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Abstract

We study a simple mathematical model for the growth of spherical tumors
with two free boundaries: an inner boundary delaying the necrotic zone and
the outer boundary delaying the tumor. We take into account the presence of
inhibitors and establish the existence and uniqueness of solutions under suitable
conditions on the inhibitors interaction and the tumor growth.

Introduction.

We center our attention on a class of models proposed by Greenspan [10] and
studied in Byrne and Chaplain [4], Friedman and Reitich [9], Cui and Friedman [5],
[6], and Díaz and Tello [7]. We assume the density of living cells is proportional to the
concentrations of the nutrients b�(x; t), x = (x1; x2; x3). The tumor is represented by a
ball of IR3 of radius R(t), which is unknown (reason why is usually denoted as the free
boundary of the problem).
The tumor comprised a central necrotic core of dead cells, the necrotic core is

covered with a layer (of living cells) resulting in a second free boundary denoted by
�(t) in [10].
The transfer of nutrients to the tumor through the vasculature occurs below a cer-

tain level �B, and it is done with a rate r1. During the development of the tumor, the
immune system secretes inhibitors as a immune response to the foreign body. The struc-
ture of inhibitor absorption is similar to the transference of nutrients (for a constant
r2). If we assume that the nutrient consumption rate is proportional to the concen-
trations of nutrients, the nutrient consumption rate is given by �b�. Both processes,
consumption and transference, occur simultaneously in the exterior of the necrotic core,
where cells are inhibited by b�. We assume that the host tissue is homogenous and that
the di¤usion coe¢ cient, d1, is constant. The reaction between nutrients and inhibitors
can be globally modelled by introducing the Heaviside maximal monotone graph (as
function of b�) and some continuous functions gi(b�; b�). Then b� satis�es

@b�
@t
� d1�b� 2 r1((�B � b�)� �1b�)H(b� � �n) + bg1(b�; b�): (1)

We also assume a constant di¤usion coe¢ cient for the inhibitor concentration b�, d2.
The model takes into account the permanent supply of inhibitors, ~f , localized on a
small region !0 inside the tumor, which can be used when tumor is well localized, this



term ~f was introduced in Díaz and Tello [7]. Then b� satis�es
@b�
@t
� d2�b� 2 r2(�B � b�)H(b� � �n) + bg2(b�; b�) + ~f�!0 ; (2)

adding initial and boundary conditions we obtain

b�(~x; t) = �; b�(~x; t) = �; j~xj = R(t); (3)

b�(~x; 0) = �0(~x); b�(~x; 0) = �0(~x); j~xj < R0: (4)

In this formulation, the presence of the maximal monotone graph H is the reason
why the symbol 2 appears in equation (2) instead of the equal sign (a precise notion
of weak solution will be presented later). Di¤erent constants appears in the equations
and boundary conditions which lead to a wide variety of special cases: �n is the level of
concentration of nutrients above which the cells can live (below this level the cells die
by necrosis), � and � are the concentration of nutrients and inhibitors in the exterior
of the tumor. The di¤usion operator � is the Laplacian operator and �!0 denotes
the characteristic function of the set !0 (i.e. �!0(~x) = 1, if ~x 2 !0; and �!0(~x) = 0,
otherwise).
Notice that the above formulation is of global nature and that the inner free bound-

ary �(t) is de�ned implicitly as the boundary of the set fr 2 [0; R(t)) : b� � �ng: So, if
for instance, the initial datum �0 satis�es �0(~x) = �n on [0; �0], for some �0 > 0 andbg1(�n; b�) 2 [0; r1(�B � �n) � ��n] for any b� � 0; the above formulation leads to the
associate double free boundary formulation in which b� satis�es8>>><>>>:

@b�
@t
� d1�b� + �1b� = r1(�B � b�) + bg1(b�; b�); �(t) < j~xj < R(t);b�(~x; t) = �n; j~xj � �(t);b�(~x; t) = �; j~xj = R(t);

R(0) = R0; �(0) = �0; b�(~x; 0) = �0(~x); �0 < j~xj < R0:

The free boundary R(t) is described by the ODE

d

dt
(
4

3
�R3(t)) =

Z
fj~xj<R(t)g

bS(b�(~x; t); b�(~x; t))d~x; R(0) = R0: (5)

We prove the solvability of the model equations: (1)-(5) and establish uniqueness
of solutions under additional conditions. The existence result is present in Section 3
and proved by using a Galerkin approximation based on a weak formulation of the
problem.
We have mentioned that the study of the approximate controllability problem is

considered in Díaz and Tello [7], where f is understood as a local control and the goal
is to made the �nal nutrient concentration b�(~x; T ) as closed as desired (in a suitable
sense) to a given pro�le b�d(~x).



The model.

