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On some energy methods applied to free boundary problems and their

discrete approximations.

J.1. Diaz
Universidad Complutense de Madrid,

28040 Madrid, Spain
jidiazémat.ucm.es

Abstract

The main goal of this lecture is to present some new results on the theory of free boundaries giving

rise by the solutions of some nonlinear PDEs. Most of the results will be derived by using energy methods
(see, e.g. the recent monograph by S.N. Antontsev, J.I. Diaz and S.I. Shmarev Energy Methods for Free

Boundary Problems. Applications to nonlinear PDEs and fluid mechanics, Progress in Nonlinear Differ-

ential Equations and Their Applications 48, Birkhéduser, Boston, 2002). Several discrete approximations
will be considered. ‘

This class of methods are of special interest in the situations where traditional strategies based on
the maximum principle fail. A typical example of such a situation is either a higher-order equation
or a system of PDEs. Moreover, even when the comparison principle holds, it may be extremely diffi-
cult to construct suitable sub or super-solutions if, for instance, the equations contain transport terms,
unbounded coefficients, unbounded right-hand side terms, etc.

In a first part of the lecture, a global energy method will be used to prove the finite extinction time
of the solutions of a general class of quasilinear parabolic equations. The finite extinction time of the
solution of several numerical discretizations will be also discussed.

The application of local energy methods will be illustrated, in the second part of the lecture, by
considering the finite speed of propagation and the waiting time properties for the Boussinesq system
modeling the heat conduction in a fluid with a thermal conductivity depending on the temperature.
Finally, a different proof of the waiting time phenomenon will be given for the special case of scalar

nonlinear parabolic problems by means of the, so called, non-diffusion of the support property associated
to a family of stationary problems obtained in the time semidiscretization.
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Energy methods for free boundary problems: new results and some
remarks on numerical algorithms

J.1. Diaz
Universidad Complutense de Madrid, 28040 Madrid. Spain (REN2000-0766 of the DGES (Spain) and
RTN HPRN-CT-2002-00274 of the EC)

Different energy methods have been developed since the beginning of the eighties for the study of the
free boundaries giving rise by the solutions of nonlinear partial differential equations (see, e.g., the recent
monograph [6] by 5.N. Antontsev, J.I. Diaz and S.L Shmarev). In these notes we present some new

applications of such methods and make some remarks on the persistence of the free boundaries for the .

associated discretized problems.

1 Imntroduction

Energy methods are of special interest ‘in the study of free boundary problems when the traditional
methods based on the comparison principles fail. A typical example of such a situation is either a higher-
order equation or a system of pde’s. Moreover, even when the comparison principle holds, it may be
extremely difficult to construct suitable sub or super-solutions if, for instance, the equation under siudy
contains transport terms, variable coefficients, unbounded right-hand side term, etc. Different energy
methods {of local or global spatial nature) have been developed since the beginning of the eighties. They
were introduced by S.N. Antonisev [4], improved in [23] and extended by many authors (for a systematic
presentation including some not published elsewhere results see the monograph by S.N. Antontsev, J.I1.
Diaz and 5.I. Shmarev [6])- One of the main examples of free boundary problem, which in fact motivated
the development of the theory, for which energy methods lead to a rich spectrum of qualitative properties
is the nonlinear system for the unknowns (s, p) arising in the study of two-phase filtration of immiscible
incompressible fluids in a porous medinm

{ m(z %% = div (Ko(®)a{z, 5)Vs + K1 (z,5)Vp+1f0) + ¢
0 =div(K(z, s)Vp+£(2,5))

(see, for instance, [26] for the modelling and Chapter 4 of [6] for energy methods).

In contrast with my talk {of a more pedagogical nature), the main goal of these notes is to present
some new applications of energy methods to a variety of problems such as the obstacle problem, a doubly
nonlinear parabolic problem arising in Glaciology or the problem to stopping a viscous fluid in a channel
by an external field. Besides, motivated by the title of this meeting, some remarks are also presented on
the persistence of the free boundaries {local or global in the space variable) for the associated discretized
problems. In particular we study the meaning of the so called waiting time and extinction in finite time
phenomena in the family of elliptic problems obtained by the implicit (and, in the case of the second

property, also semi-implicit and explicit) time discretization processes. Some of the above results give
answer to some of the open problems possed in the monograph [6]).

2 The formation of the free boundary for the obstacle problem

One of the limitations of the local energy methods, such as described in [6], was their exclusive application
to singlevalued pde’s. Nevertheless, it is well known that there is a very large class of multivatued
problems, such as the Variational Inequalities, which leads to free boundary formulations. In this Section
we present some of the results of [20] concerning the formation of a free boundary for local solutions of

the obstacle problem

.atbagu) —div A{=z,1, u, Du) + Bz, 1, u, Du) + Clz,t, u)+ Alu) 3 _f(m,t),‘ (1)

where f(u) is the maximal monotone graph given by A(u) = {0} if w > 0 and f(u) = ¢ {the empty set)
if u < 0. The general structural assumptions we shall made are the following
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|A($:t! T, q)l < Ollqlp_li Co iqlp < A(‘E:t: L q) 'q,
|B(=, 1,7, a)| < Cs|r|* |al?, 0 < Cla,t,7) 7,

) r
Ca ™ < G(r) < Ca ™, where Gi(r) = v(r)r = [ 9(r) .
0

Here C; — C iti
1 s, D, &, B, o, v, k are positive constants which will be specified later on. We shall deal with

weak solutions satisfying the initial condition u(z, 0) = ug(z) for 2 € Q

Definition. A functi :
e Lt:‘;tﬁn ti(m’t)’ with ¢(u) € C([0,7]: L},.(R)), is called weak solution of probl
LU(Q); liminfuo G{u( @) 0 OT W (@), T C 9, ALy uDu), B w D), C Su) €
i infe Gl 1)) = Gy L ) > 0 31 (o8] Bl )) e om) e (0.7
H . ) H x

for some ¢ € L1((0, T i
((0.T) x ©), and for every test function p & L (0,T; Wa?(2)) N WH2(0, T; L=(R))

L{¢(u)¢t—A-D¢—Bw—c¢—cw} dadt ~ [ plupds i

the maximum principl i
ple. In contrast to considerati ]
fhe s _ ons on the finite speed o 1 i
shal ;Sai. ;1;11';} :;)Sn:; engrgy functions defined on domains of a speciaf form{;’ffz;gz taznﬂ(seeds zitm D e
e e e D0, el oo v et by ths v of s = 9(s~ 1,5 € (1)),
, , i determined by the choice of the ’ , .
parameters 7 and v. Here we

shall take 7 > 0,0 < v < 1 and
_ 0 so P(t) becomes a paraboloi i
of different properties: see [6]). We define the local el:ler;yof::ll:itgzzer cholees are relevent for the study

E(P):= fp(t) |Du(z, )P dedr, C(P):= jP(t) bu(z, 7)| dedr

b(T) := ess supf 1
se(6,2) |e—zol <t (st} |u(z, 5)]7! dzx.

