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1. Introduction

The development and growth of a tumor is a complicated
phenomenon where many different aspects arise, from the
subcellular scale to the body scale (metastasis).

This complexity causes
different mathematical
models to appear for each
phase of the growth:
“avascular phase”,
previous to vascularization
(angiogenesis), “vascular
phase”.
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Here we shall deal with a simple model of solid tumors
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2. The model

Gene mutations can produce cell reproduction in uncontrolled
way (malignant tumors).

Gene mutations are transmitted producing a small spheroids
of a few millimeters.

During this avascular phase, nutrients (glucose and oxygen)
arrive to the cells through diffusion. As the spheroid grows,
the level of nutrients in the interior of the tumor decreases
due to consumption by the outer cells.

When the level of concentration of nutrients in the interior
falls bellow a critical level, the cells can not live: this is the
phenomenon (necrosis).

Then an inner region is formed in the center of the tumor by
the dead cells.



We can distinguish several regions in the tumor: a necrotic
region In the center, an outer region where mitosis (division of
cells) occurs and a region between where the level of nutrients
Is enough for the cells to live, but not for proliferation.
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As response to the low level of oxygen, the cells secrete some
chemical substances, known as Tumor Angiogenesis Factors
(TAFs). These substances are diffused through the
surrounding tissue.



The process of formation of new vessels, known as

angiogenesis,is one of the most decisive steps in the tumor’s
growth.

A rough classification in two classes of PDEs models: the
mixed models (all the different population of cells are
continuously present everywhere in the tumor, at all the
times) and segregated models (less realistic but relevant for in
vitro experiments: different populations of cells are separated
by unknown interfaces or free boundaries.

Our analysis will be restricted to the second class of models
(spherical tumors).

Several authors (Shimko and Glass (1976), Adam (1986),
Britton and Chaplain (1993),...) studied the case in which cell
proliferation is controlled by chemical substances

Growth Inhibitor Factor (GIFs) (as chalones) secreted by the
cells reduce the mitotic activity.



Two different kinds of inhibitors appear, depending on the
phase of the cell cycle stage at which

Inhibition has been shown. The inhibitor can act before DNA
synthesis (as epidermal chalon in Melanoma or granulocyte
chalon in Leukemia)

or before mitosis (Attallah (1976)).

The outer boundary delimiting the tumor Is denoted by R(t) and
the concentration of nutrients bys and the inhibitors by /3



Mass conservation principle, assuming the cell mass density
IS constant, the tumor mass is proportional to its volume

d 4 . . * B S
(= R¥(t)) = / S(3(#, 1), B(#,1))da.
(3| <R(®)}

dt "3

S(5,8) = sH(G —3)H(B — )

Greenspan (presence of inhibitors, and the possibility that
this affects mitosis,when the concentration of inhibitors is
greater than a critical level)

Byrne and Chaplain
S/ A\ s N B P (growth when the
S0, B) = s{od — o) — p) inhibitor affects the cell
proliferation)




% — 1 AG + MG =10 —6) +5(5,5) plt) < |7 < R(D),
o(z,1) = oy, 1Z| < plt),
o(i,t)=7 1Z| = R(1),
R(0) = Ro, p(0) = po, 0(&,0) =0o(Z)  po < [Z| < Ro.

By using the maximal monotone graph of associate to the
Heaviside function,

and taking into account a possible supply of

Inhibitors, localized on a small region, we arrive to

96 _ NN R
5 — @AG € ri((05 —6) — MB)H(S —on) +61(6,5).

03 ~ ~ N — D =
28 AR ra(85 — BYH(E —0n) + 2(6.8) + Freo,




3. Existence of solutions

Structural assumptions
19:(a,b)| < cp+ ca1(|a

~Xo < S(a,b) < g+ c(|a]? + [b]?)

piecewise continuous functions (a finite number of discontinuous
points) (multivalued upper semicontinuous: Vrabie (1987))

We introduce the change of variables and unknowns by

g1(0 — 7T, 43—;3} =ri((cp—0)— \0o)H(0 — cr”""}—k'i}'l(:t?, 3},
{j':-(U—J 43—43] —]":r(ajB—J:lH(U U“}—F{}_(U ;3:'




reBt>0,
reBt>0,

t >0,

redBt >0,

re B.




