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ABSTRACT

This paper deals with several qualitative properties of solutions of some station-
ary and parabolic equations associated to the Monge–Ampère operator. Mainly,
we focus our attention in the occurrence of a free boundary (separating the re-
gion where the solution u is locally a hyperplane, and so were the Hessian D2

u

is vanishing, from the rest of the domain). Among other things, we take ad-
vantage of these proceedings to give a detailed version of some results already
announced long time ago when dealing with other fully nonlinear equations (see
the 1979 paper by the authors on other parabolic equations [23], Remark 2.25
of the 1985 monograph by the second author [26] and the 1985 paper by the
first author [20]). In particular, our results apply to suitable formulations of the
Gauss curvature flow and of the worn stones problems intensively studied in the
literature.

Key words: Elliptic and parabolic Monge–Ampère equation, Gauss curvatures with flat
regions, free boundary problem
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1. Introduction

Since the pioneering works by Gaspard Monge, Comte de Peluse, (1746-1818) and
André–Marie Ampère (1775- 1836), among others, it is well known that Geometry has
been an extremely rich source of interesting problems in partial differential equations
(see, e.g. [37] and [5]). Many properties of the most varied geometric structures
are studied trough suitable differential equations as it has been explained in many
classical books as, for instance, the famous Goursat treatises [31] dating from the last
years of the XIX century.

The research of the authors was partially supported the Research Group MOMAT (Ref. 910480)
supported by UCM and by the project MTM2011-26119, (DGISPI, Spain). The research of J.I.D.
has received funding from the ITN FIRST of the Seventh Framework Programme of the European
Community. (Grant Agreement number 238702).
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Here we shall concentrate our attention in several second order partial differen-
tial equations involving the Hessian determinant (what we could call as the Monge-
Ampère operator) of the scalar unknown function u. Several concrete problems can
be mentioned as source of our motivations. For instance, we can mention the series of
works by L. Nirenberg and coauthors starting around the middle of the past century
(see e.g. Nirenberg [38]) on some geometric problems, as isometric embedding whose
most familiar one is the classical Minkowski problem, in which the Monge–Ampère
equation arises in presence of a nonlinear perturbation term on the own unknown
u. Nevertheless, today it is well-known that the Monge–Ampère operator has many
applications, not only in Geometry, but also in applied areas: optimal transporta-
tion, optimal design of antenna arrays, vision, statistical mechanics, front formation
in meteorology, financial mathematics (see e.g. the references [4, 10, 29, 44], mainly
for optimal transportation). But, in fact, we shall formulate the parabolic and ellip-
tic problems of this paper in connection to a different problem which attracted the
attention of many authors since 1974: the shape of worn stones.

Such as it was shown by Fiery ([28]), in 1974, the idealized wearing process for a
convex stone, isotropic with respect to wear, can be described by

∂P

∂t
= Kpn

where the points P of the N-dimensional convex hyper-surface ΣN(t) embedded in
RN+1 (in the physical case, N = 3) under Gauss curvature flow K with exponent
p > 0 moves in the inward direction n to the surface with velocity equal to the p–
power of its Gaussian curvature (see also the important paper [34]). In the special case
in which we express locally the surface ΣN(t) as a graph xN+1 = u(x, t), with x ∈ Ω,
a convex open set of RN, then the function u satisfies the parabolic Monge–Ampère
equation

ut =

(
detD2u

)p
(
1 + |Du|2

) (N+2)p−1
2

.

As a matter of fact, to simplify the exposition, in this paper we shall assume always
that this expression is not only local but global. Moreover the exact form of the
above denominator will not be relevant (once we assume some suitable conditions).
Then, our global formulation will be the following: given a bounded open set Ω of
RN, a continuous function ϕ on ∂Ω, a locally convex function u0 on Ω, p > 0, and a
continuous function g ∈ C([0,+∞)) such that

g(s) ≥ 1 for any s ≥ 0, (1)

find a convex function satisfying, in some sense to be defined, the problem




ut =

(
detD2u

)p

g(|Du|)
in Ω× R+,

u(x, t) = ϕ(x), (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x). x ∈ Ω.

(2)

In what follows the power like nonlinearity f(t) = tp and its inverse function f−1(t) =

t
1
p must be understood as the restriction to R+ of the odd functions f(t) = |t|p−1t and
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f−1(t) = |t|
1−p
p t, respectively. Also, in order to simplify the exposition we assumed

that the boundary datum ϕ(x) is time–independent. The details in which ϕ(x) =
ϕ(x, t) and the case in which the above representation of the hypersurface ΣN(t) is
merely local will be presented elsewhere.

One of our goals is to prove that the above problem can be solved thanks to
the semigroup theory for accretive operators A by applying the Crandall–Liggett
generation theorem (see e.g. [15]) over the Banach space X = C(Ω) equipped with
the supremum norm. Indeed, we shall show (see Section 4) that problem (2) can be
regarded as the Cauchy problem

{
ut +Au = 0 t > 0,
u(0) = u0,

for a suitable definition of the operator A which, at least formally, is given by

Au = −

(
detD2u

)p

g(|Du|)
,

where u ∈ C2 is a locally convex function on Ω and u = ϕ on the boundary ∂Ω. We
shall give a precise definition of the operator A and show that it is accretive and
satisfies R(I + εA) ⊃ D(A) for any ε > 0. The so called mild solution u of the above
Cauchy problem is found by solving the implicit Euler scheme

un − un−1

ε
+Aun = 0, for n ∈ N,

or

detD2un =

(
g
(
|Dun|

)un − un−1

ε

) 1
p

in Ω. (3)

This is why among the many different formulations of elliptic problems to which
we can apply our techniques we pay an special attention to the following stationary
problem: with the above assumption on Ω, ϕ, p and g, find a convex function u

satisfying, in some sense to be defined, the problem
{

detD2u = g
(
|Du|

) [(
u− h

) 1
p

]
+

in Ω,

u = ϕ on ∂Ω,

where h is a given continuous function on Ω. Certainly if we want to return to

(3) we must replace g
(
|Du|

)
by
(
g
(
|Du|

)) 1
p . Since the Monge–Ampère operator is

only elliptic on the set of symmetric definite positive matrices, a compatibility is
required on the structure of the equation. In fact, the operator is degenerate elliptic
on the symmetric definite nonnegative matrices (see the comments at the end of
this Introduction). As it will be proved in Theorem 2.8 (see also Remark 2.9), the
compatibility is based on

h is locally convex on Ω and h ≤ ϕ on ∂Ω. (4)

We also emphasize that if Np ≤ 1 and ϕ(x0) > h(x0) at some x0 ∈ ∂Ω or detD2h(x0) >
0 at some point x0 ∈ Ω then the problem (5) is elliptic non degenerate in path-
connected open sets Ω, as it is deduced from our Corollary 3.11.

3 ——————————
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The paper is organized as follows. In Section 2 some weak maximum principles
are obtained for the boundary value problem (5). The main consequence of the Weak
Maximum Principle is the comparison result for which one deduces h ≤ u on Ω,
provided (4), thus, h behaves as a kind of lower “obstacle” for the solution u (see
Remark 2.9 below). Therefore, under (4) the problem becomes

{
detD2u = g

(
|Du|

)(
u− h

) 1
p in Ω,

u = ϕ on ∂Ω,
(5)

where the usual restriction on the non negativity of the right hand side is here supplied
by (4). In particular, the inequalities

u0 ≤ . . . ≤ un−1 ≤ un ≤ . . . ≤ u on Ω (6)

hold for the scheme (3). We emphasize that since the right hand side of the equation
needs not strictly positive in some region of Ω, the ellipticity of the Monge–Ampère
operator and the regularity C2 of solutions cannot be “a priori” guaranteed. The
so called “viscosity solutions” or the “generalized solutions” are adequate notions in
order to remove the non-degeneracy hypothesis on the operator. In fact, it is shown in
[33] for convex domains Ω that both notions coincide. By using the Weak Maximum
Principle and well known methods we prove, in Theorem 2.8, the existence of a unique
generalized solution of (5). By a simple reasoning we obtain estimates on the gradient
Du. Bounds for the second derivatives D2u can be deduced from (22) as we shall prove
in [24] (see Remark 2.9).

Since h ≤ u holds on Ω, the junction F between the regions where [u = h] and
[h < u] is a free boundary (it is not known a priori). This free boundary can be
defined also as the boundary of the set of points x ∈ Ω for which detD2u(x) > 0.
Obviously, since the interior of the regions [u = h] and [detD2u = 0] coincide, if
h ∈ C2 we must have that D2h = 0. Motivated by the applications, as well as by the
structure of the equation, the occurrence and localization of a the free boundary is
studied in Section 3 whenever h(x) has flat regions

Flat(h) =
⋃

α

{x ∈ Ω : h(x) = 〈pα, x〉+ aα, pα ∈ R
N, aα ∈ R} 6= ∅,

where 〈·, ·〉 denotes the Euclidean inner product in R
N. As it will be proved, the free

boundary F does exist under two different kind of conditions on the data: a suitable
behavior of zeroth order term (Np > 1) and a suitable balance between the ”size” of
the regions of Ω where h(x) is flat and the “size” of the data ϕ and h. For this last
reason, we rewrite the equation making rise a positive parameter λ,

detD2u = λg
(
|Du|

)(
u− h

) 1
p in Ω. (7)

We shall show here how the theory on free boundaries (essentially the boundary of the
support of the solution u), developed for a class of quasilinear operators in divergence
form, can be extended to the case of the solution of (7) inside of flat regions of h,
where uh = u− h solves

detD2uh = λg
(
|Du|

)
u

1
p

h .
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We send the reader to the exposition made in the monograph [26] for details and
examples (among many other references on this topic in the literature we mention
here the more recent monograph [39] and the paper [20] for the case of other fully
nonlinear operators).