Although our results have
. a local nature (for instance, th i
tions), we shall need some information on the global enem’y f:r{ctaf;nmdependent of the boundary condi

D(u(-,)) :=ess su / v+l
u2 [ lute,9) dm+L(|Du|P+|u|)dzdt. (4)

For th implicity 1 iti
e sake of simplicity in the exposition, we shall assume the additional condition 221 < y < 1
srYy=pPp— L

Our main assumpti i
ption deal 1 :
— s with the forcing term: we assume that there exists @ > 0 and p > 0 such

f(z,t) < —© on B,(z0) C Q, ae. t € (0,7).

;
e presence of a first order term, B(-, -, u, Du), we shall need the extra conditions
— (p-2)/p
{ a=y = (1+7)8/p.Cs < (9;2) 02%)% f0<h<n
Cs < QO if B =0 (respectively © < C3 if f=7p). ©

ws now the multivalue T i € 80 o1
it - th ltivalued term causes the formation of the null-set of the soluti ,

Theorem 1 The '
There exist some posilive constants M, t*, and
problem (1) with D{u) < M satisfies that u(z,t) =0 ’ '.in, P?t* ?le'u()o’ 1) such that aniy weak solution of
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The proof of Theorem 1 consists of several parts: Step 1. The integration-by-parts formula:

#1+ b2+ ia+ 62 = [pap=1) Gu(z,t))de+ [p A - Du dzdf + [p Budzdf + fp Cudedf—
Jp ufdedd < Jop iz AU drdé + [, p n,G(u(z,t))dl'dd + Senp=0} Gu(z,1))dz = jr + j2 + Ja;

were & P denotes the lateral boundary of P ie. OF = {(z,8) : o — zo] = s —1)Y, s € t, 1)}
dr is the differential form on the hypersurface 8P N {t = const}, nz and n, are the components
of the unit normal vector to &P. This inequality can be proved by taking the cutting function
¢z, 0)=%. (lz — =), 8) £(®)F :'H' T (u(z,5)) ds as test function,where Ty, is the truncation at the

level m,

| ifﬂe[t,T—?], 1 ifd>e,
£,(0):=14 k(T —8) for 6 € [T —%:T1, ¥, (|2 —za|,0) = ld ifd<e,
0 k

otherwise, 0  otherwise,

with d = dist((z,0), 8 P(t)) and £ > 0’ So, supp(z,8) = P(), ¢, % e L°((0,T) x ) and = €
L7 ((0,T) x ). Using the monotonicity of 8 and passing to the limits we get the inequality.

Step 2. 4 differential inequality for some energy function. We assume choice P such that it does not
touch the initial plane {t =0} and P C B,(20) x [0,7]. Then & + ig + i3 < j1 + j2. In order to estimate
j1, let us mention that n = (n,,nr) = (sz-l-(&—i)ﬁ(l"”))”z (8 —t)Ver — ve,) with ez, er orthogonal
unit vectors to the hyperplane ¢ = 0 and the axis t, respectively. Then, if we denote by (p,w), p 20
and w € 8B;, the spherical coordinate system in ®N and if ®(p,w,0) is the spherical representation of
a general function F(z,1), we have

| . T pBt)
1) ;=j F(m,ﬁ)dmdt—)a‘j dﬂj pN'ldpf (p, w, 0))J|dw,
P t 0 8B,

where J is the Jacobi matrix and p(¢ &) =9(f — 1) . So,

dit o8
L [ e nlia
] 8By

T ] 8=z (7)
+ f p gt f (p,w,8)|J|dw = [ p.F(z, 6)dTdo.
t 8B, P

Then, by Holder’s inequality, we get

/v
iE {(p=1)/p T |” |p 1
ng - Audl'dfd| < M. (—-—) f - ] ulPdl | d8 . 8
LIP \ 2 di t lptlp'_l aBP(g,‘)l l ( )

To estimate the right-hand side of this inequality we use the following interpolation inequality ([6]) : if
0 < ¢ < p— 1, then there exists Lg > 0 such that Vv € wiP(B,)

o, < Lo ([0, + #leloss)’ - Clolles,)'™ o)

re[l,1+7), 0= ’fg—;%?:'nl}, §=— (1 + ﬁﬁN) - Then, by Holder’s inequality

j;B |'u.|PdI‘ < KPJEP (E* + C*)§+(1-§)p/qr b(q’”‘l)(l'ﬁ)ﬁqr, (10)
”

where E.{t,p) = [p, [Vulfde, Cult,p) = Jp, luldz and K is a suitable positive constant. Taking
r e [”—(%%1)-,7 41| we get that g = g+ p%ﬁ < 1. Applying once again Hélder’s inequality with the
exponent j, we have from (10)
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\ d (e—L)/p
|71] € Le(t) (—M) pla-1)1~B)/ar (E+ C)%"' 13

5 v (11)
for a suitable positive constant L. We assumed o(t) := j;T ( _'_}Il_rpﬁﬁp(,r)) = dr ¥ < hich
e 0o, W

is fulfilled i i
. ed if we choose v € (0, 1) sufficiently small because the condition of convergence of the integral

a(t) has the form (1 —v)(p— 1) + vé0 F
> —(1— _r ;
following type ) P ( 9) ( 1 qr) . So, we have obtained an estimate of the

ljsl < Ly A() D(w)a~DA=)ar=A (g 4 ¢ p)l=w+> (_M) (e=1)/p )
: 12

dt

1 p
Wh.ele L 15 a um Uersa.l Osllﬂve collstuallt, .D(u) 18 the tOta.I ener; Of tlle SOI |310 1 de llerStlga,tlo

pg——::l’\) € (0,1). Let us estimate j. Using the expression for n h
. - .
apply then the interpolation inequality (for the limit case ¢ = 6)’ e have |ja| < Cs fa; p luftt7dldd. We

Il <L s S ot
lv+1,08, < Lo (IVell5, + P'llellosr,5,) - lolls 5, Yo € WHe(B,) (13)

r

with a universal positive constant Ly > 0 and exponenis s = FUN—r(N-1) p
NN g1 T € [1+0,1+7]. Again

1 14 5 s(v+1)/p
-/33 |u’| dz S L ‘YKS(T'*'I)IGP (L |V'ﬂ|pd:lf—|—/ l‘fl]c""ld:c)
e P