Given 1" > 0, we introduce U = (u,v), Uy =
and F : (0,7) x B — IR* given hy

G(u,v) = (g1(4,v),92(u, v)),

F(t,z) = (0, f(t, I)}_;g)

Definition (U,R) € L*(0,7 : V) x W(0,7 : IR) is a weak solution of
the problem (4.8) if there exists g* = (g}, ¢95) € L?(0,7 : H) with g*(z,t) €
G(U(z,t)) a.e. (z,t) € B x (0,T) and

T oP T
<u, = }de+f a(R(t), U, ®)dt =
O

<U(T1),®(T) >u —f

0

T T
/ <g, P >ugdi+ < Uy, P(0) > +/ < F(t),® >y dt,
0 0

v &  C'([0,T] x B), where

a(R(t),U,®) := mE < U P>V -

-NU, P
R{t){.‘r? . ~H

and R(t) is strictly positive and given by

dR(t)

R(t)™1 T

— / S(U(x,t))dr, for any t > 0.
=



Theorem 4.1 Assuming (4.1), (4.2), Ry > 0 and ag, Gy € L*(0,Ry), prob-
5.5) has at least a weak solution for any T > 0.

We shall use an iterative method

Proof. Let R(t) € I-’lf’lfm([l,T : IR) such thas % > —Apae te(0,1).

For fixed ¢t € (0,7"), we consider the operator A(t) = A(R(t)) : V — V'
defined by

ﬂ?

Vithout any difficulty we can see that A defines a continuous bilinear form
on V x V,

R'(t
{;U U >y ——U{; r- VU, U >y=

-2 7 }H:I
E(t) 1)Ul — = [|U||m-
2 (max {R()}) U - 31Ul




Now, we can write G : [RZ — 2T « 9F g5
G(U) = G, (U)U + G, (U),

where G1(U) € Moo, Gp(U) € 2F o« 9 and the coefficients of G1, d;;, are
eontinuous funetions from L2(0, T : H) with the usual topology to L3(0, T
Hj with the wealk topology. Notlce that Gp and G are defined by

GDEU) - [\gél_ U—"! L';] 3 Q’g(\u! L';]}!

gy(w,v) = (riop — (1 + A)(on — T))H{u — 0n + T) — G1(7, 5),
93 (w,v) = 72(F + 5)H (u — 0. + ) — 627, 5),

G1(U) = f11 1z

azl @22

g; has a sublinear growth, ,
Ro(t) = R.;,erp{f f S(U,_y(z,8))dzds},
0 JB

and U, € L*(0,T : V) is the unique weak solution of

{ %ﬂ + A‘(R”_ltt))U” +g{.n—lU” = gE.n—l + F? iﬂ (ﬂ?T)?

U,(-,0) = Ug() The operator A(F,(t))+G1(U__;)
is defined, as usual, through the bilinear form

an(t, U, W) = &(Rn-1(t), U, W)+ < G1(Upe1)U,W >g.

By (+.10) and definition of &, it results



1d

210l = O+ IV, < 5llgonms +Flx

and by Gronwall’s lemma, it results

1 i .
[Un|lfr < Texpi(. ‘tl-I-— )T H|%0 1+ F 220070+ Vol = C-

Since U, is uniformly bounded in H, by (4.2), we obtain

- -
R.(t) = Rpexp{ [ [ S(U,—q)dedt} < R.;.E-I”
J0 J0

Unllz2caris < K(T,F,Go,G1), o
0= llz2(0rv) = K(T, F,Go, Ga), U, — U strongly in L*(0,T : H).

