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What is the Nuclear fusion?
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@ The nuclear fusion:

Nuclear Fission

Nuclear Fusion
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@ The nuclear fusion:

Huclear Fission Nuclear Fusion

Lage atom

@ The plasma: A mixture of particles of positive, negative and neuter
electrical charge can be consider as an ideal fluid for determining the
macroscopic properties.

Particles of low mass: Deuterium, Tritium, He,...
D+T ﬁ 4He +n+ Energy e & ‘Plasma Makes up The
s <. - Sum &.Star_s'. -
Deuterium

Tritium 4He

=0
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e Magnetic confinement: Need > 100 * 10°C® to obtain an equilibrium
state.

e Confinement: magnetic or inertial (not presented in this
lecture).Many general expositions on the physical and engineering
phenomenology (see e.g. [3]).

Axisymmetric geometry: Non axisymmetric geometry:
Tokamak devices Stellarator devices

subnt Helical Magnetic Field
(exagoerated)

Sketch of a Tokamak
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o Difficulties: to determinate the conditions on the magnetic field and
on the current density in order to keep the plasma far from the
camera walls.

Unconfined Confined

upstream

last closed

i sifes A way to prevent mechanically
this is to introduce a [limiter:

a solid object which determines
the boundary of the plasma
(limiter plays the role of a thin
obstacle for the plasma).

Limiter
(downstream)
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The 3D stationary model
The plasma as a ideal fluid and use the ideal MHD model.

@ Assume that the plasma is a perfect conductor (Ohm'’s Law).
V-B =0, (Conservation of B),
V x B =ppd, (Ampére’s Law),

VP =1JxB inQ,, (conservation of momentum)

The electromagnetic variables are: The fluid variables are:
e the magnetic field B and ® the pressure P.
e the current density J e magnetic permeability po.

are satisfied in plasma region.
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@ Sketch:

J.I. Diaz (Departamento de Matemdtica ApliOn some nonlinear and nonlocal elliptic and December



@ Sketch:
e R3ODO= Q,uQ,

O, := plasma region (unknown)
Q) := the free boundary
Q, = {x:J(x) =0} :=vacuum region

w := the limiter
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@ Sketch:
e R3ODO= Q,uQ,

O, := plasma region (unknown)
Q) := the free boundary
Q, = {x:J(x) =0} :=vacuum region

w := the limiter

e Boundary Conditions:
n*-B=0 ondQ,={x:P(x)=0}
(<= VP||n® and VP(x)LB)
n®-B=0 ondQ). perfectly conducting wall
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@ Sketch:
e REDO=0,UQ,
O, := plasma region (unknown)
Q) := the free boundary
Q, = {x:J(x) =0} :=vacuum region
w := the limiter
e Boundary Conditions:
n*-B=0 ondQ,={x:P(x)=0}
(<= VP||n® and VP(x)LB)
n®-B=0 ondQ). perfectly conducting wall
@ One Integral Condition:

“the current carrying” into the plasma.

J.I. Diaz (Departamento de Matemdtica ApliOn some nonlinear and nonlocal elliptic and December



@ Sketch:
e R3ODO= Q,uQ,

O, := plasma region (unknown)
Q) := the free boundary
Q, = {x:J(x) =0} :=vacuum region
w := the limiter
e Boundary Conditions:
n*-B=0 ondQ,={x:P(x)=0}
(<= VP||n® and VP(x)LB)
n®-B=0 ondQ). perfectly conducting wall
@ One Integral Condition:
“the current carrying” into the plasma.
° The problem is to find

P:QCR} >R, BJ:QCR —R?
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@ From VP =J x B in (), it follows that

[B-YP=0 and J-VP=0]

Magnetic surfaces

Magnetic lines
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@ From VP =J x B in (), it follows that

[B-YP=0 and J-VP=0]

e Then the pressure is constant on each magnetic surface.

Magnetic surfaces

Magnetic lines
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@ From VP =J x B in (), it follows that

[B-YP=0 and J-VP=0]

e Then the pressure is constant on each magnetic surface.

o If a surface lies in a bounded volume then it must be a toroid, i.e. a
topological torus. (Due to Alexandroff and Hopf).