1/gr (a=1)/ar (1—8)(y+1) (14)
* ,,/ ||+ de ( f Iul"’“da:) ]
. Bp ' Bp b

Here K is the same as before. Le s+l -
. t 7= +1) + (1—3s)(vy+1} <1 {g=1)(1=5)(y+1)
? o = 1 g+ r> 1. Th
, qr ! = & en:

1/e

lj2l < L(E +C + (T, ) (B(T, Q)" ( / i (o) d‘r) , (15)

for some I = L(Cs, Lq) and exponents k :=p+m—1, £=1/(1—15). Then. we hav.
. . €

C5 1"1“')'d - . .
it} |u|**Vdz + E + CO < i1 + iz + 43, (16)

p—p
p

: BCa__p-
lia| < €Cs C'(p,t)+p_c;35 -85 5, 1), K ( f
P

1+ , ) ]
o {t=T} [ d:r:+E+C') < §1 4+ d2 + 83 + ia,

(17)

fOI dlffel'ent - ] ]

E+ c + b(T, Q) S LlA(t)D(ﬂ)(q—l)(l—a)/qr-—)\ (E +0+ b(T, Q))l—w+)\ (_M) (p~1)/p (18)
dit

Canum 2002

75




I

Conférences plénicres

whence the desired differential inequality for the energy Y(i) = E+ c, yle—p/ -1ty <
7 pl(p—1)

e(t) (Y (t))' ,where ¢(f) = (L1 (D(u))(q'l)(l_g)f gr=2 o'(t)) P~% Notice that e(t) — 0 ast — T'. More-

over, the exponent (w — A)zE7 belongs to the interval (0, 1) which leads to the Tesult (see [6])- W

Remark 1 The present technique can be applied to the study of other properties such as the finite speed
of propagation, the shrinking of the support, the waiting time or the study of locally vanishing solutions of
the associate stationary obstacle problem and of other multivalued problems such as the Stefan problem.

3 The finite speed of propagation and the waiting time prop-
erties for a doubly nonlinear parabolic problem arising in

Glaciology

The assumptions on Biz,u, Du) can be ‘Iimproved. We need a sharper argument if we consider, for

instance, the problem

b(u)e — [d(uz) — wb{w)le + 4 (x) Salt,z) in @
u(t, gy =0 on I, (19)
b(uf(0,2)) = b{up(x)) on Q,

with @ = (0,T) x @, £ = 8Q = (0,T) x oQ, h = b(u) = u™ m = 2(n+ 1)/n, $(uz) = ual? ™ s,
p=n+lu=n" /[2%(n + 1)" (n+2)] and n represents the so called Glen’s exponent, usually assumed
n = 3 (but here merely assumed n > 1). Function ¢ = a(t, z) is a scaled fixed given accumulation-ablation
rate function (a < 0 means ablation) and up i8 a (given) function representing the basal velocity. The
model was proposed in [25] describing the evolution of the thickness h{t,#) for a two-dimensional plane
ice sheet (z = h(t,z) 18 the top surface of the ice gheet). The mathematical analysis, the qualitative
properties and the numerical study of such model was carried out in (7.

When the ice sheet is warm-based, the bed is then temperate and sliding is prescribed {ie. up =
up(t, 2) # 0). The presence of the convection term makes the method of super and subsolutions very
hard to be applied. Thus, in order to prove the existence of the free boundary we shall use the energy
method (we follows some ideas introduced in [21]). Notice that the equation can be written in ferms ofa
non-conservative transport multivalued equation b(u): + uph(w)z — pé(tiz)z + (up) (1) + Blw) 3 alt, ).
In this way, the equation involves the material derivative b(u): + upb({t); which can be associate to a
virtual non-Newtonian fluid with a reactive term (up)zb(u)+ B(u). We shall prove the existence of the free
boundary in terms of the, so called, finite speed of propagation near a given point . We shall assume
that up is a globally Lipschitz continuous function. So, we can define the characteristics of the associate

flow by

d

-at-X(t, :l:) = ub(tsX(ta )} X(O,.’L‘) =z (20)
As usual in Continuum Mechanics, given a ball By(ze) = {z € B : |z —zo| < p} we demole the
transformed set by By(za): = {¥y € R 1 ¥ = X(t,z) forsome =z€ B,(z0)}-

Theorem 2 Let up be o globally Lipschitz continuous function on Q. For €2 0 let N(alt, ) = {(¢, x) €
{t} x @/ alt,®) < —¢}. Assume also that €= 0ifm(p—1)>1ande>0 ifm(p—1) < 1. Letuo = 0 on

a ball B, (20} for some o such that (t, By, (20)) C N(a(t,)) foranyt € [0, 7] and some L 2 po- Then
there exists a T, € (0,T] and a function p: [0, 7] = [0, pol such that u(t,z) =0 a.e. € Byt (o) for
any t € [0, 1]

For the proof, we introduce the change of variable b{w(t, z)) = blu(t, z))e*. Then

b(w)t + upb(w)s — peXt =G0 g (w) o + [(v)s + Nb(w) + B(w) > alt, z)e™, 0 Q-
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We take A > 2C with C' = iplyi
|(#)z|| o) - By multiplying, formally, by w we get that if p < L then

d
——W{w)d -
/B,,(;,:c,)1 i (w)dz + /Bp(xoh up¥(w),ydz + pettl=(p—1)m) lwof dz <
Bp(wo) -

At{1=(p— -
< pe (p 1)m)w(t, ) Iw,;(t, -)lp ! w(t, ) |3Bp(.'cu)t - 6/ wdz
By(zo)

h —
where ¥(w) := wh(w) — [° b(s)ds. Now, by using the Reynolds Transport Lemma

o
f = (w) + f (w), = L
By (@o) ot ) By(zo)t w (W)m Codt B, (®0)e III(W(t’ y))dy

Thus, integrating in (0,) and using the information on uy we get that

i
T(aw(t,y))d gf/
Lp(xo), (w(t y))dy + G o JB.(z0) |wzlpdyds <

t

< - - t |

< 02./0 w(s, )|lw,.,,.(.g,.)|fJ Lag(s, ) |5'Bp(r°)fld3_6/ f wdzds 21
0 Bp(.'tu)g ( )

with Cy = pminepo 7 E’\t(l_(p_l)m), Cz = jpmaXi[o 1] ert(1—(p—

1)
that 1 < (p— 1)m and € = 0. Then we define the energies m), Assume now, for the moment,

s [t t
! . y))dy, =
0<s<t JB,(20)s (wis,v))dy, E(t,p) fo L (oo [we|” dyds. (22)
- an - . £
Using Holder inequality and the interpolation-trace inequality, we get that
w
B+ E<K (‘?E
8p (23)

for some positi '
positive constant K and some w > 1 and the result follows in a standard way (see, e.g. [6])

