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1. Introduction Main motivation.

2.1. Some general and previous remarks.   

To show how the S-shaped bifurcation diagrams (arising in climatic Energy
Balance Models (EBM)) also arise in some simple models raised in
oceanography: the thermohaline circulation model.
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2.  S shaped bifurcation curves: climatic Energy Balance Models

Strong dependence on the boundary conditions



A hierarchical set of models
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2.2. A well-known example: the discrete logistic equation.
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2.3. S-shaped bifurcation  diagrams.

For any given α >0, there exists a unique (at least) λ = λ(α) > 0 such that (E) admits a 
unique (at least) (positive) solution u with                            We define the bifurcation 
curve of  (E) as S= {                 :  λ>0 and u is a positive solution of (E)}.
The bifurcation curve S is S-shaped in the                  -plane if  S has exactly (at least ) 
two turning points at some points and                        such that
(i) λ* > λ* and 
(ii) at          the bifurcation curve S turns to the left,
(iii) at                   the bifurcation curve S turns to the right.
More precisely, problem (E) has exactly (at least) three positive solutions for λ* < λ <
λ*, exactly two positive solutions for λ = λ* and λ = λ* , and a unique positive solution 
for 0<λ< λ* and λ* <λ<∞.

Strict (generalized) S-
shaped bifurcation 
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Catastrophe Theory, René Thom,...,

E. C. Zeeman: Selected papers 1972-1977

Psicology: aggression mechanism
anger
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It appears in many contexts:
•Nonlinear elasticity (buckling)
•Combustion theory (Gelfand problem)
•Social and Human Sciences
•…



2.4. Bifurcation for  Energy Balance Models

R. Dautray, J. I. Díaz: Agir pour conserver l'environnement?: réflexions générales et analyse mathématique de deux
problèmes concrets.
In Apuntes de la XI Escuela Jacques-Louis Lions Hispano-Francesa sobre Simulación Numérica en Física e Ingeniería,
Cádiz, 20-24 septiembre, 2004 (M. Bernardou, F. Ortegón Gallego, eds.), Universidad de Cádiz, Cádiz, 2004, 77-118
(ISBN: 84-688-7650-X).

XI Escuela Jacques-Louis Lions Hispano-Francesa sobre Simulación Numérica en Física e Ingeniería, 
Cádiz, 20-24 september, 2004.
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(2a) Recent finite element approach: * R. Bermejo, J. Carpio, J.I. Díaz, P. Galán de Sastre, A finite element algorithm
of a nonlinear diffusive climate energy balance model. Pure and Applied Geophysics, 165, nº 6, 2008, 1025-1048.
* R. Bermejo, J. Carpio, J.I. Díaz, L. Tello, Mathematical and Numerical Analysis of a Nonlinear Diffusive Climate
Energy Balance Model. To appear in Mathematical and Computer Modelling, 2008.

Periodic solutions: M. Badii, J. I. Díaz, Time Periodic Solutions for a Diffusive Energy Balance Model in Climatology
Journ. Mathematical Analysis and Applications, 233, 713-729, 1999.

First 2d Model: J.I. Díaz and L. Tello, A nonlinear parabolic problem on a Riemannian manifold without boundary
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Periodic solutions: M. Badii, J. I. Díaz, Time Periodic Solutions for a Diffusive Energy Balance Model in Climatology
Journ. Mathematical Analysis and Applications, 233, 713-729, 1999.

First 2d Model: J.I. Díaz and L. Tello, A nonlinear parabolic problem on a Riemannian manifold without boundary
arising in Climatology, Collectanea Mathematica 50,1 (1999), 19-51.



