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What is the Nuclear fusion?
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The nuclear fusion:

The plasma: A mixture of particles of positive, negative and neuter
electrical charge can be consider as an ideal �uid for determining the
macroscopic properties.

Particles of low mass: Deuterium, Tritium, He,...
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Magnetic con�nement: Need > 100 � 106C o to obtain an equilibrium
state.
Con�nement: magnetic or inertial (not presented in this
lecture).Many general expositions on the physical and engineering
phenomenology (see e.g. [3]).
Axisymmetric geometry: Non axisymmetric geometry:

Tokamak devices Stellarator devices

Sketch of a Tokamak Sketch of TJ-II in the Ciemat-Madrid

The vacuum vessel The vacuum vessel
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Di¢ culties: to determinate the conditions on the magnetic �eld and
on the current density in order to keep the plasma far from the
camera walls.

A way to prevent mechanically
this is to introduce a limiter:
a solid object which determines
the boundary of the plasma
(limiter plays the role of a thin
obstacle for the plasma).
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The 3D stationary model
The plasma as a ideal �uid and use the ideal MHD model.

Assume that the plasma is a perfect conductor (Ohm�s Law).

r �B = 0, (Conservation of B),
r�B = µ0J, (Ampère�s Law),

rP = J�B in Ωp , (conservation of momentum)

The electromagnetic variables are: The �uid variables are:

� the magnetic �eld B and � the pressure P.
� the current density J � magnetic permeability µ0.

are satis�ed in plasma region.
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Sketch:

R3 � Ω = Ωp [Ωv8>><>>:
Ωp := plasma region (unknown)
∂Ωp := the free boundary
Ωv = fx : J(x) = 0g := vacuum region
ω := the limiter

Boundary Conditions:
n3 �B = 0 on ∂Ωp = fx : P(x) = 0g

((= rP jjn3 and rP(x)?B)
n3 �B = 0 on ∂Ω. perfectly conducting wall

One Integral Condition:
�the current carrying� into the plasma.

The problem is to �nd
P : Ω � R3 ! R, B, J :Ω � R3 ! R3?
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From rP = J�B in Ωp , it follows that

B � rP = 0 and J � rP = 0.

Then the pressure is constant on each magnetic surface.
If a surface lies in a bounded volume then it must be a toroid, i.e. a
topological torus. (Due to Alexandro¤ and Hopf).
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The 2D stationary models
Axisymmetric geometry (Tokamak)
As the magnetic �eld lines are in toroidal nested surfaces, it is useful to
introduce a new coordinates system:

Axisymmetric geometry (Tokamak devices):

Cylindrical coordinates system (r , ϕ, z): Let be ψ the magnetic surface,
then

B � rψ = 0

(MHD)

8<:
r �B = 0
r�B = µ0J
rP = J�B in Ωp (plasma region)

B =
�
Br ,Bϕ,Bz

�
(covariant coordinates)| {z }
+

�
�

∂

∂r

�
1

µ0r
∂ψ

∂r

�
+

∂

∂z

�
1

µ0

∂ψ

∂z

��
=

1
2µ0r2

∂F 2 (ψ)
∂ψ

+ r
∂p (ψ)

∂ψ

Grad-Shafranov equation
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Operator: �Lψ := �µ0r
�

∂

∂r

�
1

µ0r
∂�
∂r

�
+

∂

∂z

�
1

µ0

∂�
∂z

��
ψ,

Grad-Shafranov equation (3)

�Lψ =
1
2

�
F 2 (ψ)

� 0 + µ0r2p0 (ψ) (1)

ψ := ψ (r , z) (is a potential �ux and unknown function),

rBz := � ∂ψ
∂r (r , z), rBr := ∂ψ

∂z , rBϕ := F (ψ) (F is unknown )
P := p (ψ) the pressure. In the plasma region p (p) � 0 and in the
vacuum region p (ψ) � 0. (p is a prescribed function: p (ψ) � λ

2ψ2+).
Boundary Conditions: ψ = γ on ∂Ω, and γ is a negative constant.
One Integral Conditions: The known total current carrying Ip into
the plasma: (4)Z

Ω

n
1

2µ0r 2
�
F 2 (ψ)

