=). tHence, to the left This implies that %u'(r,)2 + F(u(r,)) converges, through possibly to -
of E we'fave u'{r) » 0. Since u'(0) =0, there is a first point ry —= . However, as rire , u{ri) +0 and, hence, F(u{ry)} +0. Thus ’m
to the Teft of E where u'(ry) = 0. Clearly u(ry] < u(g). To the right %—u'(rl)z converges to some nonnegative limit V2. Again by (44), we have e«
of T it is evident that there is a last point ry where u{ri} = u(re); V=0 and then o
see Figure 8 ~
Tim{ u'(r)? = Flu(r))} = 0 -
r+ o -
which proves (47) by using (46)._ ,,
u Remark 2.3. MNote that by (47) “
P
o« t 2 “lau
- Fu(o)) = (n1) f, HEA 5o, -
T Since F >0 on (0,8) , this implies that u(0) > 8- ’“
Figure 8. Lemma 2.14. Assume B > 0. Lel U be a nontrivial nonnegative sofution f:
of (43),(44) and Let R >0 such that u(R) = U € (0,8} Then, £f r{u) O
. . /'*":'
Then applying Lemma 2.11 on (ry,ry) we get ib the invense of u on  (0,U] » we have ©
U s
ri o 2 -1/2 -1/72 P
%u:(h)z - -(v1) S, u r(r) dr <0 r(u) ¢ r(u) + 2 I, (FEs)) ds 0<ugU. (48)\;
This is impossible, and so, as u > 0 and Timu(r) =0 then u' <0 Proof. By Lemma 2.13 e
for all r > 0., ra ¢
1 2 .

Remark 2.3. Note the important difference between the behaviour of sol-. zu'(r)? - Flu(r)) » 0 for every r > 0.
utbons of equation (37) for N=1 and N > 1. Indeed, Lemma 2.13 is not
true if N=1 (see Proposition 2.8)._ But if r > R then u(r) € [0,p)} and hence F(u{r)) >0 and *i’f
4
Lemma 2.13. let u be a montiivial nonnegative sclution of (43),(44). 1 u'(r)? > Flulr)) For r > R. ;e"r
Then  lim u'(t) = 0 and P
) e - ) Since u' s 0 then F
Lutn? - rlur)) = o) f S les L rs o (a7) 12 12 b
r ‘ u'{r) & -2°° (Flu(r)}) (4947
£
By Lemma 2.12 there exists a number a € += such that u(r) >0 ;
-
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Remark Z2.4.

when r <a and u(r)
(49)

=0 when vr > a. Thus, as R < a, we obtain from

(F(u(r))‘l/2 u'(r) g - 21/2 for Rgr <a.

Integrating this inequality from R to r € (R,a) we obtain the conclu-
sion,

a
Proof of Theorem 7.10. That the condition (45) is sufficient for u to
have compact support is an immediate consequence of (48). To prove that

(45) is necessary we assume that u has compact support [0,a] with a<w.
By Lemma 2.13 we have

u'(r)? g 2|Fu(r))| + ¢ fi u'(s)2ds a-§<r<a

where = 2(N-1)/(a-6) and & € (0,a) will be chosen later. Applying

Gronwall's Lemma we deduce that
' 2 A 8 C(s-
uir)? < 2Flu(r))] + 2¢ 12 |F(u(s))] "5 as (50)

Now we choose & so small that u(r) € (O,a) for a - § <r < a. Then

d

ar Flulr)) = flulr))u'{r) <0
and hence F(u(s)) ¢ F(u{r)) if s e (r,a). Using this in (50) we obtain
u'(r)? < 2F(u(r)) 11+ € [ 05T as ¢ 2F(u(r))e®. (51)

Dividing by F in (b1}, taking the square root and integrating over

(a-8,a~e) , D <g <8 we have
IU(a-S) (F(u))“l/gdu < pl/2 ¢ (N 1)/(a-¢)
u{a-e) )

Finally, as u{a-g}) = 0 as e + 0 we conclude that (45) holds.
B

The uniqueness of nonnegative radial solutions is proved in
Peletier-Serrin [ 1lunder a hypothesis (slightly) stronger than (42).
o]
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2.7. VARIATIONAL INEQUALITIES AND MULTIVALUED EQUATIONS.

The main goal of this section is to extend the results of Chapter 1 to some
multivalued equations which can be understood as Timit equations of some
quasilinear equations. A possible motivation for the study of such a type

of equations may come from the three following examples:

i) The obstacle problem. Given a function ¢ € H!(g) (called "obstacle"},
an already classical problem appearing in many different contexts is to

find w minimizing the functional

JHy) = %-jn|vv]2dx - jgg v dx (52)

on the convex set ¥k = {v - heHi(R) , v=ypon @}, where g and h
are data of the problem, for instance, g € L?(q) , heHY{R) , h ¥ .
1t is easy to see that any solution u of this problem is characterized
by the inequality

YWekK, WwEK. (53)

jﬂ yw -V{v-w)dx 3> jng{v = w)dx

Finally, under additionalbassumptions on 1y, a2 and h , we have that

u € H2(p) and, then , u satisfies the "complementary formulation"
~mwzg » wx1p and (- AW - gy -w) =0 a.e. on @ (54}
w=nh on 0 . (55)

We alsc note that f ¢ € H*(n) the above problem reduces to the case of

zero abstacle. Indeed, the function u=w - ¢ satisfies

~auzg o, u20 , {-fu-glu=20 a.e. on R (56)

u=h on n (57)

where g and h are now given by ¢t &9 , h+y , from the functions

g and h of the original formulation. { For an exhaustive treatment of the
above variational inequalities,as well as of its variants,see the books by
puvaut-Lions [ { 1. Kinderlehrer -Stampacchia [ 2 land Friedman [ 3 1.

We finally remark that situations in which the operator A is replaced by
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another different ( Tinear or nonlinear) differential operator arise frequent-
1y in the applications (see the references mentioned).

ii) Zero order reactions and equations with discontinuous perturbations.
Semilinear equations

-Au+ Flu) =0 in @ (58)

involving discontinuousfunctions f appear, for instance, in the study of
a single, irreversible steady state reaction of zero order (see the Intro-
duction). In this special case f is discontinuous at r=0, and it is
given by

f{r) =0 if rg0 and  f{r) =x if v > 0,A > 0. (59)

Other equations with discontinuous terms are discussed, for instance, in
Stuart { 1 1Chang[ 1] and Frank-Wendt [ 1 1.

i1i) Stationary states in porous media with absorption. The study of

stationary selutions of the porous media equation with an absorption term
leads to the problem

- Ap{v) + f(v) = g in Q (60)
v=0 on n - (61)

Here the functions ¢ and f are assumed to be continuous, non-decreasing
and T(0) = ¢(0), =0 .
satisfies

When @ is strictly increasing the function u = ¢(v)

- Au+ flu) =g in Q {62)

u=0 on 1Y) (83)

where T =1f ¢"1 , but f ¢ is not strictly increasing f 1is a multi-
valued function.g

Note that in examples (ii) and () the free boundary F(u) makes sense,
and that for the obstacle problem the free boundary F, {u) is defined as the
common boundary of the sets S, (w) = {x €f:w(x) > p{x)} (the continuation set)
and Nw(w) = {xeQ:w(x) = P(x)} (the coincidence set). If ¢ = 0 then Fo(u)
coincides with the usual free boundary.
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The three above problems can be reformulated in an unified way by using ”ﬁ
the notion of maximal monotone graphs of W . This class of graphs 8 of
R? can be characterized through a nondecreasing real function b to which ™
we add some vertical segments at every jump of b s 1.e. o

a(r) = (b(r-) , b(rt)1 if -= < blr-) € blr+) < -o -
B(r) = {-=, bl{r-)] if = =b(r-) < blr+) < +e -

"
+
8

glr) = {h(r-) , +=) if  -» < b(r-) < b(r+)

Of course, the graph of any continuous non-decreasing real function defined -
on the whole R is a maximal monotone graph, which in fact is identified =
with the function itself. Using this terminalogy it is easy to check that =
the above examples correspond to special cases of the multivalued equation .=

- Apu+ glu) 3 g in 1] (64)

u=h on 3 , (65) =

where # are the maximal monotone graph of R?® given, respectively by (see .

Figure 9) P

g(r) = # (the empty set), @(0) = (-=,0] and B(r) ={0} if r>0 (66,

]
N

a(r) ={0} if r<0 , 8(0) = [0,A] , B{r) =(a} if r>0, >0 (67)

and .

alr) = fo ¢ H(r). (68) 7

Figure 9.
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Prior to the study of the free boundary we recall that,as in the case of
single-valued equations, the soiutions of eguation (64) may be defined in
several senses according to the regularity of the data ¢ and h as well
as to the boundedness or unboundedness of the domain @ , A discussion of
this topic is givenin Chapter 4 but in any case we recall here that if,

for instance, @ 1s bounded and we assume

(@) ;2
Q) 5 i.es g =got T
izl 2%y

-1, !
geEMU P » Yo ’g'iE Lp (2) (69)

and
he wPla) with §(h) € Li(@) , (70)

then there exists a unique u € wl’P(n) verifying 64 ),(65) in the sense
that u minimizes the functional

N
) = fUwulP + 5u) - geu+ T gy A Jdx
=l

1 axi
on theset ¥x={v:v -he N%’p(ﬂ) such that J{v) € L} (Q)}. Here jJ
is a "primitive" of the maximal monotone graph B in the sense that
j iR~ (~=,+=] is a convex, 1.s.c. function with Jj § + = ’and such that

g is the subdifferential of j , B = 3j (see definition in Chapter 4).
Under additional assumptions (g; = 0 and D(B) =R ) this solution,
in fact, satisfies the eguation (64) in a.e. x € Q.

Another  solution of the problem {(64).(65) may be carried out in the

L'(g)

space. So if, for instance, p=2 and @ is bounded, assuming

g € L&)
and

hewt () such that k€ LY(0)

there exists a unigie u € w1=1(n) satisfying (64),(65) fin the sense that
z=u-he¢ N%’l(n) and there exists ¢ € L}(R) such that c(x} € plz(x))
and - Az +c=9g+Ah a.e. on Q.

We point out that the comparisoen principle holds for both notions of

solutions. With respect to the boundedness of solutions of (64),(65) we
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send the reader to the exposition and references in Chapter 4.

After these preliminaries we mention that results on the existence and
Jocation of the free boundary are given in subsection 2.Z2a, where solutions
with compact support are also considered. In subsection 2.2b we use
sywmetric rearrangement to derive another sufficient condition for the ex-
some qualitative properties

istence of F{u). Finally, in subsection 2.2c

of the free boundary are given.

2 2a. Existence and location of the free boundary. Solutions with compact
support.

Let B be a maximal monotone graph of R? such that 0 € (0}, and Tet

u be a function satisfying the equation L%%) in a.e. x € Q. It is clear

that on the null set N(u)

we must have
8(0) 3 g(x) {11}

and in consequence (71) must be satisfied on a subset of Q positively
measured. Due to the assumption O € (D) , (71) holds if, for instance,
the null set N(g) is positively measured. As we shall show, it turns out
that in this case, a sufficient conditjon for the existence of F{u) is
that B satisfies an integral condition similar to the ore given in Sec-
tion 1.1. MNevertheless, (71) shows that if 8
gin then it is possible to have solutions with a non-empty null set N(u),
on N{u) , and so, new results
We shall start by

is muitivalued at the ori-

corresponding to equations in which g# 0
with respect to the single valued case are possible.
considering the first of the above situations.

If the null set N{g) 1is not empty, using the same arguments as in
Theorem 1.9, the existence of the null set N{u)
(69),(70) is
the homogeneous Cauchy problem

for solutions u of

i

reTated to the existence of nontrivial solutions of

p-1
1 d N-1 ,duy” du
ar

d
T arl @)t

u(0) = u'(0) = 0. {73)

Alu) 3 0 (72)

The analysis made in Section 1.la for continuous non-decreasing
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functions f, instead of B, remains true after some minor changes in
the notation. Indeed, first of all we note that the auxiliary function
wu(T) defined in (33) of Section 1.la may be understood in the follow-
ing sense;

_pla/p Tt ds .
() = (G5 I, T()i7P (74)

where now j is a "primitive' of the maximal monotone graph 8 ., B = aj.

Introducing the sections of B given hy the following real non-decreas-

ing functians
BU(r) = {5y € Blr) : |sel s [s| ¥s € 6(r)}
gH(r) (resp.g”(r)) ={s, €B{r} (resp. s_eB(r}): s> s{resp. §_ £ s)
Vs € a{r)}
then it turns out that A%(r) = B+(r) =g87(r) a.e. r &R {recall that
by a well-known result of the measure theory the set of r € R in which

g is multivalued must be necessarily numerable} and so, a primitive
j ofp is given by

ilr) = '[: go(s)ds if r e D(p) and Jlr) =+e«if r £ 0(R)

(here D(B) = {re R : Blr) #41}).

Since the function wu can be well-defined, the statement and proof of

Theorem 1.5 can be translated wogd for word to the Cauchy problem (23)
(24) . We only remark that the function n defined by nit.u) = w; {t)

is not, in general, of class C®, but it is rlecl(io,wp(+m))) n
wa’l((o,wu(+m)) and this suffices to apply the arguments of the proof of
Thecrem 1.5. Analogously the function

o(r) = P/ L) (e (P17P
is still an T.s.c convex function and its subdifferential 3¢ satisfies

ap(r) = ug®(r)  for a.e. r € D(B).
Using the same arguments as in Chapter 1 we have
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i
Theorem 2.15. Let p > 1 and assume

dsi ds

max { f _ : ) . — )<+ (75)
0 (s)HP 0 js)lfP |
i 64 6k
Then &f U s the sofution of (£9), (4] and ful < M on N(g) (for

instance , u € L7(R) ‘and M =|lull ) .then we have the following esti-

mate for the nul sef N(u):

Mu) = [xeN(@)u Nh|0)s dies(allu s(hlyg)) » L}

wheie

(76)

Remark 2.5. In the above statement the behaviour of g on (-»,0) is

taken into account because now it is not
In any case, if the dhta g and h are

of prescribed sign as

. | 03 - -
occurs, for instance, in the example of zero order chemical reactions,

where ¢ >0 , h >0 @ the same holds for the solution u
Then, ihe behaviour of 8 an (-=,0) has no interest and
i

case, u = 0).
{75) may be weakened to the assumption

j + _ds__ E + e

ot 3(s)MP EA -

(in that

(77}

Remark 2.6. Assumptﬂon (75) depends only on the behaviour of 8 near the

origin . So, if B i% single-valued exce

pt in some points rioe 0y # 0

where it is mu]tiva]qed, the existence of the free boundary depends on

the values of B neaﬁ 0 and not on tho
Nevertheless, if B ﬂs multivalued at r
Indeed, if [0,87(0)} = B(0) then i(r)
and then

& ds

!
i
|
€
ds !
£

se near r; (Figure 9 ).
=0 the situation is different.

£

p p-1)/p

1
0 ()P 1 gto/P Fo S/

TETNORL
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natural to assume that B 1is odd.

B+(O)r for r > 0 small enough
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In consequence, if B is

|
\

multivalued at 0 and 0 < B7(0) < + =, the
J

hypothesis (77) holds for every p > 1  (the same for (75), assumed
~w<p(0) < 0 < ¥(0) < 4 = ). Note that if '8 is the graph (66) associ-
ated to the obstacle prohlem then g = 3j with j(r) = += if r <0

and j(r) =0 4if r > 0.
g is muTtivalued at the

Remark 2.7. The special

In consequence (7?) does not hold although
origin ,  #(0) = (+=,0 J.
! o

example of zero ord%r reactions (with B given

by (67)) can be treated directly. In fact Lemma 1.5 remains true for
i

the Timit case gq=0 and so the function

_B_
ulry =Cr p-1

satisfies that

] i (p-1) P
Ly = - Apu + alu) s[Aa-¢C P %—t——z“jTT ]

In particular,if

- _ ip-1)
C = Ky ) -

lLu = 0 and, in consequence, the estimate gi@en in Theorem 2.15, can be
1

improved by taking

(p-1)/p

L= k)

We point out that the

‘g ‘

extensions of Theorém 1.9 given in the subsec-

tion 1.1b still remain true for the mu1tivajued equation. It is the

same with the results of
of the support. The
1.16, for the particular
tion.

subsection 1.1c rejative to the non-diffusion
following 1is a stétement similar to Theorem
case of B as in thé zero order reaction equa-

Theorem 2.16. lLet p> 1 and 8 given by (67). let h=0and g€ L7(Q)

such that 0 < g(x) <A
sofution u of (gg),(gg)
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- g a.e. XER éa;;a some > 0 . Then the
satisfies that N(u) = N(g) .

Proof. From the assumption made, there exists Cy E (D,KN A) such that

-y D)
{p-1) N
OSQ(X)S -Gy J:—T)m)‘
P~

p/(p-1)
Then, it suffices to take the function Co[x - Xol

supersolution, as in Theorems 1.15 and 1.16._

as a local

Remark 2.8. The condition (75) is also a necessary condition for the
existence of a nonempty null set N{u). This may be obtained from a
strong maximum principle simiiarGto that in Theorem 1.20 and this holds
for muTtivalued equations like (69) (see Vazquez [ 5 1).

chfcga is multivalued at the origin the null set N{u) of solutions of
Lﬁﬂ)g}ﬁ) may exist although g(x) does not vanish on @ . The following
result proves that the necessary condition given in (71} is "almost suf-
ficient".

Theorem 2.17. Llet p > 1 and B be a max{imal monotone graph such that

BL0) =[87(0),8(0)1 , - = <p7(0) <O <6F+(0) € + o Let u€ L7(R) with

Null, ¢ M satisfying the equation [£9] n a.e. X €Q as well as the
Dirnichlet condition %Eﬂ. Then £4 we define

N{g) = [x e : 67(0) +e ¢ glx) ¢ B(0) - e}
we have the folluwing eséimate for the nwll set N{u):
N(u) 2 {x€ N_(g)y K(hl o) ¢ dbe, RN (9))U Sthlyg)) > L

whete

Proof. Without Toss of generality we can assume that D(p} - {0} # 8.
We take, for instance, g70) <+ = . Let %€ NE(g) u N(hlaﬂ) and Tet
R = dixe, (RN _(9))u S(hlyg)). Let @ =0 0By(xo) and define
b
Tix) = ulx : %) = Clx - xulp"l

Then on 5 we have



-1} , .
AT (D) 5. clp-l) (p-Liy + et _ +
ADU+B(H)2 C }z_p:?(p_—l_)_ B(0) = - e+ B (0)2 glx)
—l) e 1/(p'1)
if C g CE N = wEE—— LTT On the other hand, as in Theorem 1.9,
we have u > u on 3 if , for instance ,
_B_.
crRPls o

Taking € = Ce,N and applying the comparison principle on {i we deduce
that u<U on Q. Nowif B (0)=-e ,D(g) = [0,=) and s0 , 0« u(x)
a.e. x€ @ . Inparticular , 0 < u(Xe) < Tx : x) =0 . If -« <p(0)
then, hy the same argument, we also prove that - u{x) g u{x) and S0

Xp € N(.U)-D

Remark 2.9. The above result applies to the obstacle problem, in which
case g s given by (66). If, for instance, we consider the case of p=2
and an obstacle » € H2(2) then the coincidence set {u = ¢} is not empty
if the set where g{x)] + ap(x} < - e {s sufficiently Targe for some

e > 0. We point out that the local supersolution in the proof of Theorem
2.17 was chosen as u = up{r} » r = |x - x| » With U, satisfying the

homogeneous Cauchy problem

e, u'(0) =0 ,u{0)=20.

1 (1 dy P
rN—l dr dr dr

This argument can be applied to other differential operators. For instance,

for the equation

- Au + ou t Blu) 3g , a>0

the Tocal supersolution is given as the solution of the associated homo-
geneous Cauchy probiem and it can be explicitly defined in terms of mod-
ified Bessel functions (see Nagai [ 1 Jand Yamada [1], en. a

Theorem 2.17 allows us to obtain , as an application, some estimates
on the location of the Tevel sets {x € @ : u(x) » t} {and analogously

{x € @ : u(x) ¢ t} for solutions of quasilinear equations }:
Theorem 2.18. Llet u € L7() , with 0 < u < M ,be the sofution of the

problem
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- Apu + f{u) =g Ln Q : : (78)
u=h on N, . (79)

where T 44 a nondecheasding ﬁﬁfﬂ function and g and h are nonnegative
functions. Then, given 0 <& <M , we have the estimate

{xeq: u(x)>é} o {XENA,E(Q)U N(hﬂklaﬂ) : d(x,(RN~NA,E(g))U S(h-Alaﬂ)éL}
where

Ny (g) = xea: glx) = e + f(x)} , €>0
and

-1} 1

L= 2y S
Proof. Consider the obstacle problem

veh, -aytflleg (-85v 4flv) -g}{v-M) = 0 in @ (80)

v=h on 0. (81)

By the results of Chapter 4 such a problem admits a unique solution v
which must coincide with u because u already satisfies (80),(81).
For A €(0,M) Tlet now uy be the solution of the new obstacle problem

VA, AV f(v)sg , {- AV + F(v) -g){v-2) =0 in Q{(82)
v=h on . (83)

Again, by the comparison results with respect to the obstacle, we have

that u. < u a.e. in . On the other hand, uy satisfies

A

—Apu)‘ +f(”>\) + 8luy - A)2g

where @ is the maximal monotone graph given by
B(r) = (6} if r<0 , B(0) =[0,4=) , B(r) =9 if r>0.

Then w=u, - A satisfies

A
. 147

=
N



- pr + Blw} 2 5 in o

w=h-2 on I

where a(x) = g{x) - f(dh(x)). The conclusion follows from the Theorem 2.17
by noting that g (0) = C , g"(0) = + = and that

o

NEQQ) ={xeq: e<9(x)ta NA,E(g).

Now we shall consider the case of £ _unbounddd . It is clear that
Theorem 2.17 remains true and so the existence of the null set is assured
if the set Ns(g) U N(h[ag) is also unbounded.  For instance, i the sup-
port of hlaﬂ iz compact and

a7(0) + e < glx) ¢ B7(0) -  for x| 3R (84)
o &S

then we conclude that the solution u of (69).(70) has compact support
if R s Jarge enough. As in subsection 1.1d, it is also possible to
construct giobal supersolutions having compact support. Indeed, it is
enough to take U = G(|x-%¢f) with G defined by (80) of Section 1.1
and changing it on Ry € r € Ry by G(r} = Ksr p/p-1 , for a sujtable
K, . {See details in Brezis [ 7 1). An analogous version of Theorem 1.19
js also possibie (Moet [ 1 1).

It is not difficult to see that the necessary condition g € g{0} 1s
not sufficient to conclude the existence of the free boundary F(u) or,
for instance, the compactness of the support S{u). Even the condition
B {0) < g(x) < B+(0) for |x] = R 1is not enough . To see this it suf-
Fices to note that u{x)=e™P* (p > 1) verifies on © = (0,%=) the
equation

-u"+ gluy3ag

with B(r) =4 if r <0, B8(0) = [0,4) , B(r) =r if r>0 and
where g = ({1.- pz)eupx. Nevertheless, another sufficient condition ,
weaker than (B84) , may be given for B(0) < g{x) < gto) for x| 2 R

assumed that gdoes mot converge too fast to p{0) or 3+(0) when |x|+ te.
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This was proved in Benilan-Brezis-Crandall [ 1] when in (64) p =2

and @ ='RN giving at the same time an existence result (see also Brezis

[ 71 for a similar, but weaker, result).

Theorem 2.19. Let  8(0) = [87(0), 8(0)] , == <B7(0) < 0 < B°(0) < +o
and £et g e L} (RN). Suppose R > 0 and that there are nonnegaiive func-

loc
. 1 ©
tions €, € L]DC([O, V)Y such that

B(0) + e_([x]) < glx) < 87(0) - e, (1x]) a.e. fon fx| > R (85)

and satisfyding
e (rydr = 4w (86)

Then thote exists a sofution u € LNRY) , with compact suppont, of the
equation

_mi+glu)ag in BV, (87)

I§ N=1 on N=2 and g*(0) € int B(R) . zhen .
&

]

4, 2 J
jo r Ei(r)dr = w Jff N;;E{aﬂ ja r 1og(l-+r)ai(rﬁr: m-éﬁN;}l’ (88)?

are suffloient fo fmply that (87] has a sobution U € L‘(RN) with compact
support.

"Proof. We shall only reproduce here the easier case N > 3. (For the

conplaete proof see the mentioned reference). From (85) we have

8+(0) - B (0} » e, T E_ > SO E and e_ are bounded. Since g, is bound-
ed, min(e+(x), B+(0)) satisfies the same integral condition (86) and
g'(x) € g7(0) - min(e, (x), 8*(0)).Dealing similarly With the minus case
and using the comparison principle (see Chapier 4), we can suppose: ¢ 0
and there js an R > 0 such that g > B+(D) on x| <R while

g(x) = B+(0) - s+(|xl) on |x|] > R. Let g, =9 on |x] £ n and 9,=0
on |x| > n. By Theorem 2[}the solution u_ € LI(RN) of - su + B{u) 3 9
in 'RN has compact support (see also Remark 1.12). Moreover, u, and

W, =g+ hu, are nondecreasing in n  since 9 is nondecreasing in n.

Since
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function n(rire) for r > ry by

- bug (W g°(0)) = g, - _B+(0) < (g,- 8

then, by comparison, we have that u, € oo, W, W, where u is the
solution of - au + &(u) = (g- g°(0))", Blu ) B(u) - 87(0) and
W= (g- B+(0))+ + AU. (The existence of such functions o, w € L%oc RN)
can be proved as the 1imit of some coercive semilinear equations in R
since {g - B+(0))+ € L‘(RN); see the mentioned reference). Thus, u tu gu
and Wyt W< w for some functions u, weg L]OC(RN). By the maximal
monotonicity of 8 , w ¢pf{u) a.e. and g+ Au=w in D‘(RN) ,50 U
is a solution of {87). Thus, it is enough to bound the supports of the

U, uniformly in n.

We make one further reduction. By the comparison principle we may
assume that B{R) < [-A,A] for some A > 0 (argument as in Theorem 2.1).
on [x] > Ry (g - 8700 = (- e, (IxIN* =0, 50 (g~ g°(ON"+ av € B(D)
implies AU € L™({x : |x| > R}} and u € w.lo1 :|x| >R}). By stan-

[+
dard arguments we conclude that u €W x| = Ri) for 1 g5 <e.

loc

Choosing p > N, the Sobolev embedding theorem jmpiies u € C*{{x : |x} >R}.

sup {|u(x)|}. We define the auxiliary
X|=Ru

Now, choose Ry > R and set M =

n(rirg) I ( f )N_l e, (s)ds)dt.
Then, by {86), 1im n(rirg) = += , since
Y o0
1 r sN—l
n{r:ry) = 7 I ( N - s) E:+(S)ds .
rg r

Finally, choose R > Ry so that M = n(R;R;) and let

J (1)) if Ro ¢ [x] <R

v(x) =

k 0 ‘ of x| >R.

We have v € CH{{x : x| > RY, v =M>u>u if [x|] =R and

-put g(0) = B (0) - g, on < |x| <R .,and -av =0 on x| >R
Then if z = ﬁ+(0) in Ry < |x| < Rl and z = B+(O) - g, on Ix| > &,

then z € B(v) and - Av - z = B+(D) - &€, > g, Then, by the comparison
150

principle, v »u, on }x| » Re and so supp u, = {x x| € R} o~
= >

Remark 2.10. The hypotheses of Theorem 2.19 cannot be weakened (see -
Benilan-Brezis-Crandall [ 1']).D 'ﬁé
N

2.2b. Rearrangement and multivalued equations.
The symmetric rearrangement of a function can be used in order to study

different properties of solutions of multivaiued equations. A first result -
in this direction corresponds to an analogous version of Theorem 1.26 of =
subsection 1.3a relative to single valued equations. For simplicity we E%

shall restrict ourselves to the consideration of the semilinear multi- -
valued eguation -
N

~lu+ gluy 349 in 0 (89) -

u=0 on an (90) ~

where L is the second order elliptic operator given by sy
'

Lu = g D.(a,.(x)D. u) - a(x)u -

i4=1 9 W T

. Pl

with a5 €Ct@) ,ael (), a=0, and s
" s

2

in aij(x) £:85 * |E|2  for every E£€ER , E#0. (91) -

S

Here R represents a maximal monotone graph of R? with 0 € g(0) and =
the main goal is to "compare" the solution u of (89), {90) with the :;
solution v of the simplified problem :;
- Av+B(v)Dgr din . (92) 7

-~

v =0 on aar (93)

where ©* 1is a ball of measure meas 2 . We shall take advantage of thisff
opportunity to work with {1-solutions in contrast with subsection 1.3a  f
where we considered variational solutions. We recall that the existence T
of the (unique) function u € w%’l(ﬂ) (resp. v &€ w}’l(n*)) satisfying [
o
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&,

dl
é’f’iﬁ the existence of ¢, € L}{Q) (resp c2€ L'(2%)) with ci(x) € B(u{x)) Remark 2.11. It is also possible to state Theorem 2.20 for quasilinear

~_ gﬁ;’j (resp. cu(x) € B{v{x})) for a.e. x and such that - Lu +c1 = g multivalued equations Tike 5 }. Indeed, it suffices to apply the con-

: ﬂ;{f (resp. - AV + Ccy = g,) for a.e. x , 1is a consequence of the main vergence result due to Benilan [ 2 land the accretiveness of the operator
i result of Brezis-Strauss [ 1 I{see also Chapter 4}, when it is assumed A in L! (see also Chapter 4), In any case, the Li-setting requires

s g:1€ L) (resp g, € LI(Q%)). some further assumptions in the nonlinearities than the variational one.

. Theorem 2.20. let u and v be nonnegative L'-sofutions of [89)(90] and For instance, for general diffusion equations Tike (3) of Section 1.3, we
g (97) (93} nespectively. Assume that Qp £4 a nonincheasing radial function need the monotone dependence of A{x,u,g) with respect to £ .
e and that g% g g, [(in the sense of Definition 1.2). Then cf < c,. More- As in subsection 1.3a, from the above result we can derive an isoperi-
L over, fon any convex nondecheading real function & we have that metricinequality for the null set of solutions of multivalued equations.
o This is of interest in the special case of zero order reactions.
g fﬂ elea(x))dx < fsz* o (ca(x)dx (94) Corollary 2.21.1let L be as above and fet B a maximaf monotone graph of r?

Y with 0¢€ 8(0) . For k>0, Let u be the solution of

E?i“’:. Sketch of the proof. We first assume that g, and g» are bounded func-
e tions. Let e > O fixed and u > 0. Consider u® and v®'tobe the solutions -Lu+ pglu)30 in 9

‘. ﬁ’ of the (single valued) problems (we drop for a while e ) _ U=k on 30

: %‘-'3 - Ly, + Bi(uu) =¢ in o . | Finally, Let @* be a ball of the same measwre us Q , and et v

B | be the solution of

: ﬁa“% uu =0 on  aQ ,

gl - av+ glvlzo0 in a*

and

| i j v=k on an*.

Ik - Ay * BE(»VU) =gz in a* Ca. ¢ - i
i Then, ifo> 0 on O%the mull set NUd) £8 empty. % moneover, BEERE
@fj v, = 0 on A , then, meas N(&tj;) < meas N((\Q.D
&i‘l where 8% is the Lipschitz continuous nondecreasing function defined by Now we return to the context of Theorem 2.20. As was already pointed
ﬂ‘g BEU(F) =gr+ B (r), 8, being the Yosida-approzimation of 8, out in Remark 1.16, the explicit inequality u* g v is not true,in general
@‘f; (Bu ={(I - (I + pg)'l)(llu),u>0).ln this context Theorem 1.26 can be ap- Nevertheless we shall prove ancther explicit inequality , very useful
Eiiv plied, and so sﬁ(u]’i) < Bz(vu) . Finally the proof ends by using the | in order to have a new sufficient condition for the ocurrence of the

r convergence result of Brezis-Strauss[ 1 1. Indeed, there it is shown that : free boundary in multivalued equations. The idea is to compare u* (u the

ﬁ', Beu(uu) + eu® + Cf in L) (resp. SEU(VU)+ ev® + ¢, in LY(RF)) nonnegative solution of (80,(90)) with the radially symmetric function

, Efr‘fl when -+ 0 for some adequate functiens u®, v&, ¢ and cf with cSep(u®), z, solution of the problem

: @E{L ci € g(v®) a.e. Finally, if giand g are in L'we take g- and g bounded P ;

@“ functions satisfying (gf)" < g , ¢S being a nonincreasing radial func- -zt gHz) 30, in ot (95)

) tion, and again, by the mentioned work, we know that u® - u, v& » v in z=0 on A (96)

) JI L' and that ¢S+ ¢, and c§ + c; in L', when & + 0.

Eﬁf = where 6# is the maximal monotene graph of R® defined from p by
%‘i 152 153
|




al(r) =(a7(0)} iF r> 0, gF(0) = (~=,87(0)1, 8¥(r) =5 if r<0 (97)

(note that now D(g") = BEE) @ [0.))

Theorem 2.22. Let u and z be nonnegative L'-sofutions of (89),(90]
and [95)(96) nespectively. Assume that g, is anonincreasing nadial func-
tion and that gf <9, . Then u* g2z a.e. in Q.

