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| - Introduction

Usual result on stabilization of solutions, as ¢ — +o¢, for evolution boundary
value problems (specially in bounded domains) 2 € RY, N > 1 and in absence
of blow up: let Q.. = Q x (0, 4+00), oo = 90 x (0, +00)

us + Au = f(:l?,t} n Quc,
Bu = g(z,t) on X,
u(z,0) = wup(x) on (.

Here, Au denotes a nonlinear operator and Bu denotes a boundary operator
(we assume, for simplicity, that A and B are autonomous operators).

In the study of the s it is usually assumed that f(z,t) — fo(x) and g(z,t) —
Joo () as t — +0c, In some functional spaces then u(z,t) — u (), as t — +00.
in some functional space, with u..(x) solution of

Al fool(x) in €,
B Joo(x) on O9.



When (2 is unbounded (e.g. N =1 and Q = (—00,+o0)) and f(z,t) =0 we

see that, some times, any solution of Au., = 0 must be a constant:

if Au is a pure diffusion operator then any constant u., = C,
-

if Au is a diffusion-reaction operator then only some constants u., = C,

Examples:
1. Au= —t,, or Au= —0(u),,
2. Au= —tup,—u(l—u) or Au = —p(u),r—u+p(u) with ¢(0)=0, ¢(1)=1 then
the only constants solutions are u..(z) =1 and u.. () = 0.
The Fisher equation oy logistic equation

U = tUpy + u(l — u)
R.A. Fisher, The wave of advance of advantageous genes, Annals of
Eugenics 7 (1937), 355-369.

The KPP equation Up = Ugpy + c(u),
with ¢ differentiable for 0 < u < 1,

c(0) =0, c(u)y>0 forO<u<l, ¢(1)=0



A. Kolmogorov - |. Petrovsky - N. Piscunov, Etude de I'équation de la
diffusion avec croissance de la quantité de matiere et son application a
un probleme biologique. Bulletin Univ. Moscou, Ser. Internationale,
Math., Mec., 1, 1937, 1--25.

Uy = ("E.‘,m_l't.ﬂl»)lv—l— uP(1 — u?) with m, p and g positive parameters.
J.D. Murray, Lectures on Nonlinear-Differential-Equation Models in
Biology, Clarendon Press, Oxford, 1977.

J.D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989.
Very special transient patterns:

if, typically, Au is a pure diffusion operator:
symmetric (fundamental, Barenblatt type) solutions U, (z, 1)
if, typically, Au i1s a diffusion-reaction operator
travelling waves solutions U, (z.1)
here q 1s a parameter.
Note that “very special transient patterns"— “very
) special initial data U,(z.0)"
Natural question: asymptotic behaviour of solutions with more general
initial data ug(x) 777



Natural answer : ||u(t,.) —U,(t,.)|| — 0 as ¢t — o0 “in some suitable
sense’ .

Far to be trivial to prove !!!

For instance: how is selected the parameter ¢ in terms of ug(x) among all

the possible parameters 777

Some other references

Ya. |I. Kanel, The behaviour of solutions of the Cauchy problem when
the time tends to infinity in the case of quasilinear equations arising in
the theory of combustion. Soviet Math. Dokl. 1, 1960, 533--536.

A.V. Volpert - Vi.A. Volpert - VI.A. Volpert, Travelling wave solutions of
parabolic systems. American Mathematical Society, Providence, Rhode
Island, 1994, Translation of Mathematical Monographs, vol. 140.



B.H. Gilding - R. Kersner, Travelling waves in Nonlinear Reaction-
Convection-Diffusion. Birkhauser Verlag, Basel, 2004

G.S. Medvedev - K. Ono - P.J. Holmes, Travelling wave solutions of the
degenerate Kolmogorov-Petrovski-Piskunov equation. European
Journal of Applied Mathematics, 14, 2003, 343--367.

Z. Biro, On the stability of the travelling waves / Stability of travelling
waves for degenerate parabolic reaction-diffusion equations of KPP-
type, - Advanced Nonlinear Studies 2 (2002), 357-371.

Convergence for general initial data:

S. Kamin - P. Rosenau, Convergence to the Travelling Wave
Solution for a Nonlinear Reaction-Diffusion Equation, Rendiconti
Mat. Acc. Lincei 2004,



2. On the paper D-Kamin-Rosenau.

We consider the Cauchy problem for

uy = p(U)e +V(u) . (2,t) ER X RT
Y(s) vanishing only for s = 0 and s = 1.