G(U,__,) — g" weakly in L?(0,T : H)

S(U,,_,) — S(U) weakly in L*(0,T : H)

Since |E'| < C there exists a su lsecp lence R " such that

Ry — Rin WH(0,T), p< co. [F» — Ein C"([0,T])

T ! T T !
1 rerﬂ [ S(U(x, t”rj_',_r- [ ﬁf VU, Pdrdt = —[ ﬁ/. Un@d;r-fi{t—[ & / U,V@®drdt,
JB «0 R,.. J+ B «0 _FE',.. + B 10 H,.. JB

E(t)
' dt

which converges to the limit integral



4. Uniqueness of solutions

We need extra assumptions since If, for instance,

IS a decreasing then it is possible to adapt the arguments of
Diaz (1995) in order to construct more than one solution of
the problem.

Consider the case of without necrotic core tumors and linear
reaction terms,
Jdo

ey _J:'—|_/\'I._]_U—|_)‘.J3—O | | R(t} tF(OT}




r10p(T2 + A2) + Ara 0B
(71 + A1)(T2 + A2)

P S
a—j—d_\.J—I—rlcr—l—hd_O z| < R(t), t € (0,T),

a3 o
o dAB + 138 = Xwa, lz| < R(t), t € (0,T),

,dR(t o n o
R(t)? (*) _/ S(o,3)dzr,  R(0)= Ry, te (0,7T),
Cdt z|<R@) = i o

o(z,0) = oo(x), B(z,0) = Bo(x), [z| < Ry,
o(z,t) =7, B(x,t) =B,  |2|=R(t), t€(0,T),




We assume S € W (IR?),

fki’é e LF((0,T) x Q), p > 4,

(00, Bo) € WH®(B(Rp)).

Under the assumptions of Theorem

Corollary 1, we have

T
fn (lollFses meey) + 181100 (R et < Ko

for some kg < 0.

ou . o _ R
a? + Au) + R*riu= R} (ma+ \v+3)), F€B,ic0,T),

[BS(H(;&E, {)+7,v(z,i) + B)di,  R(0)= R,

w(z,t) =v(z,t) =0, € dB, te(0,7),
wlr.0Y = unl(7) = on(TR~). v(7.0) = va(7) = Oa(TRn).



T = (T), i {z € B such that R(t(t))z € wpl,

Alw) = —dAw — RZR% - Vw.

(u,v,R) € [L*(0,T : HY(B))]? x WH(0, T).
Since vg € H?(B) and f € LP((0,7) x B) we get
v € WHP((0,T) x B)n LF(0,T : W%P(B))

(see e.g. Ladyzenkaya — Solonnikov — Uralceva, [45], Theorem 9.1, Chap IV).
Since p > 4, W1?((0,T) x B) C L*([0,7] x B), then

we Whe((0,T) x B)n LY(0,T : W>%(B)),
for g < co. Consequently we get R € W2P(0,T).

WH4((0,T) x Byn L0, T : W24(B)) c L*(0,T : Wi*(B)),

WP((0,T) x B) N LP(0,T : W*P(B)) c L*(0,T : W-*(B)),




Theorem Let f € LP(wp % (0,T)) with p > 4, and (og — 3,5 —231 e

W2s(B(Rg)) | |HlkBkRD]], fr;.rr > 4. Then, there exists a unique suhhr:n
Proof. By contradiction, we assume that there exist two different

solutions EEEWIETICNNS] | ot

R(t) = min{R1(t), R2(t)},

Then

do .
ﬁ—djﬂ—ki'lg‘l'\a—ﬂ |-f-| Rfll T ELI]"
z .

o3 _ _ .
% dAG + 18 =0, |z| < R(t), t €(0,T),

T
o(z,0)=0, B(z,0)=0, |=| < R,

r,t) =o1(x,t) — oa(z,t), = R(t), t €(0,T),

r

B(z,t) = Gi(z,t) — Ba(z,t), |z| = R(t), t € (0,T).

We Introduce

Then



— —dAz+mz=0, |z| <R(t), te(0,T),
E}t , . 4

2(z,0) =0, |z| < Ry,
z2=kio — ko3, x| = R(t), t €(0,T).

Lenlnh Let z be the solution to the problem and 3 the solution
to (5.16), (5.19), then €™z and €™'3 take their mazimum and minimum on
|z| = R(t).