2.5. S-shape bifurcation diagrams for the EBM hierarchy

n=0 n≥1

m=1 Scalar ODE (1) Scalar PDE (2)

m≥1 System of ODEs (3) System of PDEs (4)

(1) For instance:  G.R. North, Multiple solutions in energy balance climate models in Paleogeography, 
Paleoclimatology, Paleoecology 82, Elsevier Science Publishers B.V. Amsterdam, 225-235 (1990).
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By writing the EBM (eventually coupled with other aspects) we arrive to 

Results in the literature

Bifurcation of stationary states and hysteresis phenomena
Multiple Equilibria  for the 0-dimensional EBM
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J. I. Díaz, J. Hernández and F.J. Mancebo, Branches of positive and free boundary
solutions for some singular quasilinear elliptic problems. To appear in Journal of Applied
Mathematics and Applications.

(2b) Bifurcation diagram for EBM:
* J. I. Díaz, J. Hernandez, L. Tello, On the multiplicity of equilibrium solutions to a 
nonlinear diffusion equation on a manifold arising in Climatology, Journal Mathematical 
Analysis and Applications, 216, 593-613, 1997
*D. Arcoya, J. I. Díaz, L. Tello, S-Shaped bifurcation branch in a quasilinear multivalued 
model arising in Climatology, Journal of Differential Equations, 149, 215-225, 1998.
*J. I. Díaz, L. Tello, Infinitely many stationary solutions for a simple climate model via a 
shooting method, Mathematical Methods in the Applied Sciences, 25, 327-334, 2002.

(2c) Bifurcation diagram for the same type of coupling but related quasilinear 
equations 

For the special case

the study of the bifurcation diagram is reduced to the application of some 
properties of the Euler beta function











n=0 n≥1

m=1 Scalar ODE (1) Scalar PDE (2)

m≥1 System of ODEs (3) System of PDEs (4)

(3): Bifurcation for a system as spatial discretization of the diffusion operator for EBMs

*J.I. Díaz, V. García, Connecting steady states of a discrete diffusive energy balance climate model
XX Congreso de Ecuaciones Diferenciales y Aplicaciones, X Congreso de Matemática Aplicada, Sevilla, 24-28 
septiembre 2007. Actas electrónicas. Universidad de Sevilla. 2007.
* J.I. Díaz, V. García, Natural and artificially controlled connections among steady states of a climate model
Rev. R. Acad. Cien.Serie A Matem, 101 (2), 2007, 229-234.

* J. I. Díaz, L. Tello, On a climate model with a dynamic nonlinear diffusive boundary condition, Discrete 
and Continuous Dynamical Systems series S, Vol 1, N. 2, (2008), 253-262.

(4): Bifurcation for systems of EBM type

* G. Hetzer, L. Tello: On a reaction diffusion system arising in Climatology, Dynamical Systems and
Applications, Vol. 11, No. 3, 2002, 381-402.

Other bifurcation results for the case of systems:



J. I. Díaz
Diffusive energy balance models in climatology
En Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar,
Volume XIV, D. Cioranescu and J.L.Lions eds., North-Holland, Amsterdam,.2002, 297-328, ISBN:0-444-51103-2

Lecture at the Collège de France Seminar: 
May 1997. 

2.6. Bifurcation and control: J.-L-Lions.



J.-L. Lions, Control of Distributed Singular Systems, 
Gauthier-Villars, Paris (1985). 

Joint papers on some different problems with multiple solutions (and blow up in a 
finite time)

Previous treatment:

J. I. Díaz, J.-L. Lions, Sur la contrôlabilté approchée de problèmes paraboliques avec phénomènes d’explosion,
Comptes Rendus Acad. Sci. Paris, t. 327, Série I, 173-177, 1998.

J. I. Díaz, J. -L. Lions
On the approximate controllability for some explosive parabolic problems
International Series of Numerical Mathematics, Vol. 133, Birkhäuser Verlag, Basel, pp. 115-132, 1999.

Other collaborations: 
J. I. Díaz, J. -L. Lions
On the Approximate Controllability of Stackelberg-Nash Strategies. In, Ocean Circulation and Pollution Control. A 
Mathematical and Numerical Inquiry, (J. I. Díaz ed.). Lecture Notes, EMS Volume, Proceedings of the Diderot 
Videoconference Amsterdam-Madrid-Venice, Lecture-Notes, Springer Verlag 2003, 17-28.