As it was suggested in [26] for the Monge–Ampère operator, the appearance of
the free boundary is strongly based on the condition

Np > 1. (8)

In a more detailed version of this paper [24] we shall prove that (8) corresponds to
the power like choice of the more general condition

∫

0+

(
F(t)

)− 1
N+1 dt <∞, (9)

where F(t) =

∫ t

0

f(s)ds, relative to when we replace the nonlinear expression
(
u−h

) 1
p

by f(u − h) for a continuous increasing functions f satisfying f(0) = 0 (see [24]).
Because the strict convexity must be removed, a critical size of the data is required,
the parameter λ governs these kind of magnitude (see (33) below). For instance, it
is satisfied if λ is large enough. In Theorem 3.3 below we prove the occurrence of
the free boundary F and give some estimates on its localization. We also prove that
if h(x) growths moderately (in a suitable way) near the region where it ceases to
be flat then the free boundary region associated to the flattens of u (i.e. the region
where uh = u − h vanishes) may coincide with the own boundary of the set where h
is flat (see Theorem 3.6). The estimates on the localization of the free boundary are
optimal, in the class of nonlinearities f(s) satisfying (9), as it will be proved in [24].

By means of a Strong Maximum Principle for uh we prove that the condition
Np > 1 is a necessary condition for the existence of such free boundary (see Theorem
3.10, Corollary 3.11 and Remark 3.12 below). More precisely, we shall prove that
under the condition Np ≤ 1, (or more general, if

∫

0+

dt

F(t)
1

N+1

= ∞

as we prove in [24]) the solution cannot have any flat region. This can be regarded
as an extension of [45] to the non divergence case (see also [20], [26] and [39]). As it
was pointed out, the condition Np ≤ 1 implies the ellipticity non degenerate of the
problem (5) under very simple assumptions, as ϕ(x0) > h(x0) at some x0 ∈ ∂Ω or
detD2h(x0) > 0 at some point x0 ∈ Ω for path-connected open set Ω (see Corollary
3.11).

Section 4 is devoted to the study of the parabolic problem (2). We prove the
existence and uniqueness of solution by means of the semigroup theory already men-
tioned. Among other things we also show that the existence conditions imply that
ut ≥ 0 in some weak sense, as it follows from (6). As in the stationary case, we study
the free boundary involved to the degeneracy of the equation once we assume that the
initial datum u0 have some flat regions. More precisely, we focus the attention on the
evolution of the flat region of the solution. We prove that if Np > 1 then the initial
flat region persists at least for small times. Moreover, we study some conditions on u0

5 ——————————

Actas Homenaje J. Tarrés



G. Dı́az/J.I. Dı́azRemarks on the Monge–Ampère equation: some free boundary problems in Geometry

which guarantee that, in fact, the flat region becomes static during a small time. It
is the so called “finite waiting time” effect which was already considered in [14] under
a different formulation. We also study the associated self–similar solution in order to
show that any flat region must disappear after a time large enough. Concerning the
asymptotic behavior for large t, if Np ≥ 1, it is proved that if a flat “obstacle” does
not coincide with u0 in a set with positive measure the same occurs in any t > 0. Thus
the solution never is flat in these region (see (69)). In fact, we deduce this “flattened
retention” from an asymptotic behavior (see Theorem 4.14). By the contrary, when

Np < 1 (10)

the solution becomes globally flat at a finite time by conciding with upper flat “ob-
stacles” h (see Theorem 4.15 below). In [25] we extend this last result to general case
in which we replace the nonlinear power function f(t) = tp by a general continuous
increasing function f satisfying f(0) = 0 and

∫

0+

ds

f−1
(
sN
) <∞. (11)

We end this introduction by pointing out that our methods can be applied to the
borderline cases for (9) and (11). This will be made in the future papers [24, 25] in
which the Monge–Ampère operator is replaced by other nonlinear operators of the
Hessian of the unknown such as the kth elementary symmetric functions

Sk[λ(D
2u)] =

∑

1≤i1<i2<···<ik≤N

λi1 · · ·λik , 1 ≤ k ≤ N, (12)

where λ(D2u) =
(
λ1, . . . , λN

)
are the eigenvalues of D2u. Note that the case k = 1

corresponds to the Laplacian operator while it is a fully nonlinear operator for the
other choices of k. The case k = N corresponds to the Monge–Ampère operator.
Some other properties for the kth elementary symmetric function (12) are studied by
the authors in [21, 22, 24, 25].

2. On the notion of solutions and the weak maximum principle

Many previous expositions on the nature of the solutions can be found in the litera-
ture, see for instance the survey [42]. Here, we shall offer a short presentation of it.
Certainly in the class of C2 convex functions, the Monge–Ampère operator SN[λ(D

2u)]
(see (12)) is elliptic because the cofactor matrix of D2u is positive definite. So that,
as it is proved by several methods in [11, 12, 24, 30, 32, 36, 40, 41, 42, 43], there exists
a C2 convex solution of the general boundary value problems as

{
detD2u = H(Du, u, x), in Ω,
u = ϕ, on ∂Ω,

(13)

under suitable assumptions on Ω, H > 0 and ϕ. A main question arises now both
in theory and in applications: what happens if H ≥ 0. Certainly, the ellipticity
degeneracy occurs and in general the regularity C2 of solutions cannot be guaranteed.
The so called ”viscosity solutions” or the “generalized solutions” are suitable notions
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in order to remove the degeneracy of the operator. In fact, it can be proved that for
a convex domain Ω both notions coincide (see [33]). A short description of all that is
as follows. By a change of variable we get

|Du(E)| =

∫

E

detD2u dx =

∫

E

H(Du, u, x)dx (14)

for any Borel set E ⊂ Ω, where the left hand side makes sense merely when u ∈ C1 is
convex. By the structure of the problem, u must be convex on Ω and consequently
u is at least locally Lipschitz. While for locally Lipschitz functions the right hand
side of (14) is well defined, slight but careful modifications are needed to give sense
to the left hand side. The progress in this direction is achieved thanks to the notion
of subgradients of a convex function u: given p ∈ RN, we say

p ∈ ∂u(x) iff u(y) ≥ u(x) + 〈p, y − x〉, for all y ∈ Ω. (15)

Thus, we can define the Radon measure

µu(E)
.
= |∂u(E)| = meas{p ∈ R

N : p ∈ ∂u(x) for some x ∈ E}. (16)

Since the pioneering works by Aleksandrov [1] several authors have contributed to
the study of the above measure (see, for instance, [42]). Then we arrive to

Definition 2.1. A convex function u on Ω is a “generalized solution” of (13) if

µu(E) =

∫

E

H(Du, u, x)dx

for any Borel set E ⊂ Ω.

The continuity on Ω is compatible with the usual realization of the Dirichlet
boundary condition. Obviously, the condition H ≥ 0 cannot be removed. Certainly,
the definition, as well as (16), can be extended to locally convex functions u on Ω, for
which u can be constant on some subset of Ω.

This notion of generalized solution is specific of the equations governed by the
Monge–Ampère operator, but other notion of solutions are available for other type of
fully nonlinear equations with non divergence form. The most usual is the so called
“viscosity solution” introduced by M.G. Crandall and P.L. Lions (see the users guide
[16])

Definition 2.2. A convex function u on Ω is a viscosity solution of the inequality

detD2u ≥ H(Du, u, x) in Ω (subsolution)

if for every C2 convex function Φ on Ω for which

(u − Φ)(x0) ≥ (u− Φ)(x) locally at x0 ∈ Ω

one has

detD2Φ(x0) ≥ H
(
DΦ(x0), u(x0), x0

)
.

7 ——————————
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Analogously, one defines the viscosity solution of the reverse inequality

detD2u ≤ H(Du, u, x) in Ω (supersolution)

as a convex function u on Ω such that for every C2 convex function Φ on Ω for which

(u − Φ)(x0) ≤ (u− Φ)(x) locally at x0 ∈ Ω

one has
detD2Φ(x0) ≤ H

(
DΦ(x0), u(x0), (x0)

)
.

Finally, when both properties hold we arrive to the notion of viscosity solution of

detD2u = H(Du, u, x) in Ω.

Note that the convexity condition on u and Φ are extra assumptions with respect
to the usual notion of viscosity solution (see [16]). This is needed here because the
Monge–Ampère operator is only degenerate elliptic on this class of functions. In fact,
it can be seen that the convexity on Φ is only required for the correct definition of
super solutions in viscosity sense. One proves the equivalence

u is a generalized solution of (13) if and only if u is a viscosity solution of (13),

provided that Ω is a convex domain and H ∈ C(RN × R× Ω) (see [33]).
With this intrinsic way of solve (13) one may study some complementary regularity

results. In particular, we may get back the notion of classical solution by means of
the following consistence result

Theorem 2.3 ([11]). Let u be a strictly convex generalized solution of (13) in a convex
domain Ω ⊂ RN, where H ∈ C0,α(RN×R×Ω) is positive. Then u ∈ C2,α′

(Ω)∩C1,1(Ω),
for some α′ ∈]0, 1[, and u solves (13) in the classical sense.