Here we shall assume, mainly, that

U(u) = u—p(u)
two constants stationary states u . (z) =1 and u__(z) =0
prove that under some conditions the solution of the Cauchy problem

converges, ast — o0, to a travelling wave linking, from —o¢ to +~oc, these constant

values, 1 and 0



the special case ¢(u) = u™ was studied in  S. Kamin and P. Rosenau,

hypothesis on the function p(u)
(Hy) o CYR)NC0,1]nC*0,1), ¢'(s) > 0for s € (0, 1), ©(0)=0, p(1)=1 .

[t is obvious that if ¢(s) satisfies (H;) then ©'(0) = 0.

It ¢'(0) = 0 then the equation degenerates at the points (z,t) € R x R™ where u = 0 and
a notion of weak solution should be defined.

We shall also use the additional assumption:

(Hy): p(s)<s forall s&(01).
Cauchy problem with the initial data

u(x,0) =ug(z) xR .

u € C'(R), 0 < wp(z) < L ae z€R



Let S =R xRT and. for a given 7' > 0. Sp = R x [L’LT].
Definition By a solution of the Cauchy problem we mean a nonnegative

function u such that v € C(St), for any T > 0, which satisfies the identity
/ [Geu + Copip(u) + C(u — @(u))|dzdt+
St

+ f C(0, z)uo(z)dz = f (T, 2)u(T, x)dx
R R

for any ¢ € C%1(S7) which vanishes for large |z|.
We consider the set of travelling waves solutions with velocity equal to 1.

Definition Function U(t,z) = f(z — t) is called a (1.0)-travelling wave (in short

(1,0)-(TW)) if U is a solution and f(7n) links the constant values, 1 and

0 in the sense that f(p) =1 as n— —o0 and f(n) =0 as 7y — oc.

In fact, we shall see below that under assumption Hy any (1. 0)-(7'1V) is monotone
decreasing.



In the book
B.H. Gilding - R. Kersner, Travelling waves in Nonlinear Reaction-
Convection-Diffusion. Birkhauser Verlag, Basel, 2004,

the detailed study of 711" solutions is performed

Nevertheless we present the proof of existence of (1,0)-TTW which is quite simple

To do that. let

Note that by Hs we have p~'(s) > s for s # 0, s # 1, therefore J(y) is a decreasing
function of y. Moreover, the integral may diverge at the points where s = ¢~ !(s),
o = J(0)

that means for s = U and for s = 1. Let

We have
0<mp <00 .

Suppose hypothesis H, — Hy are satisfied. Then there exist a (1,0)-TW

Lemma
Ut z)= f(x —t) where f € C(R) is given by
n=Jlp(f() for ne(m,mn)

f) =0 for n=n,



Any other (1,0)-TW with velocity equal 1 is

given by U(t, x) = f(x — x¢ — t) where x¢ 1s an arbitrary point of K.
We say that the (1,0)-TW has a sharp front at 5 = 5y if 5y < .

Clearly there are several possibilities for the behavior of 711" solution. It may have a
sharp front or not depending on the behaviour of ¢(s) near s = 0.
Examples 1) o(s) = s™, m > 1 a sharp front arises at f = 0. 2) p(s) = 55 + 35°,
f(n) = 0 for all 7.
Remark The (1,0)-T11 constructed above is propagating to the right. Changing x

to —x leads to a (0, 1)-TVV propagating to the left.

In order to formulate the main result we have to add the next hypothesis

about the weighted global integrability of the profile of the travelling

(Hz) : I = f f(n)ehdn < oo



Remark It 15 clear that if 1y < o0 then I < oc  but assumption

is satisfied for a very large class of profiles having 1, = oc.
So, for instance, if we suppose that for some 0 > 0
p(s)=as forall se]0 4] .

Then I < oo 1f &'i%butf::jg if ﬂ-gé

The unique determination of a weighted global integrable (1.0)-TT" travelling wave

can be attaint by associating a special point 3 € R to it.

for any x € IR we can define the function

I(z) = f f(n — z)endn

transforming increasingly IR onto (0, +2o0). Thus, given ¢ > 0 there exists a unique ry =

xo(g) such that

]

f fn—xzo)e"dn =q .