Magnetic surfaces

Magnetic lines

J.I. Diaz (Departamento de Matemdtica ApliOn some nonlinear and nonlocal elliptic and December



The 2D stationary models
Axisymmetric geometry (Tokamak)
As the magnetic field lines are in toroidal nested surfaces, it is useful to
introduce a new coordinates system:
e Axisymmetric geometry ( Tokamak devices):

Cylindrical coordinates system (r, @, z): Let be ¢ the magnetic surface,
then
B-Vy=0
V-B =0
(MHD) ¢ V xB =pol
VP =1JxB inQ, (plasma region)
B = (B, By, B;) (covariant coordinates)

y
o (1 a9y 0 (1ap\] 1 9oF*(y) dp(y)
‘[w%w)*(ﬂ‘zw ap oy

0z
Grad-Shafranov equation
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J 13-) 0 (10

Operator: —L1 := —por [ 3z \ o3z

or \nor or |+

Grad-Shafranov equation ( )

—Ly = 1

(F2(9))" + por®p’ (v) (1)

N

e | :=1(r,z) (is a potential flux and unknown function),
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J 13-) 0 (10

Operator: —L1 := —por [ 3z \ o3z

or \nor or |+

Grad-Shafranov equation ( )

1

—Lip =S (F2(¥)) +puor’p () (1)

N

e | :=1(r,z) (is a potential flux and unknown function),
e rB, := —aair (r,z), 1B, := BBL;' rBy := F (¢) (F is unknown )
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Operator: — L ‘—_ri iai +i ii
perator: pi=—po or \ por or dz \ po 0z ¥

Grad-Shafranov equation ( )

—Ly = 1

(F2(9))" + por®p’ (v) (1)

N

e | :=1(r,z) (is a potential flux and unknown function),

e 1B, := —aair (r,z), 1B, := aai;, rBy := F (¢) (F is unknown )

@ P:=p (1) the pressure. In the plasma region p (p) > 0 and in the
vacuum region p () < 0. (p is a prescribed function: p (¢) ~ %gbi)
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Operator: — L ‘—_ri iai +i ii
perator: pi=—po or \ por or dz \ po 0z ¥

Grad-Shafranov equation ( )

1

—Lp =S (F2(¥)) +por®p' () (1)

N

e §:= 1 (r,z) (is a potential flux and unknown function),

e 1B, := —aair (r,z), 1B, := aai;, rBy := F (¢) (F is unknown )

@ P:=p (1) the pressure. In the plasma region p (p) > 0 and in the
vacuum region p () < 0. (p is a prescribed function: p () ~ 512 ).

e Boundary Conditions: i) = 7 on d(), and 7 is a negative constant.
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Operator: —L1) := —ugr 9 (1o _|_i 1o
p P Ly = —por | o tor 97 9z \ o 0 P,

Grad-Shafranov equation ( )

1

—Lp =S (F2(¥)) +por®p' () (1)

N

Y := 1 (r,z) (is a potential flux and unknown function),

rB, := —aair (r,z), rB, := aa%, rBy := F (¢) (F is unknown )

P := p (1) the pressure. In the plasma region p (p) > 0 and in the
vacuum region p () < 0. (p is a prescribed function: p () ~ 512 ).

Boundary Conditions: {) = 7y on 9(2, and 7y is a negative constant.

One Integral Conditions: The known total current carrying lyinto
the plasma: ()

/0{2}# (F2(y))" +p (l,lJ)}rdrdz: I (2)
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Some free boundary problems in Tokamak:machine:
To find a function u: Q) — R (Q C IR?, bounded regular open set),
u “regular enough” such that

—Au+AG(x,u) =0 in O,
u =y (unknown constant >0) on 9Q},
/ ou >
— = iven.
oaan P F
o Friedman-Liu95: —Au+ Amax(0,—u) =0 <«—existence of solution

and regularity of free boundary 002, (analytic).
Their approach was based on variational methods.
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@ Some free boundary problems in Tokamak:machine:
To find a function u: Q) — R (Q C IR?, bounded regular open set),
u “regular enough” such that

—Au+AG(x,u) =0 in O,
u =y (unknown constant >0) on 9Q},
/ ou >
— = iven.
agan P~ B
o Friedman-Liu95: —Au+ Amax(0,—u) =0 <«—existence of solution
and regularity of free boundary 002, (analytic).