The growth of a tumor is a very complicated phenomenon where many di¤erent
aspects arise from subcellular scale (gene mutation or secretion of substances) to the
body scale (metastasis). A tumor originates from mutations of DNA inside cells. In
order to create malignant cells, a su¢ ciently large number of such mutations has to oc-
cur. Factors for mutations can be external radiation, hereditary causes etc. Eventually,
such gene mutations induce an uncontrolled reproduction, the onset of the formation
of a malignant tumor. This process continues as long as the malignant cells �nd su¢ -
cient supply, and will generate a small spheroid of a few millimeters. During this time,
called the avascular phase, nutrients (glucose and oxygen) arrive at the cells through
di¤usion. As the spheroid grows the level of nutrients in the interior of the tumor
decreases due to consumption by the outer cells. When the level of concentration of
nutrients, b�, in the interior falls bellow a critical level, �n, the cells cannot survive, a
phenomenon called necrosis, and an inner region is formed in the center of the tumor
by the dead cells, which decompose into simpler chemical compounds (mainly water).
At this time, one can distinguish several regions in the tumor: a necrotic region in
the center, an outer region, where mitosis (division of cells) occurs, and a region in
between where the level of nutrients su¢ ces for the cells to live, but not to proliferate.
Until this moment, the tumor is a multicell spheroid whose radius is no more than a
few millimeters.
In the study of the internal mechanisms of the tumor growth two unknown free

boundaries appear: the outer boundary delimiting the tumor is denoted by R(t) and
the inner boundary by �(t) (delimiting the necrotic core).
We consider the presence of Growth Inhibitor Factors (GIFs) as chalones in the

same spirit than the pioneering papers by Greenspan [10], [11]. As in any tissue, the
cell proliferation is controlled by chemical substances (GIFs) secreted by the cells,
which reduce the mitotic activity. Two di¤erent kind of inhibitors appear, depending
of the phase of the cell cycle stage at which inhibition has been shown. The inhibitor
can act before DNA synthesis (as epidermal chalon in Melanoma or granulocyte chalon
in Leukemia) or before mitosis (see Attallah [2]). The properties of these chemical
inhibitors have been studied in several works (see e.g. Inversen [12], [13]).
The e¤ectiveness of an anticancer drug delivered to the tumor can be compared

with therapy designed to administer the drug by di¤usion from neighboring tissue.
According to principle of conservation of mass, the tumor mass is proportional to

its volume 4
3
�R3(t), assuming the density of the cell mass is constant. The balance

between the birth and death rate of cells is given as a function of the concentration of
nutrients and inhibitors. Let bS be this balance, then after normalizing we obtain the
law

d

dt
(
4

3
�R3(t)) =

Z
fjexj<R(t)g bS(b�(~x; t); b�(~x; t))d~x: (6)

Depending on the author, the function bS can be written in di¤erent ways. Green-
span [10] studied the problem in the presence of an inhibitor, and the possibility that
this a¤ects mitosis, when the concentration of the inhibitor is greater than a critical
level e�. He proposed bS(b�; b�) = sH(b� � e�)H(e� � b�), where H(�) denotes the maximal



monotone graph of IR2 associate with the Heaviside function, i.e. H(k) = 0 if k < 0,
H(k) = 1 if k > 0 and H(0) = [0; 1]. Byrne and Chaplain [4] study the growth when
the inhibitor a¤ects the cell proliferation and propose bS(b�; b�) = s(b� � e�)(e� � b�) (for
a positive constant s). In the absence of inhibitors or in case that the inhibitor does
not a¤ect mitosis, they choose bS(b�; b�) = sb�(b� � e�): Friedman and Reitich [9] and
Cui and Friedman [5] study the asymptotic behavior of the radius, R(t); with the cell
proliferation rate free of the action of inhibitors. They assume that bS = s(� � e�);
where s� is the cell birth-rate and the death-rate is given by se�.
The transfer of nutrients to the tumor through the vasculature occurs below a cer-

tain level �B, and it is done with a rate r1. During the development of the tumor, the
immune system secretes inhibitors as a immune response to the foreign body. The struc-
ture of inhibitor absorption is similar to the transference of nutrients (for a constant
r2). If we assume that the nutrient consumption rate is proportional to the concen-
trations of nutrients, the nutrient consumption rate is given by �b�. Both processes,
consumption and transference, occur simultaneously in the exterior of the necrotic core,
where cells are inhibited by b�. We assume that the host tissue is homogenous and that
the di¤usion coe¢ cient, d1, is constant. The reaction between nutrients and inhibitors
can be globally modelled by introducing the Heaviside maximal monotone graph (as
function of b�) and some continuous functions gi(b�; b�). Then b� satis�es8>>>>>>><>>>>>>>:

@b�
@t
2 d1�b�r1((�B � b�)� �1b�)H(b� � �n) + bg1(b�; b�); j~xj < R(t);

@b�
@t
2 d2�b� � r2b� + bg2(b�; b�) + ~f�!0 ; j~xj < R(t);

R(t)2 dR(t)
dt

=
R
j~xj<R(t)

bS(b�; b�)d~x; 0 < t < T;

b�(~x; t) = �; b�(~x; t) = �; j~xj = R(t);

R(0) = R0; b�(~x; 0) = �0(~x); b�(~x; 0) = �0(~x); j~xj < R0:

(7)

Notice that the above formulation has a global nature and that the inner free
boundary �(t) is de�ned implicitly as the boundary of the set fr 2 [0; R(t)) : b� � �ng:
So if for instance, the initial datum �0 satis�es that �0(~x) = �n on [0; �0] for some �0 > 0
and bg1(�n; b�) 2 [0; r1(�B � �n)��1�n] for any b� � 0 then the above formulation leads
to the associate double free boundary formulation in which b� satis�es8>>><>>>:

@b�
@t
� d1�b� + �1b� = r1(�B � b�) + bg1(b�; b�) �(t) < j~xj < R(t);b�(~x; t) = �n j~xj � �(t);b�(~x; t) = � j~xj = R(t);

R(0) = R0; �(0) = �0; b�(~x; 0) = �0(~x) �0 < j~xj < R0:

The content of the rest of the paper is the following: after introducing the structural
assumptions on bgi and bS; some functional spaces and a useful change of variables, the
existence of solutions of the global formulation (7) is proved in Section 2 by means of
an iterative method. Section 3 is devoted to the question of the uniqueness of solutions.
Some additional assumptions on the data are required (we send the reader to Díaz and
L. Tello [8] for a related model leading to special formulations of (7) for which there
are multiple solutions). The uniqueness of a weak solution to (7) is established here



for radially symmetric solutions under some additional assumptions on bS when f = 0
and bg1 = bg2 = 0.
Existence of solutions

We shall assume that the reaction terms bgi and the mass balance of the tumor bS
satisfy bgi are piecewise continuous, jbgi(a; b)j � c0 + c1(jaj+ jbj); (8)bS is continuous and� �0 � bS(a; b) � c0 + c1(jaj2 + jbj2) (9)

for some positives constants �0, c0, c1.
The above assumptions ((8) and (9)) do not constitute biological restrictions, and

previous models satisfy them provided � and � are bounded. They are introduced
in order to carry out the mathematical treatment, and its great generality allows us
to handle all the special cases from the literature previously mentioned. They are
relevant due to its generality. It is possible to show that the absence of one (or both)
of the conditions implies the occurrence of very complicated mathematical pathologies,
and much more sophisticated approaches would be needed for proving that the model
admits a solution (in some very delicate sense).
We introduce the change of variables

x = (x1; x2; x3) =
~x

R(t)
; (10)

u(x; t) = b�(R(t)x; t)� � (11)

and
v(x; t) = b�(R(t)x; t)� �: (12)

Let the unit ball fx 2 IR3; jxj < 1g be denoted by B and de�ne functions from IR2

to 2IR
2
by(

g1(b� � �; b� � �) := r1((�B � b�)� �b� � b�)H(b� � �n) + bg1(b�; b�);
g2(b� � �; b� � �) := �r2b�H(b� � �n) + bg2(b�; b�); (13)

S(b� � �; b� � �) :=
4

3�
bS(b�; b�) (14)

and

f(x; t) := ~f(xR(t); t); ~!t0 = f(x; t) 2 B � (0; T ); such that R(t)x 2 !0g:

Problem (1)-(5) becomes8>>>>>>>><>>>>>>>>:

@u
@t
� d1

R(t)2
�u� R0(t)

R(t)
x � ru 2 g1(u; v) x 2 B; t > 0

@v
@t
� d2

R(t)2
�v � R0(t)

R(t)
x � rv 2 g2(u; v) + f�~!t0 x 2 B; t > 0

R(t)�1 dR(t)
dt

=
R
B
S(u; v)dx t > 0

u(x; t) = v(x; t) = 0; x 2 @B t > 0

R(0) = R0; u(x; 0) = u0(x); v(x; 0) = v0(x) x 2 B:

(15)



We introduce the Hilbert spaces

H(B) := L2(B)2; V(B) = H1
0 (B)

2

and de�ne inner products by

< �;	 >H(B)=

Z
B

� �	tdx; < �;	 >V(B)=
X
i=1;2

di

Z
B

(r�i)t � r	idx

for all � = (�1;�2), 	 = (	1;	2).
For the sake of notational simplicity we use H = H(B) and V = V(B). Given

T > 0, we introduce U = (u; v), U0 = (u0; v0) and de�ne G : IR2 �! 2IR
2� 2IR

2
and

F : (0; T )�B �! IR2 by

G(U) = (g1(u; v); g2(u; v)); F (t; x) = (0; f(t; x)�~!t0):

We have:

jG(U)j = jg1(u; v)j+ jg2(u; v)j � C0 + C1jU j = C0 + C1(juj+ jvj): (16)

De�nition (U;R) 2 L2(0; T : V) � W 1;1(0; T : IR) is a weak solution of the
problem (15) if there exists g� = (g�1; g

�
2) 2 L2(0; T : H) with g�(x; t) 2 G(U(x; t)) a.e.

(x; t) 2 B � (0; T ) satisfyingZ T

0

� < U;�t >H dt+

Z T

0

~a(t; U;�)dt =

Z T

0

< g�;� >H dt+

< U0;�(0) >H +

Z T

0

< F (t);� >H dt

8 � 2 L2(0; T : V) \H1(0; T : H) with �(T ) = 0; where

~a(t; U;�) :=
1

R2(t)
< U;� >V �

R0(t)

R(t)
< x � rU;� >H (17)

and R(t) is strictly positive and given by

R(t)�1
dR(t)

dt
=

Z
B

S(U(x; t))dx for t 2 (0; T ):

De�nition (�; �;R) is a weak solution of (15) if

�(~x; t) = u(
~x

R(t)
; t) + � and �(~x; t) = v(

~x

R(t)
; t) + �;

for t 2 (0; T ) and ~x 2 IR3; j~xj � R(t); where (U = (u; v); R) is a weak solution of (15)
for any T > 0.