Remark 2.12. If B 1is in fact a nondecreasing continuous function with
B(0) =0 and g, » 0 then Theorem 2.22 reduces to Remark 1.1@*.However,
if B is a maximal monotone graph, multivalued at the origin, then nonnega-
tive solutions u of (89),{90) may exist even for g, changing in sign
(this i5 the case if e.g., D(B) — [O+w)). In any case, z is the solution
of the variational inequality

z»0, -AZ 3> Qg - B+(D) and (-Az - gat B+(O))z =0 $n Q* (98}
z=20 on ARk . : {99)

Again, note that z » 0 even if gs is not a positive function and that

the coincidence set {z =0} may be non empty._

As in subsection 1.3a, the proof of Theorem 2.22 1is given in several
steps relative to variational solutions.
Lenma 2.23. Let g,€ L2(Q) and u € Hy(Q) be the {nonnegative) solution
of [89),(90), Then the decheasing reamrangement u of u satisfies

- (s e m—im—lm g (g,(8) - B7(0))de] (100)
N .

a.e. s € (0,]{u > 0} ), whene g; L4 the signed decreasing frearrangement of gi.
Proof. From the assumptions, there exists c¢; € L'(R) (in fact in L2(0))
such that ci{x)e glu(x)) a.e. x € and verifying - Llu+oc =t
in @ . Then, for every weH(R)n L"(q) we have
N au W

L T 5 i - Jgauw + oo = fogiw

153"1 1 J
Taking w =Ty h(u) , with Tt h defined in the proof of Lemma 1.29, and
remarking that a(x) 2 0 and c, Ty h(u) b B+(0) Ty h(u) for a.e.
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=
where By 4 the unique solition of x(se) =0 £n 1|{92- 3+(D) > D}Islﬂ*i[ .
t % given by (101)). #g

proof. Inequality (103) follows from the comparison u* < z. On the

other hand, if gs € B+(O) then the unique solution of (95),(96) (i.e.
of the variational inequality (98).(99)) s =z = 0. Now, the function
y s concave because g% = gp - B+(0) is nonincreasing. Moreover,

x is strictly increasing in {0,]{g2 —‘B+(O) > 0} ), constant in

( g2 - g (0) > 0}] , |{ga - g*(0) » 0}| ), and strictly decreasing in

(|fg2- B°(0) 3 0} » [o*); x(0) =0 and x{|0*]) = [,(g.- 8°(0))dx. ~
Then, if jﬂ*(gz - B+(G))dx >0 (and g, 7 B+(0)) we have y > 0 on -
10 , |o*|[ and then by (102) %é—(s) <0 on ]0,{e*|[ which implies -
that meas N(z) = 0. Finally, assume that fﬂ*(g2 - B+(0))dx < 0 and -

[{ga - g¥(0) > 0} > 0.Now itis clear that [{z > 0} > O because, other- o
wise, g3 - aT(0) must be non positive on @* . By the above description ™
of y , there exists a unique sq € {1{g, - B+(0) » 0 » [@*|) such that 4
(s) >0 if 0 <s <sg x(5,) =0 and x(s) <0 if so <5 <|0¥ . P
But from {102) and the monotonicity of z(s) we conclude that s¢=|{z >0}|ng%

The above result is aslight genera]izétion of the work Bandle-Mossino [117
concerning the abstacle problem (i.e. & given by (86)). Taking -
g,= g¥ and using the equimeasurability of g¥ and g,.we find the fo]?uw~fﬁ
ing sufficient condition for the existence of the free boundary  F{u) -
Corollary 2.24. let ux0 be the sofution of (§9),(90). Then if .

[ (ga{x) - 87(0))dx < 0 (104)

Q oy

the nutl set N(u) has a positive measwie . 1f Ln add{tion 5?
[{g:- B+(G) > 0}| > 0 then the existence of the free boundary #{u) R
L5 asswred. o
u ' “

Remark 2.13. It is interesting to compare Corollary 2.24 with Theorem ;;

9. 17 where @ different criterion fs given for the existence of the free ;%
boundary. Essentially, each result is  of a different nature. Hypothesis /p
{104) is a global assumption and, in cdntrast, Theorem 2.17 is a local
result. In spite of this, there are some cases in which Theorem 2.17

w

cannot be applied; however, these are included in Corollary 2.24.

A

56 .

e
=
s



T W W BOR R R R

W

?}:

ol

X € §, then we obtain the same conclusion as in Lemma 1.29, but now
replacing the term f(u)- by the constant B+(0). Note that now
G, (s) = inf {t €R : meas {x : g,{x) > t} < s}.In particular,if we define
the function

x(r) = J7 (3,(0) - 87(0))de , (101)
then the above result proves that y{u(t)) > 0 for a.e. t e(0,ess.supu),
where u(t) ds the distribution functijon of u. Arguing as in the proof
of Lemma 1.31 we have that in fact = 0 on (0,|{u > 0}1. Finally,
inequality (100) is proved using Lemma '1.30 and reproducing again the
proof of Lemma 1'31'm

Proof of Theorem 2.22. We first prove it for g € L2 and so for u and
z baing variational solutions. It is easy to check that the {unique)
solution z of (95),{96) ds a radial symmetric function, with

z € C1(10,]8|1) and such that

P
@) U e 12 U (ax(e) - 8 (0))do] (102)
[y] N [ 0

for every s €10, {{z > 0}|]. (See Lemma 1.32). The conclusion now follows
by using that g¢* < g, ,ulla]) = E({Ql) =
and (102). Finally, the conclusion for L'-solutions {s obtained by ap-
proximation arguments as in Theorem 2.20.E

and integrating in (100)

An important consequence of ‘the above theorem is the following {soperi-
metric inequality for the null set (or coincidence sets) of solutions of

the mentioned probiems. !

Theorem 2.23. Undexn the assumplions of Theokem 2.22 we have

meas N{u) > meas N(z) (103)
Moreovelr

meas N(z) = 9% . if gz < B (0)

meas N(z) = 0 if fﬂ(gz- ' 0))dx > 0 and  g.# 8(0),
and

meas N{z) = |0*| - s¢ > 0 otherwise ,

They corvespond, for instance, to the case when the function g,{x} - 3+(0)
oscillates with a high frequency and small amplitude. Obviously, the cor-
responding result for nonpositive solutions u of (89)({90}) is also true,
but the case of u changing in sign seems to be delicate because the
1imitation of the techniques of the rearrangement. {Part v} of Theorem 1.25
is not true for the signed rearrangement when u changes in sign;see Mossinol

Remark 2.14.  Theorems 2. 2% and 2.23 are also true for quasilinear multi-

valued equations as in (64). On the other hand, the mentioned result
also holds for the general obstacle problem (54) .assuming ¢ € H2{Q) n Hl (o);
see Bandle- Moss1no [ 1 1. See also Maderna-Saisa [ 2 1for the case of other

non-zero obstacles ¥ .

2.2c. Further results.

Many of the results of Section 1.4 vemain true for the obstacle problem
as well as for zerc order reactions. The main reason is that both problems
can be formilated as a semilinear equation - Au + F(u) = 0 with

flr) = [r>0] and so they correspond to the limiting case of f(r) = Ar
with 0<g<1,q+ 0. Wenote that the solution of this Timit case
satisfies
Al -A,U30, U-AU+xr)=0 a.e. in 8 (105)
U=1 on A% {106)

Note also that the non-homogenecus obstacle problem

- A0 , usgp , {u-9)au=0 in Q (107)
u-9 =1 on 0 (108)

can be reduced to the homogeneous one assuming that o satisfies
Ap =~ A , A>0. (109)

Indeed, it suffices to take u=U+ ¢ .

In this way, the behaviour of soiutions gf the zero order reactions or
of the obstacle prob1em (105),{106) can be studied as in subsection 1.4a
by making there g = . The same ‘happens with the Lebesgue and Hausdorff

measure results of the free boundary given in subsection 1.4a. Finally,
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the convexity of the coincidence set {u = ¢} , with u solution of (107}
(108), remains also true (and with the same proof as in Subsection 1.4¢)
assuming that € 1is a convex sel in R? and ¥ satisfies (109).

Remark 2.15.
tative study of solutions of variational inegualities {even under formula-
tions more general than (107),(108)) was made by L.A.Caffarelli in [{]
and [ 3] (see also the recompilationmade in the book Friedmann [ 31)

It is important to point out that a very exhaustive quali-

In fact these results were the starting point for the study of semilinear
equations.lj

Remark 2.16.
set in variational inequalities have been considered in the Titerature

The nature and geometrical properties of the coincidence

by many different authors (see the panoramic exposition of Kinderlehrer

[ 11 ). Most of those results relate to domains © of R and
give a very complete description of this set. For N > 2 the starshaped-
ness of the coincidence sets (for convex domains 0 and concave obstacles
#) was proved by Kawohl [1 1 and Sakaguchi [ ). The convexity of this
set for the problem (107),{108) has been recently obtained in Kawohl

[ 6] for N = Z.U

We shall end this section by studying the convergence of the free
boundary Flu) for the obstacle problem. First of all we recall the
notion of Hausdorff distance d{A,B) between two sets A,B:

d(A,B) = infl{e >0 : AcB® and B« A"}
where we have uséd the notation
= tx e d(x.D) < e}

{We also recall that the set H(K) o
all compact subsets of the compact set K of 'RN becomes a compact meiric

for any set D c'RN and e > 0 .

space with the Hausdorff distance: see , e.g. Dellacherie [{ ]1)-Now we are
concerned with the solutions of the variational inequality

- Auxg ,u20 ,(-Au-9glu=20 in (110}

u=0 on 3. (111)
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[

By the existence resu]ts (see Chapter 4)We know that if g € LP(Q) the e
solution u is H (@) n W 2,p (Q). | Py
Theorem 2.25. Let o be an open smooih dubset, w =< 2 . Let g, and R
g, 4n Co’l(ﬂ) satisfying : o,
g, % LP(a) , gor some p > N , when v+ 0 (nz)

g, € -1 <0 in  w , for every v + 0 and some u > 0. (113) -

Let u (nesp. uy ) be the sofutions of 110) {111} connesponding Lo ’%
4=4, lnesp. g = gol and assume ithz,t B
Tt (N N w ) = Nug)n & | (118) =

Then F(u yn @+ Flug)n W An HauAdbnﬁﬁ distance, and 4§ 1 {respdel
denotes the charactenistic function of N(u ) (resp. N{up}) then L, ~+1o
in Lo(@) forany 1< 5 <o -
Proof. Due to {112} and using the Sobo]ev imbedding it is easy to see

that the solutions u_ , Ug are such that

hY) i o
u, > U in c%w) and - Au - g; > = Mg~ gg din p'(w) (11B) 7

(see details in Rodrigues [1 1}. Now consider an arbitrary small open bail ..

B, < w such that B, n Flu,) = 4 for Hinfinitely many v > 0. Sowe s

have u =0 or u > 0 in B In the first case, it is clear that -

up =0 in B In the second one, u/ verifies the equation .
]

_ - : i 116 ’

bu, = g, in B - | (116) B

By {(115) , the same equation holds far !un . But g #0 in w and then f%
int N{up) n BE = ¢ and, by (114), this 1mp11es that 8 1ies in the =
noncoincidence set {u, > 0} . 1In any case B n F(Ug) = ¢ and, therefore
inf {e: (Flug) n wYe(F(u)n w)E} ‘tends to zero as v 4 0. On the .o
other hand , Tlet e > 0 be the rad1USEof any open ball BE < » such .
that B n Flu) = ¢ . If ue > 0 in B, by (115) we find that u“>o%
in BE. and B_: N F(u y =g for any; 0<e'<e and for all v small f%
enough. If u, =0 in B and X, ELB , n Flu ) for infinitely many ﬁl
v > 0, by the "nondegeneracy property“ (Theorem 1 44 of Chapter 1 ;

i e
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: nn" with =0, or Friedman [ 3 ]p. 154) we know that there exists infinitely 2.3. A SINGULAR EQUATION.
" 'J)iI a : .‘ . Y . ) .
o many y, € 3B verifying Another class of nonlinear eguations giving rise to the free boundary Flu)
I i . . .
p uv(yv) s Cle - E‘)21> 0 may be illustrated by the fpllowing special problem
w i _ -k .
§ . . | - + = 1
‘N which contradicts (115). .Therefore, BE n F(uv) = ¢ for all v small au A 0 n & (1)
f . . : N o, —_ =
VEM' enough and it follows that inf{e:(F(u v) nw e (Flug) nw = 0 as u=1 on ot - (2)
i v+ 0. Finally, to prove‘the second assertion we recall that -
T ogou at by the anal where A > 0 , k € {0,1) and @ is assumed to be an open regular bounded set
. gous version of Coro11ary 1.45 of Chapter 1 for q=0 ({(see also Fr1edmann £ RN A nall detail lat tho' (lack of
e of B'. As we sha etail later many pathologies may occur (lack of com-=
IJ [3 1p. 156) meas{F(ug)'n w) = 0. Therefore, meas(F{uy)n w)¥ >0 ‘ . il . 1 v P 3 gt N i due to th
: ,I as e 4 0. But by the Hausdorff convergence of Fluln s to Fu)n s parison principle, nonun1q?eness, ow reguiari y"i ¢), due to the presence
1w we have (F( v in the equation of the nonlinear singular term u (recall that the case
A e (Flu,)n we (Flug) n ) for a1l v small enough. In conse- _
b quence, for any 1 ¢35 <= k=0 corresponds, formally, to the obstacle problem). Nevertheless, the
=4 ! main reason to expect the existence of the free boundary is that such
e J ELv - Lﬂ|5 = j I, - La1 ¢ meas{Flu,)n w)f a nonlinearity satisfies the fundamental assumption for the existence of
g w ) A Jocal super and subsolutions given in Section 1.1 (see Theorem 1.5).
¢ i and the theorem is proved., The problem (1),{2) appears as the 1imiting case of some models in het-
t ﬁm‘ Remark 2.17. The above rgsu1t'is taken from Rodrigues [ 1 1in which some i;ogeneoi% ch?m1ca1 catalyst kinetics (Langmuir-Hinshelwood model) where
: f&_ quasilinear operators are:also considered. The proof adapts an argument © equation 1>
Sl of Alt-Caffarelli [ 1 ].:0ther stability results for the free boundary AU+ kum(E+1IM+k 0 - q (3)
i . . L - i ,
il were given in Cafarell? [14 1{see also Rodrigues [ 1 1)._
il ‘
; ﬂﬂl Remark 2.18. Theorem 2_25 remains true for nonhomogeneous boundary con- with k>0, m»1, A>0 and g small,e >0 ( Aris [ 1 1), as well as in
‘ ﬁwi ditions such as(106)Note that the above proof has, essentialy, a local models in enzyme kinetics
{ ﬁ@ character. In particu]ar; it can be applied to the variational inequality gm
’§¥ (105),(106) associated to zero order reactions. So, if g = A go = Ao -t A = 0 in 2, (4)
; ! v ? +U
! Xo > 0 then we have the convergence of the respective free boundaries in :
(Banks [ 1 1). In subsection 2.3a we recall different results about the

i .
; | the Hausdorff distance. Note that a stronger result was given in Theorem

1.54 {also valid for the limiting case gq=0). A careful study of the solutions of (1) and (4) of interest in the study of the free boundary,

dependence of the null set N{u) with respect to A in zero order reac- | which is made in subsection 2.3b.

]

S

; g%] t:ons and general ngnhgmoge?EDUS boundary conditions was made in Frank- In the following, and for the sake of simplicity, we shall fidentify
ﬂ\ endt [ 1. 1. The asympt9t1c behaviour of the free boundary as A-+wis {nonnegative) solution of {1),(2) with functions sat1sfy1ng the boundary
%H‘ also considered there. L condition (2) and the eguation (1) in the sense that du= BS(U)1n p'(s
% . ; where S{u) = {x € & : u{x) > 0}.
@H. : 2.3a. On the variaticnal and other 1imiting solutions.
hﬂ ‘ perhaps, the most natural way to attack problem (1),(2) is by the minimiza

tion of the functional

16l
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(s

Jolv) = %.[QIVVIde + T%E Iq VK dx ‘ {5)
in the convex set x={veH(R) ,v=20 a.e on,2v=1 on anl
(note that here we are only interested in nonnegative solutjons and
that the boundary condition may be replaced, in general, by u=h on 32,
h e HY{n)). The existence of, at least, one u € ¥ that minimizes J;
on X 1is standard, even though J, 1is not a convex functional (see
Chapter 4). A more delicate question is Lo prove that u satisfies the
equation {1}). As a first step, we shall see that at least u 1is subhar-
monic, that is,

for all

zeCol@), £30.

Juar 2 0
2
Since u € H'(2), by the comparison principle for the Laplace operator, it
is sufficient to show that u s below any harmonic replacement.
Lemma 2.26. lef Xg € @ and Br(xn) < Q. Considen Hr(x) defined
by Hr(x) = u{x) on 9- Br(xn) and such that AHr(x) =0 .dn Br(x“).
Then u <R, on Br(xn).
Proof. Let w = min (Hp,u). Then w e x and, if we denote by Br to
Br(xol, we have

Jolw) - dyu) = % S
r

To estimate such a difference, we note that w-u ¢ Hl(Br) and, by a
well-known result (see e.g. Kinderlehrer-Stampacchia [ 2 1. Lemma A.4)
we have that 9v{w-u) = 0 a.e. on the set [x ¢ B. :w-u=0}. Thus,

(w2~ vu|2)dx + i%E-IB %ol Ry ax
r

[ Ww -9(w-u)dx = [ VHY“' V{w~u)dx = 0
By By
because M. 1s harmonic and w-u € Hﬁ(Br). Then

I (Jow|?-Jou]®)dx = [ V(whu)v{w-u)dx = - [ |9(w-u)|?dx.
By B By
Since w s u we deduce that Jo(w) - J5(u) < 0 with equality if and
only if w=u. Then, as u minimizes J, we have w=u and the assertion
follows.

16z

With the help of the above result we can already examine the one-

dimansional case in order to show, in this special case, how the free
boundary may exist if the vgizes"of the domain and of the solutions are

in an adequate balance. tet u be a variational solution of

a = {0,R) (6)

h>0 . {7

- u" 4 Au_k =0 ., in
u(g) =0, uw(Ry =h

with A >0 and 0 <k <1. Since u e H1{ 0,R) . u(x)} is absolutely

continuous on [0,R]. Furthermore, since U is subharmonic, u s convex.

Then

" -k -
u(x) =0 on [0,s] for some s; u(x) >0 and -u"+iu =0 in (s,R).

Now we.shall prove that if h is small {or x ,or R is large)the free
Flu) exists i.e. 0 <s< R.Indeed, if this is not the case,
is subharmonic, u < h on (&,R) and

boundary
i.e. if s=0, then since u
gt > A K, which mplies

u(x) = ME %2

because u(0) =0 and u 15 nondecreasing. Then

which is impossible if

: 8
pltk < AR (®)

e remark that some particular solutions of (61,(7) -may be ﬁgnstructed
as the solutions of the homogeneous Cauchy problem given by ) and_
u(0) = u'(0) = 0. Indeed, if 0 < k< 1 , the fanction f{r) = Ar
satisfies the integral condition

ds

o tr(s) 12

<t | (9)
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with F(*) = [ A/{1-k)1r'"% and then, as in Lemma 1.3, we conclude that
for every s > 0 the function
Lk

1/2
0 if B<x<s, U(X)xjj%g(gi%fgli (x-s) z if x>s (10)

u(x)

is such a solution. Note that condition (8) may be improved for this
special solution. '

Returning to the N-dimensional formulation (1),(2}, we point cut that
the study of the regularity of solutions becomes a difficult question if
we assume that the free boundary r{u) does exist. For instance, the
example given in {10) shows that the expected optimal regularity is
ue Cl’(l—k)/(1+k)(n). Such a regularity was proved in Phillips [ 1 ]
by exploiting the fact that the functionmal J4(:) preserves minimizers
under a certain scaling:

O+ o - 2)
g, = s PR T ) (11)

where, here dD,r denotes the functional {5) on the ball Br and for

v € H‘(Br), v® is given by v3(x) = v(sx)/szl(l+k) . The study of the
growth of solutions near the free boundary is also used there. By a simi-
]ar'program to the one mentioned in subsection 4.1, the following result
is proved in Phillips [ 1] and [ 2 J(see also Giaquinta-Giusti [ 1 1):
Theorem 2.27. Let h € H'Y(R), h % 0. Then any variational solution of
equation (1) satisfying u=h at 30 L4 such That u € Cl’(l'k)/(1+k)(n).
Moreoven, £ S(u) = {x €2 : u{x) > 0}, then u € C¥(S(u)), - Au + k=0
in S{u) and u=0, Vu=0 on F(u). Finally u € w%ag (R) fon p<(1+k)/2k
and  du = auK Ilg(u) o p'(a).

In order to give sufficient conditions for the existence of the free
boundary F(u) we shall use the approximate equation (4), with m=1.
Equation (3) may also be taken for this purpose . First of all we recall
an existence result which is proved by means of the classical method of
super and subsolutions:

Thegrem 2.28. Let e >0 and k > 0 fixed. Comsider the problem

164

- Au A—‘{;T:o in Q (12)
ctu

u=1 : on % (13)

Then : £) ¥a > 0 there exists at Leasi one classical solution U of {12;,
(13) satisfying that u_ € C®(5) and 0 <u ¢ 1; L0l ¥a > 0, There am' )
a maximal sofution U; and 4 minimal solution ¥ . Moreaver, fon A > 0 fixe
U and u are monotonically decreating as € > 0.

E )

The proof of this theorem consists in defining the operator T by

A(Tw)=7\—‘—T~'1L’+—k in 28, Tu =1 on AR
& )
and verifying that Tis a monotone increasing mapping. Finally, we apply the
method of super and subsojutions (see Section 4.1. ) starting with the sub-

solution u =0 and the supersolution us1.

problem {12),{13) admits a variational Formulation which also supplies
solutions, a priori being not necessarily coincident with any of these ex-
hibited in Theorem 2.28. To explain this, we introduce the functional

‘E(. ) J |Gdl ;\j (V)dx 4
wnere
L 1.* ¥ (1 )
E(‘ ) 0 E( ) e k

Theorem 2.29. Llet &> 0,A >0 and k > 0 fixed. Then therne exists at Lea

one function W e Hi(@) which minimizes the functional 3 on ghe CORVEX
{ d

sef K={veHa) : 0cvel a.e., v =1 on 3Q}. Moreover, u_> 0 an

ui € C7(0) and satisfies the equation {12)..

The proof of the above theorem is quite standard and may be obtained by
i i but
the arguments of Section 4.1. (Note that again FE(t) is not convex bu i
the application v -+ [ FE(V)dx js continuous in L2(@)}. We also remar
Q

16!



that, from theorems 2.28 and 2.29, we deduce that E_Esu{:s u  but,in gen-
eral, it is not known if any of the inequalities is, in fact, an identity,
except if A is near 0 or +wfor ¢ and k fixed.In any case, it is not dif-
ficult to show that u _and U® are relative minimum points of J_.

In order to show the convergence of solutions of (12} as ¢ + 0, we recall
the Pohozaev identity, already used in Theorem 1.36.
Lemma 2.30. let @ be a regular domain of RN of outen noamal unit vector
N at the boundany 3. Let 7 be the radius vecton of a boundary point
nelative to some fixed point of @ . Let v € H2(R) n c™(n) be a nontriuial
so0fution of the probfem

- Av + F(v) =0 £n 0 {16)

v=0 on EIY] (17)

where T 44 a heal continuous function. Then, the following identities hofd:

Lm0+ gy TR GRS = - gl e g N3 Ge)
Q

aid

j?’-ﬁ‘( )2d5=—4jF()

» Af N =2 (19)
o8

ri":

with  F(t] = [ f(s)ds

The proof is obtained by multiplying hoth sides of (16) by & X ;ﬁl

and integrating bj parts {see Pohozaev [ 1 1). As an application we have
Theorem 2.31. Asswne @ Lo be a regulan bounded convex open set. Then, there
exist positive copstants Cy and C,(independent of e ) such that, for
any sofution u_ of 112),(13), we have |VuE|Lzs €, and IAuE]Lls 2

Proof, We set Vg = 1- U - Then Ve satisfies (16),(17) with

fls) = - A 1-s)

e+(1~5)kH

apd, therefore,

v_(x) .
S b=~ f (f 5 AR <1 ) | f (1-t)7* at) = 2 3L

1bb

i
i

Now, 1et N = 3. Since G is starshaped we can assume ¥-h>0 a.e.,

and the boundedness of |Vu ng follows ffrom (18) When N=2, using
the fact that there exists 8 > 0 such that ¥h>06 a.e on 3,

‘ £ 2 . 1tiplying equa-
from (19) we deduce that = is boundﬁd in L%(an). Multiplying eq
formula , we get

i ing Green's
tion {12} by ug and using Gre |
2
v BUE Ud d
{(vu Y dx =f —==uds -3} { — T 0¥
q ¢ s M€ q e+ uf

! i .
and the right-hand side is bounded; hence |VUEIL2 is bound?d. F1né11y,
from the equation (11} we deduce that u_ > 0, and then it suffices

dug . 1
+o use Green's formula and remark that B is bounded in F (ﬂ).n

Letting e + 0 we obtain:
Theorem 2.32. Let E; . u and ug be the maximéz, I@i minimal and agy
varintional sofution of {121, (13]). Then thohe axist Uy , Up and Up
nonnegative functions in H(Q)  such that : o
in LP(0) for every 1 g p g« and weakly in HU(R) . Ug

wR e LB and e b ‘ |
as the equation {1) in L? (S( )) and  UNS(U,)) nespectively. Finally,
o’ +-uﬂ sénongly in HY(Q) a u% minimizes the functional J, given
ii {5} on the convex Azt k= {v E)H (@) v>0 ae. inQ,v=1 on M}
In pacticular | Uy € C (1K) /(1 ™Mn w]op (Q) fon every :
Proof. Since GE and u_ are decreasing as e - 0 , the convergence in
LP(o) to U, and ug respectively is a consequence of the Beppo-Levi
Moreover, if u_ isTF or u, and

€ LYS(@)),

1gp <o

Theoren on monotone convergence.
ug repraesents U or up , then we have that

/(e s o1 ik ae dn (St

As  Au_ is bounded in L{Q), tte sameufo110ws for uE/(s + UE?

3y} and, by Fatou's Lemma, up« € L'{(§{ug)). On the other hand, by
Theorem 2.31 as e + 0, one can extract a subsequence, also noted by

u_ , such that u_ converges to u, weakly in H!(@), and so in fact
t%is {5 the same for the whole sequence, and u, satisfies (12) and (13).
Finally, let ug be the variational solution of (12) . {13). Me know
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ﬁg+ U, and U, > o strangly ";

Wp, U Ssatisfies [the boundary condition [2) as weld T
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that one can extract a subsequence, again noted by ui s such that uJ-+ug
weakly 1in H(@), Moreaver, by tr= .cbesgue's theorem, Fa(ug) ﬁ'Fﬂ(uﬂ)
(FE given in (14))in 1'(@) and then, from JE(ug) < JE(V) Wwek
we deduce that Jo(uﬂ) £Jdo(v) W ek and uy realizes the minimum
of Jy. The strong conYergence in H}(Q) fs thena consequence of the fact
that dinf JE -+ inf Jy when e =+ 0.,

)

The above convergence may be made more precise under some circumstances.
For instance, by adapting an argument of Brauner-Eckhaus-Garbey-Van Harten
[ 11, it is possible to {dentfy the 1imit solution u , assumed adequate
regularity on the eventual free boundary 3:(5 ). This is certainly verified
in the following special case:

Proposition 2.33, let [ = BR(XD) and Let Uy = 1im g_E,whane u, L the
mindmal solwtion of (12),(13) on BR(xn) . Then Ug L8 the minimal sof-
wtion of {1}1,(2) among |the set of radiably symmetnic sclutfions.

Sketch of the proof. Finst of all we note that the radial symmetry of

Ug s deduced from this same property for each - Now Tet Go be the
minimal solution among the radially symmetric solutions of (1),(2}. By
using an asymptotic argument (see the above reference for a related re-
sult)for every e >0 it iis possible to construct a function UE, solution
of (12),(13) on Bp(x,) ancﬂi such that GE+§0 in C'(Bp(xo)). Finally,
as u_ U we deduce that uy » up and then uy = ug.

a

2.3b. On the existence pf the free boundary.
A first result on the exiistence of the free boundary F{u) can be oh-

tained via bifurcation theory. Indeed, the Timit problem (1),(2) can be
reformulated as

(1 l)*‘ @ (20)
-w

- AW = A
w=0 on 1) (21)
by making w = l1-u . Then, if we define the open set B by

B={ve wZ,S(Q) (1 39>0 ,v{x)<1-90} , s> N2,

-1t is possible to adapt an abstract result of Cranda11~Rabinow1tz (r 11

proposition 2.16 and 2.17), and we get

Lemma 2.34. Theie exists a4 Ay > 0 (Ag € Hos Uy smaflest elgenvalue of
Lemma £.9%

- A ) such that, if > A« there exists no sclution of {20],(21) £n the
gpen set B . Moreover, i A= Ay, there i a unique sobution fn B -

By the above lemma, if A > 3* , any solution u of {1),(2) with

u € wz’s(n), s > N/2 , must be zero in some subset of @ . We shall improve

by studying First the case in which Q is a ball.
ated than

this result

Again, the study of such a special case becomes much more complic

in previous situations due to the monuniqueness of solutions.
s not difficult to check that the com-

-k € (-1,0). So , the

First of all we remark that it i
putations of Lemma 1.6 still remains true for q =
function

i {22)
u(x) =Clx - x0|1+k

is such that u is a solution of the equation (1) on Bplxe) iF C= Ky y
and that u is a supersolution (resp. a subsolution ) of (1), if €< KN,A

i i Tution of (1),(2} on By(xe)
{(resp C > KN,A)' In particular, u 1is 2 superso R

if 1
a2 TR 23
ﬂiw) £ C< Ky o+ Ky =T znek(n-zn) ! :
R

. =2/ (1K) .
and ifi fact u is a solution of {1),(2) if C= KN,A = R . Howeve

this information is not satisfactory because of the nonuniqueness: ;
carefully study was made in prauner-Nicolaenko [ 11,02 1 and Wisiti-Guyot

[ 1 1 whose main results are compiled in the following. First of all we
and then we ask for

A more

restrict ourselves to the consideration of @ = B;(0) e
u = u(r) satisfying the following conditions that,

ive functions
nonnegativ 0,1) such that

for short, we shall call Problem P : there exists 1y € (

24

W=0 on r<rg (24)

—AU*“%:O on reg< 1t < 1 , D<k<l, (25)
U
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u(l) =1, (26}
Tim u(r) = Tim, u{r) =0

o r-»rny]' J‘; ulr (27)
Tim_u'(r) = 1im+u‘(r) = 0, (28)

= r a T 0

In order to present the main result for the above problem, we need to
introduce some notation :

B=he . A= BlBEN-2),

Aoy = PHEZUIR) B o
(ar2(n-2) (e e AL B

B{k,N) = A%(k,N) - &{1+k).

Finally, in the plane (k,N} we define the three following regions:

Ry = L0kN) @ BOKGN) < 03 = L0k,N)| NT(K) < N < N (k)]
Ra = {0k,N) = 2ol S/BTICRY 3=0(kN) [k>1/3 and 1< N ¢ H7(K)or
JA(TR) )
N (k) N <2 + 12 )
Rs = (L) /BIGHD = 3}
being

k+1 1tk

An illustration of these regions 1is givenin the Figure 10.
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We have

Theorem 2.35. (i) tet (k,N) € Ry. Then
such that : YA < Ay probfen (P} has no
probLem (P} has a finite number of s0li
infinitely countable’ number of solutiond
is an unique sofution of (P).

(i1) tet (k,N) € Ra. Then there exfsts
blem [P) has no sofution; Lf A= M iLhene
X E jx,,xc [ {P} has two solutions; and
sobution of (P).,
(i91) Let, finally, (k,N)e Ri.Then, fox
and, for every A > A.s there L8 a uniqu

The following figure 11lustratesthe d
A in the three above cases. ’

every AS A
e sofution. .

ependence of

there exist Ay < A, and Xa > Al
obution ; i A € [Aishal - (A2
tiond; L6 A = A there 48 an
and finally, if ) > hpthen there -

Ay < AC such #hat @ VA < Ay pho-
Ls a unique sclution; A .
L6 A3 AL then there 8 a undique

=y
ity

el

(P} has wo sofution

=

with respect to

[ ¢ r
o — - ——— -

]

1 H

] |

1 |

| o 1 —
INEEY A M A A

(K.N)ER, (K.N}YEZR,
Figure 11.
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Remark 2.19, The above theorem expresses the strong dependence of the nuli
set N(u) of solutions of problem P with respect to the dimension N

of the space. So, from Figure 10, we remark that given k € (0,1) then,
N =1, (kN) eRys if N =2, (k,N) €Rys if 3 <N g5 then

(ksN) € Ry or R, ; if N =6 (k,N} can be in the three regions; and

if N 3» 7 (k,N) € Ry or |Rs.
jul

Idea of the proof of Theorem 2.35. First step. Since we find radially

) ; I
symmetric solutions, problem (P) is eguivalent to finding r, € (0,1) and
u=uf{r) > 0 such that

_ oyt H:l_ 1, A _ .

u'(r) - == u'(r) + Fr 0 in (rp,1) (29)
u'{re) = uf{ry) =0 (30)
u(1) = 1. ‘ (31)

But, if u satisfies (29),(30), (31) then the function z defined by

_ 1
z{p) *,z;";;IT;E'U rop)

satisfies
" M t 1 _ - y
z"(p) + o2 {p) + Ko =0 in  (1.1/ry) (32)
(1) =z (1) =0 , (33)
_ 1 i
z(1/ry) = N r§ (34)

Conversely, if z verifjes (32),(33), then u(r) , defined by

z(por)

u(r) = EItY py > 1,

satisfies (29),(30),(31})| for r¢= ;L- and A =
1]

2

[
2K (p0)
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1

Second_step. The Cauchy Problem given by equation (32) and initial
conditions (33) has a unigue solution z€ Cl’(l_k)/(1+k)(fl,w)) n c™(1,=)
as can be shown by considering the nonlinear integrodifferential equa-
tion

1 PN-1 1 -

gz'(p)* ], Tz M = 21 (p). (35)
Then, by the change of unknown function, if suffices to study the values

2
(and multipljcity) of the function p ~ ———E-— . In this way, for r¢® L
Zl+k P

Q
fixed, we may know the number of solutions of (29),(30),{31).