J. I. Díaz, J. -L. Lions: El planeta Tierra (Second edition): unfinished. 



S. Rahmstorf, Bifurcations of the
Atlantic thermohaline circulation in
response to changes in the hydrological
cycle. Nature 378, (1995) 145-149.

3.  S shaped bifurcation curves: a simple thermohaline circulation model

Personal interest on the topic since 1997.
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Question: sensitivity of the North Athantic 
thermohaline circulation to the imput of fresh water: 

Global ocean circulation model coupled to a 
simplified model atmosphere



Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 
224-230.

Marotzke, J. and Willebrand: Multiple equilibria of the Global Thermohaline 
Circulation , Journal of Physical Oceanography, 21, 1991, 1372-1385.

Confirmation of the multiple states results for a simplified model: 

Here we shall give a “rigorous proof” to the S-shaped bifurcation diagram for a 
model generalizing the Stommel model



We assume that the atmosphere controls the ocean temperature and the surface 
fresh-water loss or gain, E (in m/s). For now, let us proceed with the assumption that 
T1 , T2 , and E are prescribed as external parameters



we will use a virtual surface salinity flux,

The boxes are connected by pipes near the surface and the bottom; the pipes are 
assumed to have vanishing volume but are conduits for the flow. The thermohaline 
circulation strength is denoted by q (strictly speaking, q represents THC/Volume; q has 
units of s-1). We use the sign convention that q>0 denotes poleward surface flow, 
implying equatorward bottom flow and, conceptually, sinking at high latitudes. This is 
the picture that we are used to when thinking about the North Atlantic THC. 
Conversely, q<0 means equatorward surface flow and poleward bottom flow. We 
assume a very simple flow law for q, namely, that it depends linearly on the density 
difference between high and low latitudes:

where ρ0 is a reference density and k is a hydraulic constant, which contains all 
dynamics, that is, the connection between density and the flow field. The equation of 
state is

where D is depth and S0 a reference salinity.



where α and β are, respectively, the thermal and haline expansion coefficients,

For simplicity, we employ a linear equation of state; that is, both α and β are 
assumed constant. The flow law, (2), thus becomes, using (3),

As we assume that the temperatures are fixed by the atmosphere and enter the 
problem as external parameters, we need not formulate a heat conservation equation. 
The salt conservation equations for the Stommel model are



We introduce the following abbreviations for meridional differences of 
temperature, salinity, and density:

which implies that

Under normal conditions, net evaporation occurs at the warmer low latitudes and net
precipitation at the colder high latitudes; in other words, temperature and salinity are 
expected to be both high at low latitudes and both low at high latitudes. In their 
influence on the THC, two cases can be distinguished. When the temperature difference 
dominates the salinity difference in their influence on density, high-latitude density is 
greater than the low-latitude density.
Therefore, q>0, and the surface flow is poleward. One can say that the temperature 
difference, T, drives the THC and the salinity difference, S, brakes the THC, as seen from



Conversely, when the salinity difference dominates the temperature difference, 
highlatitude density is lower than the low-latitude density, q<0, the surface flow is 
equatorward. Now, S drives the THC, and T brakes it:

The sum of the salt conservation equations (6) and (7) gives

reflecting that total salt mass is conserved. (One consequence of this simplification is 
that we cannot determine the mean salinity from the set of equations we use here. 
Processes other than evaporation, precipitation, and oceanic transport of salinity 
must be invoked for the determination of the total oceanic salt content.) Because of 
the constancy of total salt mass, (12), equivalent to the constancy of global mean 
salinity, we need only consider the difference, S, between S2 and S1. The difference 
of the salt conservation equations (6) and (7) gives an equation for S:

or, using the flow law



which completes the formulation of the model – its behaviour is completely 
characterised by (14) .
Equilibrium solutions
As the first step in our analysis of (14), governing the evolution of the salinity
difference between the low and high latitude boxes, we look for steady-state or 
equilibrium solutions, defined by a vanishing of the time derivative:

where the overbar marks a steady-state quantity. We must consider separately the cases 
where the argument of the modulus is positive or negative.
Case I:

We can simply replace the modulus signs by brackets, giving

or

which has the roots



For a positive radicand, defined by

the model has two equilibrium solutions for poleward near-surface flow. These solutions 
can also be characterized as thermally dominated or, in the language of atmospheric 
science, “thermally direct” (meaning that rising motion occurs at the location of heating, 
and subsidence at the location of cooling). If the freshwater flux forcing exceeds the 
threshold defined by (20), no thermally-driven equilibrium exists.
Case II:

Now, we must insert a minus sign when replacing the modulus signs by brackets,

which gives

and the single root



Notice that we must discard the negative root; the radicand is greater than ¼, so that the 
negative
root would imply S < 0, in contradiction to the condition (10.21). The solution (10.24) has
equatorward near-surface flow and can be characterised as salinity dominated or “thermally
indirect”. It exists for all (positive) values of the freshwater flux forcing.
Figure 10.2 shows the equilibrium solutions as a function of the freshwater flux forcing.
In summary, we find the remarkable result that this simplest non-trivial model of the THC,
represented in steady state by the pair of quadratic equations, (10.15) and (10.22), has three
steady state solutions, provided that the freshwater flux forcing is not too strong [cf., 
(10.20)].
Two equilibria have q > 0 (poleward surface flow); they are characterised by either a small
salinity contrast and strong flow ( 1 1
2 2 βS<αT,q> kαT), or by a large salinity contrast and
weak flow ( 1 12 2 βS>αT,q< kαT). These steady states exist only if
( )214HSk Tβα < . The model hasone steady-state solution with q < 0 (equatorward surface 
flow), characterised by a very large
salinity contrast (βS>αT,q<0). This solution always exists, and is the only one if
( )214HSk Tβα > .





Solution portrait of the box model in phase space. Dimensionless salinity
difference is denoted δ ≡ βSαT; dimensionless surface salinity flux is ( )2
S E≡βH kαT .The curves mark the equilibrium solutions, δ (E), while the arrows show 
the tendencies in phase space. Notice the existence of three steady states for E < ¼.

What is the physical reason behind the vanishing of the thermally direct solution if
( )2α > ? Stronger surface salinity flux must by balanced by stronger salinity advection, qS.
This can be accomplished either by increasing the salinity difference, S, between low and 
high latitudes, or by increasing the flow strength, q. But increasing S has the dynamical 
consequence
of weakening the flow – (9) expresses that q decreases linearly with S. Obviously, the 
product, qS, is zero for either S = 0 or q = 0 (the latter implying βS=αT); qS is positive for
intermediate values and attains a maximum at 1
2 βS= αT (see phase space diagram, Fig. 2). At this point, ( )2, which marks the critical 
freshwater flux forcing, that is, the strongest forcing that can be balanced by salinity 
advection through thermally direct flow. For even greater HS, balance is impossible.



An even deeper question than the one starting the preceding paragraph is, what makes the
multiple equilibria possible in the first place? Two crucial ingredients are required. First is 
theadvective nonlinearity: The flow advecting salinity is itself influenced by salinity 
gradients, through density. Without this nonlinearity the model would have a unique 
solution (or none atall). But there is a second requirement, that of different coupling of 
temperature and salinity to the atmosphere. We assume that the atmosphere controls 
temperature but the salinity flux.
Imagine, instead, two extreme cases of equal coupling:
i. Temperature and salinity prescribed:
Then, density is prescribed as well, meaning that the flow prescribed. Trivially, no multiple
equilibria are possible.
ii. Heat and freshwater flux prescribed:
Then, the surface density (or buoyancy) flux is prescribed and, hence, the steady-state
horizontal density transport, k ρ ρ . As k and ρ are positive, the sign ofρ is uniquely
determined by the sign of the surface buoyancy flux: If the low latitude box receives 
buoyancy from the atmosphere, it is less dense than the high latitude box, andρ and q are 
both positive (thermally direct circulation). The converse is true for prescribed buoyancy loss 
at low latitudes. Hence, the steady-state circulation is uniquely determined.