Remark 1 The de�nition of weak solution and the structural assumptions on G imply
that @U

@t
2 L2(0; T : V(B)0) and the equation holds in D0(B � (0; T )):



Theorem 1 Assume (8), (9), R0 > 0 and �0, �0 2 L2(0; R0), then problem (1)-(5)
has at least a weak solution for each T > 0:

Proof. We shall use a Galerkin method to construct a weak solution. Let R(t) 2
W 1;1(0; T : IR) such that R

0(t)
R(t)

� ��0 a.e. t 2 (0; T ). For �xed t 2 (0; T ), we consider
the operator A(t) � A(R(t)) : V! V0 de�ned by

A(R(t))(U) =

 
� d1
R(t)2

�u� R0(t)
R(t)

x � ru 0

0 � d2
R(t)2

�v � R0(t)
R(t)

x � rv

!
:

A(t) de�nes a continuous, bilinear form on V �V

~a(t : �; �) : V �V �! IR

for a.e. t 2 (0; T ) (see (17)). Since R0(t)
R(t)

� ��0, ~a satis�es

~a(t; U; U) =
1

R2(t)
< U;U >V �

R0(t)

R(t)
< x � rU;U >H=

1

R2(t)
< U;U >V +

R0(t)

2R(t)
< U;U >H� ( max

0<t<T
fR(t)g)�2kUk2V �

�0
2
kUk2H:

Now we establish some a priori estimates which will be used later. In fact, those
estimates can be applied even for other existence methods, di¤erent from the Galerkin-
type one, as, for instance, iterative methods, �xed point methods, etc.

Lemma 1

jjU jj2H � C20(expf(�0 + 2C1 + 1)Tg � 1) + jjFk2L2(0;T :H)) + jjU0jj2H:

Proof: Inserting U t as test function into the weak formulation of (15), one obtains

d

dt

Z
B

1

2
U2dx+ ~a(t; U; U) +

Z
B

g�(U)U tdx =

Z
B

F � U tdx

for some g� 2 L2((0; T ) � B)2 and g�(x; t) 2 G(U(x; t)) for a.e. (x; t) 2 B � (0; T ).
The de�nition of ~a yields

1

2

d

dt
jjU jj2H �

�0
2
jjU jj2H � (jjg�jjH + jjF jjH)jjU jjH: (18)

Thus by Young0s inequality and (16) imply

1

2

d

dt
jjU jj2H � (

�0
2
+ C1 +

1

2
)jjU jj2H �

1

2
(C20 + jjF jj2H):

Integrating with respect to time, we get

1

2
jjU jj2H �

1

2
jjU0jj2H � (

�0
2
+ C1 +

1

2
)jjU jj2L2(0;T :H) �

1

2
(C20T + jjF jj2L2(0;T :H))

and by Gronwall�s lemma

jjU jj2H � C20(expf(�0 + 2C1 + 1)Tg � 1) + jjFk2L2(0;T :H)) + jjU0jj2H � C: (19)



Remark 2 Since U is bounded in H (by (19)), R satis�es

R(t) = R0expf
Z t

0

Z 1

0

S(U)dxdtg � R0e
K1t (20)

and
R(t) � R0expf��0tg (21)

consequently R 2 W 1;1(0; T ).

Lemma 2 kUkL2(0;T :V) � K(T; F;G; U0):

Proof: Selecting U as test function in (19), we have

D

R20e
2K1T

kUk2L2(0;T :V) �
�0
2
kUk2L2(0;T :H) � C1kUk2L2(0;T :H)+

(C0 + kFkL2(0;T :H))kUkL2(0;T :H):
By (19) we get

kUkL2(0;T :V ) � K(F;G; U0; T ): (22)

Remark 3 By Lemma 2 and Remark 2 we get that

ut �
d1
R2
�u 2 L2(0; T : L2(B)); vt �

d2
R2
�v 2 L2(0; T : L2(B))

and obtain the extra regularity

Ut; �U 2 [L2(0; T : L2(B))]2 (23)

Now, as previously in the proof of Theorem 2.1, we consider the approximate prob-
lem

@U�

@t
+ A(R�(t))U � = G�(U �) + F (t) on B � (0; T )

U �(0; x) = U0; U � = 0 on @B

1
R�

dR�

dt
=
R
B
S(U �)dx

(24)

where G� = (g�1; g
�
2) is a Lipschitz continuous function such that

G� �! G when �! 0 a.e. in IR2:

G� is obtained replacing H by

H�(s) =

8><>:
0 if s < 0
s

�
if 0 � s � 1

�

1 if s > 1
�
:

Now, we apply the Galerkin method to the approximated problem. Let �n and �n 2
H1
0 (B) for n 2 IN be the eigenvalues and eigenfunctions associated to �� satisfying

���n = �n�n:



We consider Vm the �nite dimensional vector space spanned by f�1; � � ��mg. We search
for a solution U �m 2 L2(0; T : Vm) of the problem

d

dt
U �m + A(R�m(t))U

�
m = G�(U �m) + Fm(t) (25)

with

R�m(t)
�1dR

�
m(t)

dt
=

Z
B

S(U �m(x; t))dx:

Then

R�m(t) = R0expf
Z t

0

Z
B

S(U �m(x; s))dxdsg

and the initial conditions U �m(0) = Pm(U0) (where Pm is the orthogonal projection from
L2(B) onto Vm) and Fm = Pm(F ).