— O



In what follows, given ¢ > 0, we shall denote by U,(t, ) the weighted global integrable
(1.0)-TW travelling wave
Uyt .z)= flx —t — x0)

Our main result for the Cauchy problem is the following:

Theorem Suppose that the assumptions (H,) — (Ha) and (Hz) are satisfied. Suppose
also that 0 < up(x) < 1, ug € C(R), up(x) £ 0,

/ ug(x)e*dr = q < o
Then

f u(t, ) — U,(t, z)|e**dx — 0
ast — oo —00

For the proof of this theorem we shall use next properties of the solutions
(P;) There exists a bounded weak solution of the Cauchy problem

(Pa) Comparison principle: it u; and ug are weak solutions and u;(0, z) < us(0, )
then u,(t,2) < us(t.x)allz e R, t € R,



(P3) This solution is classical at the points where 0 < u(t, z) < 1.
(Py) If u(tg, xg) > 0 then u(t, xg) > 0 for all t > t.

(Ps) For every g there exists T = T'(xg) such that u(t, x¢) > 0 for every t > T'(xp).

Notice that the comparizon principle imphes the uniqueness of bounded weak =zolution.

In fact we shall use some peculiar form of construction of the bounded weak solution

(F; = P|) There exists a bounded weak obtained as the limit of the classical solutions u.,

0 < u(t z) <1 u. — u uniformly on any bounded set.

(P, = P/') If uf — ug uniformly on any compact set of R, then u®(t 2) — u(t, 2) umformly on

any K CRTNR
the equation can be rewriten 1n the form

Emf'?-_drujt = E_M(EMF(.“]'}M for some d and b.

(Fs) Every sequence of uniformly bounded solutions is equicontinuous on every compact

set of Sy for any T = 0.



Ph. Benilan, J.I. Diaz, Pointwise gradient estimates of solutions of onedimensional

nonlinear parabolic problems, J. Evolution Equations, 3 (2004) 557-602.

Theorem For a giwven T > 0 let Q = R x (0,T). Suppose that 0 < u(z,t) < 1,
(1) <0< (0). Then

1
Cmax(w, 1 —u) p _
-pl[-u.ﬁ < ( f {2T sup " —I—QT/(*I* (s)) " ds}. i[’(u) = -t;'.'(-ujlgi(i{-)
0

[0.1]

In particular, if () = v — p(u) and we assume (Hy) then

2T'A

1
A= fu,:*’(s]lzds.
0

lo(u(,))a] <

for any (z,t) € B < (0, T)

with



To prove Theorem we need several lemmas,

Lemma  Suppose that ug(x) has compact support at the right and ug(z) = 1 — 0,

0 > 0. Then for some g* > 0 u(t,x) < [,.-'qm{.t___;gj and for all t = 0

[ ]
/u[t._a:]em_*d:c < (C = o0.
—o

Lemma (weighted conservation law). For allt > 0

] [ ]
/u(t._a:]em_td:c = /uu[a:]e""'d:c _
— o — o

Remark

The presence of the weight e*~* in the above conservation law 1s essential.

Notice, for instance, that in fact

/u(t.;c]da: > /un(mjd:r



Lemma (weighted contraction principle) Let u and v be weak solutions

o0 o0
/EtutuT:]ExfgI < 00 . /L=g[:::]€$d:c < 00 .
e —oo

Then - .
f (T, z) —v(T,z)|e" " dx < f u(t,z) — (7, 7)|e" Tdx

forO <71 <T.

Multiply the difference of two  equations by " 'ne(x)plp(u) — p(v)], where 7 is the cut function.

Then integrate by — parts and let p(s) tend the signys. Passing to the limit as { — oo we obtain



Proof of Theorem Assume first that uy(z) satisfies the assumptions of Lemma  Let
uplt.z)=ult+h,x+h) h >0

and instead of study the behaviour of u(t, x) ast — o0 we consider the behaviour of the
sequence {u,} on bounded sets of Sy as h — o0. Such shifthing transformation plays

here the same role as a scaling transtormation for the proof of attractivity properties of
self-similar solutions

S. Kamin, L.A. Peletier and J. L. Vdzquez, Barenblatt...

Note that U,(f, x) 1s invariant with respect to the

shifting for any ¢ that means that U,(t+h,z+h) = U,(t, x).