Their approach was based on variational methods.
e Temam77, Temam78, Mossino—Temam381:

0 if u>0,

X,Uu) = u 2U
G (x,u) g(X,U,S(U(X)),ZS(S(U(X)))vZSQ(S(U(X)))> i u <0,

where S (u(x)) =meas{y € Q:u(y) < u(x)}.
Existence of solution (rearrangement of a function and variational
methods).
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Non axisymmetric geometry (Stellatator)

e Non axisymmetric geometry (Stellarator devices):
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Non axisymmetric geometry (Stellatator)

e Non axisymmetric geometry (Stellarator devices):

@ Boozer vacuum coordinates system (p, 6, ¢)[Boozer82]. The the
magnetic field lines becomes “straights” in the (6, ¢)-plane:

» p=p(x,y,z) >0and p=0on
the magnetic axis
p is constant on each nested toroid.
» 0 =0(x,y,z) is the poloidal angle,
is constant on any toroidal circuit
but changes by 27t over a poloidal circuit

F T $(x,y, z) is the toroidal angle,
B ¥y tereicel oz is constant on any poloidal circuit.

J.I. Diaz (Departamento de Matemdtica ApliOn some nonlinear and nonlocal elliptic and rDecember



Non axisymmetric geometry (Stellatator)

e Non axisymmetric geometry (Stellarator devices):

@ Boozer vacuum coordinates system (p, 6, ¢)[Boozer82]. The the
magnetic field lines becomes “straights” in the (6, ¢)-plane:

» p=p(x,y,z) >0and p=0on
the magnetic axis
p is constant on each nested toroid.
» 0 =0(x,y,z) is the poloidal angle,
is constant on any toroidal circuit
but changes by 27t over a poloidal circuit

F T $(x,y, z) is the toroidal angle,
B ¥y tereicel oz is constant on any poloidal circuit.

@ Pass form a 3D to 2D problem: averaging methods were used
[GreeneJohnson84], [HenderCarreras84].
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o In the plasma region, the following Grad—Shafranov equation is
satisfies:( )

Ly =a(p.6)F(p) + 5 (F (1)) +b(p.0)F () in O] (3)
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o In the plasma region, the following Grad—Shafranov equation is
satisfies:( )

—Ly = a(p,6)F(v) +§ (F2 ()" +blp.0)p' (¥) inQp| (3)

@ The limiter w is modeled by the multivalued maximal monotone graph B:

the problem is to find ¢ and F, such that

(p){—&pﬂ% (1) 3 alp, )F ()45 (F2(4)) +b(p. O)p' (1) in O
+Boundary Condition  + One Integral Condition
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o In the plasma region, the following Grad—Shafranov equation is
satisfies:( )

—wza(p.@)F(w)%(F2<¢>)’+b(p,9)p’(w> in 0| (3)

@ The limiter w is modeled by the multivalued maximal monotone graph B:

the problem is to find ¢ and F, such that

(p){—&pﬂ% (1) 3 alp, )F ()45 (F2(4)) +b(p. O)p' (1) in O
+Boundary Condition  + One Integral Condition

e Boundary condition: 90 is assumed to be a perfectly conducting
wall= ‘ ) = 7 =constant< 0 on E)Q‘
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o In the plasma region, the following Grad—Shafranov equation is
satisfies:( )

—Esv:a(p.e)F(w)%(F2<¢>)’+b(p,9)p’(w> in 0| (3)

@ The limiter w is modeled by the multivalued maximal monotone graph B:

the problem is to find ¢ and F, such that

1
(p){—ﬁwﬂ% (¥xw) 2 alp. O)F ()3 (F(y)) +b(p.6)p' (¥) in O
+Boundary Condition  + One Integral Condition

e Boundary condition: 90 is assumed to be a perfectly conducting
wall= ‘ ) = 7 =constant< 0 on E)Q‘

@ One Integral Condition, "The current carrying” into the plasma: ()
for any s € [essinf 1, esssup 1]

/ (5 (F2(y)) +bp" ()] pdpdd = j(sp |+l o) | (4)

"We will replacethe £ operator by the Laplacian one, A."
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The inverse thin obstacle problem
We assume that:

QO CR? a open bounded regular set,
w (the limiter)C (), connected subset, @ # @ M d() connected subset,
B (bounded multivalued maximal monotone graph):

B(r)=0if r >0, B(0) = [0, +o0).
y<0, F, >0, a,be [®(Q), b>0ae. in (),
p € CHR),p(0) =0
p s 0<p/(t)<Aty, Hélder continuous functions
(A >0)

. { j€C(RxRT), j(s,s) =0, (s>0)
Jt € C(RT X RT), 17:= |ljel toome xrt) < 0
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To find: (v, F) : Q — R, F: R — R U{0} such that F (s) = F,
for any s < 0 and satisfying
( /