Third step. Defining the function v{p) by
1 /(1K)
)
A

-

2(o) = Mp /(o) m=(
and making
= esl/iz and  w(s) =v(p) {36)

it is easy to check that w{s) is the unique nonnegative sotution of the new
Cauchy Problem

w'(s) + ALK,N) w'(s) + w(s) - 0 in (D) (37}

Wk(S) B

w(D) = w'(0) =0 . 138)

On the other hand, we have

2 Ac

P
2oy W)

and so, it suffices to study the values taken by the function w(s) with
their multiplicity. It is shown that ;iwmw‘(s) = 0 and 1iTuy(s) = 0
and finally the conclusions of the theorem are obtained by éiécussing in

the phase plane {w.,w') or by reasoning directly on the equation {37) with
results of the same kind than Sturm's theorems. (See details in the

mentioned referemes),‘:l
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Remark 2.20, Note that for £ = B1(0) the only solution u  of the form
(22) corresponds to C=1 and then A = A, s fies u= (r) = rz/(1+k).
It is also important to remark that when A is near Ae problem (1},(2)
may admit strictly positive solutions, as well as solutions with a non
empty null set, according to the parameters % € (0,1) and N. In any
case, it turns out that (X ool ) is an endpoint of the bifurcation
d1agram for positive so1ut1ons Df (1},(2). For very precise bifurcation
diagrams of positive (and nonnegative) solutions we refer the reader to
Brauner-Nicolaenko [ 2 Jand Misiti-Guyot [ 1 ].ij

Now, we consider the case of general domains @ . In contrast fg
Chapter 1, now we cannot apply the comparison principle directly and so
other arguments are needed. First of all we recall an useful comparison-

matching lemma due to Berestycki-Lions [ 1 1.(See also I1'in-Kalashnikov-

Oleinik { 1 1)}, The result may be stated in a general setting which has
many different applications (see the mentioned works):Let @ be a regular
domain in R and Tet 1 be a subdomain of 2 such that 32, is regular
and T < Q . Wedenote by 92 = Q - @ and by T the unit outward
normal to £, Let L. be the operator defined by

N

Lu = ¥ D, (a; (x)D u) + Z b {x) D u+ cxu
i,=1 J =1

where a,; = as; € L7(Q), by € Lmtﬂ) , ¢ €EL7(R) . We denote by v the

conormal associated with L (i.e. V' = ) ai.(x)nj).

Lemma 2.36.Lef us assume that T & a measunable function on 2 xR x RN

such that £f v € HY(Q), f(x.v,Ww) e LYQ).

existence of u; € Hz(nf) Aatisfying

Fwithenmore, we assume the

- Lui > fo a.e.dn Qs i=1,2, (39)

au; oUg

5 (40}
I > on anl,

Uy = U on Bﬂl and v

with Ty = f(x,uiyui). Then , the function u defined by u = uj on 9
befongs £o HY Q) and satisfies
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-~ Lu 3z f(x,u,vu) £n p'{Q). S
o
proof, Llet ¢ €p.(@}. MWe have -
- dx =
c-lu,p>=[ {7 a;;Dub;e - b Dug -cudl
oliky i s i -
By au -
= (- lupede +f (- tup) edx + [ (50 g5R) e ds
91 92 E193)
™

Then, using (39) ,{40) and the fact that u € HY(n) (see e.g. Gilbarg-
Trudinger [ 1 1) we conclude that

<= Lu,b > > fﬂ Flx,u,vu) & dx. .

fs an elementary application of the above lemma we can easily construct™

SN

supersolutions from solutions on subdomains.

y R of (12 ,(15)
Coroliary 2.37. Llet R(XD) c Qand Let u_ be any solution of (12)
in BR(XO) Then the function

R

o
S

P
uE(x) x € Bplxo) e

R) = (41}

uE(x, i

1 x €0 - Bplxo) B

is o supersolution of the probfem (12},113) in @ . ot
= R - t

Proof. Take L = &, @ = BR(xo) s U1 E U and u, =1 and note tha -
auy > 0 because, by the maximum principle » u ( } <1 on B (x.,).D -

v

P

Concerning the existence and location of the free boundary for so]utiog%

of {1),(2) in general domains we have ~

Theorem 2.38. Let A > 0 and k €0, 1). Then, there exists ail Least ones?
solution u of {1),(2) such that its nukl set N(u) satisfdies the eAt&maz(f
A o

1/2 Y.

M) 5 L x €@ dlxom) > (9% (42>

with -

17
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A = 2INEk(N-2) ]
C
(1+k)2

Proof. Fi :

Proof ‘F1r5t of all we remark that, by rescaling, it is easy to see that

a function of the form u(x) = C|x-x, 2/(1+k) i

i . [%-%q | is a solution of (1},{2)

R,x‘,) it and only if A=A = ) R'2 and = g2/ (1+k)
oo B0 ¢ R c nd C=R . Denote
fon by u. pand, then, u_ p(x) = R_z/(1+k)]x—xo|2/(1+k) Now

for A > Q fixed, 1e% R.>0 be given 2 '

bt e B_R v e given by RA = Ae/A ,and let xp € 9 such

et ‘o> A On the ball B, (xo) consider the function 0 ()

- tedm1n1Ta1 solution of (12),(13} and let ue(x,R) be the functi;hecon-
cted as in (41) from gﬁl(x) . By Corollary 2.36 u_(x,R,) 1

a supersolution of (12),(13 o cumen o

betoes .(13) on Q@ and then from the method of super and
solutions we deduce that there exists, at least, one solution _ of

(12),(13) on @ and such that 0 < 0 (x) < u (x,R.) § D‘

€ + 0, by Theorem 2.32 : g S

Utio‘ ) . we know that there exists a function upr(x) sol-
nof (1),{(2) on Bp (%¢) and such that uRr 4 B LP(E

for every 1 € p < . Usj = P R ()

£p - Using the Theorem 2.31 , we can extract a subse-
quence, also denoted by i, such that Ge + 0y weakly in H!(9) with

iy, solution of (1),{2) on Q i iti
o . Finally, by Proposition 2.33 we deduce

~ R "
0 < Golx) € uoh (x) « RN (012707 for a6 xe B (xy)
Ry M0/

and then the estimate {42) holds for the solution 0,
=

Remark 2.21. As in Chapter 1, the estimate (42) Teads implicitly to
condition between the size of @ and the size of u (in this CZS é
by {lull_, =1 ); nevertheless, in contrast with the case of monotj .
quaFions, the proof of the above theorem shows that this estimate 'ne e;
optimal in the sense that there can exist solutions u of (1) (2)15 lj':h
N{u) strictly greater than the region of the right hand side ;f (42‘1)\]1
(Thﬁs happens, for instance, when k and N are such that u,” # . )
Finally, we remark that Hausdorff estimates and other regu1ari; re:ﬁig ‘
for the free boundary F(u) are given in Phillips [ 2 ] wheny u i 5
assumed to be a variational solution of (1),(2). ’ b

o

176

2.4. NONISOTROPIC FQUATIONS.

Up to this point of the book, the existence and properties of the free
#(u) have been studied for irgtropic equations, 1.€, equations
This property allowed us to construct (Jocal)

boundary
jnvariant by symmetry:
super and subsolutions as radially symmetric functions nljx-xg])s

getting in this way estimates on the location and weasure of the null set

M{u) which was optimal when the domain G was a ball. The main goal

of this subsection is to consider ceveral classes of nonisotropic equa-
tions and to show how local super and subsolutions can still be construc-
ted under adequate balances between the nonlinearities.

First of all, we remark that some nonisotropic equations accept radial-
1y symmetric functions as local super and subsolutions and, in conseguence,
results on the free boundary similar to those given in Section 1.1
be formulated easily for these equations. This is, for instance, the
case of the general second order semilinear equation given by (64),(67)
and (68) of EE&Q%%} 14 More generally, the main idea in the proof of
Theorem 1.13 can also be applied to some quasilinear equations as, for

can

instance,

- Apu + B(x,u,vu) + flu) =g > (1}

g(ﬁ‘c‘:hm, 1 i
assumed that p and f satisfy the assumption (48) of Chapter—, and

that the term B(x,u,vu) is of the form
(2)

\
eal function, or (in the special case of p=2)

|B(x,u,9u) | < w(u])wulPt

where 1 is an increasing r
for convection terms B such that

B(x,u,vu) = I Bj(x)Dj bj(u), (3)

where Bj e L7 and bj € CI{R) for every J=1,....N. indeed, under the
mentioned conditions it is easy to see that there exists a positive con -
are local super-

is taken as a sol-

stant k such that the functions U(xixe) = n(l%-%o|)

solutions on BR(xu) of equation (1) if n = nir}
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ution of the Cauchy problem
Snt P2y - B PP e(n) = 0 W
n(0) = n'(0) =0 : (5)

{The existence of such a solution is assured by the assumption of f). It
turns out that the canditions on B(x,u,vu) may be improved in different
ways; a growing condition more general than (2} will be exhibited in Sec-
tion 3.1, and,for convection terms 1like {3), the assumptions p=2 and
bj € C' will he removed in the next subsection.

Another previous remark is that some particular , but interesting, non-
isotropic equations may be reformulated in an isotropic way by an ingeni-
ous trick. This is the case of the following gquasilinear eguations in-
volving another pseudo-laplacian operator

N p-2 :
3 3u au

- 1o Used a ) v flul =g, (6)
i=1 ax_i BXT BX_I

where p > 1. Indeed, as was already remarked in Bamberger[ 1 1,

some straightforward computations show that by introducing the new argument
N » 1/p!
1
s= xlpe= 0 1 IxlP) .o
p i=1 1 p
solutions of the homogeneous equation associated to (6) (i.e. for g =0)
can be constructed as solutions of the ordinary equation
p-2
|

1 _gl_(sN—ll_g_u

N-1 ds 5

- 1)+ flnls)) = 0. )

In consequence, all the results of Section 1.1 can be reformulated and
proved for the equation (6) by working with balls Bﬁ(xu) in the metric

lx[p. instead of the euclidean one |x}. ,i.e, BE(xo) = Ix ERN:]x—xn[p.<R}.

We end the introduction to this section by pointing out that somg non-
isotropic equations in divergence form are treated in Subsection 2.4a,
while the general case of nonisotropic equations {not in divergence form)
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is developed in Subsection 2 4h where the special case of the Hamilton-

Jacobi-Beliman equation is also considered.

?.4a. Equations_in divergence form. On the diffusipn-convection halance.
The. existence of the free boundary #(u) can still be derived from an
adequate diffusion-absorption balance, as in previous sections, for non-

isotropic equations such as

N

] 3u - .
- B (=) +flu) =g in
izl axg 1 oaxg

u=h on a0 . (9)

Q (8}

Here, the structural assumptions will be the following:

a.e B®)n C*(R - {0}), é}(s) >0 if s#0 , ai(_S):‘ai(S)’Vi=l’-'Ezn)

and

£ 4is a nondecreasing continuaus function, f{0) =0 (11)

Existence, uniqueness and comparison results under these circunstances can
be given in a variational setting as well as for g merely in L' (see
Chapter 4). Concerning the existence of the free boundary F(u), it seems
natural to ask for nonisotropic super and subsolutions, i.e,

N
ulx:ixg) = 'El ni(lxiwxo’il) (13)
'j:

if x= (xl,...xN). The keystone in this approach is the following simple

Temma.
Lemma 2.39.  AsAume that aj and T are such that

ds

85 4w , ' (14)
ot AJ".l(F(s))

I
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o everry 1 € J € N, wheke

roo r

Aj(r) = fO aj(s)sds and F(r) = IO f(t)dt. (15)
For 1t >0 JLek

byle) = JT S (16)

0 -1, F(s)
AJ-(—N )
and define nj(s) = wgl(s). Then, given x.= (xD 17 %0 N) s the function
N
u(x) = izl nj(lxj—xﬂ,jl) (17)

salisfies that u(xe) = 0, Vulxy) =0

N U -
- 121 ER a;( g;;-) + f{u) > 0. (18)

Proof. By construction it is clear that nj(O) = n!(0) and
B J
- ag(ni}t F R F(n) = 0
it N A

for every 1 < j £ N. Then, by remarking that any nondecreasing function
f vanishing at the origin satisfies

%0,

N N
£} sy) > (I/N) .Zl fls;) - s
j=

i=1 i

we obtain the conc]usion.m

Using the above lemma we can repeat the same program of Chapter 1 in
order to study the free boundary F{u) for solutions of (8),(9). Indeed
it suffices to argue on balls of R for the metric [x]_ =max [x:]
(i.e. on cubes) instead of on euclidean balls. As a sample, we give 1here
only a similar version of Theorem 1.9. Statements concerning boundary es-
timates and solutions with compact support are left to the reader.
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Theorem 2.40.  Assume that (74) hotds for every 1 ¢ J s N and Let

u € wl’l(g) n L¥(9) be asolution of (8),(9]. Then we have the {ollowing
estimate fon the null set N(u), '

N(u) > % € N(g) uiN(h|0) ¢ d_(x,5(g) U S(h|)) > L) (19)

where d_(x,y) = max |xi—y1| and L 4s a cerdain positive constant depend-
ing in an increasing way on || ul|

Proof. Let xg € N(g) uN(h|ag) and let R = d_(x0,5(g) U S(hlaﬂ))' On
the ball BE(xo) ={ x €R" : d_(xg¢,x) < R} , the function T(x) given by
(17) satisfies (18) and, on the other hand, if M ={jul] . we have

ugMsgu on BB;,
if we choose R such that

N
M< ¥ nj(R) .
i=1

In particular, taking R=1 . with

L » max {wj(%)}, (20)
J
then u 1is a supersolution on BE(XQ) and, by comparison, u € u on
Bz(xo) . Analogously, a Jocal subsolution yanishing at x = x; may be
constructed for such a point xo and the conclusion follows.

Remark 2.22. It is also possible to study the aobstacle problem (or general
multivalued equations) associated to equation (8). (See e.g. Diaz-Herrero

[21).,

As we have already pointed out, very often the nonisotropic characterof 1
equation is due to the presence of first order (or convection) terms. In
the rest of this subsection we shall illustrate how an adequate obafance
between the diffusion and convection terms may be the reason of the occur-
rence of the free boundary F(u). To explain this we consider the follow-
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A

ing model  problem
N g au 3 ]
B izl ax; 23 EEZ;) izl 5};‘b1(u) =g{x) in @ (21)
u=nh on 30 (22)

where a; satisfy (10) and bi are continuous real functions.

The behaviour of solutions of (21),(22)
the directions X3

may differ sharply 1in

N, according to the nature of the functions
ay and bi‘ In this way, uniditectional phenomena may occur, as

stated in the following result {we assume, for simplicity, that there is-
comparison of soltutions for (21) ; some sufficient conditions for this

are given in Chapter 4).

Proposition 2.41. let @ be a bounded domain of RN . Let g e L7(n)

h € wl’p(n) n L7(Q) be nonnegative functions such that

a i= l,...

g=0and h=0 a.e. on &0 (-=,R] x R"L (23)
Assume that
bi(s)s » 0 (24)
and that
ds <t {25)

I P
gt 2y (by{s))

Then, if u € Nl’p(ﬂ)!1 L™(R) s a sofution of (21),(22), there exists
R ¢ R such that

u{x) = 0 a.e. X €8 n(-=,R ] xRV (27)

Proof. Due to assumption {25), for r > 0 we can define ¥ :[0,») > [0,»)
by
wlr) = fr ——. (28)
® al (bl(S))
182

g

Now, take n = w“l . A5 in Lemma 1.3, we have that for every = >0 the

function. n((s—T)+) is a solution of the Cauchy prob1em
- n' +ai{bi(n)} = 0 (29)
n(0) = 0. (30)
Let 1y >0 such that n(te) = M, where M =[lulj, (i.e. ©o= ¥(M)). Then

— +
i i R= : = -Tg) )} » for
= {x€Q: X1 ¢ R} and u(x) = nl(x1-Te
if we define Q) = { 1 T

X = (xl,..l,xN) € Q% , we have that

uzu an Bﬂg
and
b (A b (@ =-a(n) e baln) = 059 in af
Tabp g T sop g 1

: B . ]
Therefore, by the comparison principle 0 su su on & and so u(x)=0

for a.e. X Eﬂ? such that x1 ¢ R 4 R =R - 1o

Remark 2.23. It is clear that similar results can be obtained depending on
the sign of u and of the function by(s)s , assumed that (25} (or/and
the integral condition at 07) is satisfied. So, for instance, if b(s)s <0
the conclusion of Proposition 2.41. holds for nonpositive solutions, while
for nonnegative solutions we deduce that

u{x) = 0 for a.e. XEQ, x1 =R

for some R > R, where R 1is such that

g{x}s0 and h(x)=0 for a.e. x€ER 5 x1 3R

A very special consequence of Propasition 2.40 and the above remark is

the following.
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el

Corollary 2.42. L ( ®
o . et @ be a bounded domain of R%. Let ge L () and
€ () n L (Q) be nonnegative functions such that

g=0 and h=0 a.e. on @ n{-=,R;] % (~=,Ry]

1, -
Let ueWP@an L {9} be a nonnegative solution of the probLenm

~aut == e Mg

3, 3%a in 9] (31)

u=h on an (32)

where A and p axe assumed such that 1/2 < x < 1, 1/2 < W < 1. Then
theie exi{sis R and. Ry, Ry g Ry and R, < Ry , 4uch that
u(x) =0 d.e. on

9 n{-=R;1 x (-o,Ry] - (33)

o

R?mark 2.24. It is clear that the same arguments can be applied to equa-
FIOHS more general thafg (21):for instance these with x-dependent terms
invelving monotone absorption terms, and so0.on. On the other hand the’
regularity of g and h may also be weakened. We also note that: again,
the existence of the boundary #(u) ds obtained from a balance between
the nonlinearities (hypotheses (25)) as well as a balance between the sizes
of u and the null set of the sata N{g) u N{h) {which is dmplicitly

included in (27) or (33)). As in some other cases, condition (25) is also

necessary for the existence of F{u).
a

2.4b. Fully nonlinear equations. Optimal strategy for the Hamilton-Jacobi-
Bellman equation.

In this subsection we study second order, nonlinear equations of the gene-
ral form

F(x,u,Du,D%u) = 0 in 2 , (34)

u=nh on an o, (35)
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where F s a real function on the set 2 xR x'RN x'RNXN , where PNXN
denotes the N(N+1)/2 dimensional space of real N xN symmetric matrices.
Here Du and D?u represent the gradient and the Hessian of u.

In studying the formation of the free boundary F{u) for solutions
of (34),(35) , the notion of ellipticity will play an important role. More
precisely, according to the considerations made at the Introduction, it
seems natural that the existence of #{u) should be related to the loss of
the ellipticity of the equation. In other words, we shall be able to find
such a free boundary for degenerate elliptic equations.

When F(x,r,pi,zij) is differentiable with respect to 245 the OEera—
tor F is called elliptic in a subset U, U & 2xR xR xR XN,

if the matrix [Fij(Y)] given by

Fij(*{)=5—2§—;(ﬂ , dd= L.l

is positive for v = (x,r,pi,zij) cuy. Ifwelet Ay), Ald) denote ,
respectively, the minimum and maximum eigenvalues of [Fij(Y)] , we call
F uniformly elliptic (resp. strictly elliptic) in v, if A&

(resp. 1/ %) is bounded in U, equivalently, if

Algla 4 Fij EiEj S A[EI (36)

with A/A gu {resp. 1/n g u) for some u€ (0,) (resp. /A € u)

for a11 £ € R s (x,r,pizij) €U . In (36) and throughout this subsec-
tion we adopt the standard summation convention in which repeated indices
indicate summation from 1 to N. Finally the operator F 1is called
degenerate elliptic in U if [Fij(Y)] is a semidefinite positive matrix
je., Aly)so0,forall yev.

Motivated by some important examples, it is useful to gxtend the above
notions to the case in which F is not differentiable but, for instance,
merely Lipschitz continuous with respect to Z;.. In this last case
L Fij j exists for almost all 245 E'RNXN and the definitions may be
understood by replacing the expression "for all vy € U " py MoryeldU
where [Fij(Y)] exists! For a general F not differentiable, the ellip-
ticity notions are expressed in the foliowing terms : F is elliptic (resp
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degenerate elliptic) in 0 if

F(x,r,pi,zi + mij) - F(x,r,pi,zij) >0 (resp. > 0) (37)

J
i € RNXN s mij > 0.
{resp. strictly elliptic) in ¢ if there exists a constant w and positive
functions A, A on U such that

on U, where mi

A{)tr mij £ F(x,r,pi,zi.+mi

i ) € A(x)tr m; (38)

-)“ F(X,Y’sp:l sz_iJ 1‘]

J

with A/Mgu (resp. 1/A <) . mj ® 0 and tr ms 5 the trace of m.
(Note that the uniform ellipticity of F on U implies that F ds Lips-
chitz continuous with respect to Zij)’

It is clear that the class of guasilinear eguations can be reformulated

in terms of equation

i

(34). Among the relevant particular cases of eguation
(34) that are not in quasilinear form we mention the Monge-Ampere equation

det D%u - f(x,u,Du) =0 ' (39)

and the Hamilton-dacobi-Bellman equation

inf {Au(x) +g (x)}=0, (40)

eV ¥ v
where A denotes a family of quasilinear partial differential operators
depending on a parameter v which belongs to a set V. About both equations
we only comment, for the moment, that (39) appears in Differential Geocmetry
(T.Aubin [ 11) and that if , for instance, 0 = {u} , with ue C2(9) ,
then (39) is elliptic only for uniformly convex functions u. With respect
to equation {40} we point out that it appears in the study of optimal cost
in stochastic control problems (KriTov [ 1 1), being there A, Tlinear
operators. {The guasilinear choice of A is, essentially, motivated
the work of Trudinger [ 11). The elliptic character of the operator given
in {40) depends on the nature of Av . For instance, if Av
aperators like

are 1inear
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Analogously, F is uniformly elliptic

) .i
AU =L = a (x) Dysu + by{x)Dgu + c (x)u

then'the operator F given by (40) is Lipschitz continuous with respect
to Z54s and thus it is elliptic (resp. uniformly elliptic) if
1
1] 2
A TE|? < ot (x)EE; < AlRDIE]

with A,A >0 {resp. A/XE L®(n)). Finally, we also recall that another
particular non guasilinear equation, associated to some nonlinear parabolic
diffusion problems (Benilan-Ha [ 11,G.Diaz-d.1.pfaz [ 1 1) is given by

o(-pu) + flx,u,Du) = 0 {41)

where ¢ is a continuous nondecreasing real function. Note thg} the ﬁper—
ator given by (41) is, in general, degenerate elliptic in U=RxR xR
and that, in fact it is not uniformly elliptic if, for instance, ¢ € c'(R)
and  ¢'(0) = 0.

Existence, uniqueness and regularity theorems for the problem (34),(35)
are given by different authors (see for instance, the exposition given in
Gilbarg-Trudinger[ 1 1). Here, for the sake of simplicity of notation ,
we shall only deal with classical solutions u € £2(n) n c*(R) Nof this
problem; however, a weaker notion of solution u with u € N]GC (ﬂ? may
also be considered for our purposes. On the other hand, some comparisaon

NxN

results are summarized in Chapter 4.
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) };f};

o,
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s
=
=
-

P

After this long preambie we turn to the study of the free boundary F(u).;%

To do this we shall give first a direct consequence of the following compa-
rison result (see Remark 4.61) whichallows us (as inSection 2.1} to infermany
results directly from the corresponding theorems for quasilinear eguations.

N NxN
Proposition 2.43. For k = 1,2, fet Fi € ¢ (@ xRxR xR7) and
uy € ¢2(@) n C°(Q) be such that
Fifugl > 0 » Faluz] (42)

where Fy[ul = Fk(x,u,Du,Dzu) for every u € C*(Q). Assume that Fo L8 an
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elliptic operaton (eventfually degenenated) such that

Fz(Xsr,pipzij) > FE(X:r+5=pi:Z1j) (43)

for every s » 0. Finally, suppose that

Filu;l € Faluyl (44)
Then uy € Uz on R dimplies u; € Uz fn Q.

[m]
Remark 2.25. We notice that assumption (43) may be replaced by other
suitable hypotheses on the dependence of Fz with respect to Z:5 On the
S s ] id

other hand, it is clear that (as in Theorem 2.1) the condition (44} is
usually obtained through structural assumptions on F; and F, , verified

at Teast on a subset Vo 9 xR x RN X RNXN, with (x,u..Du,,D*u.) € U
for i =1 and 2.m vl k

The following particular example shows how the existence of the free
boundary #{u) can be derived from the results of Chapter 1. For the sake
simplicity of the notation we shall rewrite equation (34) in terms of

F(x,u,Du,D?u) + g(x) = 0 in Q (45)
being g(x) = F(x,0,0,0) and

Theorem 2.44.
and suppose that

F=F- g.
tet uec*a)n c2(R) , ux0 4n 9, satisfying (34),(35)
F sl ) z - - - (
(%,u,Du,D%u) g - & Apu) flu) in Q (46}
for some p > 1 and some continuous functions ¢ and T such that

b s odd, stnictly incheasdng function and (0} = 0, (47)

f 44 nondecheasing and (0} = 0. (48)
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T

Assume that

. ds
i | (49)
IO+ @(5)1/p

whone  0(s) = J© 9T (F(1))dt. Then we have the following estinate for
the null set N(u).

Nu) = {x € N(g) : d(x,5(g)) = L} (50}

for some L > 0.

Proof. If the function ¢ in (46) is the identity, the conclusion follows
directly from Proposition 2.43 {applied to F1 = F and Fz[u]=Apu—f(u)+g(x»
and Theorem 1.9. In the general case, let x € N(g} and R = d{xqs,5(g}).
By hypotheses (47) ,(48) and (49) we can apply Theorem 1.5 to find a ra-
dially symmetric function u(x) = n{|x-xo|} » verifying u(xg) = 0 and
¢(—Apﬁ) + flu) = 0 in BR(xg).
Moreover, choosing R Tlarge enough h {recall the proof of Theorem 1.5),
satisfies u = M with M any bound of sup|u| on any compact subset
of N(g). Then, applying again Proposition 2.43 on the subset
- anBxR) 5 to Fa = F o, Falvl = - g(-av) - fv) Ve cza)
U, =u and uz =u , we conclude that u(x) £ T(x) in & and the esti-
mate (50) follows.

<1

[ SraN

Remark 2.25. Obviously, other choices of the operator in the right-hand
side of (46) lead, in an analogous way, to similar results. This is useful,
for instance, when F{x,u,Du,D?u) depends adequately on Du {recall the
comments in the introduction of this section as well as Proposition 2.41).
The obstacle problem associated to the operator F[ul may also be treated
in the same way (see G.Diaz [ g lfor a result in this direction). On the
other hand, we note that Theorem 2.44 may be applied to Hamilton-Jacobi-
Bellman equations of the form ‘
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inf {Lu(x) - ud + g9,(x)} =20 {51)
vey

where, for instance, L u is a second order Tinear operator like the one
given in (64) of Section 2.1 and 0 < q <1 (using in this occasion
Theorem 1.13)}. Finally, we point out that the study of the free boundary
F(u) for solutions of the Monge-Ampere equation (39) is carried out in
G.Diaz-J.1.Dfaz[2 ] by using similar ideas but with much more involved
techniques.u

Remark 2.27.
where a strong maximum principle and other gualitative properties are es-
tablished for solutions of equation (34).

a

Now we shall center our attention in the Hamilton-Jacobi-Bellman equa-

tion (40) . More precisely, we shall restrict ourselves to the case in

which A“u are second order linear operators withconstant coefficients and

veyY=1{1,2,....,n 1 . The problem under consideration can be stated as
sup { - L. u(x - gm(x)} a.e. in (52)
lzmgn
us==o on mn (53)
with
N 2 N
a°y m ov m
Lov= § oal, =%— 4§ ol 2L oy, (54)
m 1,31 13 Bxiaxj 51 1 axi

where we assume that for every 1 ¢ m < n we have

;af;‘j]sco . bl <t and Maaes 0. (55)

Related to equation {52} the following question naturally arises: for a
specific k , when does the equality

sup (-t u(x) - g {x)} =

-L - 56
un Mx) - g, (x) (56)
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The optimality of assumption (49) is examined in G.Diaz [4 1,

hold on a subset of @ ?.This question has an important interpretation

in term of stochastical control and was answered in Friedman-Lions [1 7.

Note also that, again, this is related to%the existence of the free bound-

ary F(-L Y- gk) defined by the boundary of the set where - LU = 9p.
Before exp1a1n1ng the results of the work mentioned above we recall

that the existence and uniqueness of weak solutions of (52}.(53) were given

in Evans-Friedman [ 1 l.Evans- L10ns 1] and P.L. Lions [3] under ellipticity

hypothesis of the type

N

m 2
i §=1ai3 iE5% el s

for eJery 1lgmgn (57

for some constant A > 0. Finally, the ekistence and unigueness of classical,

solutions was obtained in Evans { 3 ](seé also Trudinger [1 1) for
g, € C(Q) -

A sufficient condition to have the; equa11ty in  (56) ds the follow-

ing |
Theorem 2.45.  Assume that (57) hofds . Fer u > 0 gdven , suppose that
thene exists a subset Nﬁ«: Q whenre

I

- Ly G(x) + Lgy(x) 3> 0 for ﬁﬂﬂ m# ok (38)

Then, 4§ U s the sofuiion of (52},53) , we have that

0= sup L= Lulx) - gu(x)) = = Lu(x) - g lx) (59)
l<mgn
for eveny XE€E NE such that
o M (RTN) ]1/2 ! o
dix, M) B I— 45— -
j m .
=|] - Lu+ and A= sup (7 ayi).{i.e. & < NCo).
whesre Mk il k gkile(Q) ; o ik ii

Proof. Without Toss of generality we may take k=1 and gy =0, (if
g1 # 0 we consider u - uy , where - Lu1— gy in Q). So, by (59)
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- 3 1
ngm(x)‘z w> 0 in Nu

, for 1 <mg n. (61)

Suppose that there exists| xa € N1 with d(xg.3N) » R (R to be determined)

where f
i

- Liu(xo) < 0, é {62)

and we wish to derive a contradiction. First of all, we recall a useful
approximation argument: for each 0 <e < 1, we consider a convex func-
tion 4_e £” such that

g(t) =0 if tx 0, gt) =1 9 tae and 0 plr) < 1.
Let Fa(f1,tz) =t + ﬁs(ﬁz" t;) and

n - ioon-1

FE(t,,...,tn) = FE(EI,FE (tz,...,tn)).

Obviously , Ft is convex, increasing in ti and satisfies

BFE ?aFE
0« 5{; €1 Z §¥;— = ]

Moreover , if u js the classic solution of

FQ("LIUE) «Lzua—gz,1..,—Lnu€— gn) =0 in @ (63)

UE =0 : on 3R

then it is known (Evans[ 3 1) that

u® sy and

Llu_E > LJU (64)
uniformly in compact subsets. Now, from (62) and (64) we get

- LauB{xe) ¢ - yv<0 i (65)

for some small e and for some Y independent'of £ . Let us define the
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auxiliary function
2F(x) = - LuF(x) + C]x - xa|? (66}

=
where X.X, € N} and C s a positive constant to be chosen. As u” €C*@)
we can take R large enough so that 20 on BBR(xD). Toré precisely
by (64) it is clear that there exists a positive constant . (independent

My
of e ) such that
: 6
- L)l € M (67)
L ()
Then, it is enough to take
8
R > (%%)1/2- (68)

Let yq€ Ek(xo) be such that
(y,) = min  z5{x)

RXO)

Since z(Xo) <0 , also z(yo} <0, and therefore Yo € BR(xD) and

- Lt (ye) € - Laut(xe) € - ¥ - (69)
Rewriting equation (63) as

0= Lyt + B_(F LS = gasonsrle gg)) ¢ L)
and choosing € <y » 8% ¢E(s) <s , we have

F2"1(~L2u5—gz,...,~Lnu€— g,) + LuE s e “at yo.
But noting thaf

gn _ . n-1 t
e _ 1 - ﬂé(Fz 1(t2="'3tn) - tl) =0 1'F FE (tgy-..,tn) tl?E:

9%
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it follows that

BFE € n-1 £
3t1 (-Liu (yU):FE (-Lzu (YD) - 82{ya)s.-.)) = 0. (70}

On the other hand, applying -L; to (63) we obtain
n BFQ
—_—. - - -_ E
mgl 5t (+) - Ly{-La™) + Lyg, 1 = 0, (71)

and so, using (70), we have that

n BFQ
! e e
oty Bt U UL m G0 et e (72)
where
Gy (%)== L (Clx = %01%) - Lig (x) » x € Bp(xo) . (73)

But since y, is a minimum point of z%, this implies that

- L2%(ye) < M25(ye) < 0 .
Them, if we take C > 0 such that
Gplye) > 0, {74)

the Teft-<hand side of (72) is strictly negative and we arrive at a con-

tradiction. To assure (74) we note that Ta 2
£:8; « Zaiilgl and then

1351%

- Lm(C]x = xo|?) 2 - 2CA - 2C CoN +aClx - xof*.