We continue this section with the study of some comparison and existence results
for the equation (7). In order to simplify the exposition, we only consider here the
case λ = 1. All results of this section apply to the case of general increasing functions
f ∈ C(R) satisfying f(0) = 0

detD2u = g
(
|Du|

)
f(u− h) in Ω.

We begin by showing that the nature of the viscosity solution is intrinsic to the
Maximum Principle.

Proposition 2.4 (Weak Maximum Principle I). Let h1, h2 ∈ C(Ω). Let u2 ∈ C2(Ω)∩
C(Ω) be a classical solution of

− detD2u2 + g
(
|Du2|

)
f(u2 − h2) ≥ 0 in Ω,

and let u1 ∈ C(Ω) be a convex viscosity solution of

− detD2u1 + g
(
|Du1|

)
f(u1 − h1) ≤ 0 in Ω.

Then one has

(u1 − u2)(x) ≤ sup
∂Ω

[
u1 − u2

]
+
+ sup

Ω

[
h1 − h2

]
+
, x ∈ Ω.
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Proof. By continuity there exists x0 ∈ Ω where [u1 − u2]+ achieves the maximum
value on Ω. We only consider the case x0 ∈ Ω and [u1 − u2]+(x0) > 0, because
otherwise the result follows. Then from the applications of the definition of viscosity
solution for u1 we can take Φ = u2 and so we deduce

0 ≥ − detD2u2(x0) + g
(
|Du2(x0)|

)
f(u1(x0)− h1(x0))

≥ g
(
|Du2(x0)|

)
f
(
u1(x0)− h1(x0)

)
− g
(
|Du2(x0)|

)
f
(
u2(x0)− h1(x0)

)
.

Then, since f is increasing

(u1 − u2)(x0) ≤
(
h1 − h2

)
(x0) ≤ sup

∂Ω

[
u1 − u2

]
+
+ sup

Ω
[h1 − h2]+.

Remark 2.5. We note that the monotonicity on the zeroth order terms is the only as-
sumption required on the structure of the equation and that our argument is strongly
based on the notion of viscosity solution. An analogous estimate holds by changing
the roles of u1 and u2 (but then we do not require the C2 function u1 to be convex).
Note also that we did not assume any convexity condition on the domain Ω. When
Ω is convex these results can be extended to the class of the generalized solutions
through the mentioned equivalence between such solution and the viscosity solutions.
In [24] we extend Proposition 2.4 to non decreasing functions f.

A very simple (and important fact) was used in our precedent arguments: if
u1 ∈ C2 and u2 − u1 ∈ C2 are convex functions on a ball B then

detD2u2 ≥ detD2u1 in B.

This simple inequality can be extended to the case u1 and u2 − u1 convex function
on a ball B, with u1 = u2 on ∂B, by the “monotonicity formula”

µu2(B) ≤ µu2(B) (17)

(see [42]). So that, the Weak Maximum Principle can be extended to the class of
generalized solutions

Theorem 2.6 (Weak Maximum Principle II). Let h1, h2 ∈ C(Ω). Let u1, u2 ∈ C(Ω)
where u1 is locally convex in Ω. Suppose

− detD2u1 + g
(
|Du1|

)
f
(
u1 − h1

)
≤ − detD2u2 + g

(
|Du2|

)
f
(
u2 − h2

)
in Ω (18)

in the generalized solution sense. Then

(u1 − u2)(x) ≤ sup
∂Ω

[u1 − u2]+ + sup
Ω

[h1 − h2]+, x ∈ Ω. (19)

In particular,

|u1 − u2|(x) ≤ sup
∂Ω

|u1 − u2|+ sup
Ω

|h1 − h2|, x ∈ Ω, (20)

whenever the equality holds in (18).

9 ——————————
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Proof. As above, we only consider the case where the maximum of [u1 − u2]+ on Ω
is achieved at some x0 ∈ Ω with [u1 − u2]+(x0) > 0. Therefore, (u1 − u2

)
(x) > 0 and

convex in a ball BR(x0), R small. Let Ω+ = {u1 > u2} ⊇ BR(x0). We construct
û1(x) = u1(x) + γ

(
|x− x0|2 −M2

)
− δ, where M > 0 is large and γ, δ > 0 such that

û1 < u1 on ∂Ω+ and the set Ω+
γ,δ = {û1 > u2} is compactly contained in Ω and

contains Bε(x0) for some ε small. By choosing γ, δ properly, we can assume that the
diameter of Ω+

γ,δ is small so that u1, and therefore u2 = (u2 − u1) + u1, are convex in
it. Then (17) implies

0 < (γε)N|B1(0)| ≤ µu2

(
Bε(x0)

)
− µu1

(
Bε(x0)

)

≤

∫

Bε(x0)

[
g
(
|Du2|

)
f
(
u2 − h2

)
− g
(
|Du1|

)
f
(
u1 − h1

)]
dx.

Since g
(
|Du1(x0)|

)
= g
(
|Du2(x0)|

)
> 0 (see Remark 2.7 below), by letting ε→ 0, the

Lebesgue differentiation theorem implies

0 ≤ g
(
|Du2(x0)|

)
f
(
u2(x0)− h2(x0)

)
− g
(
|Du1(x0)|

)
f
(
u1(x0)− h1(x0)

)
,

whence
(
u1 − u2

)
(x0) <

(
h1 − h2

)
(x0) ≤ sup

∂Ω

[
u1 − u2

]
+
+ sup

Ω

[
h1 − h2

]
+

concludes the estimates.

Remark 2.7. The above proof requires a simple fact, any convex function ψ in a
convex open set O ⊂ RN such that it achieves a local interior maximum at some
z0 ∈ O verifies Dψ(z0) = 0. Indeed, for any p ∈ ∂ψ(z0) one has

ψ(x) ≥ ψ(z0) + 〈p, x− z0〉 ≥ ψ(x) + 〈p, x− z0〉 with x near z0,

thus
〈p, x − z0〉 ≥ 0.

Then if τ > 0 is small enough we may choose x − z0 = −τp ∈ O and deduce the
contradiction

τ |p|2 ≤ 0.

A first consequence of the general theory for (13) and the Weak Maximum Prin-
ciple is the following existence result

Theorem 2.8. Let ϕ ∈ C(∂Ω) and assume the compatibility condition (4). Then
there exists a unique locally convex function verifying

{
detD2u = g

(
|Du|

)
f(u− h) in Ω,

u = ϕ on ∂Ω,

in the generalized sense. In fact, one verifies

h(x) ≤ u(x) ≤ Uϕ(x), x ∈ Ω, (21)

where Uϕ is the harmonic function in Ω with Uϕ = ϕ on ∂Ω.

——————————
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Proof. First we consider the generalized solution of the problem

{
− detD2u+ g

(
|Du|

)[
f(u− h)

]
+
= 0 in Ω.

u = ϕ on ∂Ω.

Since H
(
Du, u, x

)
= g

(
|Du|

)[
f(u − h)

]
+
≥ 0 we can apply well known results in the

literature. In particular, from [43], it follows the existence and uniqueness of the
solution u. The second point is to note that, by construction, the own locally convex
function h verifies

− detD2h+ g
(
|Du|

)[
f(h− h)

]
+
≤ 0 in Ω.

Therefore, by the Weak Maximum Principle and the assumption h ≤ ϕ on ∂Ω we get
that

h ≤ u in Ω,

whence [
f(u− h)

]
+
= f(u− h)

concludes the existence. The uniqueness also follows from the Weak Maximum Prin-
ciple. Finally, since u is locally convex, the arithmetic–geometric mean inequality
lead to

0 ≤ detD2u ≤
1

N
(∆u)

N
in Ω,

whence the estimate

h(x) ≤ u(x) ≤ Uϕ(x), x ∈ Ω

is completed by the weak maximum principe for harmonic functions.

Remark 2.9. i) As it was pointed out in the Introduction, no sign assumption on h
is required in Theorem 2.8. The simple structural assumption (4) implies that h ≤ u

on Ω and therefore the ellipticity, eventually degenerate, of the equation holds. Thus,
the ellipticity holds once h behaves as a lower “obstacle” for the solution u. We note
that these compatibility conditions are not required a priori in the Weak Maximum
Principles because there we are working with functions whose existence is a priori
assumed.
ii) Since u is locally convex on Ω, we can prove

sup
Ω

|Du| = sup
∂Ω

|Du|,

(see [24]) then inequality (21) gives a priori bounds on |Du| on Ω, provided h = ϕ

on ∂Ω and Dh is defined on ∂Ω. The second derivative estimate is based on the
inequality

sup
Ω

|D2u| ≤ C

(
1 + sup

∂Ω
|D2u|

)
(22)

for some constant C independent on u, as it will be proved in [24].

In the next section we prove a kind of Strong Maximum Principle which under
suitable assumptions will avoid the appearance of the mentioned free boundary.