Proposition 1 (25) has a unique solution U �m for arbitrary T <1 provided R > 0.

Proof: Problem (25) can be written as a suitable nonlinear ordinary di¤erential
system. Let U �m = (u

�
m; v

�
m) be de�ned by

u�m(t) =
X

n=1;:::;m

a�mn (t)�n; v�m(t) =
X

n=1;:::;m

b�mn (t)�n

and denote

a�m = (a�m1 ; a�m2 ; :::; a�mm ); b�m = (b�m1 ; b�m2 ; :::; b�mm ); �a = (�1a
�m
1 ; :::; �ma

�m
m )

and �b = (�1b�m1 ; :::; �mb
�m
m ): Then a

�m, b�m and R�m satisfy

_a�m +
�a

(R�m)
2
+ ��(a

�m; b�m)Lm1 (a
�m; b�m) + gm1 (a

�m; b�m) = 0

_b�m +
�b

(R�m)
2
+ ��(a

�m; b�m)Lm2 (a
�m; b�m) + gm2 (a

�m; b�m) = Fm(t);

_R�m
R�m

= ��(a
�m; b�m)

where

��(a
�m; b�m) =

Z
B

S(U �m)dx

Lm1 (a
�m; b�m) =

Z
B

x � ru�m�ndx for n = 1; :::;m

Lm2 (a
�m; b�m) =

Z
B

x � rv�m�ndx for n = 1; :::;m

gm1 (a
�m; b�m) =

Z
B

g�1(u
�
m; v

�
m)�ndx for n = 1; :::;m

gm2 (a
�m; b�m) =

Z
B

g�2(u
�
m; v

�
m)�ndx for n = 1; :::;m:



SinceG� is a Lipschitz function we obtain that there exists a unique solution a�m; b�m; R�m

to the system for T small enough. Moreover, (19) and (21) hold, and we get the exist-
ence of a solution of (25) for any T <1.
By (23) and (22), f(U �m; ddtU

�
m)gm=1;1 is uniformly bounded in L2(0; T : V)�L2(0; T :

V0). So, there exists a subsequence U �mi 2 L2(0; T : V) with d
dt
U �mi 2 L2(0; T : V0) such

that

(U �mi;
d

dt
U �mi)* (U �;

d

dt
U �) weakly in L2(0; T : V)� L2(0; T : V0):

Taking limits when mi ! 1 we get the existence of a weak solution to (24) for any
T <1.
To end the proof of Theorem 2.1 we take limits in the equation when � ! 0. We

employ (19) and (21) and the compact embedding H1
0(B) � Ls(B) (for s < 6) in order

to obtain the existence of a subsequence U �i such that

U �i ! U in L2(0; T : [Ls(B)]2)

and in particular
U �i ! U in L2(0; T : H):

Since
H�(u� + ���)* h 2 H(u+ c) weakly in L2(0; T : Ls(B))

and
v� �! v in L2(0; T : Ls(B))

(see Lemma 3.4.1 of Vrabie [16]) we have

G�i(U �i)* g� 2 G(U) weakly in L1(0; T : H):

Since jR0j � C there exists a subsequence R�ij such that

R�ij * R weakly in W 1;p(0; T ); p <1:

By (18) we deduce that R�ij �! R in C0([0; T ]). Finally, taking limits in the weak
formulation of the problem (19) we getZ T

0

< Ut;� >H dt+

Z T

0

~a(R(t); U;�)dt+

Z T

0

< g�;� >H dt =

Z T

0

< F;� >H dt

for all � 2 L2(0; T : V ) and moreover

R(t)�1
dR(t)

dt
=

Z
B

S(U(x; t))dx:

Notice thatZ T

0

R0�ij
R�ij

Z
B

x � ru�ij dxdt =
Z T

0

R0�ij
R�ij

Z
B

u�ij � u�ijx � r dxdt



and Z T

0

R0�ij
R�ij

Z
B

x � rv�ij dxdt =
Z T

0

R0�ij
R�ij

Z
B

v�ij � v�ijx � r dxdt:

We conclude that (�; �;R) de�ned by

�(t; ~x) = u(t;
~x

R(t)
) + � and �(t; ~x) = v(t;

~x

R(t)
) + �

is a weak solution to (1)-(5). The additional regularity

b�t � d1�b� and b�t � d2�b� 2 L2([t2[0;T ](0; R(t))� ftg)
follows from the fact that @U

@t
(t) +A(R(t))U(t) 2 L2(0; T : L2(B)2).

