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2. The Euler tallest column
2.1. Modelling: similar points in Art
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Ignace-Gaston Pardies

1673

Jacques Bernoulli (1654-1705),
1690




Jean Bernoulli (1667-1748):.

On the curvature of extensible strings
(1691, ..., 1742)

Euler, 1727

Modulus of extension .

(Young’s modulus)




Buckling of Columns

Basic 1dea

Consider a column that is constructed from two pin-connected links with a torsional spring connected between the two links as shown in the figure. 45 long as the two bars AR and BC are petfectly aligned,
the system is m equibrium and one theoretically can mncrease the load untl the beams fal n compression,

Fully Aligned

In reality, the two members can never be perfectly aligned so the system supports the load by the aid of the torsional spring and takes a shape such as shown m the right figure above.

F P

M=l (26)
A = Flsm &

P

Since the member ABC 15 a two-force member, the loads appled at A and C must be equal and along the line connecting A to T as shown m the above left Hgure, The free-body-diagram of AB shown on
the right side of the fgure above mdicates that for equilibrium to hold, the miss-alignment angle @ must mcrease until the motment m the torsional spring mereases to balance the couple developed by the two

vertical forces. This requires that




kr(26) = Plsin &

where ks the stiffiess of the torsional spring and the reader notes that the torsional spring is twisted twice the miss-alignment angle 4. Assumng small miss-abgnment angles so that one can replace in 4
by @, one gets

2y - FI)E=0

Obwiously, @ = () 15 a solutton to this equation. This solution represents the trivial solution that reflects the perfecily aligned system. But, this systemn has a non-trval solution where the term m the parenthests
becomes zero to require

[ £
The load calculated m this way 15 called the critical load, designated by the subscrpt “ct”. For loads smaller than the critical load, the system will have accelerations that are consistent with bringing the system

back into alignment. For loads above this critical load the system has accelerations consistent with increasing the miss-alighment angle, resulting in the collapse of the system. Therefore, the system is
considered to be capable of carrying loads up to the critical load.

Buckling in a simply supported column

Consider the pin-cotnected column AZ of length £ as shown in the following figure. Similar to the example above, if the colum is filly aligned, the applied compressive load P can be increased until one
reaches the compressive strength of the material Yet, i reality the column will fail due to buckling as shown m the figure on the nght long before this load is reached.
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The analysiz of the buckling of a continuous column 1 smlar to the example given above to motwate the problem. 3mnce the column 15 a two-force member, the reaction loads at the two pms are equal and
directed along the line cotmecting the two pins as shown in the figure to the left below. The free-body-diagram of a segment of the columm is alse drown below and it is clear from this diagram that for the
member to be in equilibrium the bending moment must balance the couple created by the misalignment of the two loads.



M:_

Designating the out of plane displacement of the column by v, the bending moment must be M=-Fv. One can combine this with the beam deflection equation
d’v B
7=

i

M=

to get the equation for the column as

2
C;f—g+£v={)

S 2.2. On the mathematical analysis

This 15 a second order homogeneous ordinary differential equation with constant coefficients that has a selution of the form

v=Crsm(Ax)+ C;cos(Ax)

where C') and C, are constants to be fit to the boundary conditions and 4 must be restricted to satisfy the differential equation. The boundary conditions for this pin-supported column are that the
displacement is zero at both supports. Therefore,

v=0 af x=0 = 0=

v=0 af x=L = 0=Csm(AL)

Obwicusly, ffboth C and ', are zero one obtamns the trivial solution v=0 for the fully aligned beam. For the beam to have a nontrvial solution (buckled solution), one must select SI(AL) =0 that results in
requirement that AL =0,7.27.... that yield

P
=




for any integer ». This results in the sclution

a0
I

3

v o= ST

Az can be seen from the figure, different values of 22 represent different modes of buckling.

=1 =2
In addiion to the boundary conditions, the solution must satisfr the differential equation. Substitution of this solution into the differential equation gives
a2 . . = . .
— AT sal Ay + EC‘} sl Ay = O

Fecrganization yields

(— — Ay =in( A0) =0
=r
Clearlsy, ifC1 is zero, one arrives at the trivial solution w=0 that satisfies the differential equation, and which is associated with the fully alighed beamm, but there is a non-trivial solution when the term in the
round parentheses goes to zerc. Therefore, te get a noentrivial sclutien te the buckling problem. the axal load must satisfy the relation

P=Fra*? . which results in the expression for the critical load given by

nixiEr
o =
Obwriously, the smallest critical load is associated weith »»=1. Therefore, the colurmnn will buckle at the load associated writh the first buckling mode if the column is not restricted from talcing the shape associated

writh this mode.

Obwicusly, the smallest critical load is asseciated with s2=1. Therefore, the column will buclde at the load asscociated with the first buclding meode if the column is not restricted from talting the shape asscociated

weith thiz mode.

Trifferent supports
The buckling of celunns with a wariety of different support conditicons are shoewn in the Follewring fgure and can be analyzed using sirailar procedures to the sitply supported column studied abowre.
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F=Fietr=F el Fixed-pir
The results for the other cohunns are simnilar to the pin-pin supported column analyzed abowe with only the replacement of the actual length of the column with an effective length. If 5 is the actual length of the

colunn and L is the effective length of the column, then the critical buckling load for the column is given by

=r =
where the effective length 7., is given by
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Different shapes

Validation: return to the modelling. Non uniform material behaviour.

3d Elasticity theory




Remarks on the dynamics (J.J. Stoker 1950)

Dynamic hyperelastomer
simulation




Catastrophe Theory, E. C. Zeeman:
Selected papers 1972-1977

Psicology: the mechanism of aggression

(1) fight




2.3. Optimization and Control

The best column “elastica”: M. Vitruvio ( | b. C.) De Architecura
25b. C., L.B. Alberti (1404-1472) 1450, Euler 1744, J. Lagrange
(1736-1813) 1773,...

The tallest column

Fig. =2 Cross-sectional area, K of strongest. clamped-free column £
coelumn. ' Left end is clamped and right end is free.

H. = (9.(1.8663)2 =)
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E = Young modulus p = density



Considerations on the mass distribution

Brazier fracture

A first reinforcement solution
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A second reinforcement solut
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3. The Shangali bionic tower

Application to buildings

Lost, Chicago, 1920

The Sears Tower in Chicago, 1974
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Design optimization
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There are many solutions but they can be thought of in a few gereral ways.

<=
Structural
Modifications

Aeradhnamic
Modifications

fmereasing
Mass
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Shimjuku Park Tower.

Landmark Tower.

Sismic Control



The (project)
Shangal bionic tower

Natural inspirations
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and social
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Alsgar Tower, Barcelona 2004
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