� 0 + p0 (ψ)o rdrdz = Ip (2)

(3)

J.I. Diaz (Departamento de Matemática Aplicada )On some nonlinear and nonlocal elliptic and parabolic problems arising in Stellerator nuclear fusion devicesDecember 12, 2012 10 / 40



Operator: �Lψ := �µ0r
�

∂

∂r

�
1

µ0r
∂�
∂r

�
+

∂

∂z

�
1

µ0

∂�
∂z

��
ψ,

Grad-Shafranov equation (3)

�Lψ =
1
2

�
F 2 (ψ)

� 0 + µ0r2p0 (ψ) (1)

ψ := ψ (r , z) (is a potential �ux and unknown function),

rBz := � ∂ψ
∂r (r , z), rBr := ∂ψ

∂z , rBϕ := F (ψ) (F is unknown )

P := p (ψ) the pressure. In the plasma region p (p) � 0 and in the
vacuum region p (ψ) � 0. (p is a prescribed function: p (ψ) � λ

2ψ2+).
Boundary Conditions: ψ = γ on ∂Ω, and γ is a negative constant.
One Integral Conditions: The known total current carrying Ip into
the plasma: (4)Z

Ω

n
1

2µ0r 2
�
F 2 (ψ)

� 0 + p0 (ψ)o rdrdz = Ip (2)

(3)

J.I. Diaz (Departamento de Matemática Aplicada )On some nonlinear and nonlocal elliptic and parabolic problems arising in Stellerator nuclear fusion devicesDecember 12, 2012 10 / 40



Operator: �Lψ := �µ0r
�

∂

∂r

�
1

µ0r
∂�
∂r

�
+

∂

∂z

�
1

µ0

∂�
∂z

��
ψ,

Grad-Shafranov equation (3)

�Lψ =
1
2

�
F 2 (ψ)

� 0 + µ0r2p0 (ψ) (1)

ψ := ψ (r , z) (is a potential �ux and unknown function),

rBz := � ∂ψ
∂r (r , z), rBr := ∂ψ

∂z , rBϕ := F (ψ) (F is unknown )
P := p (ψ) the pressure. In the plasma region p (p) � 0 and in the
vacuum region p (ψ) � 0. (p is a prescribed function: p (ψ) � λ

2ψ2+).

Boundary Conditions: ψ = γ on ∂Ω, and γ is a negative constant.
One Integral Conditions: The known total current carrying Ip into
the plasma: (4)Z

Ω

n
1

2µ0r 2
�
F 2 (ψ)

� 0 + p0 (ψ)o rdrdz = Ip (2)

(3)

J.I. Diaz (Departamento de Matemática Aplicada )On some nonlinear and nonlocal elliptic and parabolic problems arising in Stellerator nuclear fusion devicesDecember 12, 2012 10 / 40



Operator: �Lψ := �µ0r
�

∂

∂r

�
1

µ0r
∂�
∂r

�
+

∂

∂z

�
1

µ0

∂�
∂z

��
ψ,

Grad-Shafranov equation (3)

�Lψ =
1
2

�
F 2 (ψ)

� 0 + µ0r2p0 (ψ) (1)

ψ := ψ (r , z) (is a potential �ux and unknown function),

rBz := � ∂ψ
∂r (r , z), rBr := ∂ψ

∂z , rBϕ := F (ψ) (F is unknown )
P := p (ψ) the pressure. In the plasma region p (p) � 0 and in the
vacuum region p (ψ) � 0. (p is a prescribed function: p (ψ) � λ

2ψ2+).
Boundary Conditions: ψ = γ on ∂Ω, and γ is a negative constant.