11 ——————————
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3. Flat regions in the stationary problem

In this section we focus the attention to a lower “obstacle” function h locally convex
on Ω having some region giving rise to the set

Flat(h) =
⋃

α

Flatα(h)

where

Flatα(h) = {x ∈ Ω : h(x) = 〈pα, x〉+ aα, for some pα ∈ RN and aα ∈ R}. (23)

Since
u(y)−

(
〈pα, y〉+ aα

)
≥ u(x)−

(
〈pα, x〉+ aα

)
+ 〈p− pα, y − x〉,

thus
p ∈ ∂u(x) ⇔ p− pα ∈ ∂

(
u(x)−

(
〈pα, x〉+ aα

))
,

the equation (7) becomes

detD2uα = λg
(
|Du|

)
u

1
p
α , x ∈ Flatα(h), (24)

for uα = u−
(
〈pα, x〉+ aα

)
. Remember that uα ≥ 0 in an open set O ⊆ Ω, if uh ≥ 0

on ∂O. Assumption g(|p|) ≥ 1 leads us to study for the auxiliar problem

{
detD2U = λU

1
p in BR(0),

U ≡ M > 0 on ∂BR(0),
(25)

for any M > 0. From the uniqueness of solutions, it follows that U is radially sym-
metric, because by rotating it we would find another solutions. Moreover, by the
comparison results U is nonnegative. Therefore, the solution U is governed by a
nonnegative radial profile function U(x) = Û(|x|) for which some straightforward
computations leads to

detD2U(x) = Û′′(r)

(
Û′(r)

r

)N−1

=
r1−N

N

[(
Û′(r)

)N]′
. (26)

Remark 3.1. For N = 1, equation (25) becomes

Û′′(r) = λÛ
1
p

whose annulation set was studied in [26]. Note that for N > 1 equation (26) does not
coincide with the (N− 1)–Laplacian considered in [26].

We start by considering the initial value problem




r1−N

N

[(
U′(r)

)N]′
= λ

(
U(r)

) 1
p , λ > 0

U(0) = U′(0) = 0.
(27)

Obviously, U(r) ≡ 0 is always a solution, but we are interested in the existence of
nontrivial and non–negative solutions. It will be useful the following result

——————————
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Lemma 3.2. Assume Np > 1. Consider the function

U(r) = Cr
2Np

Np−1 , r ≥ 0, (28)

where C is a positive constant. Let

Cp,N =

(
(Np− 1)N+1

(2Np)N(Np + 1)

) p
Np−1

. (29)

Then,

−
r1−N

N

[(
U′(r)

)N]
+ λ
(
U(r)

) 1
p =

[
λ−

(
C

Cp,N

)Np−1
p

]
C

1
p r

2N
Np−1 . (30)

Therefore,

(i) if C < λ
p

Np−1Cp,N the function U(r) is a supersolution of the equation (27),

(ii) if C = λ
p

Np−1Cp,N the function U(r) is the solution of the equation (27),

(iii) if C > λ
p

Np−1Cp,N the function U(r) is a subsolution of the equation (27).

Proof. The conclusions are immediate by some straightforward computations on the
function U(r).

Since Np > 1, the function

U(r) = λ
p

Np−1Cp,Nr
2Np

Np−1 , r ≥ 0, (31)

enables us to construct functions vanishing in a ball Bτ (0)

vτ (x)
.
= U

(
[|x| − τ ]+

)
, x ∈ R

N, (32)

which solves
− detD2vτ (x) + λ

(
vτ (x)

) 1
p = 0, x ∈ R

N.

Moreover, given M > 0, it verifies

vτ (x) = M, |x| = R

once we take

τ = R−U−1(M) =

(
M

Cp,N

)Np−1
2Np [

λ
− 1

2N
∗ − λ−

1
2N

]

with

λ ≥ λ∗
.
=

1

R2N

(
M

Cp,N

)Np−1
p

. (33)

Now for the solution of (5) we may localize a core of the flat region Flat(u) inside
the flat subregion Flatα(h) of the “obstacle”.

13 ——————————
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Theorem 3.3. Let h be locally convex on Ω. Let us assume that there exists BR(x0) ⊂
Flatα(h) with

0 ≤ u(x)−
(
〈pα, x〉+ aα

)
≤ M ≤ max

Ω
(u− h), x ∈ ∂BR(x0), (34)

where u is a generalized solution of (7), for some M > 0. Then, if Np > 1 and

λ ≥ λ∗
.
=

1

R2N

(
M

Cp,N

)Np−1
p

,

one verifies

0 ≤ u(x)−
(
〈pα, x〉+ aα

)
≤ λ

p
Np−1Cp,N

([
|x− x0| − τ

]
+

) 2Np
Np−1 , x ∈ BR(x0), (35)

where

τ =

(
M

Cp,N

)Np−1
2Np [

λ
− 1

2N
∗ − λ−

1
2N

]
, (36)

once we assume that

(
M

Cp,N

)Np−1
2Np

λ−
1

2N < R ≤ dist(x0, ∂Ω). (37)

In particular, the function u is flat on Bτ (x0). More precisely,

u(x) = 〈pα, x〉+ aα for any x ∈ Bτ (x0).

Proof. The result is a direct consequence of previous arguments. Indeed, for simplicity
we can assume x0 = 0. Since g(|p|) ≥ 1, by the comparison results we get that

0 ≤ uα(x) ≤ vτ (x), x ∈ BR(0)

(see (24) and (32)) and so the conclusions hold.

Remark 3.4. We have proved that under the above assumptions the flat region of u
is a non–empty set. Obviously, Flat(h) ⊂ Flat(u) whenever (34) fails, even if Np > 1.
We shall examine the optimality of (35) in [24] following different strategies carry out
in [26] for other free boundary problems.

Remark 3.5. We point out that the above result applies to the case in which ϕ ≡ 1
and h ≡ 0 (the so called “dead core” problem) as well as to cases in which u is flat
only near ∂Ω (take for instance, h(x) = 〈pα, x〉+ aα in Ω and ϕ ≡ h on ∂Ω).

Theorem 3.3 gives some estimates on the localization of the points inside Flat(h)
where u becomes flat too. The following result shows that if h decays in a suitable way
at the boundary points of Flat(h) then the solution u becomes also flat in those points
of the boundary of Flat(h). In this result the parameter λ is irrelevant, therefore with
no loss of generality we shall assume that λ = 1.

——————————
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Theorem 3.6. Let us assume Np > 1. Let x0 ∈ ∂Flatα(h) such that

h(x)−
(
〈pα, x〉+ aα

)
≤ K|x− x0|

2Np
Np−1 , x ∈ BR(x0) ∩

(
R

N \ Flat(h)
)
, (38)

and

0 ≤ max
|x−x0|=R

{
u(x)−

(
〈pα, x〉+ aα

)}
≤ CR

2Np
Np−1 (39)

for some suitable positive constants K and C (see (41) below) and u is a generalized
solution of (7). Then

u(x0) = 〈pα, x0〉+ aα. (40)

Proof. Define the function

V(x) = u(x)−
(
〈pα, x〉+ aα

)
,

which by construction is nonnegative in ∂BR(x0) (see (39)). In fact, the Weak Max-
imum Principle implies that V is non negative on BR(x0). Then

−
(
detD2V(x)

) 1
N + (

(
V(x)

) 1
Np = −

(
detD2u(x)

) 1
N +

(
u(x)−

(
〈pα, x〉+ aα

)) 1
Np

= −
(
u(x)− h(x)

) 1
Np +

(
u(x)−

(
〈pα, x〉+ aα

)) 1
Np

≤
(
h(x) −

(
〈pα, x〉+ aα

)) 1
Np

≤ K
1

Np |x− x0|
2p

Np−1 , x ∈ BR(x0),

where we have used a kind of Minkovsky inequality (see appendix)

(a+ b)
1

Np ≤ a
1

Np + b
1

Np , a, b ≥ 0, where Np > 1,

as well as (38). On the other hand, since the function

Up(r) = Cp,Nr
2Np

Np−1 , r ≥ 0,

verifies (
r1−N

N

[(
U′

p(r)
)N]

) 1
N

=
(
Up(r)

) 1
Np

(see (30)), we have

−

(
r1−N

N

[(
U′(r)

)N]′
) 1

N

+
(
U(r)

) 1
Np =

[
1−

(
C

Cp,N

)Np−1

N2p

]
C

1
N r

2p
Np−1

for U(r) = Cr
2Np

Np−1 . Hence, if we take C < Cp,N and then K such that

K
1

Np ≤ C
1
N

[
1−

(
C

Cp,N

)Np−1

N2p

]
(41)
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we obtain

−
(
detD2V(x)

) 1
N +

(
V(x)

) 1
Np ≤ −

(
detD2U(|x|)

) 1
N +

(
U(|x|)

1
Np , x ∈ BR(x0).

Finally, by choosing R satisfying (39) one has

V(x) ≤ U(|x|), x ∈ ∂BR(x0),

whence the comparison principle concludes

0 ≤ V(x) ≤ C|x− x0|
2Np

Np−1 , x ∈ BR(x0),

and so u(x0) =
(
〈pα, x0〉+ aα

)
.