Uniqueness of solutions with radial symmetry

We begin by pointing out that if, for instance, �n � r1�B
r1+�

, r1�B > 0; bg1(b�; b�) is
a decreasing function of b� and independent of b� and the initial datum �0(~x) is such
that �00(�0) = �000(�0) = 0, then it is possible to adapt the arguments of Díaz and L.
Tello [8] in order to construct more than one solution of problem (1)-(5). This and the
presence of non-Lipschitz terms at both equations clarify that any possible uniqueness
result will require an signi�cant set of additional conditions.
Let (b�; b�) be a solution of problem (7). We assume the solution is radially symmetric

and de�ne � = b� � �, � = b� � � and r = jxj. Then (�; �) veri�es8>>>>>>>>>>>>><>>>>>>>>>>>>>:

@�
@t
� d1

r2
@
@r
(r2 @

@r
�) 2 g1(�; �); 0 < r < R(t) 0 < t < T;

@�
@t
� d2

r2
@
@r
(r2 @

@r
�) 2 g2(�; �); 0 < r < R(t) 0 < t < T;

R(t)2 dR(t)
dt

=
R R(t)
0

S(�; �)r2dr; 0 < t < T;

@�
@r
(0; t) = 0; @�

@r
(0; t) = 0; 0 < t < T;

�(R(t); t) = 0; �(R(t); t) = 0; 0 < t < T;

R(0) = R0;

�(r; 0) = �0(r); �(r; 0) = �0(r); 0 < r < R0;

(26)

where gi are given by

g1(�; �) = �[(r1 + �)(� + �)� r1�B + (� + �)]H(� + � � �n) (27)

g2(�; �) = �r2(� + �): (28)

We will assume in this section that

S(�; �) 2 W 1;1
loc (IR

2); (29)

S is an increasing function in � and decreasing in � (30)



�n �
r1�B � �

r1 + �
(31)

and the initial data (�0 = b� � �; �0 = b�0 � �) belong to H2(0; R0) and satisfy

@�0
@r
(0; t) = 0;

@�

@r
(0; t) = 0 0 < t < T; (32)

�(R(t); t) = 0; �(R(t); t) = 0 0 < t < T: (33)

Theorem 2 There is, at most, one solution to (26).

Let us introduce the functions

T0(s) =

�
s if s � 0;
0 otherwise

T 0(s) =

�
s if s � 0;
0 otherwise

which we will use in the proof of the theorem.

Lemma 3 Every solution (�; �) of the problem (26) is bounded and satis�es �n � � �
�B and �� � � � maxf�0g provided �n � �0 � �B and �� � �0:

Proof. By the �integrations by parts formula� (justifying the multiplication of
the equation by T0(� � �B) and posterior integrations in time and space, see Alt and
Luckhaus [1] Lemma 1.5) we have

1

2

Z R(t)

0

[T0(� � �B)]
2r2dr �

Z t

0

Z R(s)

0

g1(�; �)T0(� � �B)r
2drds:

Since
�[(r1 + �)(� + �)� r1�B + (� + �)]H(� + � � �n)T0(� � �B) =

�(r1 + �)T0(� � �B)
2 � [(r1 + �)(�B + �)� r1�B + (� � �)]T0(� � �B) �

�[(��B + (r1 + �)� + (� + �)]T0(� � �B) �

T 0(� + �)T0(� � �B) �
1

2
([T 0(� + �)]2 + [T0(� � �B)]

2)

we obtainZ R(t)

0

T0(� � �B)
2r2dr �

Z t

0

Z R(s)

0

[T 0(� + �)2 + T0(� � �B)
2]r2drds: (34)

In the same way, we consider T 0(� + �), and since

r2(� + �)H(� + � � �n)T
0(� + �) � r2[T

0(� + �)]2



it follows that Z R(t)

0

[T 0(� + �)]2r2dr �
Z t

0

Z R(s)

0

r2T
0(� + �)r2drds: (35)

Adding (34) and (35), we obtain thanks to Gronwall0s Lemma

� � �B and � � ��:

Notice that � � �� implies b� � 0.
Let us consider � > 0 and take T 0(���n��) as test function in the weak formulation,

then
1

2

Z R(t)

0

[T 0(� � �n � �)]2r2dr � 0:

Now take limits as �! 0, one conclude

1

2

Z R(t)

0

[T 0(� � �n)]
2r2dr � 0;

which proves � � �n.
Knowing � and R, � is well de�ned as the unique solution of the equation

@�

@t
� d2
r2

@

@r
(r2

@

@r
�) = �r2(� + �); 0 < r < R(t); 0 < t < T

�(R(t); t) = 0;
@�

@r
= 0 on 0 < t < T:

Since �0 � �� it follows that

@�

@t
� d2
r2

@

@r
(r2

@

@r
�) � 0

and we get by maximum principle that � � maxf�0g.

Corollary 1 There exists a positive constant M such that R(t) � R0e
Mt and R0(t) �

R0MeMT .

Proof. The above result shows (�(r; t); �(r; t)) 2 [�n; �B]� [��;maxf�0g].
Since S is a continuous function, it attains its maximum (denoted by 3M) on that

set. Thus,

R2(t)
dR(t)

dt
�
Z R(t)

0

3Mr2dr:

Integrating the above equation, we have dR(t)
dt

�MR(t): Finally, the conclusion follows
by Gronwall�s Lemma.



Lemma 4 The solution (�; �) of (26) satis�esZ T

0

(k�k2W 1;1(�;R(t)) + k�k2W 1;1(�;R(t)))dt � C1

for all � > 0.