Proof. Multiplying the equation by

Jt'tt'
z\ T, []1 = [l

E"rlt = ’ﬂ fllcr—ﬁn 31 I . , T € u[l T'

etz) —dA(e"?z) =0, |z , t€(0,7),

=(e™3) —dA(e™'8) =0, |z| < R(t), t £ (0,T),
_fll T, [H = []
Rllﬂ te (0,1). ez and e™!3 are bounded

** = mazr{e™z(z,t),t €[0,T],z € 3B(R(t))} M 3"~ = ma L{E g "":3{";17.,15"'],15 € [U?T]?I = L:jBILRILfH}

o = J’T?IJ’I]rt'rlt ,t),t € [0,T],z € OB(R(t))} J B.. = min{e™B(z,t),t € [0,T],7 € dB(R(t))}.




Taking as test function

Integrating by parts in B(R(t)) and after some manipulations

d

dt / B(R{) )

End of the proof of the uniqueness Theorem. Given EEIE

We can assume, without lost of generality, that EIGEEI0

Using that  BHONROREHONEOE (S(01,81) — S(02,85))dz—

B(R(t))

Since S 1s bounded,

S U:Tg , 3o 1 dr.

] Ry (t)<|x|<Raft)

| Ry (t)<|z|<Ra(t S(o2, 3:)dz| < N|Ri(t) — R3(t)| < M|R1(t) — Ra(t)],
1 (t)<|x|<Hal(t)



Since S is Lipschitz continuous, integrating in time,

T g
/ / |S(01,81) — S(o2, 3a)|dzdt <
o JB(R() ' '

\'T n
/ / |S|wt.eo (m2) (sup|o| + sup|3|)dzdt <
o JB(R()) " '

T 1 .
] ] ko(—sup|z + ko8| + sup| 8| )dzdt <
o Je(RE)) ki '
T | _
/ / C(sup|z| + sup|3|)dzdt <
0 JEB(R(t) |

\'T n
/ / C(suple ™ e 2| + sup|le ™ ™! 3|)dxdt <
o JB(R(t) '

i'T ™
] ] C{E""”Tsu;_ﬂErlt.z' + E|’"E|Tsug_l|frgt,:i3|:Jd;rdt <
0 JB(R()) |

n T ™
/ / ks (sup|e™tz| + sup|e'3|)dzdt.
0 JB(R(1)) '

From the Lemma we know

T r b RS 7 Y
sup |e™*z(z,t)|dxdt < e — R°(t) sup |z(z,t)|dt.
o JB(R({)) | 0 |z|=R(t) |



T
From the Corollary we deduce that fn 2100 (B (et < K.

Since

et z(x,t) = e (ky(oa(z,t) — T) — ko(Ba(z,t) — 3)), on |z| = R(t),

we dedice

L
ettt — R°(t) sup |z(z,t)|dt <
1 Jg |z |=R(t)

T
k4£ o2|lwie(B(R 1)) T 182 |lwiee(BRy )y | B2 (t) — Ra(t)|dt <
Say 2 2
ky sup |Ri(t) — Ra(t)|2 2[ (HJE||I-1-'1~mf5fﬁgft))} + ||JE||I-1-'1~mf5fﬁgftj)})df =
0<t<T 0

k sup |Ri(t) — Ra(t)|T7.
O=t=T

In the same way,

T
f f kysup|Bldzdt < k sup |Ry(t) — Ra(t)|T2.
0 JE(R(t)) 0<t<T

Then

£T|R%(f)ﬂl(t) ~ R3(t)Ra(t)|dt < Co sup_|Ru(t) — Ra(1)|(T + "3). (5.25)




Let 6 = maxc|gr{ R1(t) — Ra(t)} then

|R3(t) — R3(t)| < 3Cod(T +T7),

since |R%(t:l — ( = 3R2 |R1() Ry(t)], it results 6 < koo(T + T%).
Furthermore, if 7" < T = mm{@, 1}, necessarily Ry(t) = Ry(t). Since "z
0

and e™!3 take his maximum and minimum on R(t) = R4(t) = Rs(t) and it
is zero, then 3 =0 and z = 0 and we deduce o = 0. Repeating the process,
starting now from 77 we conclude the uniqueness of solutions for any 1" > 0
provided R(T") > 0.