Then, using the hypothesis (61) , (74) holds if C 1is such that

C A
< F{RECN) (75)

Replacing this C in R we obtain the estimate (60).
B
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Remark 2.28. To motjvate the condition {59), note that if the assertion

of Theorem 2.45 holds and if x € Nﬁ and satisfies (60}, then the func-

tion v, = - Lmu - 9y satisfies

- Lkvm = - Lk(—Lmu) Ly, = - Lm(-Lku) + L Oy , | (76)
Since also v < 0 , the right-hand side of (76) cannot be "too positive".
In Theorem 2.45 we assume that this right-handside is uniformly negativa.u

Remark 2.79. Theorem 2.45 is still true for Q = RN, the set of parameters
Vv = W and conditions of ellipticity more general than (58) (Friedman-
Lions [ 1 1) On the other hand, the bound Mk can be estimated only in
terms of Cy.o and the norm w2=“ of g, (see e.g. G.Diaz [ 3 1).,

Remark 2.30. For two operators, Theorem 2.45 asserts that
if  «L,gat Lagy = u>0 in N; , then -L,u = g, on a subset of Ni.

In the special case of - Lyw=w and gy = 0 this gives the same

estimate obtained in Section 2.2 for the obstacle problem.

u(-Lou - g} =0 a.e. in Q.

ug0 , - lau-19,¢0

"

Note that in Section 2.2 the proof of such estimates extends to L. with

variable coefﬁ'cients.D
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2.5. OTHER BOUNDARY-VALUE PROBLEMS.

Most of the results in the above Sections remain true if we replace the
Dirichlet condition by other different boundary conditions. To illustrate
this, and for the sake of simplicity in the notation, we shall consider such
semilinearproblems as the following

- Au + F(u)

g(x) in 0 (1)

3+ b(xu) = e(x) on a0 (2).

where 7 is the unit outward vector to 802 . The existence and properties

of the free boundary F#(u) for solutions of (1).(2) under the fundamental
hypothesis on T

ds

t
Jo* T <+m‘ o (FGE) = S f(s)ds) (3)

will be discussed in subsection 2.5a. Another natural question is related
to the behaviour of solutions of problems T1ike (1),{2) when (3) 1s not
necessarily satisfied. It turns out that, even in this case, a free bound-
ary may occur,now defined by F(ulag), i.e. associated to the trace of

u on 3N . This peculiar behaviour depends on the nature of the nonlinear
boundary term b(x,u) and appears when, in fact, b{x,u) is a multivalued
function, i.e, a maximal monotone graph of R* , for x fixed. This is
the case of the thin (boundary) obstacle problem, also called the Signorini
problem, which may be stated in the foi]owihg terms: given ¢ € Hllz(aﬂ) s
and the convex set X = {v e H'(®) : v2 ¢ in 90}, find u €KX
minimizing on K the functional

Hu) = % [ |vul2dx + %-f ulddx - fqudk+ [ ewudo
Q Q Q 1192

where ¢ >0, g€ H_l(ﬂ) and e € H”lfz(an). Under regularity assumptions

(e.g. g eL2(q) , vet?(q) and e € HY{RN)) it is well known {Brezis[ &1)
that the solution u is characterized by, u '€ H2(R) and

- M +cu =g in Q (4)
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%%-+ glu-y)ae on M, (5)
where B is the maximal monotone graph of R? given by
g(r) = 0 if r>0, B{0) ={-=,0] and a(r) =¢ (the empty set)if r<0.(6)
This problem is considered in subsection 2.5h, where necessary and suf-

ficient conditions are given in order to assure the formation of the coin-
cidence set . N{[u - w]laﬂ) = {x € :u= P} -

?.5a. Nonlinear equations with other boundary conditions.
We consider the prablem (1),(2) under the structural assumptions:

F s a continuous nondecreasing function, f{0} = 0,

and b(x,u) is measurable in x and

b(x,u) is a continuous nondecreasing function,for x €35 fixed,b(x,0)=
{7

Existence, comparison and uniqueness results for (1),(2) are commented in
Chapter 4. Here we shall deal only with the study of the free boundary
Flu).First of all,we remark that ™interior estimates” on the set N(g)
may be obtained as in Theorem 1.9,assumed that condition (3) holds. More
precisely, we have that if M= IIUIle(K) , for any compact set K,
¥ cc N{g) , then

N(u) = (x € N(g) : d(x,5(g)) > L} (8)

with L = ¢1/N(M) , (]PllN given by (33) of Section 1.1). We point out
that such a guantity M way be explained in many different ways under
the above circunstances (see e.g. Ladyzenskaya-Ural'tseva [ 1], Theorem
2.1 Chap. 10 , Gilbarg-Trudinger [ 1 1, Section 17.9 , and Brezis [ 5 ? ).
To improve estimate (8) on points neag M , we in;roduce the following
notation: given a smooth curve T in R’ and xg€R" , we define

8(xg.T) = inf [cos{h(x) , ¥-%Xg) : x €T 1 (9)
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where (n(X)aX - Xg)
that the value of 8(x¢.I') depends essentially on the "geometry" of I' .
For instance, if T = 302 and 0 is an open convex bounded set, it is easy
to see that 8(xo.I') > 0 for xo€Q . We have

Theorem 2.46 . Let u € H2iQ) n L(0) sofution of (1), (2)
Assume (3) and £et Q , and g be such that

8(xg.90 n N{g}) >0  ¥xq € N(g). (10)
et T = 3N{g)n S(e]m). Then

N(u) = {x € N(g) : d(x,5(g)) > Li and d(x,T) » La(x)} (11)
whene L1 = by (M) 5 Me ffull, , and

Lalx} =y [F 7 ( —2”{,'}—%)— )1 (12)

Proof.- By the comparison results it is enough to construct a super and
a subsolution vanishing at X,, where x, belongs to the set given by the
right hand side of (11). More precisely, for X, € N(g} , let

R = min {d(x,,5(g)) . d(x¢.T }} and consider Q = N(g) n Bp(xs). Then ,

by comparizon , we deduce that u<u on @, for any u(x) satisfying
- s+ FU) sz 0 in 0 (13}
TsM in 89 - 30 (14)
au
W sllefl on T
en L”(20) )
au ~
o 2 0 on a0 n{am-T). (16}

. — -1
Defining u{x} = »n(lx -%g|3 I/N) , with nr : 1/8) = 1p1/N(r) , we know
that (13) holds and (14) s satisfied if d{x¢,S{g)) 2 L;. On the other
hand, recalling that
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represents the angle between the two vectors. It is clear

with e € L°¢n).

=T

2,172

n'(r) = Nt

F(n(r

(see (38) of Section 1.1) then

N —
o= Lm0 - &M 2 (n(|xx0] ) Peos(Bilx), THo) >
i= i :

» (B2 F(n(lx-xa )%+ 0lxa, 30 0 AM(9)).

Thus, (16) is derived from assumption (10), and (15) is verified if
d{xg.T) 3 La(xsl. The local subsolution is constructed by analogy..

In some cases the condition d(x,I) = L,(x) in {11) may be substituted by
another one, easier to verify. This can be shown by means of the strong
maximum principle. So, we shall not need any hypothesis on the geometry of
3¢ (or T) but only to suppose that 0 satisfies an interior sphere con-
dition.

Theorem 2.47 Let u be sofution of [1),(2), with g=0 on 0 and
e(x) » 0on 30, e(x} € co(on) . Assume that b(x,u) = b{u) and that b
i sitnictly {noreasing. Then 0 € u(x) < bl(|jell,) n @ and

%%- > e -||ell 4n 3R . In consequence, if [3) hokds, in the estimate
{11] we can substitute La(x} by Lo with
Le =y 07 el (17)

Proof. From the comparison results we deduce that u > 0 and so that

Al s 0 in @ . Assume that u € ¢°(T) (otherwise we argue by approxi-
mation). If u takes a maximum in T at %, and u{xy) = b_l(l|e|L),
then by the strong maximum principle (see Gilberg-Trudinger [ 1 Jor the
comments at the end of cubsection 1.2a) , we deduce that X, € 3 and
%% (xg) > 0 , and so the boundary condition (2) cannot be satisfied. This
proves that u(x) < b"1(||e||m) and so that %%,> e -llel], in o0 .
Finally, the rest of the statement i5 obtained by remarking that now we

can replace condition (15) by b“l(liellm) <U{x) eon T .,
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Remark 2.32 . The assumptions of the above theorem are fulfilled in the
special case of the following third boundary value problem , of great
interest in the study of chemical reactions (see Aris [ 1 1):

- M+ flu) =0 in Q (18)

3u .
5 toulu-l) =0 on m (19)

where 1 is a given positive humber (so, D < u(x) <1 on Q). We point
out that a very detailed study of the free boundary F(u) for solutions
of this problem was made in Friedman-Phillips [ 1] when R is a convex
domain of W* and f 45 as in subsection 2.la. By imbedding the pro-
blem in the family of elliptic problems

- aup 4 AFU) =0 in @

st WA (uy - 1) =0 on a0,

sharper estimates than that given aboveare then obtained in a way similar
to that of Theorem 1.54. Moreover, if f satisfies the uniqueness condi-
tion (12) of Section 2.1, then it is shown that there exists a A, > 0
such that N(uA) is a closed convex domain with Cl’s boundary for any

) N NGUA*) consists of a single point, and N(uk) =g Af A< Ao
Remark 2.33 . From Chapter 1 it is clear that the above theorem holds
for equations more general than (1), when in (2) the term %%— is replaced
by the corresponding co-normal derivative. So the absorption term f may
also depends on x and then the results may be applied to some systems
{see Remark 1.8 and Diaz-Hernandez [ 1 1). It is also possible to con-
sider the quasilinear problem

- Apu + Flu) = g{x) in 4] (20)

|lep~2 Vu « 0+ b(x,u) =e(x) on 3@ . (21)
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On the other hand, we remark that if £ is unbounded, it is also possible
to construct global supersolutions with compact support, as in subsection
1.1d, assumed, for instance, that @ 1is the complementary of some convex
set (Diaz [41). No geometrical assumptions on 8Q are needed if 3g s
pounded ar e{x) = 0 and b satisfies the additional condition

e 0 and >0 (Diaz[2]).
[blx,r}| = CIF(r)] if |r| < e, for some € > and € .

2.5b, The Signorini problem.

An already classical problem, arising in several different contexts (see
puvaut-Lions[ * ], Baiocchi- Capelo [11, Kinderlehrer-Stampacchial 2 1,
Friedman [3 1.etc) consists in the obtaining of wu € HY{Q) , solution of
the following variational inequality

vek=1IveH(Q) :v>u on 30} (22)

v
[ wu-v{v-u}dx + cf u{v-u)dx » [ g(v-u)dx +[ elv-u)ds ¥v € Kw(ZB)
Q Q 2 2193
. _ 1 '
where ¢ >0 , ¥ EHI/E(BQ) , 8 €H 1/2(39) and g € H ~(Q) are given
(note the abuse of 'the notation in (23)). The existence and unigueness
for this problem are well known, for which some additional assumptions

are needed in the semi-coercive case ¢ =0 {for instance if ¥ 20
it is enough to have

fgdx+ [ edo >\Q\: _ (24)
9] af)

see the above references). By‘the regularity results {Brezis [5 1), it
is known that, under the additional assumptions

ve2ea), een/Pan) and geLi(a) , (25)

the solution u belongs to H?*(Q) and satisfies the complementary for-

muiation

-Autcu="F in 2 {26)
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g—';: + glu-9) de on an _ (27)

where B is the maximal monotone graph of R? given by (6) . Let us call

P(f,p,e) the problem (26),(27) or (22),(23) . Here we are interested in

finding conditions on the data for which the solutions give rise to a free
boundary originated,in this case, from the coincidence set
IIp ={xedm:u=yt (i.e, I¢ = N((u~w)[an)). For the sake of simpli-
city, we shall always assume the regularity condition (25).

As a previous remark, we note that the formulation in (26),(27) may be
simplified in different ways. For our purposes, the following, trivial,
lemma will be useful.

3
<i7 Lemma 72.48. let u be Zthe solutlion of P9flw,e) » and £et u, be such Zhat

- Aup + cug = g in Q {28)

Ug= P on 0 (29)

Then, thg function U given by U = u-u, satisfies P(0,0,8) with
5za-

e=e- 2> and convensely.

Remark 2.34 . The function € can be made explicit by using the Green
function associated to (28),(29). Indeed, if we assume that the boundary
obstacle % in fact is the trace on 3R of a function v € H2(R) (For

formulation (26),(27)) or y € HY@) (for (22),(23)). Then
ug{x) = w{x) + fﬂg*(é:) G(x,E)dg , with , g% =g+ M - c¥

where  G{y,x) 1is the Green function for the domain  associated to (28)
{29) (see e,g, Friedman[2 ],5takgold [ 1 ],Reach [ 11}. In particular.

~ _ o
e(x) = elx) - g () - [ gHE) %g(x,s)ds L oxem (30)

We recall thaE;Gby the weak and strong maximum principles, the functions

G(x,£) and EE—~(X,E) are respectively positive and negative functions
%

in &.,
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Concerning the éxistencé of the coincidence set Iw , we shall start

by giving a necessary condition.

Theorem 2.49 .let us assume I, negular, |Iw| > 0. Then & ¢ 0 on L

Proof. By Lemma 2 and the assumption, we can suppose, equivalently that
the solution u of P(U,O,E) is such that U =0 on Illj . From the
Formulation (22),(23) for ¢ =0 {i.e. K, = o) we deduce that for every
v € ¥y 0 HE(Q) the function w=v - u€ HZ(n) and satisfies

- fudwdx+c fuwdx + [ u %%-da »{ ew do, (31)
Q ’ Q 2 a0
Now, let © & C2{3Q) be such that & > 0 on IllJ and 8 =0 on 3 - IqJ ,
and consider woe € H2(Q) such that - Awet Cwge = 0 dn £ and wp= 8
on 30 (note that welx) = jaﬂe(g) g%i-(x,g)dg ). Taking w = wo 1in
{31) (this is possible because wo + u®e kg n H2(0)) , we deduce that

03[ ewdo= [ e 8do
of Iy

Since § 1ig arbitrary, it follows that e g0 on Iy o

In contragt with the above result, the nonnegativity of e ona part
I of 20 is not enough to assure that Iy n T # B .
Counterexample 2.1 . Given R > 0 , define @ = {{x,yle R* : y >0,
x4+ y2< RE , y - /3x < 0 (see Figure 12). Inspired in Shamir [ 11,
define u(x,y) = Re(z3/2) ,Z=x+1iy , i.e,

voou(x,y) = p3/2 cos %? s Xx=pcos @, y=psentd. (32)

It is not difficult to check that u € H*(R)} and Au = 0 a.e. on 0 .
Moreover, u 3> 0 on 30 and if we take T = {{x,0) : 0 <x <R} , we have

that uf,. >0 but . gluyre=e=0 on T . Notealso that
taking © = {(x,y) : y > 0} the function u given in (32) satisfies

P(0,0,0) in Q. So the eguality in the condition e = 0 leads to an
indetermination because now u = 0 on {{x,0) : x < 0} and at the same

time u > 0\\on {(x,0) = x > 0}.

AN
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Figure 12

The following result shows that the necessary condition is "almost"
sufficient for the formulation of the coincidence set.

Theorem 2.50 .
u € H2(2) n L)
that

Let { be a convex cpen bounded set of N and Let E
solution of (26),(27). Assume ¥, e , and 9 such

e(x) & - ¢ on T com (33)

i
for some € > Q (E given in Lemma 2483 see (30)). Then we have The esti- %

mate

I, @{xeT_:dlx,50 -T.) >R} (38) ‘
with R gdven by

R—[E(ﬁ—_ﬂl—ffr]llziﬁwo and R=?—§"i if H=0, (35)
where H 44 the mean cwwature of 3Q and |ul| € M.

Proof. Again, by Lemma_Zghit suffices to show the estimate (34) for u
solution of P(0,0,e) (remark that then I, = {x € 30 a(x) = 0}1).

Now , Tet x4 € FE, and such that d{x,, 20 -~ PE) =R . Let = QnB(xg,R)
and define 8;1 = 90 n 3 and 8,0 =90 -~ 32 . For C > 0, to be chosen

later, we shall construct U € HE(§) such that U > 0 and
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M g-C in @.and U=0 and §0=3Tc in .

>
To do that, Let Vg be a tubular semineighhourhood¢of T defined by the
usual parametric representation x x(w,t) = 0 + tn{w), w ETgst €(-6,0)6 ¢
where ®(w) s the outward normal unit vector to 3@ at w, and &6 >0
is such that Vg < Q. Taking U(x) u{tn) = ¢(%), and recalling the ex-

pression of the Laplacian operator on Vg (see Theorem 1.19), the con-
struction of such a U is reduced to the following problem:
Lo baips
Couve |’ r
td’éﬁ [
(L.\uer\lm, b

Figure 13

gind  #(t) > 0 solution of the Tinear Cauchy Problem

pr(t) + (N-1)HB'(t) ¢ - C

g(0) =0 , p'(0) 3 -¢ -
Among the multiple choices, we shall take #{t) = - et and, then,C = (N-1)
1 - .
ifH#0 and é(t) = - et(—»— 1) and C= X, if H= (note that in
-§>fact plt) = - et( ook 1) and C= %- is also avaible for every H 3 0).
Now we introduce 1n g the auxiliary funct1on
— ” C 3
u(x) = U0} + 57 [% - Xo]2s
where C is taken as mentioned above. We have
“ M +cl = -A+cl-CH Sy 1x - %230 in @
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Moreover, on 9,8 it is clear that U » 0 and that

(x) = EE-(x) + %‘IX —xﬂ]cos(ﬂ(x),ifffor) 2 -€,

because of the convexity of © . On the other hand, in 3, ,

—_ L 2
u(x) = N R > M

> u(x)
. -1
if Rz ZMN/C .
we deduce that u < U on
for x € 88 0 B(xq,.R) ,

In conclusion, by the comparison theorems (see Chapter 4}
§ and in particular 0 ¢ u{x) < 2N |x - %o|?
which proves the result. a

Remark 2.35 . The above theorem can also be proved without difficulty forgen-
eral second order linear operators L as the given in (64) of Section 1.1
We also note that if ¢ > 0 , a sharp supersolution can be constructed

(see Remark 2.9)}. The same result holds in the case of quasilinear problems
as (20),(21) with b{x,u} = A(u) , p given in {6) and e=0 (see Diaz-
Jimenez [ 1 1). Note that, in this last case, the simplification made by
Lemma 2.481s not avai]ablé. Also, easy modifications in the proof of Theo-
rem2.50 Tead to the same kind of result for mixed boundary conditions of

the type

§5-+ Rlu-p) 3 e on

3102 ,U=h on 3,8 , 3R = 10 U 320 (36)
Finally, the coincidence set for the thin (interior) obstacle problem
(Friedman [ 3 Ip. 105) may also be considered.g

Remark 2.36 . Results giving estimates on the noncoincidence set 3q - Iy
can be found from Theorem 2.49. The behaviour of u
set is also studied in Caffarelli [ 2 )

near the coincidence
and Kinderlehrer [ 2 Jwhere some
kind of non-degeneracy inequality 1is given as a step to prove the regu-
larity €1'% of the solution.

The multivaluedness at r=0 of the maximal monotone graph B{r) given

in (5) (and more precisely, the fact that D(R) = [0,=) -3 R) seems to be
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a necessary condition for the formation of the ceincidence set. Indeed,

consider the problem

in 9} (37)

1l
o

- Au + cu

1
5]

3—"§-+ b(u) on a0 (38)

where ¢ > 0 and
Assume that e(x) € 0 on 30 with e <-einsome T < 30
in © and from tha strong maximum principle
au

for some X, € 30 then sﬁ'(Xﬁ) >0 and

. By the com-

parison results u ¢ 0 u<?o0

So if u(xq) = 0
cannot vanish on TE.

in Q.
therefore u

Remark 2.37 . Introducing the pseudo-differential operator
av

A Hllz(aﬂ) - H”llz(aﬂ) given by 4w = o5 s where v is the solution of
-Avtcy=0and v=w on dR,itisnot difficult to show that (37),(38)

may be equivalently Fformulated in terms of

A+ b(w) = e

where w s the trace on 92 of the solution of (37),(38) (Brezis [5 1.
Perriot [ 1 ], Diaz-Jimenez [ 2 1). The above considerations show that,
in which A is a local operator (e.g.

Fw) 1is formed

in constrast with the case
A = - A plus boundary conditions), a free boundary

only when b = 8 is muitivalued (problem P(0,0,e}} and not in other cases, *

even if b s not Lipschitz continuous at the om‘gin.D

2.6 BIBLIDGRAPHICAL NOTES

As indicated, problem (6), (7) appears in exathermic chemical
reactions (Aris [11). The results of Subsection 2.1a are taken from
Friedman-Phillips [11. The greater part of the results of Section 1.4 are
proved, in the articles mentioned, for this general formulation. The

Section 2.1.

exterior problem is discussed by Kawohl [5].

The treatment of the nonlinear system {(18), made in Subsection Z.1b,
follows Brezis-Lieb [1]. We refer the reader to this article for concrete
problems of mathematical physics formulated in these terms.

The results of Subsection 2.1c are taken from Aronson-Crandall-
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b dis a nondecreasing continuous function with b{Q) =0..
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Peletier [1]. After this important work several generalizations and variants
are available in the literature (see e.g. Dal Passo [1], De Motloni-Schiaffino-
Tesei {11, Bertsch-Rostamian [1], Langlais-PhitTips [1] and Peletier-Tesei
£131, £21).

Subsection 2.1d follows Peletier-Serrin [1]. Note the strong difference
between the behaviour of solutions for the one-dimensional equation and for
the case of any dimensiaon.

Section 2.2. As we have already indicated in Section 1.5, it seems that the
study of the free boundary F(u) has its origins in the study of the support
of solutions of second order variational inequalities (a general question

in this sense was already posed by J.L. Lions {2]).

Theorems 2.17 and 2.18 are taken from Diaz [4] and generalize previous
results due to Bensoussan-Brezis-Friedman [1] (see also the approach made by
Nagai [1] and Yamada [11, [2] by using Bessel functions: Remark 2.9).

For unbounded domains, the compactness of the support of the obstacle
problem was first proved in Brezis [7] and then generalized in Diaz [1], [2]
in Redheffer [2],and finally in Benilan-Brezis-Crandall [1], from which
Theorem 2.19 is taken. A similar result also holds for the quasilinear
squation (Diaz-Herrero [1]1, [2]). The construction of super and subsoiutions
with compact support for the obstacle problem has been applied to the study
of some special variational inequalities such as: the rectangular dam problem
(Shimborski [1]); a free boundary problem in potential theory (Kinderlehrer-
Stampacchia [11): and, specially, subsonic flows (Brezis-Stampacchia [2], {31,
Brezis-Duvaut [1], Brezis [8], Diaz [4], Diaz-Dou [1], Shimborsky [2]3, [3],
Hummel [11, etc.).

We mention that a similar treatment of the free boundary associated with
quasi-variational inequalities is also possible (see Bensoussan-Brezis-
Friedman {1]). The support of the solution of a system of quasi-variational
inequalities has been studied by Bensoussan-Friedman {1].

The rearrangement result given in Theorem 2.22, under this formuiation
saems to be new. Lt generalizes a previous result due to Bandle-Mossino [1],
where the obstacle problem is considered. In this article, obstacles
Y E Hz(n) n H;(ﬂ) are considerad. See also Maderna-Salsa [2] for a related
result as well as for the capacitary variational inequality.

With respect to zero order reactions we point out that the corresponding
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Section 2.3

gquation has already been treated by Diaz-Hernandez. [1], Bandlie-Sperb-
Stakgoid [1] and, more systematically, by Frank-Wendt [1], who carefully
studied the dependence of the null set with respect to a parameter A.

The study of solutions of the obstacle problems near the free boundary
and other properties (Hausdorff estimates, flatness condition etc.) was
First established by Caffarelli [11, [3]1 {see also Alt-Phillips [1] and
Friedman-Phillips [11). The starshapedness of the coincidence set has been
proved by Kawohl [1], [4] (see also Sakaguchi [11). The convexity of the
coincidence set was first shown for N = 2 by Friedman-Phillips [1] and, in
any dimensions, by Kawohl [6]. More recently, Diaz-Kawohl [1] proved that
u is a log concave function (and, in particular, all the level sets {u 2 ¢}
are convex) for suitable obstacles . More geometrical properties and
references can be found in Kinderlehrer [1], Kinderlehrer~Stampacchia [2]
and Friedman [3].

The stability result contained in Theorem 2.25 is due to Rodrigues [1] and
adapts an argument of Alt-Caffarelli [1]. Other regularity results contained
in Rodrigues [1] refer to an estimate of the variation in the lebesgue measure
of the coincidence sets of solutions of different obstacle problems {improving
a previous result of Caffarelli [41) as well as to the stability of the free
poundary under small changes of the domain (the Lewy canjecture).

We also mention here the numerical approach of the free boundary for the
obstacle problem made in Brezzi-Caffarelli [1]. They approximate (estimating
the difference) the continuous free boundary by discrete free boundaries
genarated by the solution of the finite element approximation of the problem.

Lemma 2.25 and Theorem 2.27 are due to Phillips [2]1. The
behaviour near the free boundary, Hausdorff measure estimates and other pro-
perties are given by Phillips [2] and ATt-Phillips [1]. These works extend
the results of Alt-Caffarelii [11 (see also Friedman [3]1) for a minimum pro-
blem that, roughly speaking, corresponds to q = =11 (the associated exterior
prablem is treated in Tepper [11, [2]}. The regularity given in Theorem 2.27
was also shown by Giaquinta-Giusti [13.

Theorems 2.28, 2.29 and Lewma 2.34 follow Brauner-Nicolaenko [2], and
Theorems 2.31 and 2.32 Brauner-Nicolaenko [3]. The proof of Proposition 2.33
is due to Brauner (personal communication) and adapts an argument of Brauner-
Eckhaus-Garbey-Van Harten [1]. Theorem 2.35 collects several results from
Brauner-Nicolaenko [2] and Misiti-Guyot [1]1. Finally, Theorem 2.35 is a
209



slight improvement of a previous result of Brauner-Nicolaenko [2].

Other related references are: Mignot-Puel [1] and Conrad-Lssard-Rouch-
Brauner-Nicolaenko [1] for recent studies of nonlinear eigenvalue problems
(including the singular equation (1)): Perry [1] and Luning~Perry [1], [21
for the case of homogenecus Dirichlet conditions (which appear in negative
order chemical reactions and non-Newtonian fluid flows, respectively): and
Crandali-Rabinowitz-Tartar [1] and Bouillet-Gomes [1] for the singular
equation with the perturbed term with reverse sign.

Local supersolutions like that given in (13) have already been
Radially symmetric super-

Section 2.4.
used by Evans-Knerr [1] (see also Vazguez [11).
salutions for equation (6) are exhibited in Diaz-Herrero [11, [2].
Unidirectional phenomena have been systematically studied by Diaz-Veron
[11 for first-order quasilinear equations. The diffusion-convection balance
(25) is also of interest in the sfudy of the uniqueness of solutions associ-
ated with different boundary conditions (Carrillo [11, Carrillo-Chipot [21).
We also remark that the dam problem may be formulated in terms of eguation
(21) by taking ai(s) =35, b1 the maximal monotone graph given in (67) of
Section 2.2 and bi =0 if 1 > 1 (see, e.g. Alt [11, Carrillo-Chipot [1],
Friedman [3] and the references therein). Note that, in this case, the
balance (25) holds. For a study of the diffusion-convection balance for
a quasilinear parabolic equation, see Diaz-Kersner [1].

Section 2.5. Theorem 2.44 in this general formulation seems to he new. A
related 'work, containing also a strong maximum principle, is that by G. Diaz
[4]. The existence of the free boundary for the Monge-Ampere equation {39} is
studied by 6. Diaz-J.L. Diaz [2]. We also mention here the treatment of the
obstacle problem for some fully nonlinear operators given by . Diaz [1]1, [21.

The study of the optimal strategy for the Hamilton~Jacobi-Bellman equation,
Theorem 2.45, follows Friedman-Lions[1] (see also G. Diaz [3] for the estimate
of some of the involved bounds).

Section 2.5. Theorem 2.46 follows Diaz [4] and Diaz-Hernandez [1]. The study
of general (eventually multivalued) boundary conditions asscciated with the
obstacle problem is due to Nagai [11. Yamada [1], [21 and Diaz [4]. The case
of unbounded domains was considered under a different hypothesis by Diaz [2]
and by Diaz [1], [21, [4] and Redheffer (2] for the obstacle problem. A
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-

careful treatment of.the free boundary for the third boundary value problem -
for semilinear equations is given by Friedman-Phillips [11]. ) ,*Q
The results of Subsection 2.5b for the Signorini problem are taken. from ;ﬂ
Diaz-Jimenez [1I. Previous results on the existence and Tocation of the ;¥§
coincidence set are those by Friedman [1] and Diaz [3]. A different quali-
tative study of the coincidence set is due to Lewy [1] and Athanasopoulos [1]-
As a final comment, in the opinion of the author it would be interesting .=

to extend the results of Subsection 2.1¢ to the any-dimensional case, and i,
also to obtain some geometricdl properties of the null set N(u) such as, -
for instance, the convexity oran isoperimetric inequality in the case of fully,
nonlinear equations. o

iy

e

i
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3 Existence and location of the free
boundary by means of energy methods

In previous chapters the existence and location of the free boundary
7{u) were obtajned by using, in a fundamental way, the comparison prin-
ciple, The main goal of this Chapter is to exhibit an alternative
method to derive this a kind of results; the energy method. This method
is based on the general idea of finding some suitable energy function of
the solution and proving that it satisfies some ordinary differential
inequality which leads to the vanishing of the solution on some adequate
subset. In contrast with the comparison principle, energy methods are
available for equations of higher order and even without any monotonicity
assumption on the nonlinear terms of the equation.

in Section 3.1, an energy method is introduced for the study of suf-
ficient conditions for the existence of the free boundary F(u} for a
very general class of second order quasilinear equations. The case of glasi-
Tinear equations of any order is treated in Section 3.2 by using other
energy functions and subsets, Both methods are also available for the
‘ 1im{ting problems given by the obstacle problem and the case of some sin-
gular equations.

3.1. SECOND ORDER QUASTLINEAR EQUATIONS

3.1a. The main result.

In this section we shall study the null set N(u) for Tocal weak solutions
of the equation

- div A(x,u,vu) + B{x,u,vu) + C{x,u) = 0. (1)

This study will give us interior estimates for some global nonhomogenecus
boundary value problems such as, for instance, the following Dirichlet
problem:

~ div Alx,u,vu) + B(x,u,vu) + C{x,u) = g(x) in o (2)
u=h < - on an. (3)
212

The structural assumptions that we will adopt in this section are the
following : for some open region G of 'RN , AM(x,r,g) 1s a vector func-
tion defined on G x R x Y » B{x,r,g) 1is a real function defined on the
same set and C{x,r) is a real function defined on G x R. All these
are Caratheodory functions (i.e. measurables on x and continuous in
other arguments) and they satisfy:

[A(x,r,8)| € Ci|E| p-1 for some p>1 (4)
Agx,r,g)g > Czlglp {5)
|18(x,r,E}] € Calriulgls for some o.B > O, (6)
‘~i> C(x,r?(; Cuir]q+1 for some g2 0 (7)

where Ci’ i=1,4 are positive constants (G » 0). We remark that
all the assumptions are fulfilled in the model  equation

~au AMu9tu=0,

where A_ is the pseudo-lLaplacian operator defined in the Introduction.
We also remark that .ne monotanicity assumption is made either on the
dependence of A with respect to & or on that of C with respect to r.
The results that we.shall give here are (as in above chapters) inde-
pendent of the existence, regularity and uniqueness theory. Indeed, we
shall work with Tocally weak solutions in the following sense: -

Definition 3.1. A measwrable {funciion U € L%OC(G) {4 a weak sclfution
of 1) 44

i) wetl () .

loc
i) B(-.u,0u) € 13 (€
e . 1
ii9) ¢{-,u) € L]OC(G)

and fon any o € C?(G) the following equality hofds
jﬂ{A(x,u,vu)v¢ + B(x,u,vuld + C{x,u)¢ }dx = 0. {(8)

To state our main result, for every x, € G, we introduce the diffusion
and absorption energy functions , defined on the ball Bp(xo) by
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[ ".'ZL'_E‘.:‘.‘."*J’“ ki

E{p) = [ A{x,u,Vu}-vu dx, ‘ . (9)
Bp(xo)
and
b(p) = [ Ulq dx. (10)
B Xu)
P
We have

Theorem 3.1. Assume the stwoetural conditions (4),(5),(6]) and (7] under
the following cincumstances:

0Dgq<p-1. (11)
14 C3 #0 , we also assume Lhat

0B <p » a=I[g-g8lqg+1)l/p (12)
and (E:E) E

p and Cs <ch(5=E—B) (caﬂ) i 0<B<f§*‘:',l
(13)

Cg<Cly{-_6 B = O 3 CEI <C7_ "(-6 B =

Let u be a weak sobution of (1), %o € 6 and pe= d(xg,86) . Then
there exists a positive constant € (depending in an Lncheasing way on

E{pg) and bipo)} éuch that u(x) =0 a.e. in Bp(xu) forn every

p € [O,py] such that
p&py - C. (14)
Remark 3.1. The above result has a nature similar to that of Theorem I.9,

Indeed:cn the one hand conditions (12) and {13) are superfluous ifB{x,r,£)=0

(i.e. 3= 0). On the other hand, (14} makes sense only ifpe > C and so
it can be compared with the condition L » ml/N( ) in that theovem.
Nevertheless, the conclusion of Theorem 3.1 1is stated in terms of the
energies E{py) and b{py),i.e. using alocal information on wu. Such a
information holds for many equations in which it is possible to have
global "a priori" estimates on the energies, and so the constant C can
be taken uniformly, for every Xo g
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The main ingredients in the proof of Theorem 3.1 are the next two
auxiliary. Temmas. The first one is like a local "comp]ementary fofmula”.
Mow we shall write B to represent Bpﬂ(xn) and S, = 8B,):

Lemma 3.2. Undex the hypotheses of Theorem 3.1, we have that
AC-ou,vudevu , ul® , JAG-.u)|u and B(-,u,vu)u belong o L}(By ).
Moreoever , fon afmost atl p € {0,pg). we have :

[ A(X,u,vu)yu dx + Cyf ]u|q+1dxA+f B(x,u,vu)udx ¢f A(x,u,vu)Vuds
By By Bo Sp
whene v = vis) 48 the ouwtwand noamal veeton at X € S (xn)
The second auxiliary lemma is the key-stone of the proof of Theorem 3.1.
Its proof, quite technical, is given in subsection 3.1b.
Lemma 3.3. Let D be a bounded open set of RN > 1, with a C! baundang

3D . Assume
0zqgqgp-1c¢<am.