One Integral Conditions: The known total current carrying Ip into
the plasma: (4)Z

Ω

n
1

2µ0r 2
�
F 2 (ψ)

� 0 + p0 (ψ)o rdrdz = Ip (2)

(3)

J.I. Diaz (Departamento de Matemática Aplicada )On some nonlinear and nonlocal elliptic and parabolic problems arising in Stellerator nuclear fusion devicesDecember 12, 2012 10 / 40



Operator: �Lψ := �µ0r
�

∂

∂r

�
1

µ0r
∂�
∂r

�
+

∂

∂z

�
1

µ0

∂�
∂z

��
ψ,

Grad-Shafranov equation (3)

�Lψ =
1
2

�
F 2 (ψ)

� 0 + µ0r2p0 (ψ) (1)

ψ := ψ (r , z) (is a potential �ux and unknown function),

rBz := � ∂ψ
∂r (r , z), rBr := ∂ψ

∂z , rBϕ := F (ψ) (F is unknown )
P := p (ψ) the pressure. In the plasma region p (p) � 0 and in the
vacuum region p (ψ) � 0. (p is a prescribed function: p (ψ) � λ

2ψ2+).
Boundary Conditions: ψ = γ on ∂Ω, and γ is a negative constant.
One Integral Conditions: The known total current carrying Ip into
the plasma: (4)Z

Ω

n
1

2µ0r 2
�
F 2 (ψ)

� 0 + p0 (ψ)o rdrdz = Ip (2)

(3)

J.I. Diaz (Departamento de Matemática Aplicada )On some nonlinear and nonlocal elliptic and parabolic problems arising in Stellerator nuclear fusion devicesDecember 12, 2012 10 / 40



Some free boundary problems in Tokamak:machine:
To �nd a function u : Ω! R (Ω � R2, bounded regular open set),
u �regular enough�such that8>><>>:

�∆u + λG (x , u) = 0 in Ω,
u = γ (unknown constant >0) on ∂Ω,Z

∂Ω

∂u
∂n

= Ip > given.

Friedman�Liu95: �∆u + λmax(0,�u) = 0  existence of solution
and regularity of free boundary ∂Ωp (analytic).
Their approach was based on variational methods.

Temam77, Temam78, Mossino�Temam81:

G (x , u) =

8<:
0 if u � 0,

g
�
x , u,S (u (x)) ,

du
dS
(S (u (x))) ,

d2u
dS2

(S (u (x)))
�
if u < 0.

where S (u (x)) =measfy 2 Ω : u (y) < u (x)g.
Existence of solution (rearrangement of a function and variational
methods).
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Non axisymmetric geometry (Stellatator)

Non axisymmetric geometry (Stellarator devices):

1 Boozer vacuum coordinates system (ρ, θ, φ)[Boozer82]. The the
magnetic �eld lines becomes �straights� in the (θ, φ)-plane:

I ρ = ρ(x , y , z) > 0 and ρ = 0 on
the magnetic axis

ρ is constant on each nested toroid.

I θ = θ(x , y , z) is the poloidal angle,
is constant on any toroidal circuit
but changes by 2π over a poloidal circuit

I φ = φ(x , y , z) is the toroidal angle,
is constant on any poloidal circuit.

2 Pass form a 3D to 2D problem: averaging methods were used
[GreeneJohnson84], [HenderCarreras84].
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In the plasma region, the following Grad�Shafranov equation is
satis�es:(1)

�Lψ = a(ρ, θ)F (ψ) +
1
2

�
F 2 (ψ)

� 0 + b(ρ, θ)p0 (ψ) in Ωp (3)

The limiter ω is modeled by the multivalued maximal monotone graph β:

the problem is to �nd ψ and F , such that

(P)
(
�Lψ+β (ψχω) 3 a(ρ, θ)F (ψ)+

1
2

�
F 2(ψ)

� 0+b(ρ, θ)p0 (ψ) in Ω

+Boundary Condition + One Integral Condition

Boundary condition: ∂Ω3 is assumed to be a perfectly conducting
wall) ψ = γ �constant< 0 on ∂Ω
One Integral Condition, �The current carrying�into the plasma: (2)
for any s 2 [ess inf ψ, esssup ψ]Z

fψ>sg

� 1
2

�
F 2(ψ)

� 0+bp0 (ψ)� ρdρdθ = j(s+, kψ+k L∞(Ω)). (4)

"We will replacethe L operator by the Laplacian one, ∆."
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The inverse thin obstacle problem

We assume that:

Ω � R2, a open bounded regular set,
ω (the limiter)� Ω, connected subset, ∅ 6= ω̄ \ ∂Ω connected subset,
β (bounded multivalued maximal monotone graph):

β(r) = 0 if r > 0, β(0) = [0,+∞).