Remark. A similar method applies to the case of radially
necrotic tumors

0<r<R()0<t<T,

aﬁ)Egg(Uﬁ) 0<r<R(t)0<t<T,
(amﬁm 0<t<T,
0<t<T,
0<t<T,

0 < r < Rjp,




01(6,8) = —[(r1 + A\)(c +3) —m0g + (3+ 3)|H(o +5 — o)

92(0,8) = —m2(8 + :31

S(o,8) € Wipe” (IR?),

S is an increasing function in ¢ and decreasing in 3

. mog — 3
Op = ————
T+ A

and the initial data (og = 6 —5, 8y = 33— 3) belong to H2(0, Ry) and satisfy
" B & =] L] B & s

B.-:r.;.

L 203, .
(0,£) =0, 5-(0,¢) =0 <t<T,

o oaTr

o(R(t),t) =0, 3(R(t),t) =0 <t<T.



5. Approximate controllability

We study the controllability of distribution of nutrients by the
Internal localized action of inhibitors.

Theorem Given T > 0, wg C B(Rpexp{—||S||z=T}), € > 0, and 6% €
LT (IR%), for some p > 1, there erists f € LP((0,T) x wy) such that, if

(0,3, R) is the solution of the problem then

lo(T) — 0%l Le(B(riry) < &

where o d = &d_}lEr'HI'"T":I.'ZI "

We shall prove the result in several steps. For EXEIR We start by
assuming EM@ prescribed and we look for a control

such that the solution of the the problem satisfies the required
property. Then we obtain g

nt1 and fpy1 from {Jn,.:i?n.} allow to find

The proof of the theorem uses some methods introduced in the study
of the approximate controllability J.L. Lions (1990),Fabre, Puel and
Zuazua (1995) and Diaz and Ramos (1995)



Iterating the process we obtain a sequence and we show that there
exists a subsequence such that converges to the searched control
and the associate solution of problem.

Proposition Let wg € B(Rpexp{—||S||z=T}, and og = ( o
B3=0. Let R € W'*(0,T) a given function such that R(0) = Rq, |R| <
|S||zeeRa exp {|S|r=T}. Then, given 6% € L (IR?), there exists f &

IP(wn > (0,17)), with p > 4, such that, if (0,3) is the solution of problem
then

lo(T) — 0| Lo (rRET)) <€

where 6% = 6% grpiTy -

Proof. Let p/ = Ll we consider the functional J : IF (B(R(T'))) — IR
defined by

£)|P dzdt + —f 4,0dz,
= [ et 0P st e iy, - [, ot

where g € LPI(B(R(T))), and (y,1) is the solution to the adjoint problem




~ Y _dAp+r0=0, |z|<R(t), te(0,T),
at . W -

——— —dAY + Y+ Ap =0, |z| < R(t), t €(0,T),

tfh‘
w(z,T) = wo(z), ¥(z,T)=0, |z| < R(T),
@(z,t) =0, U(x,t) =0, T t(0,7).

The existence and uniqueness of weak solutions of can be
obtained as In previous sections.
et us assume that J is convex, continuous and coercive. ThenJ

takes a minimum Moreover if (@8
IS the solution of the dual problem with initial datum [§3

then .
WP e drdt — 1 "D dxr
/IZI ‘L'n |Iﬂ | v t /E['H['TH al
_H |:IHLP' I'BI'HI'THIJE{-H{-.T-}'} |¥?D|pI_E¥BD£DdI = 0.
Multiplying by [@§]integrating by parts and applying Leibnitz

theorem, we arrive to



|'T 1'T 4
> dt —d < o, Af > dt + / / rioédrdt+
0 i B(R(t))

T T 5 l,: T
/ / ABEdzxdt — / 8, — >dt —d < 3,AC > dt+
0 B(R(t)) 0 ot 0

T p T . .
/ / ro BCdxdt— / / fédzdt+ / otdz]l + / 3¢dz]E =0,
0 JE(R(t)) 0 Jup EB(ER(t)) E(RIt))

0y l—p' / | 01p'—2 040 5.
P | | w & dr =0,
L' (B(R(TY) J gz

|o(T") — Jd”LPrBrHrT D) =

Le' (B(R(T)))

. L
1 "y 1,
JInES / D020 — |71 (6(T) — 0%)dz.