Remark 3.7. The assumption (39) is satisfied if we know that the ball BR(x0) where
(38) holds is assumed large enough. The above result is motivated by [26, Theorem
2.5]. By adapting the reasoning used in previous results of the literature (see [2, 3, 27])
it can be shown that the decay of h(x) −

(
〈pα, x〉 + aα

)
near the boundary point x0

is optimal in the sense that if

h(x) −
(
〈pα, x〉+ aα

)
> C|x− x0|

2Np
Np−1 in a neighbourhood of x0

then it can be shown that

u(x0)−
(
〈pα, x0〉+ aα)

)
> C|x− x0|

2Np
Np−1 for x near x0.

This type of results gives very rich information on the non–degeneracy behavior of
the solution near the free boundary. This is very useful to the study of the continuous
dependence of the free boundary with respect to the data h and ϕ (see [27]).

Now we examine the case in which the solution cannot be flat (i.e. the free bound-
ary cannot appear) independent on “size” of Ω, obviously it requires the condition

Np ≤ 1.

This will be proved by a version of the Strong Maximum Principle. We shall follow
the classical reasoning by E. Hopf (see e.g. [30]). Again, since the parameter λ is also
irrelevant, in this result, with no loss of generality, we assume here λ = 1. So, we
begin with

Lemma 3.8 (Hopf boundary point lemma). Assume Np ≤ 1. Let u be a nonnegative
viscosity solution of

− detD2u+ u
1
p ≥ 0 in Ω.

Let x0 ∈ ∂Ω be such that u(x0)
.
= lim inf

x→x0
x∈Ω

u(x) and

{
i) u achieves a strict minimum on Ω ∪ {x0},
ii) ∃ BR(x0 − Rn(x0)) ⊂ Ω, ( ∂Ω satisfies an interior sphere condition at x0).

Then

lim inf
τ→0

u(x0 − τn)

τ
≥ C > 0, (42)

where n stands for the outer normal unit vector of ∂Ω at x0 and C is a positive
constant depending only on the geometry of ∂Ω at x0.

——————————
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Proof. Let y = x0 − Rn(x0) and BR
.
= BR(y). As it was pointed out before, equa-

tion (7) leads to the study of the differential equation

r1−N

N

[(
Φ′(r)

)N]′
=
(
Φ(r)

) 1
p , r > 0,

for radially symmetric solutions. We consider now the classical solution of the two
point boundary problem





r1−N

N

[(
Φ′(r)

)N]′
=
(
Φ(r)

) 1
p , 0 < r <

R

2
,

Φ(0) = 0, Φ

(
R

2

)
= Φ1 > 0.

(43)

The existence of solution follows from standard arguments and the uniqueness of
solution can be proved as in Theorem 2.6, whence

Φ′(0) ≥ 0 ⇒ Φ′(r) > 0 ⇒ Φ′′(r) > 0.

Then

0 ≤ Φ(r) ≤ Φ1, 0 < r <
R

2
.

We note that the singularity at r = 0 must be removed by the condition

lim
r→0

r1−N

N

[(
Φ′(r)

)N]′
= 0. (44)

Let r0 be the largest r for which Φ(r) = 0. We want to prove that r0 = 0 by proving
that r0 > 0 leads to a contradiction. In order to do that we multiply (43) by rN−1Φ′(r)
and get [(

Φ′(r)
)N+1

]′
= (N + 1)

(
Φ(r)

) 1
pΦ′(r)rN−1 , 0 < r <

R

2
.

Next, since Φ′(r0) = 0 = Φ(r0), an integration between r0 and r leads to

(
Φ′(r)

)N+1
=

p(N + 1)

p + 1

(
Φ(r)

) p+1
p rN−1 −

p(N + 1)(N− 1)

p + 1

∫ r

r0

(
Φ(s)

) p+1
p rN−2ds

≤
p(N + 1)

p + 1

(
Φ(r)

) p+1
p rN−1, r0 < r <

R

2
.

Because Np ≤ 1, a new integration between r0 and
R

2
yields the conjectured contra-

diction because

∞ =

∫ Φ1

0

ds

s
p+1

p(N+1)

=

∫ R
2

r0

Φ′(r)
(
Φ(r)

) p+1
p(N+1)

dr ≤

(
p(N + 1)

p + 1

) 1
N+1

∫ R
2

r0

r
N−1
N+1 dr <∞.

So that, we have proved Φ′(0) > 0 and also

0 < Φ(r) < Φ1, Φ
′(r) > 0, 0 < r <

R

2
,

17 ——————————
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as well as Φ′′(0) = 0 (see (44)). Hence, straightforward computations on the C2 convex
function w(x) = Φ(R− |x− y|), defined in the annulus O

.
= BR \BR

2
, prove





detD2w(x) =
(
w(x)

) 1
p , x ∈ O,

w(x) = Φ1, x ∈ ∂BR
2
,

w(x) = 0, x ∈ ∂BR.

Moreover, by construction

u(x) > 0, x ∈ ∂BR
2

⇒ u(x) ≥ w(x), x ∈ ∂BR,

for Φ1 small enough. Then the Weak Maximum Principle of Proposition 2.4 implies

(u− w)(x) ≥ 0, x ∈ O.

that leads to
u(x0 − τn)

τ
≥

Φ(R− R(1− τ))

τ
, (τ ≪ 1)

whence

lim inf
τ→0

u(x0 − τn)

τ
≥ Φ′(0) > 0.

Remark 3.9. In fact, above result implies

lim inf
x→x0
x∈Ω

u(x)

|x− x0|
≥ Φ′(0) > 0.

Our main result proving the absence of the free boundary is the following

Theorem 3.10 (Hopf’s Strong Maximum Principle). Assume Np ≤ 1. Let u be a
nonnegative viscosity solution of

− detD2u+ u
1
p ≥ 0 in Ω.

Then u cannot vanish at some x0 ∈ Ω unless u is constant in a neighborhood of x0.

Proof. Assume that u is non–constant and achieves the minimum value u(x0) = 0 on
some ball B ⊂ Ω. Then we consider the semi-concave approximation of u, i.e.

uε(x)
.
= inf

y∈Ω

{
u(y) +

|x− y|2

2ε2

}
, x ∈ Bε (ε > 0), (45)

where Bε
.
= {x ∈ B : dist(x, ∂B) > ε

√
1 + 4 sup

B
|u|}. For ε small enough we can

assume x0 ∈ Bε. Then u
ε achieves the minimum value in Bε, with u(x0) = uε(x0) =

0. Moreover, uε satisfies

− detD2uε + u
1
p
ε ≥ 0 on Bε. (46)

——————————
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(see, for instance [43, Proposition 2.3] or [6, 16] for general fully nonlinear equations).
By classic arguments, if we denote

B+
ε
.
= {x ∈ Bε : u

ε(x) > 0},

there exists the largest ball BR(y) ⊂ B+
ε (see [30]). Certainly there exists some

z0 ∈ ∂BR(y)∩Bε for which uε(z0) = 0 is a local minimum. Then, Lemma 3.8 implies

Duε(z0) 6= 0

contrary to
Duε(z0) = 0, (47)

as we shall prove in Lemma 3.13 below. Therefore, uε is constant on B ⊂ Ω, i.e.

uε(y) = uε(x0) = u(x0), y ∈ B.

Finally, for every y ∈ B we denote by ŷ the point of Ω such that

uε(y) = u(ŷ) +
1

2ε2
|y − ŷ|2

whence

u(x0) = uε(x0) = uε(y) = u(y)+
1

2ε2
|y−ŷ|2 ≥ u(x0)+

1

2ε2
|y−ŷ|2 ≥ u(x0) ⇒ ŷ = y.

So that, one concludes

u(y) = uε(y) = uε(x0) = u(x0), y ∈ B.

Corollary 3.11. Assume Np ≤ 1. Let u be a generalized solution u of (7). Then if
u(x0) > h(x0) or detD2h(x0) > 0 at some point x0 of a ball B ⊆ Ω then u > h on
B, consequently the equation (7) is elliptic in B. In particular, if ϕ(x0) > h(x0) at
some x0 ∈ ∂Ω or detD2h(x0) > 0 at some point x0 ∈ Ω the problem (5) is elliptic
non degenerate in path-connected open sets Ω, provided the compatibility condition
(4) holds.

Proof. From Theorem 3.10, both cases imply u > h on B. Finally, a continuity
argument concludes the proof.

Remark 3.12. Straightforward computations enable us to extend Lemma 3.8, The-
orem 3.10 and Corollary 3.11 to the general case g(|p|) ≥ 1, since we know that
u ∈ W1,∞(Ω) (see the comments of Remark 2.9).

We end this section by proving the property (47) used in the proof of Theorem 3.10

Lemma 3.13. Let ψ be a function achieving a local minimum at some z0 ∈ O.
Assume that there exists a function ψ̂ defined in O such that ψ̂(z0) = 0, Ψ = ψ + ψ̂

is concave on O and

ψ̂(x) ≥ −K|x− z0|
2, x ∈ O, with |x− z0| small,

for some constant K > 0. Then the function ψ is differentiable at z0 and Dψ(z0) = 0.

19 ——————————

Actas Homenaje J. Tarrés



G. Dı́az/J.I. Dı́azRemarks on the Monge–Ampère equation: some free boundary problems in Geometry

Proof. By simplicity we can take z0 = 0 ∈ O. By applying the convex separation
theorem there exists p ∈ RN such that

Ψ(x) ≤ Ψ(0) + 〈p, x〉 = ψ(0) + 〈p, x〉, x ∈ O, with |x| small.