Stability
We have identified three equilibria of the 2-box model of the THC in a certain parameter
range. Now, we concern ourselves with the stability of the equilibria – more precisely, with 
the “linear” stability. This means that we want to understand what happens if the 
equilibrium is perturbed by a tiny amount, either in the forcing, HS, or in the solution, S. We 
will use a variety of techniques, each of which is important generally in the analysis of 
dynamical systems, and each of which illuminates one or several characteristics.

We start by investigating in more detail the equilibrium curves in phase space, Fig. 10.2.
From the steady-state conditions, as expressed in eqs. (10.18) and (10.23), we obtain 
through a slight modification,

which expresses the dimensionless salinity gradient, δ ≡βSαT, as a function of the
dimensionless surface salinity flux, ( )2
S E≡βH kαT . Thus, we can write (10.29) and (10.30)in dimensionless form as



This pair of equations represents two sideways parabolas, with opposite orientation, 
intersecting at δ≡βSαT=0 (no salinity difference) and δ =1 (αT=βS; no flow). In either 
case, the forcing must vanish ( ( )2 0 S E≡βH kαT =). The curves depicted in Fig. 10.2 are 
the zeros of the salinity conservation equation (10.14), rewritten in dimensionless form 
as

Notice that (10.33) implies an advective timescale, suitable for nondimensionalisation, 
of ( )1 2kαT − , and a nondimensional overturning strength of q=1−δ . We can thus 
rewrite 



From either (10.33) or (10.34), we can read off the following. On the equilibrium curve,
the tendency (time rate of change) of the salinity difference between high and low latitudes
vanishes. But to the left of the curve, E or HS is smaller than required by the equilibrium
condition. Hence, S < 0 , and S decreases, as indicated by the downward pointing arrows in 
Fig.10.2. In fact, the arrows were calculated from the right-hand sides of (10.34). To the right 
of the curve, E or HS is greater than required for equilibrium, hence S > 0 , and S increases. 
Notice that for every given δ in Fig. 10.2, there belongs a unique E, so “left” and “right” of 
the equilibrium curve are unambiguously defined. By



By visual inspection of Fig. 10.2, we can now read off the stability properties of the
solutions. If, by any initial perturbation or change in forcing, we find ourselves to the left of 
the equilibrium curve, the evolution depends critically on which solution branch we started 
from. On the top (δ >1) and bottom (δ <1 2) branches in Fig. 10.2 (salinity dominated and 
thermally dominated-strong flow, respectively), the systems moves downward, back towards 
the equilibrium curve. But if one starts from the middle branch (1 2<δ <1), which runs from 
topleft to bottom-right in Fig. 10.2, the system does not return, but instead undergoes a 
transition towards the lower, thermally dominated branch. If the initial perturbation or 
change in forcing leaves the system to the right of the equilibrium curve, the system moves 
upward, again back towards the equilibrium curve, if it started from the top or the bottom 
branch. But if it started from the middle branch, it would make a transition toward the 
salinity-dominated equilibrium.
Hence we conclude that the salinity-dominated steady state is always stable, the strong-flow
thermally dominated steady state is stable (if it exists), while the weak-flow thermally 
dominated steady state is unstable to infinitesimal perturbations. There exists a tell-tale sign 
allowing one to infer this instability even without investigating the full time-dependent 
equation. As one follows the unstable branch in Fig. 10.2 (1 2<δ <1), from left to right, say, an 
increase in E implies a decrease in δ. Thus, an increase in forcing leads to a decrease in the 
steady-state response, which is, to my knowledge, an unfailing indication of instability.