BIR(TY) R ’



By Holder inequality,

11 gercry [ 1P
LPI'BI'HI'Tm B(E(T))

1 ;
A1, A
D|{;'|L1 ) — li'|p'—1 o(T") — Jj__]d;r <

||'5‘tI ) — ||LPrBrHrT|||

which leads to

lo(T) = 0% o (m(riry) <€

So, it only remains to check the mentioned properties of J:
The convexity and continuity of J are easy

The harder part is to prove that J is coercive. It is a
technical part which uses a unique continuation property
(Chi-Cheung Poon 1996).



Proof of the Theorem. We consider the sequence

R2(t)Rn(t) = S(on-1+65_1,8n-1+ 35_1)dz, Ryn(0)= Rqg,
| ' B(Rn_1(t)) - -

S is bounded, R, € W1i® (0,T)

R, such that converges weakly to R(t) in W+4(0,T), for all q

By the Proposition , for each n there exists a minimum of the
functional

- D N ‘.T "
Jﬂ. lIL‘I 'I'f-'l T __:l = L ] .I,-I']]‘".'.
L'

where J;j = 5%y B(Rn(T))-
By similar arguments to the proof of the coercivednes of J it is
show that the sequence [[EsFeaess is uniformly bounded
and SO ”fr‘.-.”LP['EI,T:LP (wa)) _ CF:-

Doing the change (4.3)-(4.5) and (5.6), applying Lemma 5.1, we obtain
that (un,vn, Rn) is uniformly bounded in ( Wwie (B x (0,7 13 ,H? (0,77)) and

there exists a subsequence (Un;, Uni, Rn;) such that converges strongly in
I . — L W 2 1 7 -1 % i % . '_'L - % . _-
(C((0,T] x B)?,C([0,T])) to (u,v,R) for a = =, where (un;, Un;) satisfies




4 3 : d ,r_
;;” — o3 AUn; — 23_5: - Vini + T1lni + Ave; =0, in B x (0,T),
i )

Ovn;  d R! . . _ )
3;1 e 51—‘m'——RnL_I * VUni + Tani = fnXaq, in B x (0,7),
ni )

uni(Z,t) = vni(Z,t) =0, on 9B x (0,7T),
L uni(7,0) = ul, (%), vni(F,0) = 8,(%), in B,

ni e

and (u,v, R) is the solution of (5.7)-(5.11). In particular

as n; — +00.

Moreover

|o(T) — 0%\l oz (rirY) = llo(T) = 0n(T) |22 (Bmin{RT).Rx () +

lon(T) — 0% o(Bmin{r(T).R. 1)} + llo — 0% | o(B2 (1))

Doing the change (5.6) and since

lon(T") — JdHLPfB(min{H(T},Hn (TY})) <e

we obtain




lo(T) — o || Lo (m(rTy) < UT) = un(T)|2o(8) + |l6 — 0| Lo(BE (1)) + €

Since p(Bj(T")) — 0, by the Lebesgue dominated convergence theorem we

obtain that

rh—]:-[r}c ||J - gerLPr-E:t (T)) — 0.

Taking limits it results

lo(T”

]

and the theorem is thereby proved in the case p > 4.




6. Some numerical experiences

Time discretization scheme which leads implicitly with u and v and
explicitlyfor the free boundary R. We assume radial symmetry, no
forcing terms (i.e. f=0) and nonnecrotic core.

Numerical Experiments. We consider the apﬁcitl case nf S(o,8) =

0—-0,T=3 N=50l, (le. AT = rmmﬂulb—?ﬂ Le. h= 3 - mthtl

following choice of the parameters: Ry = 5, Dy = h=0 =

B=1.







Control problem
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Thanks for your attention
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