—Au+Bluxe () 330 F(u(x)+3 (Fu(x))
+b(x)p (u(x)) inQ,
u—"yE€ H&(Q),

5(F00)?) +b () p ((x)) dx =j(ss us ()
{x:u(x)>s}

for any s € [essinf u, ess sup u} ,
Q Q

(5)
References: Without limiter:
Q@ The case j = 0: Diaz91, Padial92,
Diaz-Rakotoson93,94, Diaz-Galiano-Padial96.
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To find: (v, F) : Q — R, F: R — R U{0} such that F (s) = F,
for any s < 0 and satisfying
( /

—Au+Bluxe () 330 F(u(x)+3 (Fu(x))
+b(x)p (u(x)) inQ,
u—"yE€ H&(Q),

5(F00)?) +b () p ((x)) dx =j(ss us ()
{x:u(x)>s}

for any s € [essinf u, ess sup u} ,
Q Q

(5)
References: Without limiter:
Q@ The case j = 0: Diaz91, Padial92,
Diaz-Rakotoson93,94, Diaz-Galiano-Padial96.
@ The case j # 0: Diaz-Padial-Rakotoson98.
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To find: (v, F) : Q — R, F: R — R U{0} such that F (s) = F,
for any s < 0 and satisfying
[ Aot e () () F () +} (Flu()?)
+b(x) p' (u(x)) inQ,
u—"yE€ H&(Q),

5(F00)?) +b () p ((x)) dx =j(ss us ()
{x:u(x)>s}

for any s € [essinf u, ess sup u} ,
Q Q

(5)
References: Without limiter:
Q@ The case j = 0: Diaz91, Padial92,
Diaz-Rakotoson93,94, Diaz-Galiano-Padial96.
@ The case j # 0: Diaz-Padial-Rakotoson98.
© Evolution case, with j = 0, Diaz-Lerena-Padial02,
Diaz-Lerena-Padial-Rakotoson04.
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Existence of solutions.
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Theorem

Suppose that v < 0. Then there exist A1, Ay > 0 such that if

Ml oy +1 <A1 and As < igf]a\l-_v,

there exist a couple (u, F) with

ue V(Q):={veH (Q):AveL”(Q) <0},

Voo
Fewhe(] inf u, sup uf), F(t)=F,, Vt<0
Q
solution of (P). Moreover, u satisfies that

meas{x € Q: Vu(x) =0} =0

and F is entirely determined by u.
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Steps of the proof:
a) Eliminating the unknown F by a term involving u:
The non local problem (P*)
b) (P) <= (P*) + the assumption (H).
c) Looking for a week solution of (P*) verifying (H).
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One dimensional rearrangement

Definition

Let u: QO C RY — R be a measurable function and let Q. :=]0, |Q|[.
The Decreasing Rearrangement of u is the following decreasing real
function u, : O, — RR:

my (0) := meas{x € Q: u(x) > o} = |u> o| (distribution function of u)
uy (s) :=inf{t € R: m, (0) < s} (decreasing rearrangement of u)
u, (0) := esssupu = |+ [ 1) = u4(0),

u.(|Q)) := essinfu, M := essinfu, M := esssupu .
o) 0 0
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my, (0) := meas{x € Q: u(x) > o} = |u> o| (distribution function of u)

uy (s) :==inf{t € R: m, (0) < s} (decreasing rearrangement of u)

Let be u: Q) ((x2 52)6( 5_,15>u'ch thit< .
u(x) = 0.3 —1<x<1 , u:Q4=(0,|Q|) — [essinf u, esssup u]
1te 1<x o @
The function u The rearrangement u..

Graphics: P.Galan
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Relative rearrangement

Definition ([MossinoTemam81])

Let b € L}(Q) and a measurable function u in O, we set
w: QL ]0 10/[— R

s—|u>u(s)|

/b(x ) dx —l—/ B i ()t for s € Q.
{xw>u.(s)} 0
The Relative Rearrangement of b with respect to u is

buo(s) 1= ) _ iy LF0B)() — )
ds c—0 (o
Remark: If u has not flat region then s — |u > wu. (s)| =0 and
d
b*us::—/ b (x) dx.
(s) ds J{x:u>u.(s)} ()
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a) The non local problem (P*)
Eliminating the unknown F by a term involving u

Theorem

Let (u, F) verify the integral condition, with ue W?P (Q), p > 1,
F e Wt (Im, M]), F(t) = F, ift <0 and such that

meas{x € ) : Vu(x) =0} =0|
Then, for all t € [m, M|
1.