Then fthere exists a consfant C depending on q,p

and D auch that foi
any V€ W=P(0) we have

1-8

5!

c 16
< (||Vv[|Lp(D) (16)

llVHLp(aD)
whesre

_ N(p-1-q)+g+1
g = NT%?13371%61T75 . (17)

1§ in particular
the estimate

D = Bp(x,) (8D = Sp(xn)) then (16) can be improved by

-8 8 1-8
CL|| oy + Vol v (18)
IlleLp(Sp) < Cf 11Lp(Bp) I !lLQ+1(Bp) I iqu+1(Bp)
whese
_ N(p-1-g)+{q+l)
o - Mo 1)
and C = C{N,p,q)-
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To go ahead, we assume , for a moment, the above lTemmas already. proved.

Proof of Theorem 3.1.First step, If u s a local weak solution of (1)
then '

E(p) + Cublp) + IB B{x,u,vulu dx > Cs(E{p} + b(p)) (20)

p
where Cg= CS(CZ)CH)p,q’B) >0
way. By using Young's inequality , for any e > 0 and © > 1 we have

: o

1
Calul® vyl ¢ € pyrlett)y fozb) g T gL, (21)

This can be obtained in the following

If we choose T = 3%%‘ . then f?% = p thanks to assumption (12). So,

gsing (6} we have

B{x,u,vu)u < & Cq E%Q-IU!Q+1 " ﬁgi.g‘ iEE?inu[P.
Therefore, by assumption (5) and the definitions of E(p) and b(p) we
have
, (p=8)
1S B(x,u,vulu dxj& eG4l %—B) blp) + B2 ™ B g(p).
B
P
Since C, satisfies (13}, it is possible to find ¢ > 0 depending on
pngCZ,Cu such that

_{(p-8
B8 BCs B
=4 Ca ( P ) < Cl, and CzD [ < 1.
In this case, it is enough to take
_ Lp-g)
Cs = min {Cy -eCy (E28) , 1 - B8 o B
p Cop

in order to have (20).
End of the proof. By Lemma 3.2 , structural assumptions {8} and (7).and

the first part of the expression (20),we have

Cs(E(p) + blp)) € [ Alx,u,vu)-Ju ds (22)
S
g
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but, by (4) and Hilder

- (P“l)/P ;
FOAGOW,TS u ds<Cy(f [vulPHuldx) < CalS [wulP) (f [u]PR/P
S, Sp Sp Sp

{23)

On the other hand, by using spherical coordinates (w,r) with center X,
we have ‘

Ep) = [° [y Alrasu,vu)evu o1 dy ar.
0 SN—l
Hence, E 1is almost everywhere differentiable and

dE - N-1 = '
5 (p) = [ N 1 .fm ,UsVu)eVu p dw dr = [ Alrw,u,7u}vu dw

Sp
which, by (5), implies
8 (o} » €2 f |ufP ds. (24)
£ Sp
So, by (22),(23),(24) and the Lemma 3.3. (expression (18)) we have
p-1 8 1-9 3

(o) + b(o) ¢ KE) P (E(@)® b(@) T+ 5 %%() T )

for some constant K. But, since

1 1

gtl ¢l " p

g, 18
b(o) q+1 P" by P

-

b(p)

by Young's inequality we get
p-1

-8
E(p) + blp) < Kip  (g) P (E() + b(p))" (25)
where
oL . L 1
k= 2Kimax(Lblpa) 00 P} max(p$®,1)1, and w =24 op

Hence we deduce that E satisfies the differential inequality
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p-1l
- - 1~
Ko G P s (E() + b(e)) Y 5 (R
i.e. _ s6p -
p-1 p-1
ko 9= (o) > ECp) (26)
B . .
if K = Klp_l . Remark that = < w < eS| thanks to (11}, and so

Integrating (25) on (p.py) . we get

_ (1-w) _(d-w
1 i};;j%l 1

p-1

0 < L%;?%E < 1.

Ka
(ii_rirﬁiﬁ_i {E{po) - E{p) }o»
p -
80p  , 88p
. { 1+ = 1+ ) }
2 fo - p
86D
(1+ 5%)
and, hence, if p, < pp 15 such that
1+ iQE. 1+ §_QP_ 1 _._...,,E,(l"m])-
p"l p—l K p-
= - 2 E
p1 o PREEDL: (pq)
p-1

then E(py) = 0 , and so E(p) = 0 for p < py. This implies, by (5)

that b(p) = 0 , which means u(x) = a.e. in Bp for p«pr -

o

Remark 3.2. In fact, if we compute the exponents in the proof of Theorem

3.1, we can improve {14) s getting

Y -
¥ = 0 - ¢ B0l max(1,08™) max(1,6™p0)
Where C = C(Cl sCZ:CaschaN:p!qSB) and
. _p-q-1 - plag+l) + N(p-1-g)
N(p-1-g}+p(g+l) {p-1]q
__b-1-9 g+l ~p
{p-1)(g+1) N(p-1-q} + p{g+l)
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Proof of Lemma 3.1. From (4) A(-,u,vu)-vu € L*(By (xo)). As vu € Lp(Bp(qu

and u € Lq(B (xu)) we deduce from Po1ncare 5 inequality and the Sobolev
1mbedd1ng theorem that u € LP* (Bpo(x V), p =L l—, if p<N,or
u €L7(B U(xu)), ¥r <=, if p2 Hence u € Lq+lil (xﬂ)). From (6)
|B{x,u Vu) uj € C3|u|a+ IVU|B As lu|0L+1 € L(q+l)/(a+l)(8 {x;)} and
{Du|B€ P/ B(B (Xg) } and as g/p + (o+l)/{g+l) §
As A(+,u,vu) € Lp/(p 1) p {xq)) and ue LP* (B (xu)) if p <N (or
ueElL (B (xn)) ifp 2 N) ;nd as —¢ + (p+l) . 1/N <1,
[A(- ,u,VU)|u € Ll(B (xu)) and IS (x )A(x u,vu) <% u ds exists for almost
all p€(0ipal.

Now we define for me N, Tm(u) = sign(u) min{mju|) and for ne N

and p €(0,pg), we consider the sequence of functions Wy, : [0.p,] Y

such that
_ . 1
wn(r) =1 if r€ [0,p - ﬁ-] ,
bo(ry =0 if  relpwpad
b (r) = -nle-r) if relp-g, ol

From a result of Stampacchia [21,

¢n,m(x) = Tm(U(X))'wn(IX*XOI), belongs
to Wg*P(B) (xo)),

so it is an admissible test function, and we have

| [ACX U, 0u) Vg o

B(xsUsVu)g,  + C(x,u)g
B,(xs) e

n,mldx =0. (27)

But f A(x u.Tu) T, dx = IB oy U AQuTu) - TT (u) + ..
Xo

+T (u)A(x u,vu) V¢n dx. We deduge from Lebesgue's theorem , as m goes

to 1nf1n1ty , that

f Ly, Alx,u,vu)-vusB{x,u,vulu +Cu|u|q+13dx s-f  u Alx,u,vu)-w dx
Bp (xu) : Bp (xo)
0
(28)

But - J u A(x,u,Vu)-V¢n dx = n | u A(x,u,vu) - A-Xo gy, Using

Bpo(xﬂ) o~ ﬁ(IX—Xul<p [%-Xo |
spherical coordinates (r.,w) with center x, we have
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nf Y ALx 0, Vu ) |::i:T-dx =n P u AU P da dr
M-
p- ﬁ<lx‘x0|<0 p- %— sh-1

where % = rw . TFrom Lebesgue's differentiation theorem and the fact that

r- %N—l u Afrw,u,vu)s 3 eV dy € L1(04pg), we deduce that , for almost

all p € (0500)3

. P + N-1 -+
Timn { Noy U Alrw,u,vu)- S r do = [ u A(X,u,vu)-v ds.
S

n -»eo 1
P4 Sp(xn)

Going to the Timit (n-=w ) in (28) we deduce (15).D
Remark 3.3. We can relax the hypotheses (12) and (13) assuming that
ue€ LTOC(G). This is the case if, for instance,

JC{x,r)] < Celr|p'1 + Cy {30)

(see Serrin [ 1 1). From the proof of Lemma 3.3 it is easy to see that
we just have to suppose o x> 0, 0 < B < p and C; small enough. We also
vemark that for bounded functions the following estimate for the diffusion
energy function holds:
Elpo) ¢ [ (WP dx<cp
Bp(xy}

for some adequate C, depending only on sup fu] and the structural condi-
tions (see Ladyzhenskaya-Ural'tseva [ 1 ]Bp p. 247).,

As an application of Theorem 3.1 we have the following global result,
stated, for simplicity, for the equation (2) on Q = RN.
Theorem 3.4.  Under the same assumptions as «n Theorem 3.7, Lel
T wl’p(RN) n Lq+1(RN) be any weak sofution of

- div Alx,u,vu) + B(x,u,vu) + C(x,u) = g(x} 4n a

(31)
+.
where g € L(q 1)/q ORN)and the suppoat of g 44 4n Bpol(0) fon some
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po > 0. Then there ex{sts p; > pos Py depending onby en || gllL(q+l)/q(¥N)

and the stnuotural constants, such that 2he suppoat of u L4 Ln Bp,(0}.

Moreovehr, £f we assume fhat p < N on C(x,r) satisfies (30), the result

remaing tue, if we just suppose that u € LFI®Y), wue P®Y)  and

5 € LP/(P“l)(RN)'
Proof. Since u is a weak solution of (31), we have

[ A(xsu,Vu) -vgdx + [ B(x,u,vu)gdx +f Clx,u)pdx = [ g{x)gdx, (32)
R Y R R

for any ¢ € C:GRN) . Using the same truncation method as in Lemma 3.2,

we have for any € C?(RN) » 2320,

[ Lo ADGULTU) -VuruA(X,u U ) -VEHB (XU, VU ug +C{x,ujugldx= [ gugdx.

N M (33)
If we take ¢ = [, such that 0 <z, < 1, cn(x) =1 if |x] < n, cn(x) =0
if x| » el o, || Vel s 2, then

IS u A, dx] € 2 Cu(f]ul® a) P (flvul? aotPPL (3
R\ {n<|x|<n+l} {n<fx|<n+l}

If n - = we deduce (as.in the first step of the proof of Theorem 3.1
. q+l
Cs f {A(x,u,vu)svu + ful " hdx g f g udx. (35)
R L

From Young's inequality,fgu dx ¢ e f[u|q+1dx + L, j|g1(q+1)/qu But if
€ < Gs we deduce that

+1 {g+l)/g
[RN A(x,u,vu)-Vu dx + _[RNiu1q dx ¢ K I'RN lg] q dx (36)

for some structural constant K. Hence E(w) and b(e~) remain bounded
independently of u and, for any r >1 and xp € RN,

C min {J—ﬂ L max(1,r0Hmax(6M(r) M)} € K L (37)
(1/p)ersl

where C depends on the structural constants and || gl| . If we
P Lar) /gt
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$i.

apply Theorem 3.1 in B (xq) . where |xg|= vo+ ra we deduie that

s{u) = Bpl(O) » py = pot max(1,K) , S{u) = support of u.

If we suppose p < N , then Vu € LP(RN) implies u € LD*CRN) with

A1 L yence ue L9YERN) g P@Y , so ue Wl’prN) and we

B* N

can go to the Timit in {33) and get (36) . If C(x,r) satisfies (30)
then u € Lm(RN - szﬂ(o)) (see Remark 3.3) and u € LP(RN) from
interpolation results., '

As in the previous chapter, the obstacle problem can be treated as the
Timiting case gq=0 . From the proof of Theorem 3.1 we see that the
hypothesis of continuity onm r = C{x,r) can be relaxed. So we can con-

sider variational inequalities in a weak sense such as the following:
usx0 , - div A(x,u,vu) + B(x,u,vu) > g{x) in G. {38)

Now the salutions must satisfy  u € LY(G), vu € LP(G) , B(.,u.vu) e L'(G}

and °
[ {A(x,u,vu) -V + B{x,u,Yu)¢} dx = [ g(x)d dx (39)
G G

for any ¢ € C3(G) , >0 . Finally, if for some € > 0, we have

a(x) ¢« - e a.e. in G,

3

we can apply Theorem 3.1 provided C; is small enough.

Remark 3.4. A careful review of the proof of Theorem 3.1 shows that

the exponent q can aiso be taken satisfying -1 < g < 0. In this way,
the energy method is also available for some singular equations {see

Section 2.3). We remark that the possibility of taking negative values
of ¢ 1in interpolation inequaiities (see ineguality {41)) was already -
pointed out in Nirenberg [1 1.,
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3.1b. Proof of the interpolation-trace Lemma.

For the sake of simplicity we restrict curselves to v ¢ CH{E), since C'(G)
is dense in WS°P(G). The proof of inequality (16) is divided into four
steps (see Bidaut-Veron [ 2 ] for a similar result).

First step. From a well-known result {see e.g. Ladyzhenskaya-Uralseval 1 ]
p. 45) for any £>0 there exists C_>0,such that,for any v €CY{G),the fol-
lowing holds:

[ vl <e || vl + c vl . (40)
L9 (g) LP(e) L9 (q)
1
-
If we set C, =max(l +e , CEIGI ), we ge?
[ vl € Ca(]jwvi| | vif ). (41)
wleP(e) LP(e) L% ()

Second step. We start from the elementary trace result (see e.g. Adams([1 ])f”

there exists Cs > O such that for any u € C(G) we have

< C ; (4z)
l‘u|tLl(aG) BI1UIIN1’1(G)

and for p > 1 we apply (42) to u = v]vl(p'l) ., veECHG), so

[P do < Catp J v P wejaxck £ P axs
2G G G

since [ [v] P ov)dx < ]lVV]!p llvli(p 1) e get
G L7

LP(G)
P p
IaGIV| do < Gl Wil o IIVII p(G P lle(G)
which implies
C, )1/P 1/P (p-1)/ . (43)
1911 ey © 8 1P g ol B

Third step. Set 0« q g p-1§=, we claim that there exists a constant
C, > 0 such that , for any Vv € CH{G), we have '
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v
4l g,

b L1 1
||VIILT(G) < CHVIIwl with == 5w Moreover,
1-A A
Il vli < |l vl vl
LP( L(6) L9 (g)
1. A 12 : (g+1)
where eS| a2 that is, A N(p T-q)+p(aeL) Hence, from

(pe-1)/(p-1) p(1-8)/(p-1)
< Colf v|]- Il

whP(g) ! iLqﬂ(G)

From Sobolev's inequality, we have

Sobolev's inequality

1-A 1-A A
vl < 7 vl vl| ,
LP(e) ,wLWm”IL“Hm
3 = N(p i-q) - pe-1 _ p{l-8)
and 1 - A= g (e T T (ol ¢ T (1)
Case 2: _assume p = N 2 1. We set a = (N+1)/2 , p = 2p/(N+1),

B = (gH)(H1)/2p and of = al/(N-u) (a* = » if N = 1).

interpolating ineguality we have

1ol e,

) <] u II ) Il

ﬂ LB(e)

1-3

1
where Pl a;—-+ “.((47)
change of funct1on)

Il ul

From Sobolev's inequality we get

1-2
€ Csf] uf| Il vl
1

L%G) W% (e) LBa)

Now we set u = v]v!p'1 and we have

- P - p ,
Lol gy 10 Py B
- - p
lIUHLB(G) llV|lLBp(G) ‘lVI]LQ+1(G)
| ull + (S5 Gev]P %)t and
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TR
who®(g) IIVIILP(G)

is valid even if 0 < B <1 with a simple

(44)

(46)

From Holder's

(47)

(48)

Ja {Jv|®” Liov])dx < ( j 1v|°‘pdx)1 170 ( Jq fov|*Pdx} Yo | which yields

p-1 and (48) becomes
150 gy P gy 1 omg
1-2A (p=1)(1-A) 1-x Ap (50)
V1%, € 68 S 1 g

If we compute the exponents we get

1-A N(p-1-g) - pe-1 d
ApFL-X p(q+1)+N(p Ty = (p-) "

A platl) - pli- ) X
S T W(plea) ) (-1

which is (44).

Step 4: end of the proof. - We use (43) and (44) and get

1% (pe 1 /P
VI 5 gy © SVl e g, I (Ko

_ N{p-1-g)+q+l . . . Finall
where ® = J T qYplgh) ° using (41) yields finally
8 1-8
< C(j| wv + 1 vll VI e,
‘lvl‘Lp(aa) Hoell o) L% () L% (e)

To end the proof of Lemma 3.3, we consider the particular case of D=8B (x
For the sake of simplicity, we suppose Xp = 0 and we perform th? ;0110w1n
change of variable : x =py » X € Bp(U) , y €By(0) . If ueW” (B (on
the function v defined by v{y) = u({x) belongs to W ’p(Bl( 0}) and
from (16) we have

8 ; 1-0
mwn)HmL“Hmmn

(51)

il

(v | vl
uum)s(”VHWmdm> LI

N

T ogtl
But wviy) = p vu(x) s}l vl =p |

L, 00) L5 (0))



N
- T gl
vl q+l(B (0)) P ]IVII[I B1(0))
st
nanp(S A I ipis con
As 1 p Nepl il;eel'c'#f=0 and
_N N1 3-8 N N{p-l-g)+(qtl)p
g+l = ep 8 g+l plg+l)
we get (18)

3.2. QUASILINEAR ELLIPTIC EQUATIONS OF ARBITRARY ORDER.

In this section we shall give a different energy method for the study of
the null set of the sclution of gquasilinear elliptic equations of arbitrary
order. For the sake of clarity of the expos1t1on we shall only consider
the case of equations on the whole space Q= F

, although it is a150 pos-
sible to consider the case in which @ 1is an open regular set of R {see

Remark 3.7). gur formulation is the following : Given 1 < p<e, mz 1
and g € WP (RN), we consider the equations

(Hl)m O [0 P2 O _ . N

) ([0%u}”™" D"u) + f(u) =g in R (1)
lo[=m

where

feti®) . sf(s) s |s|% forall seR. (2)
The main result is V&%(&;MFNH iuPFuFt
Theorem 3.5. Let g € ymp' RN P Assume (2) and

D<g<p-~-1. (3)

Then,at Least there exists one sofution u € wm’p(RN) , with f(u) € Ll(Fﬁ),
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satisfying (11 An the ianbz o4 distribuiio
of u L4 compact.
Remark 3.5. Note that: f
uniqueness of the solutions of (1) 1s not

is not assumed

As in the above section, the proof will

some "energy functionsf satisfy some suita
I

fnequalities.
Proof of Theorem 3.5. [The wanted sclution
will be obtained as thg zero extension to
G containing the support
on G

on a open ball
satisfies the lequation (1)
ﬂn order to show that

and u
conditions on 236).

ns and such that the support

to be nondecreasing and so the
assured in general. g

be carried out by proving that
ble ordinary differential

u of (1) with compact support
RN of a function u defined
of & and such that u € WO:P(a)
{as well as homogeneous Dirichlet

such a U obtained in this

way belongs to wm,pcﬁN) and satisfies (1), it suffices to show that if

& 1is big enough, thE|support of u is s
we need to estimate the support of u
the notation we 5ha1111dent1fy U and u
Brezis-Browder (1,2 ]or Chapter 4}
uf(u) € L*(a)

have |

|

) J’G]Dau|p20u L 0P dx +

jal* 1

independently of G.

we know that u e Wi'P(G) .
and u' is a solution of the equation (1) on G.

rictly contained in G. Thus .

To clarify

By the existence results (see

flu)e LY(G)
So we

cF(u),v> = <g,v> (4)

far every V € NT’p(Gl , where the brackets represent the duality action

_ [
between WP (G) anﬂ Wl P(g) . set x

t= Xy

G and does not inter%ect the support of g,

Ay

(X1:~~-:XN) 3 y = (Xl,'."xN—l)’

We can trivié]]y suppose that the half-space {t > 0} intersects

ta

{ Figure 14.

i
!
|
\

w v
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For any tg > 0 the function

(t-to)Mu(x) | if t> tys X €

wix) =

(5)

SRR p N

0 if tgty, xeG
!

bt Femn bt USed as oF W x Jesf R}wc}tmn {tee Bermy (Haos o

A e,
belongg to NT’D(ETV/(This is a simple but 1mpqrtant remark for the pres-*“*£21"<t£9

ent prodf).

Since wf{u) » 0 (recall that sﬂ(s) > 0) , by a result of

Brezis-Browder [ 2 J(see also Remark 4.12) we have

Setting

We proceed to compute D% t-t, ) ™).
an obvious notation and for| some constants a

Using the notation

we introduce the "energy function”

I

(t-tg)" u [f{u)dx.
XEG |
t)tu '
in {(4) we obtain !

<Flul.w> = flulwdx =]
G

V=W

T 0% PP ePu e p((tt)Mu)dx b S (tte)uf(u)dx = 0.(6)
laj=m  xeG i xeG
>ty R 5% v

Setting dt = a/at , we have, with

1jﬁ’
. L
=00 . fei=fel-3 . T =] ] (7
[o|=m J=0 | 8| =m-j
j P e s
D*((t-t)"u) = (t-to)|'0%u + L %im (2)" " 0y DB ()
1=

[0Yu(x}|P = % LRTEST LN I W
N 4

=j

(t-to) | D"u|P dx + [
XeG XeG
t>t, t>ty ;

I(ty) = f (t-t)® Ju]9T o

Noting that
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ID%“1 Dg u(x)| < [0™T u(x)|

(because |B]+ = m), some elementary computations with (2) {(6),{7) and

(8) give (we drop x € & in the integrals):

n i, .m g p-1,m-i
te) ¢ C (t-t,)™ 7 (0| P7H 0" Tupdx <
fn{te) € G 121 ft>to ’
. 1/p! N i/p,
(t_tn)m-1‘Dmu1de ] [ jt>t0(t-t0)?:1|um 1Py

m
5 C tf
m 121 oty

K
where we have applied Holder's inequality . To proceed we need the fol-
Towing lemma: \ - o
Lemma 3.6. (Weighted interpolation inequality). Set Ry ={xe B 1 %y > Ut,
t = N Llet m,j.k be infegens .M > 1,0¢j<m k»0.let 1<p<e=
and 0 <qgsgp-L1. Then

a/p (1-0)/(a+1)
kpdu|Pax 1/ps cif 510" Px1  1J £ % 1
[f t:piuf7dx ] tf . ! \

N R R
R +-
* N (9)
whehe 8 £s given by
1.3 1 m - 1 (10)
rl L R UM O3

and the copstant C depends only on N.m,j.p.q and k.

oroof of Theorem 3.5. (continuation). Since the zero extension operator
maps WT’p(G) into wm’p(RN) and commutes with D% ,|a| €m , we apply
the Lemma 3.6 on half-spaces and thus the constants are independent of G.

So we abtain (1‘9i)
' (1)
s 1/p +5/P -3 =] q+
n m-i, M P i (t-t )m 1!ulq dx]
I {tg)s C If (t-tg)" '|D uj"dx] (f 0
m to) izljﬁtn >t
i 1
1 m-1 | R | ey L (11)
il e i B T )+ (1-05) %

Applying the inequality

We set A; = 1/p' + 8;/p + (1-04)/{a+l)
A we obtain

AaBb £ C(A+B)a+b and computing expiicitly A; through (11)
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m A
(t) €€ T L (t) - (12)

i=1

A1 =1 + i/(Ntm-1+o(g+l)) with o = pn/(p-g-1)} (13)

and the constant € of {(10) depends only on N,m,p,q. Note that o > 0
and Ay > 1. Since I = -sI. {12) is an ordinary differential
tnequality for which we shall prove later (see Lemma 3.8) that necessarily
Im(t) must be with compact support [0,al,

acc Ip(0) I/ (Molarl)) o = pn/(p-g-1) ,

where the constant C depends only on N,m.p,q. S0, supp u is included
in the half-space {t ¢ a}. Again by the result of Brezis-Browder [ 2 1,

<flu},u> 6= IG uf{uldx.

Since the integrals defining I,(0) are performed on a subset of G,
setting v = u 9in (4) aod using {2) and Young's inequality, we obtain

1,00} < C(p,q)|| F| ;

-m,P'CRN) ) (14)

Considering half-spaces orthogonal to the coordinate axes, it is clear
that supp u is bounded independently of G.n

In order te give the proof of Lemma 3.6, we first recall the Nirenberg's
interpolation inequalities
. . g+l N m Pl )
Lemma 3.7. (Nirenberg [41). Lef uwEL (R+) and D'y € L (R+), 0<7g,
l<p<ew Then for. 0 < j<m we have

j m oy 8 1-8
Il D%ull g & CHF Ol Il ull ooy

whese

EaB}

3 1 m 1
N+ ELP'N)+(‘1_B)W
for all 9 in the interval j/m <8 g 1 and fhe constant C depends only
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on N,m,j,p.q and 8. ‘
Proof of Lemma 3.6. Since we suppose k integer, a very simple proof can

be given using a device of Adams [ 1 1. We argue by induction on k. For
k=0 it is true by the former lemma. Suppose it is true for k. Con-

sider

= ((x,2) RV 2 x e'RE ,0<z<th, uk(x,z) =ulx}) in T

The domain T can be mapped onto a product domain by a nonsingular linear
transformation for which the lemma remains true (see Nirenberg g i1).
Therefore, by the induction hypothesis {9),{10) hold with u, R_ . and N
replaced by u* ,1 and N+1+ 5o in (10) we have N + k + 1 instead of
N + k . We conclude the proof by taking into account that

+
f tk[u*1q+1 dx dz = | Ntkﬂlu]q Lix
it R
and the analogous relations for the derivatives.u

Now we turn to the consideration of ordinary differential inequalities
as glven in  (12) for the proof 1f Theorem 3.5. So we are interested
in the study of the behaviour of nonoscillatory solutions of the general

differential inequality
A m . A
lz{t)] " < B ¥ 12T foralt £ 0 (15)
i=1
where B,AD,...,Am are arbitrary positive numbers. We associate to (15)

a new set of exponents yu, defined as follows:

1.1 m, 1 1 (16)
v T m?x 7 AT R )

i:il+m:-i——]-'— , 1= 0,1,...,m, (17)
u; M m Ap

Therefore I T Am JHo = Ao . and Pl 0 . The exponent u is the
greatest number such that the uy defined by (17) satisfy
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uy € Ai for 1 =0,1,...,m.
We also note that

< . ‘
Ao S u if and only if A, § min {Ays.. oA}

13 o0
Lemma.3.8: Aféume zet (R+) n L CR+) smx=1, z(m) is a monotone
function {n R, and z satisfy (15). Then
e e KM
I« Kjzv(t) " for ate t>0 (18)

whe&e W A48 given by (16] and ithe constant K depends only on m,Aqg,.) A
B m . m-1 . o
and only on |z (0} 4§ —ﬁr-hi< o for i o= 1.,,.m-1. Finally, Lif

Ao <u Zhen z has compact support [0,a] and

a < C]Z(m)(O)ll/(T~m) T = mu/(p-Ag) (19)

where C 48 a positive copstant depending only on m,Ao,u and K.

Proof. The hypotheses imply that for 05 i g m, z(i)(t) +0 as t+w
and that z'(t) s monotone and has constant sign in R, . (If not, z
would be unbounded). Therefore, '

2y oy
L (_t :°°)

Thus by L~ interpolation {(for half-lines)
128 ()1 g™ )M g gey T (20)
Since up €A from (20)

ARy

Y ' . .
D e Do T D) kD wt (a

where Ki depends only on LIV SRR W |Zm(D)|-and 12(0)].
Moreover
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L m-i
PRUTHTS SPLIGIL Mz T

1]

. ; X,
£ C[(1/1—:)q1lzm(t)|u + €q1 lzm(t)l 1, (22)

where we have used Young's inequality and the definition of ;. setting

m-1 i
m Ap

=

Ky

1

1
3 q-li

5;._1.

1
Y95

Inserting (22) and (21) in (15) and choosing e cmall enough we obtain (18).
Note that setting t=0 in (15} and (20) we obtain

m j_)\ E.]:i)\_

O PR Ea C L ET T
i1

which implies (e.g., by Young's inequality) that 12(0)] can be bounded
in terms of Iz(m)(O)[ if E%l. A < Ag For i = 1,...,m-1, in which case
the constant K 1in (18} depends on ]zm(O)& but not on |z(0}].
Finally, from (20),(1B),
B T-mtl

MoogMg M

m-l
m

ElL

PRI c|i(m)(t)|

with T given in (19). Then, if o<y integrating this first order dif-
ferential inequality (for z(m"l) # 0) we obtain that z(m—l has com-
pact support. The proof is compieted by successive integrations between t
and » (recall that z(i)(t) +~0 as t-~ w)‘D

Remark 3.6. The asymptotic behaviour of nonoscililatory solutions of gen-
eral classes of higher order ordinary differential eguations has been
studied in Kiguradze [ 1 1, [ 2 land canturia [ 1 1. The proof of Lemma

3.6 is due to Bernis [ 3 l(see diso Bernis [ 4 Ifor additional results).

The above treatment can also be applied to many other situations we

shall mention in the following remarks.
Remark 3.7. By adapting Brezis-Browder's result it is also possible
to consider the case of nonhomogeneous Birichlet data. The proof of Theorem

3.5 yields the following result: " Let @ be an unbounded open set of 1
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with compant boundany. Set

h(s) = sup  ff(t}].
Is|<|tl
Let © € WP(Q) such that oh(e)e L'(R). Assume (2) and (3). Then
there exists u such that u - 9 € NT’p(ﬂ),_f(u) € LY Q). (1) hokds on
pH{Rj and u has compact support”. It is also possible to consider equa-
tions involving intermediate derivatives and variable coefficients such as

ahen (-1 bl o [aa(x)lDuu|p°2 %] + Flu) = g

(see Bernis [ 3 1). A different proof of Theorem 3.5 and the above results
valid only for p = 2 was given in Bernis [ 2 I

Remark 3.8. When f 1is assumed to be non-decreasing, the solutions of
(1) realize the minimum of the functional

Min %- . %
WhPy T R [plm

(note that, in this case, there is a unique solution of (1)). This is the
situation if, for instance,

lDaulpdx + IRN Flu)dx - [RNgudx (F'=F)(22)

f - q-1 _ 1 +1

(r) = [r]9r . q>0. (F(r)—qulrlq ). (23)
The minimization problem (22) corresponding to the case q=0, leads to
the multivalued equation

m -2 .
(-1) ]u§=m D“(|Ddu|p %) + signu 3 g. {24)

Equation (24) appears in several different contexts and has been largely
considered in the particular case of the one-dimensional semilinear
fourth-order equation N=1, p=2 and m=4 (Berkovitz-Pollard [ 1 71,
Redheffer [ 1 1, Hestenes—Redheffer [1 ], Bernis {1 ], [2 ] and Brunousky-
Mallet-Paret [{ 1), or in the same case but for spherically symmetric
solutions in R (Bidaut-veron (11,02 1)._
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Remark 3.9. A careful review of the proof of lemmas 3.6. and 3.8, as

well as of the proof of Theorem 3.5, shows that it is also possible to

consider the case in which -1 <gq <@0. That is: there exists at least

one U € wm’pCRN) n Lq+1(RN) minimizing the functional

1

Mim P IRN la)%:m

{0%ulPax + op 1y Ju Thax - IRNgu

gtl

and with compact support in B , assumed -1 <g<p~1. (See Bernis [2 ]

and [ 31).,

Remark 3.10. The above energy method also gives information on the behav-
sour of the solution of (1) , even if the assumption g <p - 1 does

not hold (Bernis [ 4 ]).':l

3.3, BIBLIOGRAPHICAL NOTES

Section 3.1. The first author to introduce an energy method to study the
existence of the free boundary F(u) was Antoncev [11., [2], who applied

a global energy method for a class of second order degenerate parabolic
equations., Later, a Pocal energy method was used by Diaz-Veron [2], [3]
(the results given in Subsection 3.1a) to study general quasilinear
elliptic equations such as (1}, as well as its parabolic version. He
mention that in Antoncev [2] a second order elliptic equation is alse
considered, but its formulation is completely different from equation

(1) and the energy function is also different from that given in (9).