In the case 1 > (p— })m and
. - > e>0Wep:'s,sstheterme‘t d i
inequality (21) and we introduce the additional energy fun-{:loti{ajjlp g;%i;lt:d i\:s to the It hand sxde ol the

11
C(lf,p)Zf0 /B( )|w|dyds
p(Zo)t

{remember that |w} = w}). T
h = . The - .
inequality } n, we can apply the interpolation-traze theorem of [6] to arrive to the

E+05K(5_(F_i£))” 2

dp

f .
or some positive constant K and some w > 1 and the theorem holds

Remark 2 Noti '
ice that, in conirast with th 1
Moremes = ‘ s with the case up = 0, it may occurs that T, < T
bouﬁdary_, F?:a;;tzﬁgt; ;:; :ileet{?r;c??n p(t)_b?utomatz'cally gives an estimate on :he Ioca{::-na:f t;:ezfrgé
o ) we it at it is possible to get global consequ imati
(globally} the energies introduced in (22) (for some related ar‘gum?enizc:jeaitge ([:g_;))ve resul by estimating
, e.g. .
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energy methods once it is reformulated in terms of

The waiting time property can be also studied by
= 0 then the characteristics are vertical lines.

the characteristics associated o ue. Notice that if us

Theorem 3 Let b, ¢, 3,4, us, € Ne(a(t,-)) and zq be as in the previous theorem but now with I > py.
Let uo{z) =0 on a ball By, (zo) for some Zo and satisfying that

fs (o) T(uo(y))dy < 0[(p — po)Fel@=, forany py<p<L (26)

for some small enough & > 0 and some L > po with w > 1 the ezponent given in (23) or (24). Then,
there exists To € (0,71 such that u(t,z)=0a.e. z € By, (mo); for any t € {0, To}.

For the proof, the integration by parts formula (21) must be replaced by

fB_,(.'r:n)i W(w(t:y))dy + Gl fot pr(dTﬂ)t lwx|” dyds S
lewe (5, )P~ (5, ) |0Ba(wo)s l ds — €[5 too) wdz + [ (o), U(uo(y))dy.

Jo w(s,-)

In particular, inequality {23) becomes the non homogeneous one

6E “ wflw—
B+ESK(6_p) +9(P"‘Po)+l( Y,

and the conclusion holds thanks to a technical lemma (see, [6]).
The numerical study of the ice sheet moving boundary problem was carried out also in [17]. An

overview about different pumerical strategies to solve free boundary problems (fixed domain methods,
others) can be found in [36]. The

front-tracking and front-fixing methods, adaptative algorithms and
approach of [17] was based on fixed domain methods, upwinding time discretization and duality methods
for nonlinearities. We first introduce the total derivative notation in conservative form %% = %% +

565 (uph). As usual in Glaciology, we consider now

Problem (19) with n = 3: so m = 2(n t1)/n=8/3andp=n+l=4 (26)

Problem (26) is discretized in time using the scheme of characteristics. For this, let T and M be fixed

hat T = MAf. Our upwinded time scheme is based on the approximation

and let At be the time step so t
of the total derivative (see [37] for linear convection-diffusion equations). In our case, form=0,1,..., M,

we consider the approximation:

—gt-—(usfs)([m + ].)A't,.’ﬂ) s (um+1)3}'8(m) - JmA(::) (ﬂm)31'8(xm (3)) (27)

where u™*!(z) = u((m + 1)At,z) and Jm(z) is obtained by numerical quadrature techniques in
the expression J™(z} = Jmtt, ;™) = 1 - ﬁ:ﬂ (us(r, x(,1™*1; 7))z d7, where J is the Jaco-
bian associated to the change of variable mapping z -+ x(t,z;7). The value x™(z) is given by
™ (2) = x({m+1)AL, z; mAt), x being the solution of the final value problem m%’:’—;’l = up(s, x(2,1:8))
x(t,@;t) = z. Next step consists of the substitution of the approximation (27) n (26) to obtain the
following sequence of nonlinear elliptic problems: for m = 0,1,2,..., M, find u™t! such that:

mA1\3/B _ M {,my3/8 5 4™
(10 = (W OX™) D (upttPup ) — a™H 2 0,07 20, in@

At
mA+1V3/8 _ MM 3/8 m 28
[("‘ ) JAi(“ Yt ex )__ " 56; (‘ug's+1|2uga+1) _ am+1] =0 inQ ( )
umH =0 indQ, «0(z)=ho=(ho)¥® nQ,
Canum 2002 8
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1} —
wheI]: (()z:c‘l iw) = a((;nt: 1)At, z) and o denotes the composition symbol
er to present the spatial discretization and solve the nonli :
present | di : inear problem (28 i +
pose the following equivalent variational inequality formulation: find uE"'"'l € K( su)cifotf?;tmn W e

i

il +1,03

At /n (um ) /8 (30_ um+1) de _'_#f !u;‘,""'"l |2 u;"‘""l((,o— um+1)_¢-d:z ~
@ =

1

‘A“E L Jm ((um)sls o Xm)(tp - um+1) dae + j amtl (QD _ um+1)dm, Vgp cK (29)
Fe ] ?

where K = 14 i
mh v(;I k= Ifagi 1?1 elgga] l(tf;) (/2 g) ,215‘(()) Sf};j:l (glg}) il‘:ext, the ju.a.lity algorithm_proposed in [10] is applied to
ibingpiprietne B 0 el Wolj‘i(g) i :}iq;;flstse in terms of the indicatrix function, I, of the

lf
(um+1)3l’8 — g™ m+1 |2 +1
= (o= dz + [ ¥ P2 (o = w™*)ade + Tic(e) — L)

1

> _ m 3/8 1
> L ™ (a5 0 x™)(p — u™)dz + _[n dH(p—u™)ds, Ve € WAHQ). o

Moreover, the use of subdifferentials leads i

’ . to the formulation &m"'l = —(A{u™+1)- +1

:}fret BII;I (U) dle'i:lotes the sulbiilﬁ'erential of the convex function IIK at the(ptg;:lt u )(s{:%é])a%{ )
perator A : Wy () - W—14/3(Q) and the product < f™,% > are defined by « Here, the

1
<A =— 3/8
(o). >= 5 L‘o 'pd”‘“‘fn [0 * et de,

< - m+1 1
> /ﬂa thdr + Z-t-fﬂJm((‘um)a/s o x™)dx.
Therefore, we arrive to the problem: find u™+! € Wa*(Q) such that

1
___ m+1413f m
5 @ des [ 604 g dotu [ phivda- (31)

i
) fn T (@) o X" )ds = fﬂ S pde, Ve WHQ)