L(F2 (1) i= =/ (t)buu(|u > t]) + i (tr, tsa(0)) o (|u > 2])

()
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a) The non local problem (P*)
Eliminating the unknown F by a term involving u

Theorem

Let (u, F) verify the integral condition, with ue W?P (Q), p > 1,
F e Wt (Im, M]), F(t) = F, ift <0 and such that

meas{x € ) : Vu(x) =0} =0|
Then, for all t € [m, M|

3 (F2(0)" = =P (O)buu(lu > t]) + ji(tr, uss (0)) s (U > )| ()

2. F(t):=F(t) = [ —2/t+ beu(|u > o) do

1

2
+2/0 (e, 042 (0) iy, (Ju > o) do
+

v
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3. | F(u(x)) = Fu(x) ae xeQl with

) |u>uy (x)]
oy ) o= [Fv —2/

o 1P ()] buuls)ds

Ju>us ()] 2
w2 wa(5), 01 (0) (4 (9]

+

J.I. Diaz (
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3. | F(u(x)) = Fu(x) ae xeQl with

) |u>uy (x)]
oy ) o= [Fv —2/

o 1P ()] buuls)ds

Ju>us ()] 2
w2 wa(5), 01 (0) (4 (9]

+

1 /
> (Fu())?) =

—p' (u(x)) b (Ju> u(x)]

+jt(uy (%), ur«(0))u

)
f(Ju>u(x))).

J.I. Diaz (
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Now, we consider the following non local problem: to find u: Q) — IR, such
that

—Au+B(uxw) > aFu(x)+H(u(x), b))+ J(u(x)) inQ
(P*)

u—7y€ H(Q)

(6)

H (u(x), bey) := p'(u(x))[b(x) = beu(|u > u(x)])]
J (u (x)) = Ji(ur (%), g (0)) iy (Ju > w(x)])

(Recall the problem (P) ())

J.I. Diaz (Departamento de Matemdtica ApliOn some nonlinear and nonlocal elliptic and rDecember



b) (P)<=>(P*) + the assumption (H)
o Let (u, F) be one weak solution of (P) such that
meas{x € Q: Vu(x) =0} = 0;

then u is weak solution of (P*).
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b) (P)<=>(P*) + the assumption (H)

Theorem (Equivalent Problems)

o Let (u, F) be one weak solution of (P) such that
meas{x € Q: Vu(x) =0} = 0;
then u is weak solution of (P*).

@ Reciprocally, let
ue V(Q) = {ve H (Q):Av e [*(Q),v,, <0} solution of
(P*) such that

min{F(t) : t € [m, M]} >0

(M) { meas{x € Q: Vu(x) =0} =

holds. Then (u, F) is a solution of problem (P) .
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c) Looking for a week solution of (P*) verifying (H)
Steps:

c.1) The approximate problem (P7).
c.2) The Galerkin Method-

Existence of solution for a finite dimensional

problems (P¢ ), m € N.

c.3) A priori estimates uniformly in m and past to the limit
m — oo: Existence of solution of (P}).

c.4) The property (H).

c.5) A priori estimates uniformly in € and past to the limit € — 0:
Existence of solution of (Py).
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We assume € > 0. Let B¢ (-) be a Yosida approximation of (-). We used
the truncation functions

t2 t
= — _ <
) [v>vi (x)] ,
Fe(x,v, bsy) := |F; —2 o [p(vi(s))] bsy(s)ds
v>0
:=F1(x,v,bsv)
1
2
lv>vi (%) y

2] Jt(via(s), v (0)) he(V} . (5))ds

=Fe2(x,v)

Ce(Vis(lv > vi ()Nt (v (x), v(0))

J.I. Diaz (
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We introduce the approximate problem (P}):

Find u€ such that u¢ —y € H}(Q) N WP (Q); V p > 1 and

=AU+ Be (UXw) = aFe(x, U, biye) + H(u® (x) , biye)
(P2) e () in Q)
u*—y € Hi(Q).