It follows

f up(t, z)e" tdr = f u(t +h,y)ev " dy =q .

and

up(t, ) =ult+h,z+h) <Up(t+hx+h)=Up(t z)

| /5



Sequence {uy(t, x)} is uniformly bounded, and thus,by (FPs), is equicontinuous on any

bounded set in BT x R

Theretore there exists a subsequence h; — o0 such that

up(t, ) = wit z)

and the convergence is uniform on any bounded set. The limit tunction w is defined for

all (t,7) € R™ x R and is a weak solution It follows w(t,z) < Ugp(t,z) . and
/|uhi (t,z) —w(t.x)|e*fdr — 0 as h; —

/-w[t?;r)ex_ﬁd;r =q .

Let g be some fixed number. Define

I"(t;q) :_/|u-h(t:x) — Us(t, z)|e*d .



Obviously
I"(t;q) = / w(t+h z+h)—Uit+h x+h)|e de
B / [ult +h,y) — Uyt + h,y)|e’=Ndy = I°(t + h): )

By the contraction principle I°(f 4+ h; ¢) is a nonincreasing function of t and h, therefore,

there exists . By o
hlu_n I"(t;q) =1I"(q) =0 forall t
It follows -

/ w(t, ) — Uglt, 2)]e**de = 1%°(g) .

— o

Lemma  Suppose that

w(0, 1) = U(0. ) € (0, 1)

for some q and some x;. Then

ow oU;
5(0 ;r]) — —?[U Il}



In order to proceed with the proof of Theorem
we suppose that for all g

w(0,z) # Us(0, z)
Then, for any point € R such that w(0, z)

€ (0,1) there exists some § = G(x)
such that w(0,z) = Uz(0,z). By Lemma

we have g—‘;‘[l]x) = S;E(U___;I?)

This means that w(0, x) is the envelope of the set of curves Uz(0, x)

and this is impossible. Hence w(0, z) # U;(0, x) is wrong.

Therefore, we finally proved that for some ¢

w(0,2) =U;(0,z) .
we obtain that ¢ = g, therefore

w(t,z) =U,(t,x) .

Hence limp,_.oc up, does not depend on the subsequence and the whole sequence u; con-

verges to [,. This convergence 1s 1n the “weighted" L' norm and., as

follows from the proof, is uniform on any compact set. Thus we have
/ u(t+h,x+h)—Ult+h o+ h)edr

flu y) = Ug(m,y)|e""dy — 0.



as 7 — 00 and
uniformly on every set

for any fixed a_ 3.
Thus Theorem is proved for the case where ug(x) satisfies the assumptions of
Lemma Now suppose that 0 < up(z) < 1. Let ug(x) be a sequence of functions, each

compactly supported from the right, and
f lug(x) — up(z)|edr < =
The sequence uy may be chosen such that

f-u.g(xjexdx =q .

Let uf(t, z) be the solution Wwith initial data

uf (0, z) = ug(x).



By the contraction principle

/ w(t, ) —u(t, x)|e*de < = .

Moreover, as we proved above,

/|uf[f_ ) — Uyt z)|e""de — 0

as T — o0. Because z is arbitrarily small Theorem  holds.

Other results:

a) Case of ug(x) with compact support
b) Case of other reaction terms

U(u) #u—p(u)



We impose the following assumptions on «(u):

(s) € Gl[ﬁ, oo, (0) =(1) =0, ¢(s) >0 for s (0,1), 5 (s)
f ds < o0
(s) <0 for s>1,2(0)=>0, ¢'(1)<0. o
Detfinition (1,0) = TW solution of the equation 15 a weak solution of the form

U(t, ) = f(x —ct) such that f(—o0) =1, f(+00) =0 and f(s) is monotone decreasing.
there exists ¢* such that there exists a unique TW solution for any ¢ = ¢* and

there does not exist any TW solution for ¢ < ¢*. Moreover solution 7 with the minimal

speed has a sharp front, which means that f(s) =0 for s > sp with some so.

Theorem Suppose w Z 0 anduo(z) =0 for  all v > I, where 1 15 some fized number. Then

ult, ) =1 as t—=o00 wmiformlym 0<z<at for e<c

and

- *

ult,r)—= 0 as t—o00 uniformlym ©>ct for c>c".



Gracias por vuestra atencion
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