Jumt!
5 ) , where A() =|v |* v = %, (32)

mH ¢ AL [um-{-l]“,gga-;-l — A (

Ihe a.ppllca.tlon Of Bel‘mudez-MOIenO al Ollth.lll I].O tlo SOI‘Ie t e bove bIEIII llltl Od

g™t e oIk [um"'l] — g™l gt (3ﬂm+1 Jumt!
) 4 =A -
? Oz Y2Tay {33)

defined in terms of the positive parameters wy and wy. So, we arrive to
1
2 m+113/8
a7 | @ ovde s [ @@ banmt) ot

™ Au™TL\ by m " (fm m
l—‘_/ ( o = 1
Q & w2 oz Sz dz = [ L At ./n I (( )3/8 ° X" ds,

V¢ € Wy(Q). Now, si
0’ . Now, since 8Ix and A are maximal iti
characterized by their respective identities [10]: monelone cperators, the sbove definitions can be

gt = (5’11{)%:1 [t 4 A+, g+ = AL Hum+l “
: A ] (34)
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Functions (81 )5 and A3? denote the Yosida approximations for the operafiors (81 —w1]) and (A—w2])
with positive parameters Ay and As, respectively (see [15]). For details on the fully discretized problem

and some concrete numerical results with comparison tests we send the reader to [17].
Remark 3. The waiting time property (see Theorem 3 ) can be proved by means of local comparison

arguments in S0Me special cases. This is the case of local solutions of the problem

g = A(jul"u) in QxR (35)
u(z,0) = uo(x) on Q,

where @ C RY is an open set, m > 1 and, for simplicity, up(z) is a non-negative bounded function.
Notice that no boundary condition is prescribed. It is well-known (see, e.g., [30]) that if the initial datum

uo(x) satisfies the growing condition
2 .

wo(®) < Colle — zol|™T in |z — ol <0, (36)
for zo € B(supp up)} and for some nonnegative constants Co, 8, then there exists a waiting time t* > 0
such that u{zo,t) =0, for 0<t< t*. This local property can be justified also for weak solutions which
are not continuous and it is the key point to obtain global statements in terms of the boundary of the
support of ug. In a short note (12], see also [1 ]} we studied the question of when the waiting time property
is preserved if we discretize in time equation (35) by the iterative scheme

un——"‘;‘"_I:AuT in @ and neN, (37)

where un(z) represents an approximation of the solution u(z,1) of (35} at tn = n1. It turns out that
the analogous property to the existence of a waiting time is the nondiffusion of the support (see [19]) of
the solutions of (37) in the sense that: there exists To,t* > 0 such that if 0 < 7 < To then un{zo) =
0 fornel0%) A fundamental ingredient of the proof 15 a technical lemma assuring that if m >

1,0 < s < (-',1;)7:TI and ¢(s) = s — ™, then lilnoo qb“(s)nﬁl?f = (;}_—1)}"—5, where ¢"(s) =

n

st i,
dodo.... o ¢(8)-

4 Stopping a viscous fluid by an external feedback field

As mentioned in the above section, the support of the solution of many stationary problems rermnains
compact once that the source term has compact support. This is also the case in the study of the
stopping a planar stationary flow of a incompressible viscous fluid, of velocity u(x) = (u(z,¥), v(=, h
x=(z,y) €Q,ina semi-infinite strip € = (0,+00) x (0, L), L > 0, with an non-zero velocity at the strip

entrance

—vAu=f—Vp,divu=20 in ,
PR, u,,£) { u(0,%) = u.(y), v € (0, L}, uf{z,0)=u(z,L)=0,2€ (0, +00),
hu(z, y)| = 0, as & — +00 and y € (0,L).

The main question now is: can we find an external localized force field £ stopping the fluid at a finite
distance: i.e. such that u(z,y) =0 forz > zyand y € (0, L) for some Zu > 0 ? In the following, we
shall denote this property as the localization effect. Here, the localization of the external field must be

understood in the sense that we search a field £ such that £z, y)
z¢ > 0.We recall that due to the incompressibility condition, the first component of u, = (u.(y), v ()

— 0 for > #¢ and y € (0, L), for some

Conférences pléniéres

for some é > 0,0 < ¢ < 1 and 2

: geL?(Q%), g(x)=0 '

o some , a.e. in (&g, oo} x (0, L) f i

I ‘83 F—‘mfft‘s +00, and z¢ large enough. Here, we used the nota,i?ion Q")E‘ =(({] I)%) (:cr (S(? IE‘; mff’ 8 ven
Th.e ] Ct;l %o:d x(g}’_ z¢) denotes the characteristic function of the interval (0 .’Ef), TR

0 i ' £ an
rhe 1o cui-ientefu?g;ﬁ:ﬁslbpmfn in [5], by means of the application of an energy method to the
(w=(¥,,—%,)). Function ¢ satisfies the higher order nonlinear equation

2,0) = ¢(z,L) = 3&(2,0) = £(z, L) =0 fi 0
'1,0(0, y) = foy U*(S)ds, ‘g‘:‘f‘(oa y) ;v*(y)i 1 fz; ; : EO’ _E;X))’
¥z, 1), [Vi(z,y)| -0, as z — +oo, for y € (0, L)

(39)

We ad i i i ‘
highe: :1- da‘;lsté (;Eaf[;?i;:he“l;alf-l?lanes techmgue introduced by F. Bernis in [11] for the study of oth
e 20) o et oo . We point out that in contrast with the problems considered in the menti ecII
l-esu]-és ) aﬂisotmp];caizz aa;;g ]f:l;r zid:ir‘ te]f[léil. (Ou: g,}}zproa,ch is inspired on some previous unidirecti(:.)lrllea.l

3 ‘ ed in see Chap.1§4.2) by using a diff
a first (and independent step), the existence of a weak solution ha,vi%lg alﬁzgf: tg;:c?l(::f ye:i]::;h()% -
y B =

fﬂ |Vul + x |u|1+e . .
(0,2¢) ] dx is establish .
o l(la,\re we) ) ished by means of the Schauder fixed point theorem. Moreover,

Th . o
eorem 4. Assume f satisfies (38). Then: i} if x¢ = +oo, u is any weak solution of P(Q,u., f)
3 Wk

with finite energy E, ay = &2 ( 294002 \ TEF o Lia 1
2 = o, T = 3
’ 1—¢ \ min (u,a)) L3+ (E)3¥2Y | where ¢ = ¢(c) is a positive constant

which d

soluﬁgﬂﬂﬂe:}cjspo(gy ;n fO)', th_c-,;: U(E:'y) =0 for © > ay, i) if z¢ < oo then there exists at least one weak

in addition. e as: *, J ), W .aﬁmtg energy E, such that if ay < z¢ then u(;g y) =0 for = > as, i) i
g ide’a e thsume { ‘nc:;mcreasmg then conclusion i1} holds for the uniQu’e solution of P(S, m)fz{,
‘ e proof is the following: assume ¢ = +oc and . Y Iy

finite. Then for every a > z; and every positive integer m > Zn let ¢ be a weak solution of Py with E

v fn APA(Y(x — o)) dx+8 j; |9, |1+ (z — &) Pdx <0. {40)

Applvi o

Ef() ;;u';g }he( I]Istzrll;ltz fon?l.lia. to the ?st term of the above inequality, it arises an energy type t

as main gog.l to get +d|:qu1¥ ! ) (a: —a)7f dx. We observe that £y(0) = E. The mentioned techn?i( pu lirm
, to get a differential inequality for E,,(a) leading to the vanishing of E,(a) (and thzneof a;)a

f . . .