We recall that

—Au+ B (uxw) > aF, (x)+ H(u(x),bw)

(P*) + J(u(x)) in O,
u—y€e HHQ).
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We consider:

o Let Vi, =span{@1,..., ¢m}, (Ak, ¢k)k>1 eigenvalues and
eigenfunctions:

—Ang = AkQDk, (NS H& (Q)

e On V,,, we define [v, w] := Y7, vkw¥ where
m m
v = Z vk(pkandw = Z Wk(Pk.
k=1 k=1

e For v < 0 fixed, we consider Tj, : Vi, — V), defined as

[Thv. 9l = /QVV'WdH /Qﬁe((v+7)xw)¢dx
_/ aFG(X' v+, b*(v+,‘/))§0dX—/QH(V+’)/, b*(v+’y))¢dx
— [ Je(v+7)pdx Vv, € V.
o)
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We shall prove that:

e T operator attains zero for some wg, € V,, \ {0}, i.e.

Tows, =0in Vy,,
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We shall prove that:

e T operator attains zero for some wg, € V,, \ {0}, i.e.
Tows, =0in Vy,,

o if Tr,wy, =0 = w;, satisfies the finite dimensional problem

—A (W +7) = Pm[—Be (Wi +7) Xw) +aFe(x, wh 4+, bywe 1))
(PZm)

+H(wg, + 7, bgwe 4+4)) + Je(wp + )] in Q with wi, € Vi

where P, is the orthogonal projection operator from L2(Q) onto V,,.

Thus w, is a weak solution of (Pg ) < Tows, =0
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Assume A1 — Ao(s)c b > 0. Then there exists at least wy, € V), solution of

problem (P ), i.e. satisfying Vo € Vpn,
(Taws 9l = [ Vws,- Vods+ [ Be (wh+7) ) px
- /Q aFe(X1 Wren + 7, b*(w§q+’y))q)dx

— [ HOW4 7, by )= (w4 7) e =0
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Proof. Solution of problems (P; ): Brouwer Fixed Point Theorem
(J.L. Lions 1969):

‘o Ty, is a continuous map‘. (<= + technical Lemma).

TS v can be expressed as Tov = Y 1 [ TSV, ¢k] @k where
@ € Vi, is an arbitrary function and so it is enough to use the
continuity of the different functions appearing in the definition.

e T€¢

-, is a coercive map when Ao(s)cb <A

The assumption implies the coercivity of T, since

[TV, V] :/Q]Vv|2dx—l— /Q,Be((v—i—’y))(w) vdx —/Qal-_e(x, VY, by(yqry)) vax

— | H(v+7, by, d—/J€+ dx  YveV,
| HOA7 b v = [ Je(vpvax ¥ v

and [oBe ((v+ ) Xw) vdx is minored by zero (the rest, as in
Proposition 1 of [DPR98]). B
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Let ¢ = wy,, then
0—[mem,w | /‘VW |dx—|—/,5€ We, + ) Xw) Wr,dx

—Ce/Q|Wm|dx+)\o(s)cb/Q|Vwm|2dx

> (Al—)to(s:)cb—é)/0|wfn|2dx— Ces,

= | Iwg Il () < Ce (a estimate in L2(Q)uniformly in m)

4

HVWﬁ,Hfz(Q) = [ IVwg[?dx < C (a estimate in Hg (Q)uniformly in m).

Finall
HAanyHLz < lBe (Wi +7) Xl 1200 F1@Fe (X, Wi+, buque, 1) |2 ()

+ [[H(Wh 4+, bewe 1)l 2(0) + [ de (Wi + V)1 2(0)
2 217 % 1 €
< Mlw| +llall =) | Fo + 71Ol Q2 + Aosc bljwp |2

By standard regularity results, (w¢),>1 is uniformly bounded in W22 (QQ).
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For any € > 0 fixed, there exist a subsequence {wg,} and one function
wé € H?(Q), such that

wr, — w€ weakly in H?(Q)), and so

wr, — w€ strongly in W3P(Q) ¥p > 1(N = 2) and in C (Q)).

By using technical result on relative rearrangement,

buwe +y) — b weakly® in L¥(Q0),

m—o0

bu(ug+) (W +7 > (wi +9) ()]) = B weakly” in L*(Q,)

m—o0

for some b€, b€ € L*(().), and
Fe(x, Wi + 7, bi(we +4)) mim Fe(x, w€ + v, b°) weakly* in L®(Q)),
H(x, wp, + 7, by(we 44)) mi\oo H(x, w€ + 7, b) weakly* in L*(Q)),
Je(ws, + ) o Je(we + ) strongly in L}(Q) .
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Now, for any € > 0 we have that

If
meas{x € Q: Vw(x) =0} =0
then
Ee = b*(w€+'y) in Q*
and
b = bigyes (W5 7 > (W) ()]) in Q.