Section 3.2. The existence of the free boundary F{u) for problems of
order 4 and in dimension 1 was first established when proving the compact-
ness of the support of the solution (see Berkovitz-Pollard [1], Redheffer
[1], and Hestenes-Redheffer (1], Bernis [11, [2] and Brunovsky-Mallet-
paret [11). The case of radially symmetric solutions was considered by

Bidaut-vYeron [1]1, [21.

The compactness of the support for nonlinear equations of arbitrary order -

in dimension N was first proved by Bernis [2], using an energy method.
Further improvements to this method were given in Bernis [3l, [(4]. The
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exposition made here follows Bernis [3].

We remark that the results of this chapter also apply to the obstacle
problem as well as to equations with a singular term such as, for instance,
that studied in Section 2.3.

Energy methods have also been applied to elliptic-parabolic systems by
Antoncev [3].
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4 The general theory for second order
nonlinear elliptic equations:
a particular overview

The main objective of this chapter is to review some existence, unigqueness,
comparison ahd regularity results for a class of second order nonlinear
elliptic equations which contains the quasilinear model equation of Chapter
1, as well as a large part of the variants considered in Chapters 2 and 3.
The main aim of this survey is to complete the information on the problens
considered in previous chapters and it is far from being an exhaustive sur-
vey of the theory of second order elliptic equations. Thus, results are
sometimes discussed in relation to equations that we are already using,
rather than in terms of their most general application.

Section 4.1 deals with the case in which the solutions are sought in an
energy space associated, in a natural way, with the equation. We first
collect some results in the sp1r1t of the calculus of variations, giving
later their general or abstract formulation, which leads to the consider-
ation of monotone operators and their generalizations. Some regu]ar1ty
results are reviewed, emphasizing the L “_estimates, of special interest in
earlier chapters. This is alsothe case of some comparison results that are
given here. We also comment briefly on some existence methods via the
existence of super and subsolutions,

Finally, Section 4.2 is devoted to the case in which the right-hand term
of the equation is not in the dual of the energy space. We first consider
the case of semilinear equations in L1 and other spaces, and follow with
some abstract results which, formulated in terms of accretive operators,
allow the consideration of quasi1ineér equations.
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4.1. SOLUTIONS IN THE ENERGY SPACE

4.1a. Some first existence results via minimization of functionals

In this section we shall review some first existence results for the
Dirichlet problem

- div AlLULTE) + FOGU) = g{x)  in Q (1)
uz=h on 1Y)

The question of the existence of solutions of partial differential
equations with prescribed values on the boundary of the region was the
twentieth of the prophetic problems included by Hilbert in his famous 1ist
of the most important mathematical questions of his time. After Hilbert's
selection in 1900, this subject has burst into flower throughout our cen-
tury and has been the starting point of many new branches of Mathematics.
Many deep answers to this question have been given by numerous authors
by developing the Calculus of Variations and have also answered othér re-
lated crucial problems in Hilbert's list : the ftwenty-third and the nine-
teenth. In this context, the main idea to solve (1),(2) is to understand
the equation as the Euler-lLagrange equation associated with the minimiza-
tion ,in a set of admissible functions, of the integral

JHu) = [ Flx,u,vu) dx (3)
Q ‘
for some suitable function F. Indead, roughly speaking, if u belongs
to a set Kh of smooth enough functions defined on @ , satisfying u=h
on 3¢ , and if u minimizes J on Ky, » then

Ju) ¢ J{u + tg)

for all t €R and every ¢ € K¢, i.8, £ =0 on 3Q. So, the function
®(t) = J{u + tr) 1is such that &(0) ¢ &(t) ¥teR , and @ has a
minimum at t=0, whence &'(0) = 0 which, by differentiation, gives
that the first variation of J at u vanishes, i.e.

BF 3 3 gy = ) .
181 9Py 9% N zldx 3d{ul{c) = 0 (4)

£~ 22

Tl
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for every [ € K,. That is, the function
salution of the Euler-Lagrange eguation

N .
p) aF aF
- izl ax, (———Bpi {x,u,vu}}) + 30 (X,

Refore other remarks, we note that, oby
with {5) if we set

aF
A(.X:u:p) = (_““;I% (.Xausp).s:-a: ""’E’ (.X

Flx,u) - g{x) = %E~(x,u,p).

u can be understood as a weak

,yu} = 0. (5)

ously, equation (1) cofncides

LU,p)) (6)
(7}

In this way, eguation (1} is more general fthan (5) since the A's for

a variational problem would satisfy (6) &
must satisfy

5%;- Aj(x,u,p) = 5%3 Ai(x,u,p)
iF AlX,u,p) = (Ai(x,u=p)), i=1,...,N,

We have found weak solutions of {5) as
functions for which the first variatioen of
ral question is to study which of these pc
for instance, J is of class C* and u €
functions of class C! and with prescribe

2
A2 w30
dt? t=0
for all ¢ eCi(@). From here, it is ea

u must satisfy

N 2%F

BpiapJ (XD :U(Xu)NU(xo))E_i

i,3=1
If (8) is satisfied with the strict inequ
reguiar elliptic. This 1s equivalent to
respect to p as well as to the strong @

£

nd hence, if they are regular,

stationary points of dJ {i.e.
J 1is zero) and then a natu-

ints are extremals of dJ. If,
1(q) minimizes J among all

| boundary value, then

sy to see that, for each Xp el ,

: N
§20 ¥E=(Er gy €X' (8)

ality,the functional J fs called
the convexity of F(x,u,p} with

11ipticity of Euler-Lagrange
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equation (5) (see Morrey [ | 1). However, this condition is not suffi= L) F 44 coercdve in the sense Zhat, fon insiance, F. satisgies (9.

cient, in general, to assune that a stationary point u 15 a mimimum : Finally, fet X be a class of functions U € Wl’p(ﬂ) which 4 closed
point (the answer is positive if F does not depend on u) with nespect fo the weak convergence £n wl’P(n) and .n which the gheatest
The existence of a minimum point for J can be proved by using the Zower bound of J(u) 4s ginite, Then J(u) takes on .LEs minimum Ln K -q

so called direct methods n the Caleulus of Variations. Roughly speaking,
the main idea is to show tHat:

The proof of the above theorem is based in the lower-semicontinuity with
respect to the weak convergence in wl’p(ﬂl of J , which is derived from

i} the-intagral to be mipnimized is bounded from below {in the class of hypotheses i) and i3). Today, the literature on the lower-semicontinuity
admissible functions), so that the infimum and, therefore, a mini- of functionals like J s very broad. For instance, it was proved in
mizing sequence, exists; Ball[ 1 Jand Marcellini-Sbordone {- 1 Jthat the convexity of F(-,*,E) fis

{ 11) the functional J(u} | is lower-semicontinuous (1.s.c) with respect a necessary condition for J to be 1,s.c. {A general exposition is made,
: 3 to a suitable notjon of convergence in the class of admissible func- e.g, in Giaquinta [ 1 1),

¢ tions; Rather than giving here a detailed proof of Theorem 1.1, we shall pres-
: @QE ii1) a‘minimfzing sequence| converges with respect to an admissible func- ent a particular result, of the same natute , but including some other

g ﬁﬁi tion u. situations which have appeared in previous Chapters : the case of Q@ un-

: @ﬁi Perhaps the simplest statement in this context is the Weierstrass theorem, bounded and the case in which Flx,u,g) , for (x.£) fixed, is neither

differentiable nor convex in u. As a model of the equation (1) we shall

which asserts that if X 1is a separable topological space , J:X +{-=,+ =]
consider the particular equation

is an ({l.s.c} functional |, J ¢ + =, and if K 1is a compact subset of

et

’ @% X 5 then there extsts a minimum point for J in x . In any case, direct - A+ Flou) = glx) on a , (10)
"ﬁﬁ methods. were also used by Riemann, Hilbert, Lebesgue and,especially To- P
X neili, In the works of these autfors, a crucial point was to introduce - where p> 1, Ap is the pseudo-Laplacian operator defined in the Intro-
) il the adequate notfom of convergence in the class of admissible functions. duction, and o is an open set of R' not necessarily bounded. About
) ﬁﬁ Tonell? was able to deal onjy with integral functions of the type the term F{x,u) we shall assume that its primitive function
) P u
% FOtouE) = Cle]" - w(x) . p>1,C>0,y¢€l@) {(2) Jlxsu) = J’o f{x,rldr
L . | -
i,ﬁﬁé in t?e particulaf case of l =2 by working in the class of absolutely is such that
ﬁ,%ﬁﬁ continuous functions with the uniform convergence. Later, around 1930, . o) ble 1 d 1 d
i'ﬁﬁq Morrey completed this prggram by using some function classes of the type i@ x R+ [0,4=) is measurable in x an -S-con uan
}ﬁﬁg of the Sobolev spaces W °P(2) and proving, in particular, existence aq>-1 and Cy >0 such that CliU|Q+l ¢ j(x,u) a.e. x and H(11)
1@53 results such as the following : VYu € R.
oo Theorem 4.1. let Q be an &pen boudded set with smeoth boundary. Suppose
that S0, we are interested in minimizing the functional
i Flx,u.g) 44 measunable in % for all (u,£), contimuows in u : J(u) = 1 fvujPdx + § JlxoulxDdx - [ gu dx. (12)
and £ for a.e. x |and convex {in E for a.e. X and all u. P Tq f Q
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In order to study the Dirichlet probiem (10),(2) , the set of admissible
functions on which dJ will be minimized depends on the boundedness or
unboundedness of € , as well as on the values of p and q. For instance,
when © is bounded, a choice of such a set including the boundary condi-
tion (2) is

K= 1{uelia): (u-he wﬁ’P(ﬂ) and j(x,u) € L*{q)} .

This choice determines some natural assumptions on g and h in order
to apply the direct methods. So, we will assume

N 93g,

9=90+.Z !

i1 ¥y

9o.9; € P (o). (13)

i
That is, g € P (), the dual of N%’p(ﬂ) . To ensure that J 1s
finite on X , it is enough to assume

hewoPla)

J(-.h(-)) e Li(al. (14)
The case of R unbounded is somewhat different because the condition

(u - h)e LP{a) {is too restrictive. Nevertheless, if 0 <ge¢p -1

then conditions j(-,u(-)}e L{@) and (11} with €; > 0 show that
ue Lq+l(m) and we can still work with the topology of wl’P(n) be-
cause this space coincides with Nl’p(Q) n Lq+l(ﬂ) and both topologies
are equivalent. We shall refer later to the case q > (p - 1).

Theorem 4.2. (a) Assume 9 bounded, p > 1 ,{I1},(13] and {14}. Then
there exists at Reast u € K minimizing 3 on K .(b) For Q unbounded,
the same conclusion {4 tnue if, 4n addition, Cy >0 ,q&p -1 and h
has compact  support.

Proof. We shall only prove part b). STight modifications allow us to
conclude part a). Let M be the infimum of J in x and {u } a mini-
mizing sequence. Then, by the assumptions on q and g, fQ[V%lp dx

is bounded and so, there is some constant C independent of n such that

flvu [Pax € €, f GlougG)dx s € and J o | Fhdee e,
2 Q Q

Therefore, if v, =u_ - h

n n
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f |\7vn|p dx ¢ C  and I !anq+1 dx g C.
Q Y :

Let v denote the zero extension of v outside @ . It is well-known

s
o
P
P

R

that the operator v + v is an isometric embedding from N%’p(ﬁ)into Nl’pﬂﬁ)*ﬁ

(see Adams [ 1 1). On the other hand, due to the assumption g < p -1

the norm

Ikl = 1]l ey * Ty (15)
1,puq qtl 351 . lp

is equivalent to the usual norm of wl’pCRN) ,a5 we can deduce from the
Nirenberg-Gagliardo inequalities (see e.g. Lemma 3.7). Since w%’P(n) is
reflexive, there is a subsequence {which we still label {vn}) and a func-
tion v € w%’P(Q) such that an + ¥y weakly in LP and Vn + vV  weakly
in wl’p(RN). Given a ball B c:RN , the Rellich's compact embedding
theorem impiies the existence of a new subsequence of {Gn} which converges
strongly in LDCB) to v . A new extraction gives a subsequence which

N by an increasing sequence of

converges a.e. to v in B. Covering R
balls, by diagonal extraction we obtain a subsequence {Gn} which converges

a.e. to ¥ in RN and therefore a.e. in Q. In conclusion,
un(x) = vn(x) + h{x) + ulx) = v(x) + h(x} a.e. x in Q.

Finally, (u-h) € w%’P(n) and j{x,u) € L*{Q) by the Tower semi-conti-
nuity of j(x,+) and Fatou's lemma. Using the T.s.c. of Jj and the LP-
neym, the LP;Weak convergence of Vun to Yu and Fatou's lemma again, we

obtain that J{u) £ M that implies J{u) = M.,

Remark 4.1. If gq>p -1 and § is unbounded,an existence theorem in
wl’p(n) cannot be obtained. Indeed, the natural set of admissible func-
tions s

yHatlPy = fu e L) we Py (16)

with the topology induced by the norm ||| « ||, p\q given in (15). When
g >p-1 this norm is not equivalent to that of the space wl’p(Q) and
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g
B
~2 L . 1,q+l,p .
g the minimum of J wmust be looked for in V (2). Again, the bound-

: @ﬁ ary condition holds by asking {(u - h) € V%,q+1,p(n) . where V%’q+1’p(ﬂ)
> ﬁﬁ is the closure of CT(H) in V19 1sP(g) . The existence result in such
: g a space is an easy modification of the above prom‘.c|

i A careful revision of the above proof shows that much more general
‘ p statements are possible. For instance, concerning the general formulation

e in equat10n {1), if we assume A independent of u and such that

U o, o TS / f

’ b Tone A(X ) C ! - ) I l C 0 € Ll(ﬂ) ( )
‘q uxw Dﬂh K 'E 2 J(X » D > » > ? 3 17
; Hr ’kf‘(: 1;9) LPJ&Y') f320\\ E ! IE l ! Ip

_Eﬁﬁ"""ﬁ
o and f{x,u) such that its primitive in u, j(x,u), satisfies (11}, then

we can find u € wl’p(n) minimizing the functional J given by (3) for
the choice

Fx,u8) = Folx,8) + ix,u) - gelx)u - g;{x)E; (18)
where F, is some function which is assumed to exist, such that

AGGE) = (Bt (xeEds e gt L)) | (19)
We also assume 5 bounded or g € p - 1 , applying, otherwise, the con-
siderations made in Remark 4.1. Nevertheless, in some important cases,
the coercivify assumption (17) is not satisfied. This happens for the
equation of (non parametric) surfaces with prescribed mean curvature

Ux .

N
-] 5 et k) = 0. (20)
SN2

This is also the case of many other equations; for instance. for the equa-

tion
(o o Ln(+|w))
{ m% - div { BRI u) + f(x,u) = 0
8
“‘%ﬁ in which the corresponding Fo satisfying (19) is given by Fo(E) =£Ln{1+E).
mﬁ More generally, if we assume that there exists a convex function a(t) ,
‘ @i for t € R, such that
i 244

50 if E+ 0, EER ’ (21)
and

A'i(‘x’u’g'i)gi 2 a('&!) s (22)

o1z
Py

i
then the direct methods can be applied on the Orlicz-Sobolev spaces
wl’a(ﬂ) instead of on the space Nl’p(n). To introduce such an approach,
assume that in (22) we have equality. In this case, eguation (1) is
the Euler-Lagrange equation of the minimum of J given by

Jvu| a{s) u ‘
u) = f{ f Sosds [ flx,t)dt - J gudx }dx, (23)
0 e 0 "]

that is, (1) takes the form

v (AU gy b of(x,u) = glx) (24)
[vul®
which coincides with equation (10) for the particular choice a(t) = tP,
We shall not give here the existence theorem {simitar to Theorems4.l and
4.2) on such spaces; however, to point out in which way such a result
would be adapted to the new setting, we recail the main definitions: The
Orlicz-space L3(q) is defined as follows;

13() = {f : @ > R measurable: 3\ such that | a(|fgf) [)dx < w} .

Q

L%(Q) is a Banach space with the norm

IFll =dnf X >0:[ al lf%ll-lm)dx < 1i}.
Q

Finally, the Orlicz-Sobolev space wl’a(g) is defined by

whd(n) = ue L3 : g%i- € L3(n) for every i =1,...,01

with its natural norm. Note that if alt) = t?  then W = wl’p, the
usual Sobolev space. Existence results in Orlicz-Sobolev spaces are due
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to many authors such as Vishik, Donaldson, Gossez, Gossez-Hess, Fougeres,
vaudene etc. (see e.g. Gossez [ 1 1 and its bibliography). An alternative
to avoid the use of such spaces when assumption (17) fails can be found,
for instance, in Attouch-Damlamian [ 1 1. but many others authors have

also considered non-coercive problems (see Bajocchi et al. [11). Note thatin
Remark 1.2 equation (24) is formulated in other different way._

Remark 4.3. There are still other directions in which theorems 4.1 and 4.2
can be generalized. On the one hand, with slight changes in the proof it
can be applied to higher order problems, working in the Sobolev spaces

‘W™P(a) (see e.g Giaquinta [ 1]and Bernis [ 2]). On the other hand,

assumption {11) is often only needed in a neighbourhood of the origin.
This is the case of equation (10) with f satisfying (11) for some q > 0.
(See Benilan-Brezis-Crandali[ 1 1 and Bidaut-Veron [2 1)._

Now we return to the problem of solving the boundary value problem (1),
(2). As we have pointed out, for the special convex set X = X, any
stationary point on X of the functional J given by (3),(6) and {7) is a
weak solution of (1) assumed J to be of class C'. Nevertheless this
last condition is gquite strong, and it is enough to let J be differentiable
in Nl’p(g). Any case, it is clear that some control on the growth of the
functions Fu(x,u,g) and F 1_(x,u,E) is needed in order to give a meaning
to the integrals which appear in formula (4).

It is not difficult to show that ifu is a statiomary point of J,

u efec wi'p(n) , and X satisfies that

u+tvekr forevery vecCj(a) and t e [-1,11, (25]

then some sufficient conditions assuring the differentiability of J in
wl’p(a) are the following.

24
|F,(xuaE)| € ulbalx) + Ju] + |€|q+l 1,
(a#1)(p-1) (262)
[P o) € utial) + Jul P+ 1lP

if 1<p<N ,and
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JF (ausE) ] & ul[u]dlysx) + [P 1,
(26 b)

[Fpgausgl | & wClul) L)+ [g7

if p>N, ghere g+ 1= ﬁ?% and q {s an arbitrary number if p = N.
Here, the functions y..y» and 3 belong to the space L(q+l)/q(ﬂ) s
Lp/(p—l)(ﬂ) and L(Q) respectively and p is a positive constant or
some continuous non-negative functien respectively. Moreover, under these
assumptions ,(4) holds for every ¢ € N%’p(n). (See Ladyzhenskaya-Uraltseva
[ 1 1.

In many important applications, the class of functions K where the

minimum point of J 4s found does not satisfy (25) and it is assumed
to be merely a closed convex set. A special example of this class of pro-
blems, called generally variational Inequalities, is the obatacle problem FM
considered in Section 2.2, which corresponds to the choice o
. . .
K:{vewl’p(,m tv=h ond ,vzy on o} o

for some given function 1 . (Many other examples can be found, for in-
stance , in the books, Bajocchi-Capelo [1 1, Bensoussan-Lions[ 1 ],Duvaut-
Lions [11, E1liot-Ockendon [ 1], Friedman [3 ] and Kinderlehrer - .

Stampacchia [2]. How we only have that
J(u) ¢ d(u + t{v - u}) -

for all t e [0,1] and v € K. Assumed {26) , this is equivalent to saying -
that u satisfies e
N oF 3(v-u) , oF
J Iy - (xau,tu) “So—5+ 25 (Gu,Vu{v-u)1dx 20 ¥ vex A27) -

o i1 3P4 Xy au
Nevertheless, in some sfdtuations the integrand F(x,u,g} is not differ- p
entiable and another characterization of u 15 needed. For instance, this .
is the case of the functional J given by (12} when gq €(-1,0] . In that .
case, it is easy to see that any minimum point u of J on a convex set ;;

e
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K of wl’p(ﬂ)(for {nstance, that associated to the Dirichlet boundary
conditions) satisfies

f ;vulp'2 gu - v{v-uldx + [ {3(x,v)-J(x,u)ldx » <g , v-u > (28}
f 1Y)

for every Vv € K,

To end this subsection, we remark that the differentiability of J
has also been considered in the class of Orlicz-Sobolev spaces wl’a(ﬂ)
(see e.g. Fucik-Kufner [ 11 and Landes [ 1 ]for a different approach).

4.1b. Some extensions of variational problems: Monotone operators and its
generalizations

It is easy to see that if A satisfies

I Gue] & GO P e ), g et ), 6> 0
(or more generally under(8),(7) and (26)),then the formal operator
Au = - div A(x,u,vu) {29)

determines a continuous operator fraom wl’PLn) into its dual (wl’p(n))'
by means of

< Au,g > = f A(x.u,Vu)- vrdx
Q

for every U.f € wl’p(n). So the Dirichlet problem (1},{2) leads to the
abstract formulation

Au + f(-,u) =g din V' ' - (30)

uUEK ‘ (31)

where V 1is the Banach space V¥ = w1=P(n) and X dis the affine sub-

space

K=h+w%’p(n)={uewl’pm) :u=h on 20} .
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When we study the abstract problem (30),(31) we can also obtain existence
results for the Dirichlet problem (1),(2) and even without the symmetry
restriction assumed in subsection 4.la. There exists a long bibliography
about this type of problems. The abstract operator is usually assumed to
satisfy some kind of monotonicity condition that already appears derived
from the convexity of the functianal F in (3), when (1) is the associa-
ted Euler-Lagrange equation.

Definition 4.1. Llet V be a Banach apace of dual V'. An operator

A: YV > V'is called monotone L

<AU - AV ,u-v> , >0
Vv

for every U, v € V.

It is easy to see that the operator A given by {29} is a monotone oper-
ator on the space V = W%’p(ﬂ) if, for instance, A, = A;(x,£), fi.e.,
independent of u , and

N _ _
'izl (Ai(X,E) - P\.I(_X,E)}(E] - 51} x>0

a.e. xeq , for every £, £ E'RN. In order to study more general situ-
ations, several classes of operators for which (30) (31) can be solved have
beenintroduced by different authors, namely Leray-Lions, Browder and

Brezis (see, e.g., the exposition by J.L. Lions [1] and its bibliography).
Among these classes of operators, known as “operators of the Calculus of
Variations", "semi monotones","of type M " and "pseudo-monotones", the
last , introduced by Brezis [ 1 1, seems to be the most useful. Its

exact definition abstracts the main properties required by A in order

to solve the abstract equation (30).

Definition 4.2. An operator A V' + V' L8 called pseudo-monotone £

for. eveny uy such that uj >y An ¥V weakly and 1im sup .<:Auj,uj—u> <0
then 11im 1nf<<Auj, uj—v > 3 < AULU-Y > Yv € V.

Important examples of such pseudo-monotone operators are provided by the

bounded, hemicontinuous monotone operators and, more in general, by the
operators of the Calculus of Variations (see J.L. Lions [1Jand, forthe case
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of unbounded domains, Browder [2 1). In particular, the operator A

given in (29) is an operator of the calculus of Variations (and, thus ,

1,
pseudomonotone) assuming @ bounded V = K = W P(a), (23) and

(Ao (xu,E) - Al e (Ey - £5) > O (32)

1

In fact, it turns out that assumption (32) ja a necessary condition for
the operator A to be pseudomonotone (Boccardo-Dacorogna [ 1 1

The following existence result is due to Brezis-Browder [ 2 1,
Theorem 4.3 Let Q be an aibifnary open stbset of ®. Lot Fx,u):0x R+R
be a Caratheodohy function (L.e. measwrabbe on X and continuous on Ul

such that

Hr—1=2

i

ys > 0 , sup |F(x.u)] ¢ o (x) € L'(a) (33)
|u]ss
flx,ulu » 0 a.e. Xx€Q and Yu € R. (34)

Let A: wT’p(ﬂ) + w—m,p'(ﬂ) be a paseudomonoione operaton which maps
bounded sets {nto bounded sets and which s coercive fn the sense that

.1 PV (35)

Tim
Hullyrg Tl
Then, fon every ¢ € W'm’p!(ﬂ) there exists ¢ U € WT’p(n) such that
£x,u)endf(x,ulu € LY@}, and

<hu,v> + [ F{x,ulv dx =<g,v> (36)
Q .

for every V€ WT’DLQ) nL7(Q) and v = UL

A sufficient condition in order that (35) holds for the particular A

given in (29) is

N
T AGousEdg; > © JElP - wld, petilal . C> 0 (38)
i=1

{compare this with (9)) -
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There is also an abstract formulation of variational inequalities suchas
for instance, (27) in terms of

<hu+ F(Xou)mgay-u>yy 20 WoE K (39)

u€ekK (40)

where A s a pseudomonotone operator and K is a closed convex set of
v (Brezis [ 1 1). For the special case of A given by (29), f satisfying
(33) and (34) , and kK = {v € W%’p(ﬂ) nLe) :vay a.e. onQl}, an
existence result was given in Boccardo-Giachetti [ 1 ] (see also their
references). .

With respect to variational inequalities with non-differentiable terms,
as {28),we also remark that again the second order differential operator
may be substituted by another more general generating a pseudo-monotone

operator in V¥ = W P(n) ,m>1 (seed.L. Lions [1] and Bidaut-Veron [21).

An important question associated with the above variational inequalities
is to try to find an equation, and not only an inequation, characterizing
the solution. To undertake this question we shall restrict ourselves
to the inequation {28) and, as a first step , we reformulate it in the
following way

fﬂlvulp°2VU'V(-V"U)dX+JhLV—h)—JhLu—h)a<g,v—u> el oPa) +{n}, (41)

u - heuPa), (42)
where the functional Jh is defined by

[ ilvide if 0 Jlxv) € LH(Q)
3p(v) = dalvh) 5 Jolv) = {F (43)
+ oo otherwise .

We note that J, is a convex, l.s.c, functional on Lp(n) (Brezis [ 4 1)
and so the restriction of J on w§=P(g) has the same properties.
The second step in this program is to recall the notion of subdifferential

of a convex 1.s.c functional on a Banach space. This leads to the con-
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sideration of eventually mutivalued operators, and we shall take advantage
of this opportunity to present some abstract results of interest in
existence theory.

Definition 4.3. Let V be a Banach space of dual V' and Let J be a con-

vex, £.5.¢. function of V on (-e,tw], J § +w. We call subdifferential
of J the leventually mubtivafued} operatorn — dJd : p(ad) - p(V') given by

]

ad{u) = {we V' : d{v) - Hu) = CHY-U>y iy Yv eV},

where

1

D(ad) fueV: aJ{u) #81 , (4 = the empty set).

It is not difficult to see (e.g. Barbu [1 1} that the set 3d(u} 1is in
fact single-valued when J s Gateaux-differentiable at u. However,
there are frequent examples in which 83 is a multivalued operator. For
instance, this is the case of V=T and J =] , as in the following
two examples:

Example 4.1. Let j be given by

ilr) = 0 if rg0 , Jlr)= f | if r> 0.
Then

aj(r) = {0} if r<0 , 92i(0) =1([0,11 and 3j{r) = {1},if r>0.
Example 4.2. let j : R~ (-=,+=] be given by

jlr) = +w if  r<0 L ilr)=0 if rx0.
Then

2j(r) = ¢ (the empty set) if r<0,35(0)=(-=,0] and 3j(r)={0} if r>0.

As in the Gateaux-differentiable case, the operater 3J has some kind
of monotonicity property derived from the convexity of J. To explain
this we need to extend the notion of monotone operator given in Definition
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4.1. to the class of eventually multivalued operators.
Definition 4.4. let V be a Banach space of dual V', An operator
A DAY= Vv PV') s called monotone Lf

<v-y ,u-u>%0 fox every u,u € D(A),v € Au and v € Ad.

1§, in addition, there L& no monotone operator B on V such that Ac<B
in the sense of graphs, then A s called maximal monofone on v {ox,
sometimes, maximaf monotone ghaph of V x V').

It turns out that any subdifferential operator is a maximal monotone
operator. On the other hand, introducing the duality map dJ:V -+ P{V")
given by Ju = {ve V' :||v]l = |lull}, or equivalently J = 3%— -l[%
then, at least for reflexive Banach spaces V , it is possible to character-

ize the maximal monotone operators by means of all the monotone operators
satisfying the range condition

R{(J+ AA) = V' , for every A > 0. (44)

Note that if V = H is an Hilbert space, then J {s the identity and
(44) becomes R{I + AR) = H. We shall go back to other range conditions
in Section 4.2. (Concerning the theory of maximal monotone operators, we

refer to the books Brezis [ 6 1, Browder[ 1 Jand Pascali-Sburlan [ 1 1).
The special class of maximal monotone operators on V =R (or maximal

monotone graphs of R* , m.m.g, in an abbreviated way} turns out to be very
useful in the treatment of nonlinear PDE's with discontinuous nonlinear-
ities , as well as for Varjational Inequalities. It can be easily shown
that any m.m.g. B of R* is the subdifferential of some convex 1.s.c.
funtion j : R »+ (~w,+ =], j ¥ +=, and, in fact, the following charac-
terization holds;,

Proposition 4.4. let B be a ghaph of RE. Then: B s a m.m.g £f and
onby if there exists o nondecrheasing hread function b such That

B(r)
g(r)

[b{r-).b(r+)1 .4 —-w< blr-) ¢ b(r+) < + =
(-eab{r+}] 4§ - = =b(r-) < blr+) < + =

fr

and
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8(r) = [blr-),+=) -w< b(re) < blrt) =+
Given a maximal monotone operator A on a Banach space‘ V, sometimes

it is useful to assign to A some single valued operators {called sections
of A). When V is reflexive the most important section is the so- -called
principal section of A , which is denoted by A° and is obtained in the
following way: Yu € D{A] , A°u = element of the set Au of minimum norm
{such a minimum element always exists because Au 1is a closed convex set,
see Barbu [ 11). In the particular case of B being a m.A.g of RZ,
there are still other sections (i.e. real eyentually discontinuous functions)

of some interest:

go(r) = {so € B(r) : |sa| € |s] for every s € B(rl}
gtr) = {s, € glr) s s s, for every s € B{r)}
B7(r) = (s_cB(r) :s_=<s for every s € B(r)}.

To be more clear on this point , we remark that if we use the notation

g = 3j in Example 4.1, then ge(r) = ﬁ+(r) =g (r) = {0} if r <0,

g°{r)
Now we return to the question of characterizing the solution of the

yariational Inequality (41),{(42). If, for the sake of simplicity, we assume
h=0 then, using the notion of subdifferential and choosing V = w%’P(Q),

expression (41) is egquivalent to

- Apu + 3de(u) 3 g in y' o= N"l’pl(n). (45)
Thus, {45) 1leads to the study of 3Jy as an operator from w%=P(n) into
N“l’p‘(n). For different reasons (regularity results, study of the
associated Cauchy Problem and so on),it is very interesting to know how
regular any element of 8do(u) is, and, in part1cu1ar, if they are func-
tions and not only distributions of V' when ¢ W 1p! (2).The study of
such operators is due to Brezis [ 41 when j is independent on x and

o is bounded, Grun-Rehome [ 1 1for f bounded, and more generally, to
Bidaut-Veron [21,[3] who also considers the case h # 0 (where 8Jp needs
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g (r) = g7(r) = (1} if r <0 but B°(0} = 87(0) = {0} and 8" (0)={1}.

to be replaced in (38) by aJh(u h)) and © unbounded. These works also
deal with the m-order space W™P(q). The following result collects a
particular version of the above mentioned results

Theorem 4.5. Lef @ be an arbitrary open subset of 'RN. Let 8 be a maxi-
maf. monotone ghaph of R*, B = , satisfying B(O) =0, and

b(8) = (36)

14 Q 44 unbounded, we also assume

[g°(r}] » kI[P . ¥r € [-R.R1 fox some 482 ,R> 0 and k > 0, (47) <

Then , fok every 9, WP () thore exists u € Wb'P(a)  and
W E L]oc( on W L.p! (a} such that

w(x) € plu(x)) a.e. x€Q »
- Apu tw=g in wloP Q). (48)
Remark 4.4. Condition (46) is neccesary in order to assure that any

ey

e

i

it

e

i

A

2

olement T of ady(u) (Jo given by (43)) is in fact a function Tely, (9) ‘

with T € 2j(u) a.e. on Q. When (46) does not hold, it is known (see
the mentioned references) that T s a measure of Lebesgue descomposition
T=y+5, where € L (ﬂ) and S is a nontrivial singular measure.
The characterization of Bdh when Jh is associated with the obstacle
problem (u > ¢ on Q) can also be found in Bidaut-Veron [3 1. Theorem 1.4
also holds for more general quasilinear operators as, for instance, the

given by (29}, and even for 2m order quas111near operators (Bidaut=Veron [21,”

[ 37). He remark that when g € Lp (2) 1t is proved (see also section
4.2) that w € 1P'(@) and then Bue P’ (@),

For a general diffusion operator, such as the one given in (29) , there
is another point of view, in order to characterize the solution of the
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Varjational Inequality (41). It is, essentially, a hilbertian method due
to Brezis [ 3] and Altouch-Damlamian [ 1 1: For the sake of simplicity ,
Tet us assume © bounded and h=0. The main idea is to take g € L*(R)
and to write (41) as

jﬂg(u ~v)dx + g(v) - @(u) =0 ¥v € b(8), (49)

where # is the convex , 1.s.c. functional, from L2(@) into {-w,t=] ,
defined by

L mulPdx + [ dlxudds,if uews Pla)nL?(R)and j(x.u) eLi(g)
suy ={° ® 2

+oo , Otherwise.