;1‘;" a laa.rge enough. Notice that a simple differentiation leads to the relations €2 — _pmp (a) and
: > > : T = - m=1{G2} atb

e m{m—1)E,,_s(a). The crucial part of the technique consist in to using the nonlinear structure

< < C 5 (a) < C (Eg—p(a)) fOI a]] a > 0
0 p "1, 18 a pOS] tlve COﬂStaﬂt a.]ld }.‘ > 1. The]]. the Sl.lppo I O ded 1 L >V

inequality uses a weighted version of the Gagli i
agliard i i i
oty s 0 el o gliardo-Nirenberg inequality and the Hardy type inequality

5 Global extinction time
W . .
e consider the quasilinear problem associated to the nonlinear heat equation with absorption

u=0 on 3 =T x(0,+00).

N n )
(P) { 5 (ulul"™h) —div (Ve V) + e’ u=f+divg inQ:=0 x (0, +00),
u(z,0) = uo(z) in Q.

| must satisy fUL u,(s)ds = 0. We also assume the compatibility conditions u.(0, 0) = w(0, L) = 0- _ 3
' Although it is well known (see, &.g. [27]) that for the classical Stokes problem (i.e. with f = f (x) where 2 C R¥ is a bound i
‘ preacribed) the localization effect fails, it is possible to show ([5]) show the localization effect when we total variation). We gﬁlﬁsﬂoﬁd:rir ,¥>0,0>0,1<p<oc,A>0(if p=1, Vu represents the .
H assume the external body forces2be given in a feedback form, £ OxR2 - R2 £(x,0) = (f1(x,1), fa(x,u)); As we shall see, under suitable cznd;i;nse f:hfﬂf;:lﬁ_ 2’9 sucl? that f(¢,.) =0, g(t,.)=0in Q, if t > Tp.
H and such that, for every u € R? and for a.e. XE€Q, energy inequality leading to the extinctio 1; e ﬁnite":i]:n e(l(l)?;l}(:;l ftl;)n'::); made precise) satisfy an integral
ion B
i

- . Theorem 4. L 1 i
‘ —£(x,u)-u > J?C(O,zg)(x)lu(x)ll-l-a +g(x)-u _ et u € L}, (To, 400 : WiP(R)) for some p > 1 for u € L} (To, 400 : BV (), if o

(38) p=1}
= 1) such that 34,k,c> 0,1 > 0,0 ;
3 Ty s >k — vk +h -
, 1 for which fu|™"* , [u[”** | |Dul® [ul*~* LL (To, + : L1(52))

|
| .
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and
t t * (41)
y(t) +6‘] f | Du? [fua|k_1 +)\f j lul"* < yls) ae st € (To,400),
s JE t; Q
where y(t)=Jq lu["** de. Assume that
1<p<y+1 and A=0 (42)
or
1<p, o<~y and 0<A, (43)
and let
P
1 z'fNSpor('r-H)Spr,

k= -7 -1 : Np
_N_p_f (1+7_Pg:i})))>1 ifl<p< N andfy+1>(—N—_—p—).

Then u € Cp2(Tp, +oo : LY (Q)) for some o € (0,1} and there exists o T, € {To, +00) such that
[} 1 *

u "i‘)};]?rc:Zfslis: fnTi;tegra,l version of the energy inequality found in [?] (Pr;)posmon 1.1f. or Theor:xz
2.1, Chapter 2) for p > 1 and (3] for p = 1. More precisely y(t) + C J, y(r)hicith < 9(?()1, t(}):; ;ﬁﬂﬁ; o~
(T, +00) for some € (0,1). Some relevant choices of the parameters v, p, & \jv ch provl el o fulfifle
of the above conditions are: p=2,7=1 ande<l;o=1p=2andy>1 0= 1, -}'_“ a;n_‘t.p 311;]13_
Several notions of solutions are possible (for simplicity, we assur{lg now p > 1). Tltlﬁ tVa._ri{a 1(11 i
ory” search for solutions in the »energy space” u € L? (0,T; Wy’ (ﬂ)),1 :nd use tha (1. p 1_ 1\; ;_121:
wir(Q) C L2(Q) C WIF(Q). At least for k = lLu € 12 (0, T; Wy’ (Q),vT' > 0 implics tha
|Duff luf*~t € L}, (0,400 : L1()). A first problem arises w1th_ the zero o‘rder term |ul o Ds:n;;e
u € LP(0, T; WP (Q)) = lul’t* € L}ac(0,+?o : LHQ)). Thf:n, if the equation talies place in D'(Q)
the natural regularity for u; is Ju: [y € L8, (0,400 : WH2'(Q)) + Lipe(0,+00: L (©2)). In th?tt(-lase
the test functions must be taken in LP{0,T} Wy () N L= (0, T : L*® (). The existence of s?; utions
in the above framework is due to many authors (Dubinsky, J .L. Lions, Raviart, (E;a.i?bergezz g;;‘l:g;
Mignot, Benilan, Ali-Luckhaus among others: see references in [6]) assumed |uo] UO.E ! é o
5g GLf;c(O, 400 : L7 () and the, so called, weak solution satisfies that u E C([O,—l—oo) : L3(2)). - e
regularity |u["+* a7t | Duff luff7 € LL.(To,+o0 : L*(S)) can be obtained by asking some extra

loc

regularity to the data (see, e.g. [13]). A nontrivial fact is the justification of the time integration by parts

formula
11 gy, el ) = ]T L j fut )|“f+"dm] dt.
(P~ e )= 7 [ | f, e

Tt could be easily justified for the case of sirong solutions (ie. & (u lu[¥~1) € L1{(Q)) but ;:; is know t?:;
this class of solutions are quite exceptional. More in general {but for y =k =1, A=0)t 1sdwasdj;f)i1:'o "
in a pioneering paper by J.L. Lions [32]. Fory #1and k = l_the result was proved (un11 erW_tt;Ield-
assumptions) by Bamberger, Grange-Mignot, Al-Luckhaus, Bernis, Otto, Carrillo and Carrillo-Wittbold;
the case k # 1 is due to Benilan (see references in [18]) .