γ < 0 , Fv > 0 , a, b 2 L∞(Ω), b > 0 a.e. in Ω,

p

8<:
p 2 C1(R), p(0) = 0
0 � p0(t) � λt+, Hölder continuous functions
(λ > 0)

j
�
j 2 C(R�R+), j(s, s) = 0, (s > 0)
j 0t 2 C(R+ �R+), η := kj 0tkL∞(R+�R+) < ∞
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To �nd: (u,F ) u: Ω! R, F : R! R+ [ f0g such that F (s) = Fv
for any s � 0 and satisfying

(P)

8>>>>>>>>>>>><>>>>>>>>>>>>:

�∆u + β(uχω (x)) 3 a (x) F (u (x)) + 1
2

�
F (u (x))2

�0
+b (x) p0 (u (x)) in Ω,

u � γ 2 H10 (Ω),Z
fx :u(x )>sg

1
2

�
F (u (x))2

�0
+ b (x) p0 (u (x)) dx = j(s+, ku+kL∞(Ω))

for any s 2
�
ess inf

Ω
u, ess sup

Ω
u
�
,

(5)

References: Without limiter:
1 The case j � 0: Díaz91, Padial92,
Díaz-Rakotoson93,94, Díaz-Galiano-Padial96.

2 The case j 6� 0: Díaz-Padial-Rakotoson98.
3 Evolution case, with j � 0, Díaz-Lerena-Padial02,
Díaz-Lerena-Padial-Rakotoson04.

(5), (6)
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Existence of solutions.
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Theorem

Suppose that γ � 0. Then there exist Λ1,Λ2 > 0 such that if

λkbkL∞(Ω) + η < Λ1 and Λ2 < inf
Ω
jajFv ,

there exist a couple (u,F ) with

u 2 V (Ω) :=
�
v 2 H1 (Ω) : ∆v 2 L∞ (Ω) , vj∂Ω

� 0
	
,

F 2 W 1,∞(] inf
Ω
u, sup

Ω
u[), F (t) = Fv , 8t � 0

solution of (P). Moreover, u satis�es that

measfx 2 Ω : ru(x) = 0g = 0

and F is entirely determined by u.
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Steps of the proof:

a) Eliminating the unknown F by a term involving u:

The non local problem (P�)
b) (P)() (P�) + the assumption (H).
c) Looking for a week solution of (P�) verifying (H).
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One dimensional rearrangement

De�nition

Let u : Ω � RN ! R be a measurable function and let Ω� :=]0, jΩj[.
The Decreasing Rearrangement of u is the following decreasing real
function u� : Ω� ! R:

mu (σ) := measfx 2 Ω : u (x) > σg = ju > σj (distribution function of u)
u� (s) := infft 2 R : mu (σ) � sg (decreasing rearrangement of u)

u�(0) := esssup
Ω

u := ku+kL∞(Ω) = u+�(0),

u�(jΩj) := essinf
Ω

u, m̂ := essinf
Ω

u, M := esssup
Ω

u .
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mu (σ) := measfx 2 Ω : u (x) > σg = ju > σj (distribution function of u)
u� (s) := infft 2 R : mu (σ) � sg (decreasing rearrangement of u)

Example
Let be u : Ω = (�2, 5)! R , such that

u (x ) =

8<:
(x + 2) (x + 1) , x < �1

0.3 �1 � x � 1
1
2 + e

�x 1 < x
, u� : Ω� = (0, jΩj)! [ess inf

Ω
u, ess sup

Ω
u]

The function u The rearrangement u�

Graphics: P .Gal án
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Relative rearrangement

De�nition ([MossinoTemam81])

Let b 2 L1(Ω) and a measurable function u in Ω, we set
w : Ω̄� =]0, jΩj[! R

w(s) =
Z
b (x) dx

fx :u>u�(s)g

+

s�ju>u�(s)jZ �
bjfu=u�(s)g

�
�
(t) dt

0

, for s 2 Ω�.

The Relative Rearrangement of b with respect to u is

b�u(s) :=
dw(s)
ds

= lim
σ!0

(u + σb)�(s)� u�(s)
σ

in Ω� .