D{g) = {u el a) : flu) < +e} .

Then, assuming that Jj s a normal convex integrand, it turns out that
g s convex , T.s.con L%(§f) and so (49) 1is equivalent to the equa-
tion

g € dg(u).

As remarked before, this approach replaces the dual of the energy space
(Orlicz-Sobolev spaces, for general quasilinear equations) by the space
L2{9). We note that the above theorems in this subsection give some
surjectivity results for the operator 3. Again, the hard problem is
to characterize the operator 9p and, more precisely, its effective domain
D{3p) . Such guestions are related to the regularity of the solutions of
(45). The answers for our particular formulation, coincide essentially
with Theorem 4.5, but it is important to point out that general quasilinear
operators such as the one given in (29) can also be treated without co-
ercivity assumptions of the type of {17).

To end this subsection we shall give some remarks about the variational
approach to some other problems considered in the above Chapters.

Remark 4.5. Problem (30),{31) dncludes in a obvious way the case in
which :the operator A 1is given through a general second order elliptic
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operator L as the considered in Theorem 1.13. Again the coercivity
assumption (35) is assured by the (uniform) ellipticity of L (see (38)
or {66) of Section 1.1). Existence results for degenerate elliptic
1inear operators can by obtained easily if the term f(~,u) is eoercive
(e.g. R(f(-,u)) =R) (see Murthy-Stampacchia[ 1] and Alvino-Trombetti
[ 1] )~u

Remark 4.6. We point out that, in some cases, the existence of solutions

for the Hamilton-dacobi-Bellman problem {see subsection 2.4b) can be ob~:
tained through a suitable variational inequality. (See Brezis-Evans[ 1 1}.

Remark 4.7. The variational approach can be also applied to derive exis-

tence theorems for other boundary conditions 1like the considered in Section
2.5. (See e.g. Ladyzhenskaya-Uraltseva [1], J.L.Lions [1], Brezis [5] and
Amann[ 2 ] ).D

4.1c. On the regularity of solutions. L?Oc-estimates

The question of the regularity of the salution of quasilinear eguations is
one of the more studied problems in the theory of PDE. After the pion-
gering results by Bernstein in 1904 giving a partial answer to the nine-
teenth problem of Hilbert, many important results and methods have been
developed by many authors; Hopf, Morrey. Agmon, Douglis, Nirenberg, De
Giorgi, Bombieri, Mgger, Stampacchia, Ladyzenskaya, Uraltseva, Trudinger. ..
etc. Obviously, in this subsection we shall not make an exposition of all
those results, for which the reader can see the books by Morrey[ 1 1,
Ladyzenskaya-Ural'tseval1 1, Stampacchial2 1 . Gilbarg-Trudinger{1 1,
Friedman{ 3 ], Giaquinta[ {1 ] etc. We shall only review here some of those
regularity results, more or less in connection with the study of the for-
mation and properties of the free boundary F{u) made in previous chap-
ters.

We shall start with the Ls—regu1aritx. For the sake of simplicity

in the exposition we shall only consider weak solutions u € wi’P(n) with
[}
flu)e P (0) of the equation

- hu £(u) = g. : (50)
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Here the equation is satisfied in the sense that Vg € wﬁ’p(n) we have

I{EVu-|-p“2 gu-vr + Flu)gkdx = [ {gog - X 95 BC tdx
Q Q

assumed g € wlsp (%), g
suitable additional conditions on g, any weak solution u of (50) belongs
g o . The results are

given by {13). Our propose is to show that under

Tocally or globaly to the space L> for some p £ s
of different nature according the assumptions on the term f(u). We first

consider the general case of
f(r)r 2 0 Yremwm ., (51)

and we center our attention on L™ -estimates, already used in previous
Chapters. First of all we recall that, by the Soboley and Morrey imbed-
ing theorems (see e.g Adams [ 1] ), we have

delP(o) if p<N,uel’(a) if p=N and u €L7(q) if p> N,

being p* = pN/(N-p) and s any positive real number. 5o, it suffices
to consider the case p < N. The following result was established by
different authors (see, e.g., Serrin [ 1}: Llet x, be a fixed point
of @ and let “.IIS,R be the L5 norm of a function on the open ball
BR(xﬂ).

Theorem 4.6. let Uu€ WP be a4 weak solution of equation (50) defined
Ln some ball BER(x”) < §. Assume p ¢ N, (Bl) and Ret

N

3 N
P and g, € P fon some € > 0. (52)

g=got Z S With go€ L

Then

Nullog<CRYP Orup +x RYPY, (53)

L

where ¢ and k are constants, C = C{p,N,e) and

S op) (2 gl + REHalDY P cre) > o, (54)
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the noams of the data functions faken in the respective Lebesgue spaces.
Monoover, (f u {6 a weak sofution of (50) .n a domain DeQand Ju| s M
on the boundany of D, then u € L™(D) and

Ilu!|L°°(D) S M C(“g”“ + 2: ||91H) (55)
wheste C 44 a positive constant depending on [D],b,N and € .

Remark 4.6. If the hypothesis {52) on g is not satisfied but g, and
95 belong to some suitable spaces, others L>-estimates on u may be
obtained. So, if u € wl’p(Q) is a weak solution of (50) on Q with
u<M on B30, and g; € L") , gy € Lr'(n) with p' gr < pN , then
ue L3(Q) with s = [r(p-1)1* (See e.g., Serrin{ 1] Stampacchia [2 ]

and Boccardo~ G1ach tt1 2 -
(At‘u( o vn@.c,c)_, {L.[u.\é)l_f‘ tolo J?(u)g S Con EC—L’"’W,"F

Remark 4.7. Optimal global L5-estimates may be obtained by means of
rearrangement technigques. See subsection 1.3a and the references indicated
there. o

The above results are derived esentially from the information on the
diffusion term div(|\7u{p~2 vu) but , in fact, in the mentioned refer-
ences they are stated for more general diffusion terms of the form
div A(x,u,vu). More precise 1>_estimates can be derived when some
growing conditions are known on the absorption term flu). First of all,
we recall the general estimate

lgs g s {56)

f £ s
el <l s

true for nondecreasing real functions (and even when f =8 is a maximal
monotone graph of R?) (See Brezis-Strauss [ 1], Benilan [11], Boccardo-
Giachetti [ 2 ] etc).

To illustrate some other sharper LS-estimates we shall restrict our-
selves to the semilinear case p=2. We first remark that, in that case,
solutions of the corresponding equation (50} can be introduced by a
duality argument and without the condition u € H'(Q) :
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Definition 4.5. A function u € L{OC(Q) {5 a very weak sofution of Zhe

equation
-+ f{u) =g (57)

i Flu) EL%OC(Q) and

- Jusgy [Flwc =] g9t (58)
Q 0 Q

fon every t €D(R). Note that the above definition makes sense when
g€ L;OC(Q) .and even when g € M{Q) , the space of bounded Radon medsures
on @ . In both cases it is known {Stampacchia [ 2 1) that if u dis a
very weak solution , u € w%ai (f) with 1< s <N/(N-1} . On the other
hand, it is clear that , if u is a very weak solution with u € H (@)
and f(u) € L%Dc(n) , u satisfies equation (57) 1in the standard weak
sense.

An example of the sharp S-estimates mentioned above is the following:

Thearem 4.7. lef U € w%’l(ﬂ) with T(u) € LYK) be a very weak sol-
wtion of equation (57} for 9 € L35(q), for some 1 < 5 <o, Assume that
F is Rocally Lipschitz continuous on R - {0} , and that
| m-1
' (r) |f{r)] a.e. r € R - {0} (59)
for some C > 0 andm > 0. Then £f N> 3 we have the esfimaie

§ R ke () o) (SDN (2h gy (WD Neg 1615 a0 (60)
Q Q

2

with C' constant independent of s . Mereovests—tf Nr=t——2s—>—0

ek ().

Remark 4.8. The above and other similar resultswere proved by several
authors as a preliminar step to show “regularizing effects” for the porous
media equation (Benilan [41,Veron [!1,Pazy [1], Benilan-Berger [1] etc).
The best constant C' may be computed explicitly by rearrangement tech-

nigues (Vazquez [ 3 1). Note that here the regularity is obtained “a priori’,
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and the existence of such solutions is given in the next subsection.
Finally, regularizing properties as Theorem 4.7 are also available for
the pseudo-Laplacian operator Ap” (see Veron[ 1 1 and Herrero-VYazquez

r11).

Remark 4.9. 15. estimates for the variational inequality (41),(42) can

be found, for dinstance, in Brezis [ 5] and Boccardo-Giachetti [ 2 ].D

Other different regularity properties of weak solutions of {50) are
concluded from the information ¢ € Lr(Q) for some p' € r g w, Or,more
exactly, from the fact that Apu e L"(Q). The linear case p=2 is ;
in this point, quite different from the guasilinear one, p # 2. Indeed,
by the results of Agmon-Douglis-Nirenberg [ 1 ]it is well-known that
pu e L7 implies that u € w%gz Q) if 1 <r <=, being u g W?;E (2
for every 1 <t <o if M E L”(q) . Nevertheless, if, for instance,
sewlP(e and auetP (o) then , ue WP (@) with m=1+1/(p-1)-
if p>2 {Simon [ 11) and U € W%ég (p) if 1 <p g 2 {De Thelin [ 1 1
where the regularity is optimal in both cases, {(a sharper reguiarity is
given in terms of Besov spaces). Finally, Aju € ™(n) qmplies that
ue N%SE (o) n N%a: {(p) if p=2andu EW%SC () n w%;@*z (g) if p«?2
(Tolksdorf [ 1 1)., Cowlraprplo (70 Thot, . Tl BE e pHApT y

Remark 4.10. The above wz’r - regularity can also used to obtain several
different conclusions. So, for instance, from the information Au € Lr(ﬂ)
For some 1 < r < = and the Morrey's theorem we conclude that u € C%éz(ﬁ)
when r >N and s =1 - N/r . Moreover, if u is a weak solution of
the semilinear equation (57) and we assume f € CO’Q(R) and g € CO’B(Q)
for some O <a.8 < 1 we can apply the Schadder theory to the Tinear
expression - Au = H{x} , H(x) = g{x) - flu(x)) and then we gbtain that
ue CE’B(ﬁ) for some 0 <pB < 1. If in fact f(u) is given by

flu) = |u|°‘“1 u with D<o <1 and g =0, from the only information
AU E LY we can obtain L®- estimates by using an bootstrap argument (See

Gallouet-Morel| 3 ]).D

Remark 4.11 The regularity CO,u- and Cl’u for elliptic quasilinear
equations was first obtained by De Giorgi [1 ]and, after, considered by
261



many others Moser, Serrin , Stampacchia , etc. (See e.g. the books mention-
ed in the beginning of this subsection where other regularity results are
Lo paguiarity
is due to Uraltseva, Uhlenbeck , Evans , Lewis and more recently , Di-
Benadetto [ 1 1 and Tolksdorf [ 1 1(see also Stredulinsky [ 1 1)}. We also

mention the results of Brezis, Brezis-Stampacchia, Brezis-Kinderlehrer,

quoted. For quasilinear degenerate eguations like (50) the C

Caffarelli and many others for variational inequalities (see the books
mentioned on this problem) and the ones due to Phillips and Giaquinta-
Giusti for singular equations mentioned in Section 2.3. Finally we point
out that L°-estimates and the CO’cx , and Cl’a regularity may be shown
for local minimum points of functionals J by working directly with
the functional J instead of working with its Euler-Lagrange eguations.

(see Giaguinta [ 1 ]and the references there in ).u

We shall end this subsection by collecting an L -estimate on the set
Int N(g) , used in Chapter 1.

Theorem 4.8. Let g e WP (@) . h e wP(R) wath j(h) e LYQ) ,
ilr) = [: f{t)dt. let u € wl’pﬁl) be a variationnl and weak sofution
of

- AU flu) = g i 0 {61)

u=nh on N, (62)

where f .8 a continuous real function satisfying (51). Let D be a
compact set of R such that D c int N(g) and Bet d = d(D,3N{g)}. Then
u € L7(D) and

p'/p

1/p
cc . +1lh i(h 63
il gy € SN ot g FI pygy ¥ T, o (83

(o) (2

for some comstant C only dependent on p,N.@ and d.

Proof.- First we shall deduce the inequality

Il ull c(|l gl P1P +]| h +|] 3(n) | /P (64)
o © | gll JRLPTI ulp()n )| oy
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R

et e

“Boplxe)) -

for some constant C only dependent on p. Due to the special form of -

the equation (61), u minimizes a functional J ({see {12)) on the set o
k=wewP@ ,v=h on 2}, andso
fow|Pdx + § §(u)dx - <gu><f |vh!§§ + [ j(h)dx - <g,h>. (65) &

) Q 2 f -

But by hypothesis (51) J(r) D for every v €R . Then, from {65}, Dtﬂﬁ
the characterization of N (Q) (see {13)) and Young's inequality, S
we deduce {64) . The conclusion (63) 1is now obvious from {64} if p > N. gan
From p < N we apply Theorem 4.6 for xo € D and 2R = d{xq.3M(g}). .
Then -
ity

ull o ccd™P () ; ) (66)
L¥(Bg(x0)) LPBorixy)) Py

(note that 2R = d and that in (53) now is k =0 because g =0 on "
Finally estimate (63) follows from (64) and (66).‘:|

Remark 4.12. The dependence of C on d given in (66) is not sharp.
On the other hand, other (“-estimates on N(g) may be obtained under
some growing conditions on f(u). For the case of g € L) see later

Theorem4.i8.Finally, we remark that Theorem 4.8. remains true when u -3
is merely a variational solution (see Remark 4.11).E "
R

4.1d.. Uniqueness and comparison results. Existence yia comparison. o
The unigqueness of solution of {1),(2) can be derived by different ;;
methods according to the nature of the terms A and f involved in the f;
equation. o
When the solution of (1),(2) is obtained by the minimization of some  °

convex 1.s.c. functional J on a convex set X of a Banach space vV,
it is well-knowm that, if J is strictly convex , then the minimum is
unique. Indeed, the set of minimum points is a(k]osed)convex subset of
z and so, if Uy, U are two different elements of X minimizing J ,
then (uitu.)/2 1is also a minimum point and, from the strict convexity ofJ,

-
263 7
p.:k?«»
ot



:-‘)(:

R

I
o

By

e u-)’.‘:ﬁ'xf@:, P,

»Ef
&,

.E%;;”UEQ.E%‘Eg.Eétﬁ%kE% E@jgﬁ-zg-gﬁ:gﬁxgﬁ‘gﬁ.ﬁi Eﬁ B By B EE‘E& B B B ?&.ﬁg'gg_Ei B BB

Uqitla 1
I =5 ) <35 (Iuy) + I(uz)) = minimum of J on &

—> Hence, if for instance in Theorem 4.2 we assume p > 1 and j{x,u) sleic
convex 1l.s.c., then the functional J given by (12) is strictly convex
and so there exists a unique u € ¥k minimizing J on &

By the characterizations mentioned in Subsection 4.1b, the above unique-
ness criterion applies to the model equation (10) and, more generally,
to the multivalued equation (48). The following result is stronger be- .
cause it gives the uniqueness as a consequence of the comparison of sol-
utions. In order to include the "obstacle problem" we shall state this
result for the variational inequality (28) (note that, in fact, it reduces
to the equation {10) when J € GCY(R)).

(bodu jl=)C )
Theorem 4.9. Let § bounded ,pﬂigéyigggﬁ-j(x,u) PR XR -~ [O,fm], i F +o,
be measuwrable on X and convex (ﬂ.é.c on u . let g¢,0 € ylsP {(n) such
that g < § én WEP(Q) (e, <§-gi> 30 Ve wP(a), £ 0).
Let also h, h € wl’P(Q) such that h < on 30 4n the sense of traces.
Then, 4§ u and U are functions satysfying the coiresponding variational
fnequality (28) then u<cu on 0

We first prove the following useful inequalities:
Lenma 4.10  Let &, E € R' . Then there exists C >0 such that 4f
p =2
AR p-2 ; £ P
([l E-JE[T7E) < (E-E) =0 |g - g| (67)

and 4§ 1 <p g2

E - Eiz

= -
(lEl +]g))=P
Proof. By homogeneity and symmetry , it is enough to consider |E|= 1
and |£| £ 1. Moreover, by choosing an adequate coordinate system we can

assume E = (1,0,0...0) and £ = (£1,£2,0,...,0). If, for instance,
1 <pg2, {68) is equivalent to

(el P2E- [gP2e)-(E-8) scC
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“Hey

if{E| +|g| # 0 (68)

(e
(1+(&i+g3)2
Wiy — ¢ (89)

(1-£1}%+ €3

—

T'Lge.'v\ .
for every £ = (£1.82) » B3+ £ ¢ 1, £ # (1,0) But (67) holds with
£ = p-1 , as a consequence of the following inequaiities

-5 21 - By (pe1)(1-£,) if 0 <& < 1,
1 _ 2-p z 2p p 1 1
(g} +£3) 2 Ex

1o —51 51 . g wp-1){1-€1)  if

2 El (S 0:
N
(e} + £8)
2-p
1 e 1 and 1+ (g2+ &3P % 1.

The case p » 2 can be treated in an analogous way and we omit the proof.D

Remark 4.13. This proof is due to Simon [ 1 1. Other different proofs of
this key Temma can be seen in Glowinski-Maroco [ 11, Hartman-Stampacchia
[ 11 and Morrey [ 1 1 p.20B.

- s
Proof of Theorem 4.9. Consider vi= min {u,u} =u - (u-u)" and
¥, = max{u,u} = U + (u-G)+ , By the truncation result of Stampacchia [2 ]

and the assumption h ¢ i on 3% we have that v,- h and v -h belong

to w%=p(n). On the other hand, it is clear that
T iovi(0)dx + f 306y (x))dx € f 30ou(x))dx + f J0eu(x) )de (7
Y] Q Q Q

and 50 ji{x,vi) » J(x.va) € Eﬂ(n). Now, taking v = v, and v = v, in the

corresponding variational inequalities (28) and adding the two expressions
we obtain
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jﬂ(IVulp”2 Yu - |Vfllp'2 ). v(u-0)" dx < 0.

Then by Lemma 4.1 and the fact that V(u-0)T(x) =0 and
v(u-ﬁ)+(x) = y{u-u)(x) on the sets {xe 0 : u(x) u(x)) and
x € @ ;ulx) »u(x)}, respectively , we conclude that

Cfivu-0Pdxc0 if p3x2
2

and

R E M
@ (o] + [va))eP

dx ¢ 0 if 1 <pg?.

Then (u-a)+ But h < h on 30 and so

U<u a.e. XEQ.
a

is a constant function on Q .

Remark 4.14.
holds in many other situations.

With suitable changes in the proof, the above conclusion

For instance, other choices of the con-
vex X 1in the variational inequality (28) are possible (Brezis [5]);

the diffusion cperator -A_u may be substituted by a general coercive
guasilifiear operator {Hartman-Stampacchia [ 1 1) or a general second order
operator Lu as the given in (64) of Sectien 1.1 (Stampacchia [2 1 0
may be unbounded and u € Vl’q+1’P(n) (Remark 4.1); and so on “a

and h = h then we get that u=u ,
which gives the unigqueness of solutions for the variational inequality (28)

It is obvious that if ¢ =

and so, for its corresponding single or multivalued Euler-Lagrange equations
(10) or (48) . We also note that taking g € 0 (resp. gz 0} and

h«0 (resp. h > 0) then u < 0 (resp. u > o), property known as the
weak maximum (minimum) principle. We recall that an optimal version of
the strong maximum principie was given in Subsection 1.2a. {In fact, a
strang maximum principle for the difference function u-u 1is available
if, for instance, f 4s Lipschitz continuous : See Vazquez [51], and

Brezis[5 1for variational inequalities}).
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The comparison principle may be obtaine§ for the general class of pro-
blems (1).{2) without the coercivity assumption on the diffusion term
div A(x,u,vu). ‘ v
Theorem 4.11 Let Q be a bounded open Aei,?hn j=1,2, ot hJ € Nl’p §9)]
and g € W Lp! (Q) with !

cr...a
HM

. ghigle tP (a).
Let A(x.r.£) and F{x,r) be Caratheodony functions such that

Alx.r,E) .4 monotone with respect 1@ £ and Lipschitz
continuous with respect Lo v,

} (71)

f(x,r) s nondecheasing in v, f(kgo) = 0,f0x a.e. x€R. } (72)

et e wbP) with AGow Lmud) |, f(x ‘uJ) e LP'(9), be weak solutions

of (1).{2) cowresponding fo ¢ = gJ and; h = hJ Then, if
ag} s
2 _1 ___'i_ ; | .

ht < h? on 20 , and , . £ %, ﬁn p'(q) , ¥1 g1 <N, (73)

the following estimate holds
; +
[F(x,u') - flx,u?)] H < {| [95~ 9l || . (74)
! (2) 1 L)

14, in panticutar, F(x,u) 48 staictly inoreasing in u for d.e. X €9
and g} < g3, we concfude that u' < u® on Q.

Proof. Llet TE whCm) be a nondecrasiﬁg function such that T(r) =0
if rg0 (i.e.

= T{u'- u?) s a test function , g € w%’p(ﬂ)an(Q) and hence

&(A x,ut,vul)-A(x,u?,vu2}) -v{ul- )T'(ul— 2)dx +
+ jﬂ (F{x,ut) - F{x,u?)) T(u —uz)dx < jg(g -g2) T(u 1oy2)dx.

But,from the assumption (71),
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T' 20 a.e.}). By we11—known results {Stampacchia {2 1),
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JlAlxu,wut) - A(XFUZaVUZ))' v{ut-u?)T'(ut-u?) dx =

IQ(A(X,ul,Vul)—A(X,uil,Vuz)) oy{uleu?)dx +IQ(A(X,L§1,Vuz)-A(x,uz,vuz) .

i

- V(ul—uz)T'(ul—UZde ¢ C jQ|V(ul 2} Jut-u?]| T'(ut-u?)dx.

Now, for n € N, choose T(r);= Tolnr) with neN and Te€ whom)

. _ i
Th s 0 and Te=0 op r<0 and Te=1lon r>2. Then rT' (r)=nrTi{n,r)

P

JolF(xut) —f(x,uz))?n(ul—uz)dx < fn(gﬁ—g%) To(ut-u?) &
+20f  |vlul-u?) | Ti(n{u'-u?))dx.
{|u1—u2|<g ]

Letting n + = , we have that T (r) + signﬁ(r) (defined by 0 if r < O
and 1 if r >0 ) and, by (72) and Fatou Lemma,

SUFut)-Fleu?) ik € [ofgi-o3) dn
{ulsu?}
which proves the estimate (?4).rj
The Lipschitz dependenceiin assumption {71} may be replaced by a weaker
hypothesis in some cases. WE shall illuystrate it for the equation

. [
- Apu + div B(x,u) + f(x,u) =g in f (75)

Theorem 4.12. Laﬁ 1 < p <= and assume f ,g and hj as £n Theorem 4.17.
letB: Q@xR=+R bea Caﬂaiheodaug function which is Holder continuous
of exponent o 3 1/p', with respect fo u, L.e. , such that

|

g

[B{x,r) - B(x,s)| & C|r-s{® ¥r,s €R a.e. Xx€Q, %nsa <1 (7B}
h] 1, ' j
Let u) € W P(a)uwiths(x, W) e P (R) and F(x,00) € LI(Q) , satisfying

(75) and w = b on B0, Then, estimate (;é) hotds, assumed (72) .
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Proof. As before, we have that

J (vu! P2 o - \vuzip'zvuz)-V(utuz)T'(u1—u2)dx +
2

+ J (f(x,uq)-f(x,uz))T(u1fu2)dx
1Y}

¢ ] tagam e | (80euh)-80xuB)) vulu?) T (),
Y] f

for every T € N1’m0R), T2 0, T(r) =0 if r < 0. Now, for n € N, choose
T(r) = n(r) given by T (r) =0 ifr 20, T (r) 14if r 2 %, Th(r) = nr
if r € [0, —J and T! (r) -n%r ¢ 2n 1f r € [n, —J Using {76) and Young's
inequality {ab g (g/p)ap + (Ce/p’ )bp , g P /p) we obtain that

n =

I = J (B(x,u') - B{x,u ))-v(u ~U )T'(u1—u2)dx
n a n
¢ C J!u1-u2 Ctp‘1V/(l11w1‘|2)|pT'(u1—u2)
n
i

s £ lV(U1“U2)|pT'( ufydx + “e lu -u lapIT'(u1—u2)dx
2 9 n *“51— q n
s £ \V(u1-u2)|plT‘(u1~u2)d + e (EJQPI s {XEQ‘U<U1-UZ< zy

7 n x + e {5 n mea : =1

Using Lemma 4.10, we get

(C - J Jw( uloy )lpT (u uz)dx + J (f(x,u1)-f(x,uz))Tn(u1-u2)dx

E
P 0

cC \
< (g1~92)T (u1-u2)dx + —-ﬁ-(gJup n meas {x € 5:0 < u1~u2 < g}.
g oo pt N n

Letting n ~ + « and using that o 2 1/p' we conftude as in Theorem 4.11. ®©

Remark 4.15. It is not difficult to show the same conclusion for every
l<pew when N 1 (Benilan [5]). We also mention the unigueness result
for equation (1) without the strict monotonicity assumption on f but for
p = 2; this is due to Carrillo-Chipot [2] (they also assume o z 1/2 unless
if M =1). The proof of Theorem 4.11 also applies, for instance, to a
1inear elliptic second order operator L not necessarily uniformly elliptic

(i.e. eventually degenerate). o
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Remark 4.16. The comparison of solutions also holds for other boundary éon-
ditions. Indeed, slight changes in the proof of Theorems 4.9 and 4.11 allow

us to obtain the same conclusions if, for instance 9% = 819 U 929 and we
know that

1 2
1¢.2 du . au
u Su on 319 and - 5 on azn

(see, e.g., Ladyzhenskaya-Uraltseva [1], Brezis [5] and Diaz [2]}). @

Remark 4.17. When h = h = 0, Thearems 4.9 ahd 4.11 follow from some abstract
results stated for certain classes of operators A. In the case of Theorem
4.9, the conclusion is derived from the comparison for T-monotone operators

from a Banach lattice V into V' (or P(V')), i.e. satisfying

<Au—Av,(u—v)+>v.V 20 vu,v €V

(Haugazeau [1], Brezis-Stampacchia [1], Brezis [51, Tartar [1] etc.). (In
fact the proof of Theorem 4.9 shows that the corresponding operator is T-
manotone.) Theorem 4.11 is associated with the so-called T-accretive

operators from a Banach lattice X into X (or P(X)) which will be considered
in the next section. o

Up to this moment, the absorption term f(x,u) in the equations has been
assumed to be a nonincreasing function of u. Some uniqueness results are
still true for more general semilinear problems

A+ f(x,u) =0 in Q
u=20 on g ,

assumed f(x,u)/u increasing and {x,u) 2 -C{u+1}. See Keller {1], Cohen-
Laetsch [1], Laetsch [11, Friedman-Phi11ips [11 and Brezis-Oswald [1].
For a quasilinear version of those results, see Diaz-Saa [1] .

Another useful comparison result is related to the case of solutions
corresponding to equations with different absorption terms.

Theorem 4.13. let g, g and h, h be neguﬂaﬂtaé in Theorem 4.9. let

SO S
u € W P(Q) be a weak sofution of ggff) Q/(f) where f 44 only assumed to
be continuous and such that f(s)sz 0 vs €R. let u € N1’p(n) be zthe weah
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E; e a R 3 ¥ iody
solution of (ﬁ<¥1, (67) substituting g by g, h by h and ¢ by f, where f 18 -
a nondecreasing continuous function such Lhat s

[F(s)| s |fs)| vs €R (77)
and U have constant sign in Q. Then 0 g g s g and

5 g2, 02hzhdmpies 0 zuzw).”

o

Finaﬂﬂj, assume That

D<hsh mpbies 0 <usu (nesp. 0

| LA =

gand 0 < h s h, so, by Theorem 4.9, G 2 0. Thenu 2.0

A

Proof. Assume 0 g S
and, by the assumptions on f and f, 0  f(u) g f(u). Moreover, -

i

-+ Flu) = g - flu) + flu) s g

in the sense of distributions en 9. Finally, applying again Theorem 4.9 for~
the equation associated to f, we obtain the conclusion. The proof of the -~
other inequality is analogous. o =

Remark 4.18. If f is such that the strong maximum principle holds for the
associated equation (61) (for p = 2, f Lipschitz continuous is enough), and
if the inequality in (77) is strict, we conclude that u < U (resp. u > u) on
the set {x € Q:u > 0} {resp. on the set {x € Q:u < 0} (see the proof of Theoig
2.3)). We remark that the conclusion of Theovem 4.12 can also be obtained
through Theorem 4.11. We shall use this later (see Theorem 4,18) to obtain =
1 "-estimates in the L ~framework. o

Remark #.19. A1l the comparison results given above are stated under some 7
regu]ar1ty on the domain (ﬂ is assumed to be of class C )} and the data .
{geW -1.p' (p), and h € W ’p(n) or, equivalently, h € wl- 1/p’p(89)). Never-=
theless, a careful revision of the proofs shows that they remain true if 32 -
is locally Lipschitz and the boundary data h may be approximated by h wWith =
h, e "VPP(aq). @ _

tin

The existence of solutions of quasilinear equations such as, for instance”.
that one given in (1), can be obtained by means of comparison arguments.
These are the so-called super and subsolutions methods. First we recall the”

e

notion of such functions:

Definition 4.5. A function ¢ € W'*PQ) 4s a supersolution of (1), (2} if
Definition 4.5 ,
Alx,$,V8), flx.9) € P (@), oz h.inthe sense of traces on 30 and o
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1,
for every ¢ € WP(@), 2 0ae. ong .

Similarly, a subsolution of (1), (2) is defined by the reverse inequality.
FOT the next result we need the operator A associated with the expression
—?1; A(x,u,vu) to be a coercive pséudo-monotone and T-monotone operator from

(@) into its dual. This is true if, for instance,

A(x,u,£) = A(x,£), A satisfies (1.7) and A{x,%u) € Lpl(n) wu € W *P(q).

' (78)
However, no sign condition on f(x,u) will be assumed,

Theorem 4.14. Let @ bounded, g € W 1P (9) and h € W' *P(a).

Assume (78) and
Let f(x,u) be a Caratheodary function such that

0,
f(-,u) € C**R) for some o € (0,1) and |F(x,- D g wlx)yc € P’ (w).
{79)
Suppose that ¢ and ¢ are bounded super and subsofutions of (1), (2) with gz
a.e. in Q. Then problem (1), (2) has at Least one sofution u € W1’p(ﬂ) Auch
that ) s U £ ¢ a.e. 4n 0. Moreover, there exist maximal and minimal

solutions u, u, in the dense that if u: 46 any solution of (1), (2} with
U sus ¢, then

vbsusus Teg ae. inQ o

The main idea in the proof of the theorem is the following: Let M > O
such that the function

Flx,u) = flx,u) - Mlu|u'1u, 0<asi

s

is nonincreasing on the set [infy, supp]. Define X = {v € Lp(n): YEVESD
a.e. on Q} and consider the operator T:K -+ w”P(n) given by T(v) = w, where
w is the solution of the problem ,

~div A{x,vw) + M]w[a'1w = -f(x,v) in @

Ww=h on g

27z

Then, it is shown that T(K) — k and that T is an order preserving operator.

Taking u = ¢s Us T(u =y and u, T(u 1) the sequences {u } and

[u } converge monoton1ca11y from above or be]ow, respect1ve1y, to the so1u~

t1ons u and u and

A

PEUY S e S U S el S Uy € .. U, s Uy s ¢ a.e. inq

Finally, it is shown that T admits at least one fixed point u, with u su s

Oct

Rgmark 4.20. The idea of introducing the iterations u. = Ti(gﬂ) and

= T1(ﬁ ) is a well-known numerical procedure that was already applied in
the p1oneer1ng book of Courant-Hilbert [1, pp. 369-372]. This method was
jmproved later in a series of works by Keller, Cohen, Laetsch and Amann {see
references in Amann [1]). Many extensions are today available in the
1iterature: see, e.g., Stuart [1] for noniinear equations with discontinuous
terms and Berestycki-Lions [1] for a Jocal approach. In fact, the method
of super and subsolutions also applies to more general equations of the form

~div Alx,u,vu) + B{x,u,vu) =g

when |B(x,u,g)| s c(lu[)(t + |£]7); however, in this case, the existence of
maximal and minimal solutions cannot, in general be assured. See puel {11,
Duel-Hess [1] and Boccardo—Murat—Pue1 {11, £21. (The multiplicity of soluti
is studied in Amann-Crandall [1].) The case of unbounded domains is conside
in Hess [1], Cac [1], [21, Donato-Migliaccio-Schianchi [1] and, more recentl

Donato-Giachetti [1]. o

4.2. SOLUTIONS OUTSIDE THE ENERGY SPACE

In some physical situations the assumption g € w‘1’P'(g) is not natural in t
context, and one can consider the question of sotving problem (1), {2) of
Sect1on 4.1 when g is not in such a space but mere1y an integrable function,
g et

It seems that Stampacch1a [11 was one of the first to salve the homogenec
Dirichlet probiem in L (Q) for linear second order operators L,

N
Lu= T
ij=1

9

___,(a
%4

au 2 . :
13 3% 3w~ F 5?;'(bi”) au (1.

assumed, for instance, that
27



aip by € @, a e (9,

Ta; 485 2 A £]2 with A > 0,
Bb.

b 2
az0, a+ L T 0 a.e. .

|
To solve the problem
-lu = g in R (2)
= 0 on 30 (3)

when g € L1(ﬂ) and Q is bounded, he uses a simpie duality argument: let L*
be the formal adjoint operator of L given by

_ 9
L¢ = 2 a5 Bx Bx ﬁ""g' * ? b1 32_' ag.