Proof. The pair (u(x; t); v(x; t)) = (�(R(t)jxj; t); �(R(t)jxj; t)) is a solution and so
(u; v) 2 [L2(0; T : H1(B))]2: By (9) and

�(t) =

Z t

0

R�2(�)d� (36)

we obtain �(t) 2 C1 and employing the implicit function theorem, one derives the
existence of the inverse function t(~t) 2 C1([0; T ]), and we deduce that (u; v) 2 L2(0; T :
H2(B))2 (see, e.g., Brezis [3]). From the symmetry of the solution it results that

~u(jxj; t) := u(x; t) and ~v(jxj; t) := v(x; t)

belong to L2(0; T : H2(�0; 1)) � L2(0; T : W 1;1(�0; 1)) for all �0 > 0. Doing the change
of variable r = R(t)jxj we obtainZ T

0

(k�k2W 1;1(�;R(t)) + k�k2W 1;1(�;R(t)))dt =

Z T

0

R2(t)(k~uk2W 1;1( �
R(t)

;1) + k~vk2W 1;1( �
R(t)

;1))dt �

Z T

0

R2(t)(k~uk2W 1;1(�0;1) + k~vk
2
W 1;1(�0;1))dt � C1

and the proof ends.
Proof of Theorem 2. We argue by contradiction and assume that (�1; �1; R1)

and (�2; �2; R2) are two solutions of the problem. Let R(t) := minfR1(t); R2(t)g,
� := �1 � �2 and � := �1 � �2 be the solution to8>>>>>>>>>><>>>>>>>>>>:

@�
@t
� d1

r2
@
@r
(r2 @

@r
�) = g1(�1; �1)� g1(�2; �2) 0 < r < R(t) 0 < t < T;

@�
@t
� d2

r2
@
@r
(r2 @

@r
�) = g2(�1; �1)� g2(�2; �2) 0 < r < R(t) 0 < t < T;

@�
@r
(0; t) = 0; @�

@r
(0; t) = 0 0 < t < T;

�(R(t); t) = �1(R(t); t)� �2(R(t); t) 0 < t < T;

�(R(t); t) = �1(R(t); t)� �2(R(t); t) 0 < t < T;

�(r; 0) = 0; �(r; 0) = 0 0 < r < R0:

(37)

Now, we state a technical lemma.



Lemma 5 j�j takes the maximum on the boundary R(t) and � satis�esZ R(t)

0

[T0(� � ��)]2r2dr � TC[ max
t2[0;T ]

f�g]2

where
�� = max

t2[0;T ]
f�(R(t); t)g:

Proof. Let us consider �� = minf0; �(R(t); t)g and

g2(�1)� g2(�2) = �r2[(�1 � �)� (�2 � �)] = �r2�

then
(g2(�1)� g2(�2))T

0(� � ��) = �r2�T 0(� � ��) � 0:
Multiply the equation by T 0(� � ��) and then we getZ R(t)

0

[T 0(� � ��)]
2r2dr � 0

and obtain � � ��. In the same way, we prove that � takes its maximum on R(t).
Let us consider

g1(�1; �1)� g1(�2; �2) = �([(r1 + �)(�1 + �)� r1�B + (�1 + �)]H(�1 + � � �n)�

[(r1 + �)(�2 + �)� r1�B + (�2 + �)]H(�2 + � � �n)) =

�(r1 + �)[(�1 + � � �n)H(�1 + � � �n)� (�2 + � � �n)H(�2 + � � �n)]+

(�(r1 + �)�n + r1�B � �)(H(�1 + � � �n)�H(�2 + � � �n))�

[�1H(�1 + � � �n)� �2H(�2 + � � �n)]:

Since (� + � � �n)H(� + � � �n) is an increasing function of � we obtain that

�[(�1 + � � �n)H(�1 + � � �n)� (�2 + � � �n)H(�2 + � � �n)]T0(�1 � �2 � ��) � 0:

Since �(r1 + �)�n + r1�B � � � 0 it follows that

(�(r1 + �)�n + r1�B � �)(H(�1 + � � �n)�H(�2 + � � �n))T0(�1 � �2 � ��) � 0:

Then
[g1(�1; �1)� g1(�2; �2)]T0(�1 � �2 � ��) �



�[�1H(�1 + � � �n)� �2H(�2 + � � �n)]T0(�1 � �2 � ��) �

�(�1 � �2)H(�2 + � � �n)T0(�1 � �2 � ��) �
�T 0(�1 � �2)T0(�1 � �2 � ��) � ���T0(�1 � �2 � ��):

Multiplying the equation as before, by T0(� � ��), we getZ R(t)

0

[T0(� � ��)]2r2dr +

Z t

0

Z R(s)

0

[
@

@r
T0(� � ��)]2r2drds =

Z t

0

Z R(s)

0

(g1(�1; �1)� g1(�2; �2))T0(� � ��)r2drds �

�
Z t

0

Z R(s)

0

��T0(� � ��)r2drds �

T ~C

�
�2� + �

Z t

0

Z R(s)

0

[T0(�1 � �2 � ��)]2r2drds:

Now, choose � such that

�

Z R(s)

0

[T0(�1 � �2 � ��)]2r2dr �
Z R(s)

0

[
@

@r
T0(� � ��)]2r2dr � 0 a.e. t 2 (0; T );

then Z R(t)

0

[T0(� � ��)]2r2dr � TC�2�

holds, which ends the proof.