Remark: If u has not �at region then s � ju > u� (s) j = 0 and
b�u(s) :=

d
ds

Z
fx :u>u�(s)g

b (x) dx .

J.I. Diaz (Departamento de Matemática Aplicada )On some nonlinear and nonlocal elliptic and parabolic problems arising in Stellerator nuclear fusion devicesDecember 12, 2012 20 / 40



a) The non local problem (P*)
Eliminating the unknown F by a term involving u

Theorem
Let (u,F ) verify the integral condition, with u2 W 2,p (Ω), p � 1,
F 2 W 1,∞ (]m̂,M [), F (t) = Fv if t � 0 and such that

measfx 2 Ω : ru(x) = 0g = 0 .
Then, for all t 2 [m̂,M ]
1.

1
2

�
F 2 (t)

�0 := �p0(t)b�u(ju > tj) + j 0t (t+, u+�(0))u0+�(ju > tj) (5)

2. F (t) := F (t) =
�
F 2v � 2

Z t+

0
p0(σ)b�u(ju > σj)dσ

+ 2
Z t+

0
j 0t (σ+, u+�(0))u

0
+�(ju > σj)dσ

� 1
2

+
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Theorem

3. F (u(x)) = Fu (x) a.e. x 2 Ω̄ , with

Fu (x) :=
�
F 2v � 2

Z ju>u+(x )j
ju>0j

[p(u�(s))]
0 b�u(s)ds

+ 2
Z ju>u+(x )j
ju>0j

j 0t (u+�(s), u+�(0)) (u
0
+�(s))

2ds
� 1
2

+

4.
1
2

�
F (u(x))2

�0
= �p0(u(x))b�u(ju>u(x)j)

+j 0t (u+(x), u+�(0))u
0
+�(ju>u(x)j).
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Now, we consider the following non local problem: to �nd u: Ω! R, such
that

(P�)

8<: �∆u + β (uχω) 3 aFu (x) +H (u (x) , b�u) + J (u (x)) in Ω

u � γ 2 H10 (Ω)

(6)
with

H (u (x) , b�u) := p0(u(x))[b(x)� b�u(ju > u(x)j)]
J (u (x)) := j 0t (u+(x), u+�(0))u

0
+�(ju > u(x)j)

(Recall the problem (P) (5))
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b) (P)<=>(P*) + the assumption (H)

Theorem (Equivalent Problems)

Let (u,F ) be one weak solution of (P) such that

measfx 2 Ω : ru(x) = 0g = 0;

then u is weak solution of (P�).

Reciprocally, let
u2 V (Ω) :=

�
v 2 H1 (Ω) : ∆v 2 L∞ (Ω) , vj∂Ω

� 0
	
solution of

(P�) such that

(H)
�

measfx 2 Ω : ru(x) = 0g = 0
minfF (t) : t 2 [m̂,M ]g > 0 ,

holds. Then (u,F ) is a solution of problem (P) .
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c) Looking for a week solution of (P*) verifying (H)
Steps:

c.1) The approximate problem (P�ε ).
c.2) The Galerkin Method:

Existence of solution for a �nite dimensional

problems
�
P�ε,m

�
, m 2N.

c.3) A priori estimates uniformly in m and past to the limit
m! ∞: Existence of solution of (P�ε ).

c.4) The property (H).
c.5) A priori estimates uniformly in ε and past to the limit ε! 0:

Existence of solution of (P�).
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We assume ε > 0. Let βε (�) be a Yosida approximation of β(�). We used
the truncation functions

hε(t) =
t2

1+ εt2
ξε(t) =

t
1+ εjtj (� 1/ε)

Fε(x , v , b�v ) :=

26664F 2v � 2
Z jv>v+(x )j
jv>0j

[p(v�(s))]0b�v (s)ds| {z }
:=F1(x ,v ,b�v )

+ 2
Z jv>v+(x )j
jv>0j

j 0t (v+�(s), v+�(0))hε(v 0+�(s))ds| {z }
:=Fε,2(x ,v )

37775
1
2

+

Jε(v(x)) := ξε(v 0+�(jv > v+(x)j))j 0t (v+(x), v+�(0))
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We introduce the approximate problem (P�ε ):

Find uε such that uε � γ 2 H10 (Ω) \W 2,p (Ω) ; 8 p � 1 and

(P�ε )

8><>:
�∆uε + βε (uεχω) = aFε(x , uε, b�uε) +H(uε (x) , b�uε)

+ Jε(uε (x)) in Ω,

uε � γ 2 H10 (Ω).