Then we have

ψ(x) = Ψ(x) − ψ̂(x) ≤ ψ(0) + 〈p, x〉+K|x|2

≤ ψ(x) + 〈p, x〉+K|x|2, x ∈ O, with |x| small
(48)

whence

−〈p, x〉 ≤ K|x|2, x ∈ O,with |x| small.

For τ > 0 small enough we can choose x = −τp ∈ O and τK < 1, for which

τ |p|2 ≤ Kτ2|p|2.

Therefore p = 0. Finally, (48) leads to

0 ≤ ψ(x)− ψ(0) ≤ K|x|2, x ∈ O, with |x| small,

and the result follows.

Remark 3.14. The result is immediate if ψ is concave, in this case we can choose
ψ̂ ≡ 0. The convex version follows by changing ψ and ψ̂ by −ψ and −ψ̂, respectively
(see Remark 2.7 above).

Note that since the function uε defined in (45) is semi concave, the property (47)
holds

4. The evolution problem. Study of the associated free bound-

ary and the global flatness in finite time

We start by considering the existence of solution of (2) by means of the accretivity of
the operator. The definition of the operator uses odd increasing functions f ∈ C(R),
such that f(0) = 0. Then, we say u ∈ D(A) if u ∈ C(Ω) is a locally convex function
on Ω prescribing ϕ ∈ C(∂Ω) on ∂Ω and there exists a nonpositive continuous function
v in Ω such that u is a generalized solution of





f−1
(
− detD2u

)

g
(
|Du|

) = v in Ω,

u = ϕ on ∂Ω,

or equivalently {
detD2u = f(

(
− g
(
|Du|

)
v
)

in Ω,

u = ϕ on ∂Ω,

for a more precise sense. Then we denote by Au the set of all such v ∈ C(Ω).

——————————

Actas Homenaje J. Tarrés
20



G. Dı́az/J.I. Dı́azRemarks on the Monge–Ampère equation: some free boundary problems in Geometry

Theorem 4.1. The operator A is T-accretive on the Banach space X = C(Ω) equipped
with the supreme norm. In particular,

‖
[
u1 − u2]+

∥∥ ≤ sup
Ω

∥∥[u1 − u2 + ε
(
Au1 −Au2

)]
+

∥∥,
∥∥u1 − u2

∥∥ ≤ sup
Ω

∥∥u1 − u2 + ε
(
Au1 −Au2

)∥∥, (49)

for ε > 0, ui ∈ D(A).

Proof. It is a mere application of Theorem 2.6.

Remark 4.2. We recall that the accretiveness of the operator implies that the resolvent
Jε = (I + εA)−1 is a contraction on X.

Certainly, one has

D(A) ⊂ X̂ϕ
.
= {w ∈ C(Ω) : w locally convex on Ω and w = ϕ on ∂Ω}.

In fact, we have

Corollary 4.3. The operator A satisfies D(A) = X̂ϕ as well as the range condition

R(I + εA) ⊃ D(A), ε > 0.

Proof. By well-known results (see, e.g. expression (2.1) of [42]), any w locally convex
function can be approximated uniformly by a sequence of smooth locally convex
functions wn ∈ C(Ω) such that wn = ϕ on ∂Ω. Then we can assume that detD2wn ∈
C(Ω), and so wn ∈ D(A) (note that we merely have that detD2wn ⇀ detD2w weakly
in the sense of measures). Therefore

D(A) = X̂ϕ.

On the other hand, for each h ∈ D(A) and ε > 0 by means of a simple adaptation of
the proof of Theorem 2.8 one proves that there exists a unique solution of





detD2u = f

(
g
(
|Du|

)u− h

ε

)
, in Ω,

u = ϕ, on ∂Ω,

thus (
I + εA

)
u = h.

Crandall–Liggett generation theorem (see [15]) and Corollary 4.3 enables us to
show that A generates a nonlinear semigroup of contractions {S(t)}t≥0 on X and

S(t)u0 = lim
n→∞

εn→t

(I + εA)−1u0, for any u0 ∈ D(A) = X̂ϕ, (50)
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uniformly for t in bounded subsets of ]0,∞[. Furthermore, the mapping t 7→ S(t)u0 is
continuous from [0,∞[ into X. In general the semigroup generated by such accretive
operators A can be regarded as the so called “mild solution” of the Cauchy problem

{
ut +Au = 0 t > 0,
u(0) = u0,

(51)

(see [15]). A different characterization is possible.

Proposition 4.4. Assume u0 ∈ D(A) ⊂ X. Then

u(x, t) = S(t)u0(x), x ∈ Ω, 0 < t < T <∞, (52)

satisfies (2) in the viscosity sense.

Proof. Assume Φ ∈ C2(Ω×]0,T[) such that Φ(·, t) is convex on Ω, for all t ∈ [0,T]
and u − Φ attains a strict local maximum at (x0, t0) ∈ Ω×]0,T[). For each ε > 0,
consider the step function uε(t) ∈ D(A) solving





detD2
xuε(t+ ε) = f

(
g
(
|Dxuε(t+ ε)|

)uε(t+ ε)− uε(t)

ε

)
in Ω, t > 0,

uε(t) = u0 if 0 ≤ t ≤ ε.

We may assume t0 6= kε by appropriate choice of ε. Since uε(t) → S(t)u0 uniformly
on [0,T] in X as ε → 0, uε(x, t + ε) − Φ(x, t) has a local maximum at some point
(xε, tε), such that (xε, tε) ∈ Ω×]0,T[, xε → x0, tε → t0, as ε→ 0. Hence,

detD2
xuε(tε + ε)− detD2

xΦ ≤ 0 at xε,

according to the definition of A (note uε(· + ε) ∈ D(A)). Moreover, if ε is small
enough, we have

uε(xε, tε + ε)− uε(xε, tε)

ε
≥

Φ(xε, tε)− Φ(xε, tε − ε)

ε
,

whence

detD2Φ(xε, tε) ≥ f

(
g
(
|DxΦ(xε, tε − ε)|

)Φ(xε, tε − ε)− Φ(xε, tε)

ε

)
.

If we let ε→ 0, then, since (xε, tε) → (x0, t0), we obtain

− detD2
xΦ(x0, t0) + f

(
g
(
|DxΦ(x0, t0)|

)
Φt(x0, t0)

)
≤ 0.

The opposite inequality has an analogous proof should u−Φ attain a local minimum
at (x0, t0).

Remark 4.5. Since u(t) ∈ D(A) the property

0 ≤ detD2
xu(t),

holds in the generalized sense a.e. t > 0. Note that a priori we merely know that
S(t)

(
D(A)

)
⊂ D(A) and so the time derivative ut must be understood in a large

sense. Nevertheless, it is possible to apply different regularity results according f see,
for instance, [19] and its references. In any case, at least ut is a nonnegative measure
and u(·, t) is a locally convex function.
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As it was pointed out in the introduction our study on the free boundary uses

the power like nonlinearity, f(t) = tp and its inverse function f−1(t) = t
1
p which

must be understood as the restriction to R+ of the odd functions f(t) = |t|p−1t and

f−1(t) = |t|
1−p
p t, respectively. So that, from the viscosity notion point of view we

may rewrite (51) in the usual form





ut =

(
detD2u

)p

g(|Du|)
in Ω× R+,

u(x, t) = ϕ(x), (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x). x ∈ Ω.

(see (2) above).
Our results on the free boundary begin by studying how a possible region of

flatness of the initial datum u0 shrinks when t increases. We start by considering the
interior points of Flat(u0). As in Section 3, for u0 ∈ Ω we denote

Flat(u0) =
⋃

α

Flatα(u0)

where

Flatα(u0) = {x ∈ Ω : u0(x) = 〈pα, x〉+ aα, for some pα ∈ RN and aα ∈ R}.

Theorem 4.6. Let Np > 1 and

BR(x0) ⊂ Flatα(u0) (53)

for some R > 0. Then there exists t∗ = t∗(u0) > 0 such that

u(x0, t) = 〈pα, x0〉+ aα, 0 ≤ t < t∗,

where u is the viscosity solution of (2).

Proof. We need a suitable local separable supersolution U(x, t) = U(|x|)η(t). The
time function η(t) is given by

η′(t) = δ
(
η(t)

)Np
, t > 0, for some δ > 0, (54)

whose solution is

η(t) =

[
1

(
η(0)

)Np−1
−

δ

Np− 1
t

]− 1
Np−1

. (55)

Note that η(t) blows up at

t∗
(
δ, η(0)

) .
=

Np− 1

δ

1
(
η(0)

)Np−1
.

The spatial dependence is given by the function

U(r) = δ
p

Np−1Cp,Nr
2Np

Np−1 , r ≥ 0,
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(see (31)). In [25] it is proved the regularity

Du ∈ L∞
(
0,∞ : L∞(Ω)

)
.