In some cases the exztinction energy u(t) = [y lu["** dz may be not well defined for2 :rolutions u(t) E
wlP(Q) c L2(Q). For instance, this is the case if y = 1L,A=0and 1 <p < 255 Due to this

difficulty, following to [12], it is useful to justify the energy inequality (for k =1) _bydwfti);kcllng u; ;hiligiiz
W=WrP@)nL@Q)ify<p-1lor 1< ¢ < p or  bounded, otherwise W 1Is) e ?I‘haese}d:tence re
of C(Q) in the Banach space {u € L**'(€2), Du € L* 3, |l = naﬂb 4 + | Dull, - : tence o
an energy solution (i.e. u € C((0,+00) : L@ NLP(Q,T: W)NL ((0,7) 1:: 1fl)) OIL?‘YI}FYJ- (Q)l - T
satisfying the equation in D 'cz.nili;vyitg 1;1()0, )QT uo(.)) was proved by assuming that uo € )
i ! W+ LY , T % Q).
d -i—];i;;r gthee fot%f ovaol)u-ti;-ion can ge found out of the energy space W._ Among the se\:eral ;ylfest 1{1):
solutions in this framework we could mention, gpecially, the so called mild solutions motivatea by

Canum 2002 B2
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numerical analysis and the abstract Semigroup Theory: given € > 0 and a time discretization {; = 0 <
1< o<ty STt —tim1 < €, T —1n < ¢, and given f; € L®(RQ), wo € L*(£2) we consider the implicit
time-discretization,

(op) {20z

T div (| V[P ~2Vuy) + Awe™ w; = f; in D'(Q),
where b(u) = |u[""" u. Notice that w; € Wy?(Q) N L®(Q). Now, let uy € LY(Q),f € LY(0,T :
L'(Q)),g=0.

Definition. A mild solution of (P} is a function « such that b(u) € C([0, +o0) : L)), u(0,.) =
up(.), and, for any € > 0 there exists {to, %1, - -, n, Jo, f1, =y fns Wo, w1, - -, wy) satisfying (DP) with
(o) — blwn)lly < € s 5%, I1F(2) — Filly &t < € and [lb(u(t)) — b(wo)lly < ¢ for any ¢ € (feus, b, =
1,..,n.

The existence of a mild solution was due to [8]. Moreover, it was proved there that if, in addition,
ug € IYHY(Q), F € L7 (0,7 : W) + LY ((0, T) x ) then the mild solution is also an energy solution.

Now we can study the finite extinction time for the step function w,{t) := w; if{ € (t;—1, 8], i = 1, ..., n.

Definition. We say that w.(t) extincis in a finite time if there exists T, o = 1;, for some j < n such
that ||we(t)||,, > 0 for t €[0,T¢.) and |Jw(t)]|,, =0 for L € [T, ., T).

Since w,(t) satisfies the integral energy inequality (41) we get to the following result (due to {7] for
p=2A=0and 28] forp>1and A =0)

Corollary 1. Assume that there exists Ty = i,,,, m < n such that f.(£,.) = 0,in Q,if 1 > Ty (f(2,.)
defined in a similar way to w,(t)}). Then, under the assumption of Theorem 4 on v,p, k, and &, function
w,(t) extincts in a finite time T, .. Moreover, if u is a mild solution and assume that there exists Tp > 0
such that f(t,.) =0,g(t,.) =0 in Q, if t > Ty, and that u(Tp) € L™H*(Q)) then u(t) extincts in a finite
time T, {only dependent on |lu(To)|l,,x)- .

Notice that due to the regularizing effects (see [8]), it is possible to have a finite energy at time Tj
(u(To) € L7+ (Q))) even if ug € L7(D).

Remark 4. An unpleasant fact of mild solutions is the lake of an easy characterization in terms
of test functions and the lake of information on their spalial regularity. A different notion of solutions
corresponds to the so called renormalized solutions (see [13]). Since the general integral energy holds,
the finite extinction time phenomenon can be obtained also for such solutions assumed, again, u(Ty) €
L+ (Q)).

Remark 5. The assumption u(Tp) € L7 () is, in some sense, necessary. A counterezample can
be done in other case: take v = 1,A =0, p= 1, assume that 0 € Q and u(0,.) = dp (the Dirac delta at
the origin). Then, it is possible to show (V. Caselles: personal communication: 2002) that there is not
any regularizing effect and u(Z,.) = C(t)éo with C(t) > 0.

The extinction time also exists for other time-discretizations (now of semi-implicit type). We write
(assuming now w > 0)

Y p—1 ++1—p ¥ 3?—1 (,w;_y+1-p B r"""’?'-.-l-ll_p)

— W) ———— (w7 :

_ Y+1l-p Y+1-p ti—tig

Given ¢ > 0, a time discretization tp = 0 < t1 < - - <ty < Tt —tic1 < €, T — 1y < €, and given
Ji € L=(2), wo € L™®(Q) we consider the semi-implicit time-discretization,

(w)e =

(WP — wpti

7 -1
(wh )
g

7+1-p

—div (|[VwslP2Vw;) + Alw " ws = f; in D'(Q).

When f; and wq are nonnegative, the existence and uniqueness of a nonnegative w; is consequence of
the results of [22]. The convergence of the scheme was given in [31] for p=2,X = 0 and in [34] for p # 2
and A = 0. We have

Corollary 2. Assume that there erists Ty = t,, m < n such that f.(5,.) =0, in Q,if t > To (f(2,.)
defined as done for w.(t)). Then, under the assumption of the Theorem 4 on v, p, k, and ¢ function w,(t)
extinets in g finite time 1, ..