That implies that

Fe(x, W 47, bufwe 1)) — Fe(x, WS 49, by (e 1)) weakly™ in L¥(QQ) .

m—0oo

Hx, Woy 7, bi(ug o)) = HOx WS+, bug 1)) weakly™ in L¥(€0) .

m-—0oo
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Let T€: H} (Q) — H3(Q) defined by

[TV, ¢] /Vv Vgodx+/ﬁe (v+79) Xw)@dx

_/ aFe(x, v 47, by(yiy)) pdx — /QH YET it )P

—/QJE v+ ) @dx if v, ¢ € HH Q).

the last convergence implies that T¢w® = 0 and so, w® +  will be a
solution of

—AWE + Be (Uxw) =  aFe(x, we + 1, Be) +p/ (W + 7)[b — b°]
(Ps) +Je (W€ + 1) in Q
Wty e HIQ)NH(Q)

for any € > 0.
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Notation: u€ := w€ + 9, (recall that u€ — v € W;"™(Q) N W?2(Q))

Lemma

|

Ifvi=— 21201210112 8| ooy +A]Q|oscb+17] < 1, then

uniformly in €

1Blleo + [l L= () F
e o0 <
[Aue|| 1oy < T
Q| [ IBlleo + llall o) Fv )
[u& ] L) < T = =S .

Proof. Following Lemma 23 of [DPR98], we get the conclusion from the
estimate

186 (e) < e (4 Xw) [l () Flall o) F

1,11, 1
+47_C|:22;72‘Q’2HaHI_oo(Q)‘i‘A‘Q‘O(S)C b+77:|||AU€HLoo(Q) .
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Theorem
(When does (H) hold?). If

Al[b|| () and 11 are small enough

and
infq |a| and F, large enough
such that
2ns?]
i - 2 i
1Blleo + | A6l Lo() + IOI] S <infal [Fv ~2Albllim@)S = a7 | -

then

meas{x € Q: Vué(x) =0} = 0.

In particular, u¢ satisfies problem (P?).
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Proof. We argue by contradiction. Suppose that
meas{x € Q: Vu(x) =0} #0.
Then, from the equation of (P*)

. 1
Be (U xw) = a[F2 — 2F1 (u€, b%) + 2Fc 2 (uf)]2
+H(u, b°) + Je(uf) ae. on {x € Q: Vu(x) =0}.

By the last estimates, we get that
Be (U Xw) +AS o8¢ b > Be (uxw) + |H(uS, b))

A 1
> inf |a|[F2 — 2F1 (uf, B) + 2Fc 5 (u€)]2 — Je(uf),

1
‘ 55 2 _ St
Be (U xw) + [Ao(s)cb+ |Qd S> |gf]a\ [FV 2M|b|| o) S ar.
|

This contradicts the assumption in lemma, proving result.
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Assume v € R™ and that Al|b||~() +71 < A1 and infq [a|F, > A, for a
suitable positive constant A1 and A2 > 0. Then there is u solution of
(Ps). Moreover ue V(Q).

Proof. Our aim is to let € — 0. We use the uniform estimates obtained
before.
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By the uniform estimate on [|Au|[;~(q) given before, there exists some
subsequence of (u€) (which we will again denote by u€) and a function
a € L®(Q) such that Au® ﬁo a weakly* in L*(Q)). By standard

€E—

regularity, u¢ belongs to a bounded set of W2 (Q), for all p € [1, +oc0].
Then, we have (for some subsequence) that

u€ W weakly in W2P(Q) and uf 3 strongly in C1(Q)
In particular, « = Au, Au € L®(Q)), ue V(Q) and the estimates, and the
technical result used for the pas to the limit in problem (PZ ) remain true
replacing u€ by u. Moreover B¢ (u€x,) — B weakly in LP(Q)) for any
p € (1,+00) and as B is maximal monotone we get that B(x) € B (uxw)
a.e. x € (). Arguing like before, we prove the convergence of equation of
problem (P}) term by term to the equation of problem (P.).
Analogously, we obtain that meas{x € Q3 : Vu(x) = 0} = 0. and thus we
can identify all the terms which appear after to take the limit. In this way,
we get the conclusion that v is a solution of (Py). [
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