End of the proof of Theorem 2. Let us de�ne

� = max
t2[0;T ]

fjR1(t)�R2(t)jg � 0;

and consider

R21(t)R
0
1(t)�R22(t)R

0
2(t) =

Z R(t)

0

(S(�1; �1)� S(�2; �2))r
2dr+

Z R1(t)

R(t)

S(�1; �1)r
2dr �

Z R2(t)

R(t)

S(�2; �2)r
2dr:

(38)

By (30) and Lemma 3, we obtain

j
Z Ri(t)

R(t)

S(�i; �i)r
2drj �M� (for i = 1; 2) (39)

where
M = maxfS(�; �) for any (�; �) 2 [�n; �B]� [�;maxf�0g]g:



(29) and (30) implyZ R(t)

0

(S(�1; �1)� S(�2; �2))r
2dr � C

Z R(t)

0

(T0(�)� T 0(�))r2dr:

Since T0(�) � T0(� � ��) + �� and �T 0(�) � ��� thenZ R(t)

0

(S(�1; �1)� S(�2; �2))r
2dr � C

Z R(t)

0

(T0(� � ��) + �� � ��)r
2dr �

C 0([

Z R(t)

0

T0(� � ��)2r2dr]
1
2 + �� � ��):

By Lemma 5 it follows that

C 0([

Z R(t)

0

T0(� � ��)2r2dr]
1
2 + �� � ��) � C 00(�� � (T + 1)��):

Since �i(Ri(t); t) = 0 (for j = 1 or 2), � and � satis�es

j�(R(t); t)j � (
X
i=1;2

k�ikW 1;1(R(t);Ri(t)))jR1(t)�R2(t)j;

j�(R(t); t)j � (
X
i=1;2

k�ikW 1;1(R(t);Ri(t)))jR1(t)�R2(t)j

and then Z R(t)

0

(S(�1; �1)� S(�2; �2))r
2dr � C(T + 2)�: (40)

Integrating in time in (38), we get thanks to (39) and (40) that

R31(t)�R32(t) � TC(T + 2)� + 2TM�: (41)

On the other hand, one has

R31(t)�R32(t) = (R1(t)�R2(t))(R
2
1 +R1R2 +R31):

We can assume without lost of generality that � = R1(t0) � R2(t0) (for some t0 2
[0; T ]), hence

R31(t)�R32(t) � 4R2�:

Substituting this into (41) leads to � � k0�T: Furthermore, taking T1 < 1
k0
necessit-

ates R1(t) = R2(t) for any t 2 [0; T1]. Since j�j takes its maximum at R(t) = R1(t) =
R2(t) (and this maximum is 0), we get that � = 0: Substituting in (37) and taking �
as test function we obtainZ R(t)

0

�2r2dr �
Z t

0

Z R(s)

0

(g1(�1; 0)� g1(�2; 0))�r
2drds:

As in Lemma 5, since (�i + �i � �n)H(�i + � � �n) is a increasing function of � we
obtain by (30) that (g1(�1; 0)� g1(�2; 0))� � 0, which prove � = 0.
Repeating the above process, starting now from T1, we get the uniqueness of solu-

tions for arbitrary T > 0, provided R(T ) > 0.



Remark 4 We can obtain uniqueness of solutions for more general reaction terms.
When the functions gi satis�es:8>>>>>>>>>><>>>>>>>>>>:

g1(�; �) � k1((� � ��)+ + (� � ��)+);
if �� � �
g2(�; �) � k2((� � ��)+ + (� � ��)+);
if �� � �
g1(�; �) � k3((� � ��)

� + (� � ��)
�);

if �� � �
g2(�; �) � k4((� � ��)

� + (� � ��)
�);

if �� � �:

(
@

@u
g1(u; v))

� + (
@

@v
g2(u; v))

� > k;

@

@v
g1(u; v) � 0,

@

@u
g2(u; v) � 0

gi(0; 0) � 0; ,
@

@u
gi(u; v) +

@

@v
gi(u; v) � 0; for i = 1; 2;

(�0; �0) 2 W 1;1;

8>>>>>>>>>><>>>>>>>>>>:

g1(�1; �1)� g1(�2; �2) � k5((�1 � �2 � ���)+ + (�1 � �2 � ���)+)
if �1 � �2 + ���;
g2(�1; �1)� g2(�2; �2) � k6((�1 � �2 � ���)+ + (�1 � �2 � ���)+)
if �1 � �2 + ���;
g1(�1; �1)� g1(�2; �2) � k7((�1 � �2 � ���)

� + (�1 � �2 � ���)
�)

if �1 � �2 + ���;
g2(�1; �1)� g2(�2; �2) � k8((�1 � �2 � ���)

� + (�1 � �2 � ���)
�)

if �1 � �2 + ���;

The above uniqueness result extends the uniqueness result by Cui and Friedman [5]
for the non necrotic case (i.e. linear functions gi).

Remark 5 The reaction between nutrients and inhibitors can be modeled by more com-
plicated functions ~gi. Truncating the functions in the right levels (�n, �, �B and
maxf�g) and extending them with continuous and linear growth at in�nity, will en-
able us to apply the existence and uniqueness results of previous sections. Then, by
Lemma 3 the solution is bounded and satis�es the original problem.
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