Then the convexity of the solution enables us to choose η(0), δ and R such that

max
BR(x0)×R+

u ≤ η(0)δ
p

Np−1Cp,NR
2Np

Np−1 . (56)

So that, we consider now the function

V(x, t) = u(x, t)−
(
〈pα, x〉+ aα

)

for which
V(x, 0) = 0, x ∈ BR(x0),

(see (53)) and

V(x, t) ≤ U(x, t), (x, t) ∈ ∂BR(x0)× [0, t∗
(
δ, η(0)

[

hold (see (56)). On the other hand, we have that

1

δ
≥ g
(
|DxV(x, t)|

)
≥ 1, (x, t) ∈ BR(x0)×

[
0, t∗

(
δ, η(0)

)[

for a suitable choice of δ. Therefore, one has

−

(
detD2

xV
)p

g
(
|DxV|

) ≤ −δ
(
detD2

xV
)p

in BR(x0)×
[
0, t∗

(
δ, η(0)

)[
,

and

Vt −

(
detD2

xV
)p

g
(
|DxV(x, t)|

) = 0 ≤ Ut −

(
detD2

xU
)p

g
(
|DxU(x, t)|

) in BR(x0)×
[
0, t∗

(
δ, η(0)

)[
.

Thus, by the comparison principle

0 ≤ V(x, t) ≤ U(x, t), (x, t) ∈ BR(x0)×
[
0, t∗

(
δ, η(0)

)[

which concludes the proof.

Remark 4.7. It is easy to see that the above argument gives a simple estimate on the
shrinking of the free boundary

Fα(t) = ∂{(x, t) : u(x, t) = 〈pα, x〉+ aα} (57)

from the rest. Essentially,

lim sup
t→0

dist
(
Fα(t),Fα(0)

)
t−

1
Np−1 ≤ C,

for some positive constant C.
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The next result shows that if u0(x)−
(
〈pα, x〉+ aα

)
arrives to some points of the

boundary of its support flat enough, let us say (38), then there exists a “finite waiting
time” for those points.

Theorem 4.8. Let Np > 1 and let x0 ∈ Ω be such that

u0(x)−
(
〈pα, x〉+ aα

)
≤ K|x− x0|

2Np
Np−1 , x ∈ BR(x0), (58)

for suitable positive constants K and R. Then, there exists t̃ = t̃(x0) such that

u(x0, t) = 〈pα, x0〉+ aα if 0 ≤ t < t̃,

where u is the viscosity solution of (2).

Proof. As in the above proof we use a local separable supersolution U(x, t) = U(|x|)η(t),
where η(t) was given in (54) and

U(r) = Cr
2Np

Np−1 , r ≥ 0,

for C > 0. Then

−
r1−N

N

[(
U′(r)

)N]
+ δ
(
U(r)

) 1
p = C

1
p


1−

(
C

δ
p

Np−1Cp,N

)Np−1
p


 r 2N

Np−1 > 0

for C ∈
]
0, δ

p
Np−1Cp,N

[
(see (30)). Then the reasonings are similar to those of the

proof of Theorem 4.6 because now (58) provides the inequality

V(x, 0) ≤ U(x, 0)

before derived from (53).

Remark 4.9. A similar waiting time result was obtained by Choop, Evans and Ishii [14]
for the special case p = 1 and N = 2 under a global formulation on the assumption
on the initial datum. Essentially, their assumption is u0 ∈ C4(Ω). Note that for this
special case p = 1 and N = 2 the condition (58) becomes

u0(x)−
(
〈pα, x〉+ aα

)
≤ K|x− x0|

4, x ∈ BR(x0). (59)

In particular, any C4 partially flat function satisfies (59) at all points of the boundary
of Fα(0) (see (57)). So, our result can be regarded as a local and generalized version
of the result of [14].

We continue our study on the evolution of the free boundary by showing that, in
the case of a bounded domain Ω, in most of the cases Fα(t) is shrinking.

Theorem 4.10. Let Np > 1 and assume x0 such that

u0(x0) = 〈pα, x0〉+ aα.

Then there exists t̂ > 0 such that

u(x0, t) > 〈pα, x0〉+ aα, t > t̂, (60)

where u is the viscosity solution of (2).
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As a matter of fact, it is enough to show that

u(x0, t̂) > 〈pα, x0〉+ aα, (61)

because since ut ≥ 0 we get (60) for any t > t̂. In order to prove Theorem 4.10 we
shall use other suitable supersolution based on the self–similar solution of the Cauchy
problem associated to the case g(s) ≡ δ, for suitable δ ≥ 1. We start by pointing out
that by arguing by adimensionalization we get:

Lemma 4.11. Let u(x, t) be a viscosity solution of

ut =
(
detD2

xu
)p

in RN × R+. (62)

Then the change of scale x′ = Lx, t′ = Tt allows to define

u′(x′, t′) = L
2Np

Np−1T− 1
Np−1u(x, t)

which is also a viscosity solution of (62).

A more deep conclusion on the self–similar solution of (62) is the following

Theorem 4.12. Assume Np > 1. Then, there exists a family of convex compactly
supported similarity solutions of (62) given by

u(r, t;σ, β)
.
= t−σΛ(η), η

.
=

r

tβ
for suitable σ, β > 0.

The proof of Theorem 4.12 requires the analysis of the correspondent phase–plane
system 




dq

dη
= −

[
Npβ

η

[σ
β
Λ(η) + ηq

1
N

]] 1
p

,

dΛ

dη
= q

1
N ,

where q = (Λ′)N
(
sign Λ′

)
. By simplicity, we do not present here the details but

send the reader to [25]. In any case, we can indicate that the proof is a non–difficult
variation of some results in the literature (see, for instance, Bernis, Hulshof and
Vázquez [7] and Igbida [35]). See also Daskalopoulus and Lee [18] for the case of the
“focusing problem” associated to (62).

Proof of Theorem 4.10. As in the proof of Theorem 4.6 we can assume that the so-
lution u has bounded gradient

Du ∈ L∞
(
Ω×]0, t̂[

)

for any given t̂. So that V(x, t) = u(x, t)−
(
〈pα, x〉+ aα

)
verifies

Vt(x, t)− δ
(
detD2

xV(x, t)
)p

≥ 0,
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for a suitable δ > 0, that we suppose here δ = 1 to simplify the notation, otherwise
the needed modifications are simple. Let x0 ∈ Ω such that

u0(x0) = 〈pα, x0〉+ aα.

Then we consider σ and β for which

u
(
|x− x0|, t;σ, β) ≤ V(x, t) for any t ≥ 0 and x ∈ BR(x0)

for some R > 0 (see Theorem 4.12). Since

u
(
r0, t;σ, β) > 0

for any r0 > 0 once that t is large enough, we conclude the result.

Remark 4.13. Other properties of the solution of (51) can be obtained from the family
of self-similar solution given in Theorem 4.12 (see [25] for details).

Our last goal is the study of the asymptotic behavior of u as t → ∞ from a
peculiar point of view. We start by proving that if Np ≥ 1 then the stabilization to a
stationary solution requires infinite time. From now on, any locally convex function
on Ω such that detD2h = 0, a.e. in Ω will be called flat convex function. By simplicity
we assume g

(
|p|
)
≡ 1.

Theorem 4.14. Assume that Np ≥ 1. Let h a flat convex function on Ω such that
ϕ ≤ h on ∂Ω. Then for each u0 ∈ D(A) such that u0 ≤ h on Ω and u0 < h in some
set Ω′ ⊂ Ω with positive measure, there exists a positive constant CΩ′ such that





lim inf
t→∞

(
h(x) − u(x, t)

)
t

1
Np−1 ≥ CΩ′ if Np > 1,

lim inf
t→∞

(
h(x) − u(x, t)

)
et ≥ CΩ′ if Np = 1,

x ∈ Ω′, (63)

where u is the viscosity solution of (2). Analogously, let h be a flat convex function
on Ω such that ϕ ≥ h on ∂Ω verifying u0 ≥ h on Ω and u0 > h in some set Ω′ ⊂ Ω
with positive measure, there exists a positive constant CΩ′ such that





lim inf
t→∞

(
u(x, t)− h(x)

)
t

1
Np−1 ≥ CΩ′ if Np > 1,

lim inf
t→∞

(
u(x, t)− h(x)

)
et ≥ CΩ′ if Np = 1,

x ∈ Ω′. (64)

Proof. If h be a flat such that ϕ ≤ h on ∂Ω. Then, one has

ht =
(
detD2

xh
)p

whence u(x, t) = u(x, t)− h(x) verifies

{
(u)t =

(
detD2

xu
)p

in Ω× R+,

u ≤ 0, u 6≡ 0 on
(
∂Ω× R+

)
∪
(
Ω× {0}

)
,

(65)
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in the viscosity sense and

u(x, t) ≤ 0, (x, t) ∈ Ω× R+.

Here the key idea is to consider the auxiliar problem

{
φ′(t) +

2

m

(
kφ(t)

)Np
= 0, t ≥ 0,

φ(0) = 1, φ(∞) = 0,
(66)

whose solution is

φ(t) =





[
1 +

2

m

kNp

Np− 1
t

]− 1
Np−1

, if Np > 1,

e−
2k
m t, if Np = 1,

where k is a positive constant to be choosen and m is a positive constant such that
h− u0 ≥ m in some B2R ⊂ Ω. Let ψ(x1) ∈ C2 a non positive function such that





ψ(x1) = 0, x 6∈ B2R,

−m < ψ(x1) < −
m

2
and ψ′′(x1) ≥ 0, x ∈ BR,

−
m

2
< ψ(x1) < 0 and ψ′′(x1) ≤ 0, x ∈ B2R \BR.