Two points deserve special mention, since they are semistable, meaning that the system
approaches them if it is on one side in phase space, but moves away from them if it is on 
the other side. These points are (E=0, δ=1), where the two parabolas meet, and
(E=1 4, δ=1 2), the point beyond which no thermally direct steady state is possible. (In the
language of dynamical systems, this is called a saddle node bifurcation.) Both these 
points show interesting mathematical behaviour, but they are not of great physical 
interest because this behaviour is not robust to small perturbations, such as a small 
amount of random noise.
Lyapunov potential

A powerful illustration of the stability properties discussed in the preceding paragraphs
comes from a mathematical construct called the “Lyapunov potential”. In loose analogy 
to, say, the relationship between gravitational force and gravitational potential, the time 
rate of change of dimensionless salinity, δ , (cf., (10.34)), is written as the negative 
gradient of the Lyapunov potential, L, such that

By construction, the steady states of the system coincide with the extrema (maximum or
minimum) of the Lyapunov potential. But we can say more: Plotting L(δ ) immediately 
indicatesthe stability properties of the equilibria; indeed one can interpret the stability as if a 
bead was sliding on a wire under the influence of gravity: A minimum in L is a stable 
equilibrium, while a maximum is an unstable equilibrium. We first illustrate this graphically, 
before showing it mathematically.



It is readily shown that

fulfils (10.35), including the (arbitrary) condition of L(0) = 0 and the (non-arbitrary) 
condition of continuity at δ =1. Figure 10.3 shows the Lyapunov potential, as a function of 
δ, for a variety of choices for E. The case, E = 0 , has one minimum at δ = 0 and a double 
extremum (level turning point) at δ =1. The former is stable, according to Fig. 10.2, while 
the latter is semistable (approached from the right, moved away from on the left). Thus, 
we can visualise the evolution of the system as the inertia-less sliding of a bead on the 
“wire” L(δ ). As E is nonzero but less than ¼, the minimum at the left moves from zero to 
higher values, while another minimum appears for δ >1 and growing. Since L(δ ) is 
continuous, the two minima must be separated by a maximum. In other words, two stable 
equilibria must have an unstable equilibrium between them.

As E approaches ¼, the minimum at δ >1 becomes deeper than the one at δ <1 2, until,
at E =1 4, the two equilibria with δ <1 merge to form a level turning point. This is the 
second semistable point discussed in Fig. 10.2. For even greater E, the thermally 
dominated ( δ <1) equilibrium vanishes altogether, although its vicinity can still be felt 
through the very small time rates of change nearby.



After gaining an intuitive understanding of how to interpret L, we can now derive
mathematically how its shape reflects stability properties. At any point, if L increases with δ, 
theleft-hand side of (10.35) is negative, δ < 0 , and δ decreases. In the L(δ ) phase plot, Fig. 
10.3, one slides toward the left. The converse is true if L decreases with δ. In the vicinity of 
a minimum, hence, any deviation to the right (L increasing with δ) is followed by motion to 
the left, back toward the minimum. Likewise, any deviation to the left will be followed by 
motion back to the minimum. Near a maximum, instead, a deviation to the right, say, 
means that L decreases with δ, the left-hand side of (10.35) is positive, δ > 0 , and δ 
increases further, that is, the system moves further to the right, away from the equilibrium. 
For deviations to the left of a maximum, δ < 0 , and δ decreases further, again moving away 
from the equilibrium. Hence, if we can construct a Lyapunov potential as in (10.36), we can 
immediately read off the plot the stable and unstable steady states, in a completely 
intuitive manner. 
Notice that in a case such as depicted in Fig. 10.3, sometimes the nomenclature is adopted 
to call the stable equilibrium with the shallower potential well “metastable”, reserving the 
term “stable” only for the steady state with the globally lowest potential. Here, we will 
largely only concern ourselves with distinguishing between stability and instability to 
infinitesimal perturbations.
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