.

We recall that

(P�)

8>>><>>>:
�∆u + β (uχω) 3 aFu (x) +H (u (x) , b�u)

+ J (u (x)) in Ω,

u � γ 2 H10 (Ω) .
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We consider:

Let Vm =spanfϕ1, . . . , ϕmg, (λk , ϕk )k�1 eigenvalues and
eigenfunctions:

�∆ϕk = λk ϕk , ϕ 2 H10 (Ω) .

On Vm , we de�ne [v ,w ] := ∑m
k=1 v

kw k where

v =
m

∑
k=1

v k ϕkandw =
m

∑
k=1

w k ϕk .

For γ � 0 �xed, we consider T ε
m : Vm ! Vm de�ned as

[T ε
mv , ϕ] =

Z
Ω
rv � rϕdx+

Z
Ω

βε ((v + γ) χω) ϕdx

�
Z

Ω
aFε(x , v+γ, b�(v+γ))ϕdx�

Z
Ω
H(v+γ, b�(v+γ))ϕdx

�
Z

Ω
Jε(v+γ)ϕdx 8v , ϕ 2 Vm .
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We shall prove that:

T ε
m operator attains zero for some w

ε
m 2 Vm n f0g, i.e.

T ε
mw

ε
m = 0 in Vm ,

if T ε
mw

ε
m = 0 =) w ε

m satis�es the �nite dimensional problem

(P�ε,m)

8<:
�∆(w ε

m+γ)=Pm [�βε ((w ε
m+γ) χω)+aFε(x ,w ε

m+γ, b�(w ε
m+γ))

+H(w ε
m + γ, b�(w ε

m+γ)) + Jε(w ε
m + γ)] in Ω with w ε

m 2 Vm

where Pm is the orthogonal projection operator from L2(Ω) onto Vm .

Thus w ε
m is a weak solution of (P�ε,m), T ε

mw
ε
m = 0
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Theorem

Assume λ1 � λ osc
Ω
b > 0. Then there exists at least w ε

m 2 Vm solution of
problem (P�ε,m), i.e. satisfying 8ϕ 2 Vm

[T ε
mw

ε
m , ϕ] =

Z
Ω
rw ε

m � rϕdx +
Z

Ω
βε ((w ε

m + γ) χω) ϕdx

�
Z

Ω
aFε(x ,w ε

m + γ, b�(w ε
m+γ))ϕdx

�
Z

Ω
H(w ε

m+γ, b�(w ε
m+γ))ϕdx�

Z
Ω
Jε(w ε

m+γ)ϕdx = 0 .
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Proof. Solution of problems (P�ε,m): Brouwer Fixed Point Theorem
(J.L. Lions 1969):
� T ε

m is a continuous map . (( + technical Lemma).

T ε
mv can be expressed as T

ε
mv = ∑m

k=1[T
ε
mv , ϕk ]ϕk where

ϕ 2 Vm is an arbitrary function and so it is enough to use the
continuity of the di¤erent functions appearing in the de�nition.

� T ε
m is a coercive map when λ osc

Ω
b < λ1 .

The assumption implies the coercivity of T ε
m since

[T ε
mv , v ] =

Z
Ω
jrv j2dx+

Z
Ω

βε ((v + γ) χω) vdx �
Z

Ω
aFε(x , v+γ, b�(v+γ))vdx

�
Z

Ω
H(v+γ, b�(v+γ))vdx �

Z
Ω
Jε(v+γ)vdx 8 v 2 Vm

and
R

Ωβε ((v + γ) χω) vdx is minored by zero (the rest, as in
Proposition 1 of [DPR98]). �
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Let ϕ = w ε
m , then

0 = [T ε
mw

ε
m ,w

ε
m ]�

Z
Ω
jrw ε

m j2dx+
Z

Ω
βε ((w

ε
m + γ) χω)w ε

mdx

�C ε

Z
Ω
jw ε
m jdx + λ osc

Ω
b
Z

Ω
jrw ε

m j2dx

� (λ1�λ osc
Ω
b� δ)

Z
Ω
jw ε
m j2dx � C εδ,

) kw ε
mkL2(Ω) � Cε (a estimate in L2(Ω)uniformly in m)

+
krw ε

mk2L2(Ω) =
R

Ω jrw ε
m j2dx � Cε (a estimate in H10 (Ω)uniformly in m).