Then the function

W (x, t) = φ(t)ψ(x1), (x, t) ∈ Ω× R+,

verifies




W (x, t) < 0, (x, t) ∈ B2R × R+,

W (x, t) = 0, (x, t) ∈ ∂Ω× R+,

W (x, 0) = φ(0)ψ(x1) ≥ −m >
(
u0 − h

)
(x), x ∈ B2R,

W (x, 0) = φ(0)ψ(x1) = 0 ≥
(
u0 − h

)
(x), x ∈ Ω \B2R.

because φ(0) = 1. Moreover, from (66) we get

Wt(x, t) +
(
− detD2

xW (x, t)
)p .

= r(x, t)

where

r(x, t) ≥

{ (
kφ(t)

)Np
+
(
−
(
φ(t)

)Np
) (
ψ′′(x1)

)p
≥ 0, x ∈ BR,

φ′(t)ψ(x1) +
(
φ(t)

)Np(
− ψ′′(x1)

)p
≥ 0, x ∈ Ω \BR,

for t > 0, provided k is large. Then, from (65), comparison results lead to

u(x, t)− h(x) ≤W (x, t) ≤ 0, (x, t) ∈ Ω× R+.

In particular,

h(x) − u(x, t) ≥
m

2
φ(t) > 0, (x, t) ∈ B2R × R+. (67)
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We may repeat the reasoning with a flat function h such that ϕ ≥ h on ∂Ω. So,
the function u(x, t) = u(x, t)− h(x) verifies

{
(u)t =

(
detD2

xu
)p

in Ω× R+,

u ≥ 0, u 6≡ 0 on
(
∂Ω× R+

)
∪
(
Ω× {0}

)
,

in the viscosity sense and

u(x, t) ≥ 0, (x, t) ∈ Ω× R+.

Now, we consider a non negative function ψ(x1) ∈ C2 such that





ψ(x1) = 0, x 6∈ B2R,
m

2
< ψ(x1) < m and ψ′′(x1) ≤ 0, x ∈ BR,

0 < ψ(x1) <
m

2
and ψ′′(x1) ≥ 0, x ∈ B2R \BR,

where m is a positive constant such that u0 − h ≥ m in some B2R ⊂ Ω. Arguing as
above one proves that the function

w(x, t) = φ(t)ψ(x1), (x, t) ∈ Ω× R+,

verifies

{
wt(x, t) +

(
− detD2

xw(x, t)
)p

≤ 0 in Ω× R+,

w ≤ u on
(
∂Ω× R+

)
∪
(
Ω× {0}

)
,

provided k is large. Then, we obtain

u(x, t)− h(x) ≥ w(x, t) ≥ 0, (x, t) ∈ Ω× R+.

In particular,

u(x, t)− h(x) ≥
m

2
φ(t) > 0, (x, t) ∈ B2R × R+. (68)

Note that, in particular, Theorem 4.14 implies a kind of non flattened global
retention property:

{
u0(x) < h(x), x ∈ Ω′ ⊂ Ω ⇒ u(x, t) < h(x), x ∈ Ω′ for all t ≥ 0
h(x) < u0(x), x ∈ Ω′ ⊂ Ω ⇒ h(x) < u(x, t), x ∈ Ω′ for all t ≥ 0

(69)

holds. Clearly, the second retention property also follows from ut ≥ 0.

Our final result in this paper shows that when Np < 1 the asymptotic behavior is
very fast. It is the property of “finite global flattened time” which we prove by means
of some ideas used by first time in [23]. Again, for simplicity we assume g

(
|p|
)
≡ 1.
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Theorem 4.15. Let h(x) = 〈p, x〉 + a on Ω and suppose ϕ = h in the definition of
the operator A. Assume Np < 1. Then for each u0 ∈ D(A) such that u0 ≤ h on Ω
there exists a time T0, depending on h− u0, such that

u(x, t) = 〈p, x〉+ a, x ∈ Ω, t ≥ T0.

where u is the viscosity solution of (2).

Proof. Let us denote uh(x, t) = u(x, t) − h(x). As in the proof of Theorem 4.14 one
verifies (65), thus

{
(uh)t =

(
detD2

xuh
)p

in Ω× R+,

uh ≤ 0, uh 6≡ 0 on
(
∂Ω× R+

)
∪
(
Ω× {0}

)
,

in the viscosity sense, whence

uh(x, t) ≤ 0, (x, t) ∈ Ω× R+.

In fact, if u0 = h one derives the coincidence

uh(x, t) = 0 for any (x, t) ∈ Ω× R+.

So that, suppose
u0 ≤ h, u0 6≡ h.

It is clear that the “finite flattened time property” is strongly based on the initial
value problem {

mΘ′(t) =
(
2Θ(t)

)Np
, t ≥ 0,

Θ(0) = 0

whose solution is

Θ(t) =

(
2Np(1−Np)

m

) 1
1−Np

t
1

1−Np ,

provided Np < 1 and m is a positive constant. Then, for each T0 > 0 the profile
function

T (t) =

{
Θ
(
T0 − t

)
, if 0 < t ≤ T0,

0, otherwise,

satisfies
T ′(t)m +

(
2T (t)

)Np
= 0, t > 0. (70)

On the other hand, for R > 0 large, we consider the function

ζ(x) = 2N−1
(
x21 − R2

)
≤ 0, x ∈ Ω

which verifies
{

−m < ζ(x) < −M < 0, x ∈ Ω, −m
.
= min

x∈Ω
ζ, −M

.
= max

x∈Ω
ζ

detD2ζ(x) ≡ 2N, x ∈ Ω.
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It enables us to define

V (x, t) = T (t)ζ(x), (x, t) ∈ Ω× R+,

for which v(x, t) ≤ 0, (x, t) ∈ ∂Ω× R+ and V (x, 0) ≤ −Θ
(
T0

)
M, x ∈ Ω, whence

v(x, 0) ≤
(
u0 − h

)
(x), x ∈ Ω,

provided T0 = Θ−1
(
‖h− u0‖∞M−1

)
. Moreover, for each (x, t) ∈ Ω× R+ one has

vt(x, t) +
(
− detD2

xv(x, t)
)p

≤ −T ′(t)m + f−1
p

(
−2
(
T (t)

)N)
= 0

(see (70)). Thus

vt(x, t)−
(
detD2

xv(x, t)
)p

≤ 0, (x, t) ∈ Ω× [0,T].

This function V can be considered as an eventual test function for the viscosity
solution uh (see (65)), then, arguing as in the proof of Theorem 2.4, we deduce

v(x, t) ≤ uh(x, t) ≤ 0, (x, t) ∈ Ω× [0,T[,

whence the finite global flattened time property holds.

Remark 4.16. In fact, the condition Np < 1 is also necessary for the property of
“finite global flattened time” as we have shown in Theorem 4.14. The general case
g
(
|p|
)
≥ 1 is studied in [25].

Remark 4.17. The study of the problems (2) and (5) can be complemented with
some other qualitative studies such other symmetrization properties (the “comparison
of the rearrangements”). That was carried out in [9] in the case of some related
stationary problems. The consideration of the parabolic problem is the main goal of
the paper [8].

Acknowledgement The authors wish acknowledge to the editors for their sugges-
tions in order to improve the presentation of this contribution.

Appendix

A kind of Mikovsky inequality Given the positive numbers a1, . . . , an and b1, . . . , bn
one has the pondered arithmetic mean

1

p

n∑

i=1

a
p
i∑

i=1

a
p
i

+
1

p′

n∑

i=1

b
p′

i∑

i=1

b
p′

i

= 1, p > 1,

then the Arithmetic-Geometric inequality gives

n∑

i=1

ai
(
∑

i=1

a
p
i

) 1
p

bi
(
∑

i=1

b
p′

i

) 1
p′

≤ 1
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thus
n∑

i=1

aibi ≤

(
∑

i=1

a
p
i

) 1
p
(
∑

i=1

b
p′

i

) 1
p′

Hölder inequality (1889)

The opposite inequality is valid if p or p′ are negative. In both cases, equality holds

is api and bp
′

i are proportional. Next,

n∑

i=1

(ai + bi)
p =

n∑

i=1

ai(ai + bi)
p−1

n∑

i=1

bi(ai + bi)
p−1

≤



(

n∑

i=1

a
p
i

) 1
p

+

(
n∑

i=1

b
p
i

) 1
p



(

n∑

i=1

(ai + bi)
(p−1)p′

) 1
p′

implies

(
n∑

i=1

(ai + bi)
p

) 1
p

≤

(
n∑

i=1

a
p
i

) 1
p

+

(
n∑

i=1

b
p
i

) 1
p

Minkosky inequality (1889)

If p < 1; p 6= 0 the reverse inequality is valid. In both cases, equality holds is ai and

bi are proportional. In particular, if n = 2 and a1 = a
1
p , b2 = b

1
p , a2 = b1 = 0 one

has
(a+ b)

1
p ≤ a

1
p + b

1
p ,

whence (
n∑

i=1

ai

) 1
p

≤
n∑

i=1

a
1
p

i

If p < 1; p 6= 0 the reverse inequality is valid.
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l’Académie des Sciences, (1784).

[38] Nirenberg, L.: Monge–Ampère equations and some associated problems in Geometry,
in Proccedings of the International Congress of Mathematics, Vancouver 1974.

[39] Pucci, P., Serrin J.: The Maximum Principle, Birkhäuser, Basel, 2007.
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