1,3

As in Definition 4.5, a very weak solution of (2),
ue @) such that

J gh dx’

Q

for any ¢ € Hl(ﬂ) nL7(Q) with L¥ € D(R), i.e.,

(3) is defined as any

[ﬂ L{-L*)dx =

J uwp dx = J g6+ dx
Q Q .

for any ¥ € D{R), where G* is the Green operator associated with -L* with
homogeneous boundary conditions. By Lm-regularity (Theorem 4.6), &* is a
Tinear and continuous aperator from w“’=P(n) into L (2) n H1(Q): assumed

p > N. Then, ca111ng G the dual operator of G*, G is a linear and continuous
operator from ! (22) into W ’q(ﬂ) with 1 £ g < N/{N-1) and so u = Gg is the
unique very weak solution of (81), (82).

The study of nonlinear equations in the L1—setting is much more compli-

cated. In Subsection 4.2a we start considering semilinear equations for which

the kay result is the Brezis-Strauss theorem for bounded domains.
of @ = .N is also discussed.

The case
Later, in Subsection 4.2b, we review some
abstract results allowing the consideration of quas111near equations in L (9)
Those results are stated in terms of the so-called accretive operators and are
of interest in the treatment of nonlinear parabolic equations.
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4.2a. Semilineap equatiOhS'in'L () and other spaces™ 0 " L, Ny

For the sake of simplicity in the exposifion we shall be concerned with the ™
semilinear problem -

-Au + Flx,u) =g inQ (4} =

= 0 on 3Q. ; (5)

We start by assuming that @ is a bounded' Dpen set. A natura] way of trying ™™
to solve (4), (5) is by approaching g € L1(Q) by g, € L2(q).
the moment ¢ € L2( ). In this case, if f(x u) satisfies assumption (11} or ™
(33), (34) of Section 4.2, by the variational approach we know that there -*

So, assume for™

exists u € HZ(Q)»n H;(Q) solution of (4), (5) @nd unique if f(-,u) is non- >

increasing). To pass to the 1imit, the following estimate is crucial: =
[ £(x,u) | dx J Jqldx (6) .
{xeq: julzt} {xen:|u|zt}

Ty

This was first proved in Brezis~Strauss 111 when F(-,u) is a maximal monotone.
graph of Rzy Note that, if we make t = Q in (6), this coincides with (56) .=
of Section 4.1, taking s = 1. Several generalizations of the Brezis-Strauss.-.
result have been published, and they will be given later. In any case, we .=
note that if g € LZ(Q) (8) is proved aséin Theorem 4,11 or 4.12 with obvious.
modifications (in fact (6), with t = 0, can be der1ved from estimate (74) of..
Section 4.1). To pass to the limit when: 9, > 9 in L () there are two o
possibilities: when f(x,u) is nondecreasing in u, the main idea is to use the

fact that -A is coercive in L1, the maximum principle and estimate (6) or,

more specifically, (74) (see Brezis-Strauss [11). When F(x,u) is not mono-
tone but satisfies (33), (34) of Section 4.1, the idea is that, from (6), we

derive

NIRRT EN
Using the continuous embedding L (o) = W !’p(ﬂ) for 1 p < N/(N-1), this 7

proves that Hunll is bounded and so u, = u in Lt (), N1’p(ﬂ)~weak and”
W

almost everywhere, F1na11y, by truncat10n of £(*,r) by f {+,r), estimate (6?
shows the equi-integrability of the sequence f (- S } and then by V1ta11 s -
theorem and Fatou's lemma, it is shown that fn( un(x 1Y = F(-,u) in L (n) -
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and that u is a solution of (4), (5) (see Gallouet-Morel [11, [2]). The
following result summarizes some of the conclusions of the articles mentioned.

‘ N
Theorem 4.15. Let @ be a bounded open negufan set of R and Let f(x,s) 2R -+R
be a eontinuous function in s, measuwrable in x and such that

F(x,5)s 2 0 for all s € R, (7)

1

sup {|F(-,s)[, Is| st} € Ly, (0) for all t €R" (8)

Then,16?n all g € L1(ﬂ), problem (4}, (5) has at Least one sofution u,

uE€ NO’ @), f(-,u) € L1(g) and satisfying (4) An D'(Q). In the case of
f(x,s) = g{x,s), maximaﬂ monotone ghaph of RZ for a.e. x € 9, ihe exdstence
04 a unique u € W Ya) AaixAﬁg&ng {4) in Zthe sense ihat a e LN(@) and
AQ(X) + g{x) € B(x ul(x}) a.e. X € 44 assured fon g € ! (9) given, without
any additional condition 4§ B{x,r)} = g(r) and 4§ D(B{x,-)) = R othewise.
Finally, £if flx,r) = g(x,r), we have the estimate

IlEg + Au - g - adlt| < ||tg-g1* |
l[’Lp(m ICg-a17 |} . (9)

for every 15 p s =, if u,U ane the sofutions associated with g,g.

Remark 4.21. If f{x,s) satisfies (7), {8), as a direct consequence of Theorem
4.15 we can solve equationi(4) with the boundary condition

= h on 3Q,

assumed that

i

h € 10C(sz), F{x, h(x)) € L () and F(x,t+h(x)) € L10C

() vt €R.  (10)

Indeed, it suffices to app]y Theorem 4.15 with F(x,s) = F(x,s+h(x)) -
f(x,h(x)) instead of f(x,s) 5 and g(x) = (x) - f(x h{x)) 1nstead of g{x).

Note that now the conc]us1on is that u-h € N )1 (), alu-h) € flx,u) €L1(ﬂ)
and -Au + F(x,u) = g - ah, ' We also recall the results of BTdaut Veron [31

and Diaz [5] for the sbstacle problem {B(x,r) = B(r,y(x)) with y € L 2(2) and
D(R) = {0,%)), @ ‘

Remark 4,22, By applying the above remark to the case Flx,u) = iulq"1u, with

g > 1, Gallouet-Morel [3] give a necessary and sufficient condition
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on 1 € D'(R) in order that the probiem
-AU # lulq_Tu =y in @ 1
ue€ w;’1(n) oy

has a solution. In particular, if y is a measure, {11) has a solution if and
only if u € L1(n) + w_z’q(ﬂ). Another characterization is given in Baras-
pierre: (11) has a solution if and only if [u](A) = D for every subset A of &
whase W ’ql—capacity is zero. The existence of solutions of (11) is related
to the problem of the study of removable singularities, according to the
values of N, g and the nature of the singularity, here represented by u (see
Baras-Pierre [1] and the references therein to the_works by Brezis-Veron,

(11)

Yeron, and others). @

The study of semilinear equations on unbounded domains is more complicatec
One of the difficulties comes from the fact that now the operator -A is not
coercive in L1(n) if q is unbounded. The first progress in this direction
is due to Benilan-Brezis-Crandall [1] and concerns the equation

-au + Flx,u) = g in RN. (12

Again, the idea is to approximate (12) by easier problems

-pu_ + eu + f (x,u ) =g_ in RV

where f is a truncation of f and,. for instance, 9 € L (R ). The estimate
(6} is proved as in the case of bounded.domains but now replacing ¥(-,r) by
er + f ( ,r}. If f(x,u) = p(u), where B is a maximal monotone graph of R

with 0 € g(0), the passing to the 1imit can be obtained throughout (6) and

the estimate

< lgbun-g(] 4 vh €,

I esn) = w1
when w_ = g_ + Au_. This comes from estimates of the type (74) of Section
4.1 and the fact that the equation is invariant by translations. Thus, by
the compactness theorem of Ko]mogorov the set {w : ¢ > 0} is precompact in
LIOCGR } and W is L]uc(R ) when ¢ = 0, 1In fact this same conclusion
can be der1ved for f(x,u) satisfying only (7) and (8), by using estimate (6)
and Vitati's theorem (see Gallouet-Morel [1]1). MNevertheless, in this case th

estimate
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faull = 2l 1

Ry TwlY

is not enough to find an estimate (independent of ¢) of the narm in w’=‘an
of u_, and the properties of -

account. WUe recall that, if z € L1(RN) is such that

-az = F, FE L1(RN),

then z = EN *F, where EN is the fundamental solution fok -A.

———1*—---~N-:2‘ if Nz 3
(N-1.)wN|x|
Ey(x) =
1 1 .
-7 log *rx—l if N =2,

where Wy is the volume of the unit ball in RN It turns out (see the
appendix of Benilan- Brez1s Crandall [1])} that E ¢ w 21 (R } and so we need
to go outside the space L! (Q) and use the Marc1nk1ew1cz {or weak-LP) space.

Let u be a measurable function on.RN
Then we degine

Definition 4.6.
1/s + 18" = 1.

, 1 <5 < and

Hu[[MS = min{C € [0,=]: JK|u(x)|dx 5 C{meas K)USI for all

measurable K < RN}.
Finally, we denote by MS(RN) the set of measurable functions U on.RN satis-
fyding Hu{lMS <

It is easy to verify that MSGRN) is a Banach space and that M3 @R )cL
with continuous injection 1 $s'< s. On the other hand, it is proved that

Ey € H]oc(R and Ey € MN/(N Z)GR ) for N 2 3 and |grad Ey| € MN/(N 1)(JR
if N z 2, Thus, 1f z €L (RN) and Az € L (IRN) we have that ZEMN/(N z)(]R )
ifNz3

§)
in L1GRN) need to be carefully taken into

(R)

The following theorem summarizes the resutts of the articles mentioned on

squation (12):

Theorem 4.16. Llet g ¢ L! (R ). Suppose N z 3 and f{x,s) satisfying (7), (B
then there evists ot Least one function u € M N N-2) Ny ien au e LYY
and £(-,u} € ! (R ) solution of (12). Moreover, if f(x,u) = g{u), with B
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b

™y

.-s;.-,\

max{mal. monotane ghaph 05‘B uuiﬁ.o € g(0), there exists a unigue sofution =
e /D ey e e LVRY) and g+ ou e LTR N). TN =2 (resp. M= 1)~
the ex&Atenae of, at Least one, Aoﬂut,an u E w1’ (R ) with |u| € MZGRZ) and <
A E L! UR ) (resp. v € WHTR) with —wg €L OR)) {8 assuned if, in addition, =

dx
fon same €1Cy € [0,=) one has “
=
meas {x,f(x,cq) £ ¢, or f(xi—c1) z “C,} < -
on £(x,u) = glu) and p satisfies 0 € int g{0). In this Last case, Ao sofu- -
tions, in thein nespective class, diffen by a constant. Finally, 44 ™
f(x,u) = 8{x,r) 48 a maximal monotone ghaph for a.e. X € Q -
)5‘7.’\
~ g ~ :
|| Lg-au-gatil” | fru-i1* |
L& LY .
and, £f 9 £ ga.e., g# g, then u Ua.e. an,RN. ™
oy
Remark 4.23. There are several generalizations and variants of the above oy
theorem in the literature concerning cther conditions for the dependence on -,
x of f(x,u) {Schatzman [11, Di Blasio [11), or maximal monotone graphs 8 -

without the condition 0 € p(0) (works by Crandall-Evans, Fisher, Kurtz and
Vazquez, see references in Vazquez [2]). On the cther hand, as in the case
of bounded domains, equation (12) can be solved when g is merely a distri-
bution (Gallouet-Morel [11) or a bounded measure (Benilan-Brezis (see Brezis
[91), and Vazquez [4]). Finally, we mention that abstract semilinear ;%
equations in L1(Q), when o is 2 general unbounded set, are treated in Benilan
[6]. = .
Recently, the study of semilinear equations in RN for data g € L}DC(RN) B
has been uhdertaken by Brezis [10] and Gallouet-Morel [3]. When considering'
the equation -

Ty

(1) =

wntra

-du + \ulq"1u =g in ' @®"Y)

the results depend on the value of q > 0. 5o, if q > 1, no limitation on

the growth at 1nf1n1ty of g is required for the ex1stence of a solution: for . o

every g € Lq GR ) there exists a unique u € L GR ) satisfying (14); more- -
over, if g > 0 then uz 0 (Brezis [101). The case of 0 < q <1 is different..

let g € L]OCGR ), g z 0; then there exist Cy >0 and €, > 0 depending only on
N and g such thatm f;
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Tim sup R—N«Zq/(l—q) J gdx<Cp= {(93) has_a positive solution
Reses BR(O)
uel] (" (15)
(93) has a positive solution u € L]DC(RN) = 1im sup p~N-2a/(1-q)
R-o0
gdx < C {(16)
JBR(D) 2

(see Gallouet-Morel [3]). The proof of this last result is carried out by
the method of super and subsolutions. We point out that the existence of a
nontrivial supersolution is obtained throughout sharp estimates on the
location of the support of solutions of (93) when g is assumed to have
compact support. The existence in the case g > 1 is based on a different
Tocalization praoperty which can be compared with other localization effects
such as the existence of the free boundary F(u). The following result shows
such a property (Baras-Pierre [1], Brezis [10]):

Proposition 4.17. Let R < R' and assume u € L?DC(BR.(UD setisfying equation
(4] in D' (B, (0)), with g € L'(8p,(0)). Then

Sdx ¢ &1 dx), (17)
J(O)\ulwwj lg|dx)

BR BR'
wherne C depends onfy on q, R and R'.

Proof. From Kato's inequality (see Kata [11),

alu} z (au) sign u.

s
Then, multiplying by sign u in (93), we have

1A

-aful+ |U|q £ |gf in D'(BR-(U)). (18)

Let T E D(BR.(U)) be such that 0 £ cs 1and z = 1 on BR(D)‘ Multiplying
{97) through by %, where s an integer, and integrating, we find

{ - [

J1ul%ax < Jlg[dx s C J[ui;a Zdx s Jlgldx oy JIU]ga/qu, (19)
provided o2 2 o/q, i.e., a2 2q9/(g-1) and we fix any such a. The
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* Remark 4.24
T o .
g€ L]OCGRN) can be extended to more general semilinear equations stch as

conclusion now follows easily from (19). o

Proposition 4.17 and, in fact, the existence of solutions for

{12). If, for instance, f{x,u} = f(u), f must be assunmed convex on RrY,
f(s)s z 0, and

Jm ds
F(t)IJZ
{Gallouet-Morel [3]1). Note that in the case of Proposition 4,17 the strong
maximum principle holds and s¢ if, for instance, g = 0 in BR,(D) and g > 0
in RN~BR,(D), then u > 0 1in RN. Nevertteless, Proposition 4.17 shows that,

in fact, the values of g in RN—BR,(O) affect u only mildly in BR(O): U may
be estimated on BR(O) independently of the values of g on RN—BR.(O), even

t
<o , F&) = JO f(s)ds

if g{x) + + mwhen |x] > . ©

We shal} end this subsection by giving an i “-estimate on the set Int N(g)
similar to Theorem 4.8.

Let g € L1(Q) and h € N1’1(n). Assume £ Ao be a continuous

Theorem 4.18. 1
Let u € w”(m be a .-

neal function satisfying T(tlt 2 0 for t 2z 0.
soluwtion [see Remank 4.21) of

-pu o+ flu) =gdng (20)
u=h on . (21}

Let D be a compact set o4 RN such that D < int N(g), and Let d = d(D, N{g)).
Then u € L™(D) and

S0l 4 ) (22)

< Cf
Hulle(D) I|QI|L1(9) L om)

for some constant C only dependent on N, Q2 and d.

Proof. Llet g, and h+.(respective1y g_, h_) be the positive (resp. negative)
parts of functions g and h. On the other hand, Tet v (resp. v_) be the
unique solution of the problem

281



-Av = g in (23)
v =h on ag (28)

where g = 9, h = h, (resp. g = ~g_, h = -h _). Then, by Theorem 4.13 and

Theorem 4.15 (or Theorem 4.11 after passing to the 1limit in L ), if u is any
solution of (20), (21) then v s u s v, a.e. in Q.

Thus, it is enough to

prove the theorem for v solution of (23), (24) when g € ! {q) and h € W),

We shall first obtain an estimate of ||v[f |, by following an idea of

Gallouet-More] [3] Let g € C°(R) and ﬁn € C7(30) such that an + g in L'(Q)
and h +h in L (30). Let v € C™(Q) be the unique solution of (23), (24)
correspond1ng to the data g and hn Let ¢ € Hz’p(n), ¢ =

One has
-~ |
g dx = - J AV gdx = - J v Apdx + J h 3 do.
Jn b a q " g n oM
Then
- o3
v _Apdx = - J g odx + J h 2 dg. (25)
Jg n n an " "

For y € L™(q) fixed, 1et o EMU ’P(n) 1 s p <= such that -ap = ¢ in Q,
=0 on3q . By thel ‘p—regular1ty (see Subsection 4.1c) we have that

A

1!l cliwil | s chwll s
WP LP L
where C denotes some constants dependent only on @ and p.

by the Sobolev theorem we conclude

Taking some p > N,

< C d 39 sC .
ll¢lle i i HBHI!Lm ITell -
Then, for all p € L7(0),
; . - -
IR RN R LN PR
Thus
hoal 1 s CCliggll = gl - | (25%)

From this inequality (with vn—vm instead of vn) we conclude that {vn} is a
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0onag, 1 <p<e

Then there exists a w such that v_ - w in L1(ﬂ).
v a.e., we note that, by passing to the Timit in (25),

Cauchy sequence fin L1(n).
To prove that w

J whg dx
Q

On the other hand, it is easy to show the existence of v € () such that
v + v in yis! (o) and Av -+ AV in ! (). Then,

. o =
- 9o dX+J A p dg.
JQ aq "

~ b = o
- Ap v dx = - J 2y dx - J AV ¢ dx,
JQ n o 8NN Q n

and as —AEn +q in L1(n) and Un »h 1n’L1(an) (since Gn + v in w1’1(g)), we
conclude that

J (v-w)apdx = 0
Q .

for a11 ¢ € C2(B) with » = 0 on 82. Again, this inplies that

for all p € p{Q) and, therefore, w = v a.e. In consequence,

< ¢ 3 +|jh ).
“V‘IL1(Q) : I|gl|L1(n) I HL1(an)

Finaily, let D be compact and D < Int N(g)., Then, v € Wz’p(D) for every
{1 gp < {since av=0 in D) and, by the results of Agmen-Douglis-Nirenberg

L1,

il 4

< C{]| av -
Faett i L (nGE)

Taking p > N, we conclude the proof by applying the Sobolev Injection

lIvil ) s Cvll o)

Theorem. [a]

Remark 4.25. As in Remark 4.12, we point out that the estimate (22) is not
sharp. For instance, better estimates can be obtained under growing condi-
tions on f(u) (see Gallouet-Morel [31). Finally, we note that the duality
arguments used in the proof of Theorem 4.18 are also available for a general

(v-w)ypdx = 0
n

second order linear operator such as that given in (1) (see Kato [1], Baras-

pierre [1]). ®
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4.2b. Abstract results. Accretive operators. Application to quasilinear
“agquations

As already indicated, the existence of solutions in L1(ﬂ) of the monotone
semilinear equation (4) (Theorem 4.15) was given in Brezis-Strauss [1] for
an abstract formulation: Tet @ be any measure space and let A be an unbounded

linear operator from L1(Q) into L1(Q) which satisfies the following conditions:

A is closed, D{A) is dense in L1(g) and, for any A > 0, I + AA
maps D(A) one~to-ane onto Ll(ﬂ}, and (IJc)\A)"I is a contraction } (26)

in LY(q).
For any A > 0 and g € L1(n), sup (I+AA)"1g < max {0,sup g}
{if sup g = + w, this assumption is empty).
There exists o » 0 such that 1
I (28)

a]]u][L1 < ]]AuHL1 for all u € D(A).

Theorem 4.19. Let g be a maximaf monotone ghaph of RZ with 0 € p(0). Then,
for every g € L1(ﬂ) there exists a unique u € D(A) such that

Au(x) + plu(x)) 2 g(x) a.e. (29)

Moreover, if g,g € Lf(ﬂ) and u, U aie the corresponding sobutions of {29)
Zhen

IL(5-Ad) - (g-Au)1"]] i ljc8-g171l " (30)

14 in addition § s g a.e. then §-Al < g-Au a.e. and U 2 U a.e. Finally, i{
gelP@ntl@, 1sps= thenfg-Aul| sfiall .. ©
(P LP

For the application to second order semilinear eliiptic equations, we
consider that © is an open bounded regular set of RN and L is the differential
operator given in (1) with coefficients 240 bi and a satisfying the condi-
tions there indicated. We define the realization of L on L1(Q) by

D(A) = {u € wg=’(9) : lu € L1(9) in the "very weak sense"}
Au = Lu for u € D(A).
284

We also define the natural realization of L on (@) for 1 < p < w by
D(A) = W2eP(g) n ug’P(g), A = Lu, for u € D(A). In Brezis-Strauss [1]
is proved:

Theorem 4.20. The operator A satisfies conditions (26) and (27). Moreover,

D(A) < Nc’q(g) for 1 5 g < N/{N-1) and fon some o = alg) > 0

aflull s ||Aul| , for u € D{A). (31)
ol g,q 5 18I

Finally, A is the closwre 4n L1(2) of the operaton Ay.

Remark 4.26. Theorem 4.20 is proved by using some duality arguments. In

fact the same conclusion holds for Neumann or Robin boundary conditions (see
Brezis-Strauss [1], Pazy [21, Fattorini [1] and Amann [3]). MWe also mention
here the treatment made in Benilan [6] for abstract semilinear operators. «

The abstract result given in Theorem 4.19 has several possible generali-
zations in the case in which A is a nonlinear operator. Those generalizatic
use the notion of accretive operator on a Banach space X. Such a class of
pperators is defined, in contrast with the class of monotone (or pseudo-
monotone) operators, from D(A) = X into P{X). Nevertheless, the two notions
of operators are not very far apart: indeed, in the particular case of X =1
a Hilbert space, both classes.of operators are the same. There exist severe
equivalent definitions of accretive operators. One of them has its starting
point in Definition 4,4. For monotone operators onh a Hilbert space X =HA
is monotone if

Y=Y, u-u> uy 2 0 vu,U € D(A), v € Au, V € Au. (32

It is easily seen that this is equivalent to saying that (I+)\A)~1 is a con-
traction on H, for every x> 0, i.e.,

Nu-tlf s Jlu-t + alv-¥)|| wu,u € D(A), v € Au, v € Au. (33
H H

Expression (33) makes sense for a general Banach space X:

Definition .4.6. An operaton A:D(A) = X + P(X) is called accretive if for
every u,u € D(A), v € Au, V € Au and % > 0
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A

I u-tilly

Jju-G + A(V~QM|X : (34)
hotds. T4 X .4 a Banach fattice, then A 'is called T-acernetive Lif
-~ £ ~ 4k
fu-G1% ) 5 | Cu-tt + Ale=0)] 1&‘ (35)
Remark 4.27. In fact, if X is a nhormal Banach lattice (i.e. such that
¥ F - =5
1% 1 1y |l and lfx || s ]ly liimplies |[x|| s |[y[l) then any T-accretive

operator is accretive. This is the case for X = LP(q) and X = c%(g). On
the other hand, by defining the bracket [ , 1 on X x X by

Loy] = tin Lxevll = DX g il Il ~(36)

a0 A 20

it is easy to check that A is accretive if and only if
[u-v, u-ii 2 0 vu,i € D(A), v € Au, v € Au. (37)

It is not difficult to compute such a bracket when X = Lp(n), 1gp<=or
¥ = %) (see e.g. Sato [1]). o

We point out that in assumption (26) the Tinear operator A is supposed to
be accretive in L1(g) ((IJ:AP\)-1 i a contraction)) and that assumption (27)
, coincides with the condition of T-accretiveness in L°(q) for Tinear
;; operators. One of the possible generalizétions of Theorem 4.19 will be
‘ given for the class of nonlinear operators A which are accretive in L1(Q)
and T-accretive in L™(g). A general sample of this class of operators can
he obtained from the subdifferential of suitable convex 1.s.c. functions on
Lz(n), as the following result, due to Benilan-Picard [1], shows.

i Theorem 4.21. Let q be a bounded open et of RN and fet ¢:L2(Q) + {00, 4]
Ll convex, L.s.c., ¢ £ + = Then the following propenties are equivalent:

(1) et A_ be the operator in LPla) x tPa), 1 < p < =, defined
| by D(A)) = {u € LPea) n D@) « aelu) n LP(Q) # @3, and
%E Agu = 2g(u) 0 LP(a), 44 u € D(A). (38)

Then Ap is acchetive (nesp. T-accretivel £n Lp(n).
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ety

{i1) Fon every u,u € Lz(g) and fon any T € N%é:GR) with 02T 1 _
being odd (resp. T(r) = 0 4 v 2 0) oy
p(u=T(u-0)) + o(ET(u-8)) 5 olu) + p(u). (39)

holds.

(i11) Fon every u.li € D(ag), v € 3¢{u), v € aglu), and fox any
Te w}GZuR) with 0 < T' < 1 being odd (nesp. T(r) =0 if v 0)

iy

(a0)

Y
(==

J (v-¥)T(u~0)dx
Q

P

hofds. o

To generalize Theorem 4.19 some “range condition" will also be needed:

Definition 4.7. An operator A:D(A) = X ~ P(X) satisfies the nange condition™
if BR(1eAR) 2 DTAY fon every & > 0. 14, 4n fact, R(I+AA) = X, A is catled

m-accnedive Ln X.

As we have already mentioned in (44) of Section 4.1, when ¥ = H is a
Hijbert space,vany maximal monotone operator A satisfies r{I+xA) = H and so o
it is m-accretive. The following result (taken from Benilan-Crandail-Pazy -
[11) shows that, for general Banach spaces, any m-accretive operator is
maximal (in the sense of inclusion of graphs on X ¥ X). The reciprocal
turns out to be not true in general {see Crandali-Liggett 1),

Thearem 4.22. Let X be a Banach space and fet A be an accretive operaton
in Y. TDenote by B the operaton whose graph is the closure of the ghaph of .
A in X x X. Thens: o

(i) R is accretive, o

(i1} A is closed (i.e. R = A) £if and only if R(L+AA) L4 ctosed in X,

(i1i) 4§ B 4s an accretive openaton in X such that B> A and s
r(1+B) = (I+A), then A = B. o s

1t is a direct consequence of Theorem 4.21 that the operator A, given i
(38), is m-accretive in LP(q), assumed that ¢ (resp. 2¢) satisfies (39) P
(resp. (40)). A special example of such a functicnal ¢, of interest in the=
applications, is the following (see Benilan [3], Attouch-Damlamian (i -

oy
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Proposition 4.23. Let J: @ x B+ [0] such that 3(x,0) = 0, J(x,E) is
Let j:9 % R [0,2] such
that j(x,0) = 0, j{x,r) s convex and 2.5.c. on r and measunabfe in X.
Consdder now ¢:L2(ﬂ) + [0,%] given by

convex and £.4.¢c, on £ and measwable in X,

( J J(x,Yu)dx + J i(x,u)dx 6 u e L%@) n N;’1(g)
§i 2

-

othemuise.
Then ¢ L5 a convex function satisfying {39). Moneover, L4

${u) =

ve >0 3ac¢ L1(ﬂ) such that |&] € alx) + ed(x,5) a.e. x€ QVE € RN,

(41)
then ¢ is £.8.¢c., O

As a consequence of Proposition 4.23 and Theorem 4.21 the operators A
defined from 8¢ are m-accretive operators in Lp(ﬂ). Nevertheless, the
identification of the subdifferential 2¢ is not easy, in general, If, for
instance, J and j do not depend on x, Attouch-Damiamian [1] showed that the
graph of 3% is the operator of graph given by

{fu,v] € (w})"(m o L%@) % L2@):3 4 e LY@ with 4 €3(u) ae.,

div 4 € Lz(ﬂ), J (udiv 4 + A.Yu) = 0 and |

Q
v € div 4 + 33(u) a.e. on I,

In the particular case J(E) = l-IEIP and j £ 0 we have that 9%(u) = -A u

for u € D{2®) and so0, formally, the operator Apu is m-accretive in L1(Q) as

well as in L (2). A more exact result for this operator is due to Gariepy-

Pierre [1]:

Ptoposition 4,24, let A2 = 3¢ comesponding to J(E) =.% |g|p and j =0,

— then the operaton A1 = ﬁEL (ehosure in Li(ﬂ) of AZ) 45 an m-aconetive
operaton in L1(ﬂ) and T-aecretive in Lm(ﬂ). Moxeover, !

p(a) < tu el @ PP e L@ and au e L ey1. (42)
Finably, £4 u € D(A)) then u € wl’s(m) fon 1 55 < Np-1)/(N-1), and there

exists o = a{s,p) > 0 such that
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-1
allull 7,5 % NagHl s (43)

for every u € D(A1).

Remark 4.28. Proposition 4.24 may be interpreted as a partial generalizatio

of Theorem 4.20. We point out that the question of knowing the exact
realization of A u in L' seems to be an open question (note that in (42) the
js.only an inclusion). We also:mention that, in the works menticoned more
génera1 examples are considered, including, for instance, the case of non-
Tinear boundary conditions. ©

The class of m-accretive.operators A on L1 which are also T-accretive in
L™ has been studied in L& [1] and aliows generalization of Theorem 4.19
under different "coercivity" assumptions on A or on the graph . See
Benilan [2]1, [3], [4]. One of these generalizations is the following:

Theorem 4.25. Llet A be an m-aceretive operatfon in L1(n) being atso T-

accretive fn L7(g). Assume that

aY s bounded and comtinuous (44)

Let g be a max{mal wmonotone graph of R with 0 ¢ g(0). Then, forn every
g € L1(n) thesre exists a unique u € D(A) such that

Au(x) + plu(x)) 3 g{x) a.e.. , (45)

Moreaver, £f 9,9 € L1(Q) and u,i are the corresponding solutions of (45)
then

IL(§-A0) - (g-A)°|| 4 s [IE8=g27Yf -
L L
14 in additéion § € g a.e. then g-Al s g-Au a.e. and U 5 u a.e. Fénally, 4§
getPt@) nil@), 1spsw, thenlig-Au]l _ s |lg]] - =@
LP LP

Remark 4.29. Theorem 4.25 may be applied to the operator A of Proposition
4.24 (the proof of (44) is similar to that of (43)). In consequence, we
have existence, in L1, of solutions of

-Apu + plu) 2 g in g

u=20 on ag.
289



The case of nonhamogeneous boundary conditions is also available from the
results of Benilan [4]. =©

Remark 4.30. The theory of accretive operators is of‘greaf interest when
solving abstract Cauchy problems. From the Crandall-Liggett theorem
{Crandall-Liggett [1]) it is enough to assume that A is an accretive
operator satisfying the range condition. In this way, the solution of an
evolution problem is reduced to the consideration of the associated stat-
jonary problem. For this reason, the results of this section will be used

in the consideration of the associated nonlinear parabolic equations (Diaz
[71). The results will also be useful in studying the porous media equation
(see the Introduction). We note that the range condition for the realization
in L1(Q) of the operator -Ag{u) is reduced, by a trivial change of variable;

to the study of the semilinear problem (4), (5). o

Remark 4.31. We make several comments on the different equations considered
in Section 2.4 devoted to nonisotropic equations and their relations with
accretive operators. First of all, we note that the operation associated to
equation {8) of this section is again an m-T-accretive operator in Lp(ﬂ)

for every 1  p s = (see Proposition 4.23) (see also Cortazar [11). MWith
respect to the equation with a convect1on term (equation (8) of Section 2.4),
we remark that the accretiveness in L () of the associated operator is a
direct consequence of Theorems 4.11 and 4.12. A more detailed study of

such operators is made by Benilan [5], Benilan-Touré [1] and Wolanski [1].
Finally, with respect to the fully nonlinear equation {34) of Section 2.4)
we mention that the accretiveness in £¥{q) of the associated operator was
already pointed out by Evans [11, {21, and Benilan-Catte [1] and Lions-
Nisio [1] for the special case of the operator associated to the Hamilton-
Jacobi-Bellman equation. We remark that the proof of Proposition 2.43 is

similar to that of Theorem 4.13.

4.3. . BIBLIOGRAPHICAL NOTES

The proof of Theorem 4.2 is standard; the one given here is taken from
Bernis [2].

The local L™-estimates on the interior of the set N(g) (Theorems 4.8 and
4.18) are the consequence of well-known results but no explicit reference
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concerning the statements proved here seems to exist in the literature.

The proof of Theorem 4,11 is adapted from Benilan [5], and that of Theorem =

4.12 is due to Diaz-Pierre [1] (see also Gagneux [11). Note that the T-

accretiveness in L1(Q) of the corresponding operators is a direct consequence -

of the Li-estimates given there.

Another kind of localization property for bounded domains is given by
Lasry-Lions [13. Finally, fully nonlinear equations in RN without growing
conditions at the infinite are studied by G. Diaz [5].

Recently J.M. Morel and S. Solimini have proven that Theorems 4.15 and
4.18 remain true assumed f(x,t)t 2 ~A1t, for a.e. ¥ € & and any t > 0, where
M
in Q.

is the first eigenvalue of the Laplacian with Dirichlet boundary condition
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