Finally,
k∆w ε

mkL2(Ω) � kβε ((w ε
m+γ) χω)kL2(Ω)+kaFε(x ,w ε

m+γ, b�(w ε
m+γ))kL2(Ω)

+ kH(w ε
m+γ, b�(w ε

m+γ))kL2(Ω) + kJε(w ε
m + γ)kL2(Ω)

� M jωj+ kakL∞(Ω)

�
F 2v +

2η

ε
jΩj
� 1
2

jΩj 12 + λ osc
Ω
bkw ε

mkL2(Ω) +
jΩj 12 η

ε
� Cε.

By standard regularity results, (w ε
m)m�1 is uniformly bounded in W

2,2(Ω).
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For any ε > 0 �xed, there exist a subsequence fw ε
mg and one function

w ε 2 H2(Ω), such that

w ε
m * w ε weakly in H2(Ω), and so

w ε
m ! w ε strongly in W 1,p(Ω) 8p � 1(N = 2) and in C (Ω̄) .

By using technical result on relative rearrangement,

b�(w ε
m+γ)

�
*
m!∞

b̂ε weakly� in L∞(Ω�),

b�(w ε
m+γ) (jw ε

m + γ > (w ε
m + γ) (�) j) �

*
m!∞

b̃ε weakly� in L∞(Ω�)

for some b̂ε, b̃ε 2 L∞(Ω�), and

Fε(x ,w ε
m + γ, b�(w ε

m+γ))
�
*
m!∞

Fε(x ,w ε + γ, b̂ε) weakly� in L∞(Ω),

H(x ,w ε
m + γ, b�(w ε

m+γ))
�
*
m!∞

H(x ,w ε + γ, b̂ε) weakly� in L∞(Ω),

Jε(w ε
m + γ) !

m!∞
Jε(w ε + γ) strongly in L1(Ω) .
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Now, for any ε > 0 we have that

Proposition
If

measfx 2 Ω : rw ε(x) = 0g = 0

then
b̂ε = b�(w ε+γ) in Ω�

and
bε = b�(w ε+γ)(jw ε + γ > (w ε + γ)(x)j) in Ω.

That implies that

Fε(x ,w ε
m + γ, b�(w ε

m+γ))
�
*
m!∞

Fε(x ,w ε + γ, b�(w ε
m+γ)) weakly

� in L∞(Ω) .

H(x ,w ε
m + γ, b�(w ε

m+γ))
�
*
m!∞

H(x ,w ε + γ, b�(w ε
m+γ)) weakly

� in L∞(Ω) .
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Let T ε : H10 (Ω)! H10 (Ω) de�ned by

[T εv , ϕ] =
Z

Ω
rv � rϕdx +

Z
Ω

βε((v + γ) χω)ϕdx

�
Z

Ω
aFε(x , v + γ, b�(v+γ))ϕdx �

Z
Ω
H(v + γ, b�(v+γ))ϕdx

�
Z

Ω
Jε(v + γ)ϕdx if v , ϕ 2 H10 (Ω).

the last convergence implies that T εw ε = 0 and so, w ε + γ will be a
solution of

(P�ε )

8><>:
�∆w ε + βε (uεχω) = aFε(x ,w ε + γ, b̂ε) + p0(w ε + γ)[b� bε]

+Jε(w ε + γ) in Ω

w ε + γ 2 H10 (Ω) \H2(Ω)

for any ε > 0.
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Notation: uε := w ε + γ, (recall that uε � γ 2 W 1,∞
0 (Ω) \W 2,2(Ω))

Lemma

If ν :=
1
4π

�
21/2η1/2jΩj1/2kakL∞(Ω) + λjΩj osc

Ω
b+ η

�
< 1, then

uniformly in ε

k∆uεkL∞(Ω) �
kβk∞ + kakL∞(Ω)Fv

1� ν
.

kuε
+kL∞(Ω) �

jΩj
4π

 
kβk∞ + kakL∞(Ω)Fv

1� ν

!
:= S .

Proof. Following Lemma 23 of [DPR98], we get the conclusion from the
estimate

k∆uεkL∞(Ω)�kβε (uεχω) kL∞(Ω)+kakL∞(Ω)Fv

+
1
4π

�
2
1
2 η

1
2 jΩj 12 kakL∞(Ω)+λjΩj osc

Ω
b+η

�
k∆uεkL∞(Ω) .�

J.I. Diaz (Departamento de Matemática Aplicada )On some nonlinear and nonlocal elliptic and parabolic problems arising in Stellerator nuclear fusion devicesDecember 12, 2012 36 / 40



Theorem
(When does (H) hold?). If

λkbkL∞(Ω) and η are small enough

and
infΩ jaj and Fv large enough

such that

kβk∞ +

�
λkbkL∞(Ω) +

η

jΩj

�
S < inf

Ω
jaj
�
F 2v � 2λkbkL∞(Ω)S �

2ηS2

jΩj

� 1
2

+

,

then
measfx 2 Ω : ruε(x) = 0g = 0.

In particular, uε satis�es problem (P�ε ).
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Proof. We argue by contradiction. Suppose that

measfx 2 Ω : ruε(x) = 0g 6= 0 .

Then, from the equation of (P�ε )

βε (uεχω) = a[F 2v � 2F1(uε, b̂ε) + 2Fε,2(uε)]
1
2
+

+H(uε, b̃ε) + Jε(uε) a.e. on fx 2 Ω : ruε(x) = 0g.

By the last estimates, we get that

βε (uεχω) + λS osc
Ω
b � βε (uεχω) + jH(uε, b̃ε)j

� inf
Ω
jaj[F 2v � 2F1(uε, b̂ε) + 2Fε,2(uε)]

1
2
+ � Jε(uε),

βε (uεχω) +

�
λ osc

Ω
b+

η

jΩj

�
S � inf

Ω
jaj
�
F 2v � 2λkbkL∞(Ω)S �

2ηS2

jΩj

� 1
2

+

.

This contradicts the assumption in lemma, proving result. �
J.I. Diaz (Departamento de Matemática Aplicada )On some nonlinear and nonlocal elliptic and parabolic problems arising in Stellerator nuclear fusion devicesDecember 12, 2012 38 / 40



Theorem
Assume γ 2 R� and that λkbkL∞(Ω) + η < Λ1 and infΩ jajFv > Λ2 for a
suitable positive constant Λ1 and Λ2 > 0. Then there is u solution of
(P�). Moreover u2 V (Ω).

Proof. Our aim is to let ε! 0. We use the uniform estimates obtained
before.
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By the uniform estimate on k∆uεkL∞(Ω) given before, there exists some
subsequence of (uε) (which we will again denote by uε) and a function
α 2 L∞(Ω) such that ∆uε �

*
ε!0

α weakly* in L∞(Ω). By standard

regularity, uε belongs to a bounded set of W 2,p(Ω), for all p 2 [1,+∞[.
Then, we have (for some subsequence) that

uε *
ε!0

u weakly in W 2,p(Ω) and uε �!
ε!0

u strongly in C1(Ω̄)

In particular, α = ∆u, ∆u 2 L∞(Ω), u2 V (Ω) and the estimates, and the
technical result used for the pas to the limit in problem (P�ε,m) remain true
replacing uε by u. Moreover βε (uεχω)* B weakly in Lp(Ω) for any
p 2 (1,+∞) and as β is maximal monotone we get that B(x) 2 β (uχω)
a.e. x 2 Ω. Arguing like before, we prove the convergence of equation of
problem (P�ε ) term by term to the equation of problem (P�).
Analogously, we obtain that measfx 2 Ω : ru(x) = 0g = 0. and thus we
can identify all the terms which appear after to take the limit. In this way,
we get the conclusion that u is a solution of (P�). �
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