Remark 6. The existence of a finite extinction time can be also proved for another type of semi-
implicit time-discretization (see [9])

7 —1 —div (|Vw;—1 [P V) + MNwi |t w; = fiin D'(Q).
i—ti-1
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chemes in which the discretization is not in time but in space. For

i ther type of s .
Now we consider obier WP 8] (see also [33]) we introduce the notations

simplicity, we assume Q = (0, 1). Following [3
o(v) = [o]*0, (o) = =0, 0(v) = Mololt, Aw) = = (JuelP ),

So, the equation can be written in terms of v + A(p(v))+ H(v) = f. Givelll M E—N we c_a_t]lo h“;—;

1/(M +1) and introduce the sequence spaces Vi = {V =ﬂ£’u,-), i=0,.,. M+ },d'rt:o = 'uM_l_ll;. l - We

introduce the following product and norms (vi,up) = b ) 5oy Vit ||, corresponding norm, [Viig,, =

M |vipa=¥i

(h o, 1), vl = (i |57

+ p)lf P The discretizations of the nonlinear operators will be
given, for i = 0, o M+1,by '

€ Vi, 6(vn)i = Aui|mel@™" = B(vi), ¥(vh)

i = v; a2y, = ‘P(”')!B(Vh) -
{ plon) € Vi, p(va); = Il 1 2 (0iqy — v} — o — vl % (vg = vi-1)),

= |v,\(*=2 20, = P(v;), An(va)i = Lllvig —wl’”

), vi{0) = von, where £3(t) and vgp

. . s dvald =
The discretized problem is —v—c',‘;u + An{p(va(®))+ 8(va) = fult k. Assume again that

are approximations of f(t) and vo. The conyergence of the scheme was due to [3
i ists Ty > 0, such that £4(t) = 0,1n Q,ift> Tg._ ' ‘
t e]g:;iunitio;._ We say that vy (t) estincts in a finile time if there exists Th e > To, such that liva(®)]l, >
0 for t €[0,Tee) and |[Va(t)|l,, =0 for t € [Th,e, T]. . . ,
fSince i[t W;.‘: Lhown in [38] That v} (t) satisfies the integral energy inequality (41) weget "
Corollary 3. Under the assumption of the Theorem { on 4,p,k, and o function vy (t) extincls in a
ite time T e. ‘ o .
ﬁml;.e:narkh;. In [14] it is considered the special case y = 1 and p = 2. ’.'5]":: j;imte extinction time
is obtained by means of a comparison argument (with solutz'ons_of the ode ——(-)-d: + 8(W,) = 0 and
for bounded initial data). It is not difficult to show that the estimates on Ty, . obtained by ihe energy
method (which takes into consideration the spatial operator Ap (plvn(t))) are_sharpe?" than the o:?s o£
[14] when ||vonl|,, 8 large enough. We also point out that the integral energy inequality (41 ) is sa asfie
for the solution ;?)tained via Galerkin for the approzimation by finite el'emen_ts r{ﬂd s0 'the faxtmct:;m time
phenomenon also holds for such a discrete solution. Different full discrefizations (in time cu; sg;c;lce )
where introduced by several authors (see, e.g., [38], [35], [291, [14])- Althc?ugh sgme.of tﬂese ;: gz.;rz m:
are explicit (but convergeni under suitable stability assumptions), the finite extinction time holds onc

that the general Theorem 4 can be applied.

References

interfases en problemas de difusion no lineal. Tesis Doctoral,

5 de retencion de k
[1] L. ALvAREZ. Fendmenos de rete O o Complutense de Madrid, 1988,

Departamento de Matematica Aplicada,

] . . i
i t roperty for parabolic problems trough the nondi
[2] L. ALVAREZ AND J.L Diaz, The waiting time property e AN (Rev. R,

fusion of the support for the stationary discretization problems. To &
Acad. Cien. Serie A Matem}.

(3] F. ANDREU,V.CASELLES, J.I.DiAZ AND J M.Maz6N, Some qualitative properties for the Total
Variation, Journal of Functional Analysis, 188, 516-547, 2002.

of non-linear degenerate elliptic and parabolic

alization of solutions d pe
[4] S.N. Awrontszv. On the 100 e 1981), 1289-1293. English translation in Dokl

equations (Russian). Dokl Akad. Nauk SSSR, 260, (
Math., 24, (1981), 420-424.

[5] S.N. ANTONTSEV, J.L. Diaz AND H.B. DE OLIVEIRA, Stopping a viscous fl
dissipative external field: I. The stationary Stokes problem. To appear.

v, Energy Methods for Free Boundary Pmblcims:
Progress in Nonlinear Differential Equations

uid by a feedback

[6] 8.N. ANTONTSEV, J.I. DIAZ AND S.I _SHMARE )
Applications to Nonlinear PDEs and Fluid Mechanics,
and Their Applications, 48, Birkhauser, Boston, 2002.

[7] PH. BENILAN AND M. CRANDALL, The continuous dependence on  of solutions of 1 — Ap(u) =0,

Indiana Univ. Math. J., 30 (1981), 161-177.

Canum 2002 84

Conférences pléniéres

[8] Pr. BENILAN AND P. WITTBOLD, On mild and weak solutions of elliptic-parabolic problems, Adv.
Diff. Eq., 1, (1996), 10563-1073.

[9] R. BERMEJO, J.I. Diaz AND L. TELLO, A nonlinear model on a Riemannian manifold arising in
Climatology and its numerical approximation, to appear.

[10] A. BERMUDEZ AND C. MORENO, Duality methods for solving variational inequalities, Comp. Math.
with Appl., T, (1981), 43-58.

[11] F. BERNIS. Compactness of the support for some nonlinear elliptic problems of arbitrary order in
dimension n. Commun. Partial Differ. Equations, 9, (1984), 271-312.

[12] F. Bernis, Finite speed of propagation and asymptotic rates for some nonlinear higher order
paraholic equations with absorption, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 1-19.

[13] L. Boccarpo, D. GiacHeTTI, J.I. DiAZ AND F. MURAT, Existence of a solution for a weaker form
of a nonlinear elliptic equation., in Recent Advances in Nonlinear Blliptic and Parabolic Problems,
Pitman Res. Notes Math., Ser. 208, Longman Sc. Tech., Harlow, (1989), 229-246.

[14] K. Boni, Extinction for discretizations of some semilinear parabolic equations, C.R. Acad. Sci.
Paris, t. 333, Série I, (2001) 793-800.

[15] H. BrEzZIS, Opérateurs Mazimauz Monotones et Semigroupes de Contractions dans les Espaces de
Hilbert, North Holland, Amsterdam, 1973.

[16] H. BrEZIS AND A. FRIEDMAN, Estimates on the support of solutions of parabolic variational in-
equalities, Hlinois J. Math., 20, (1976), 82-97.

[17] N. Cawvo, J.1.DiAaz, J.DURANY, E.ScHiavi AND C.VAZQUEZ, On a doubly nonlinear parabolic
obstacle problem modelling ice sheet dynamics, to appear in SIAM Applied Mathematics.

[18] J. CARRILLO AND P. WITTBOLD, Uniqueness of renormalized solutions of degenerate elliptic-
parabolic problems, J. Diff. Eq., 156, (1999), 93-121.

[19] J.1. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, Pitman, London. 1985.

[20] J.I. Diaz, On the formation of the free boundary for the obstacle and Stefan problems via an energy
method. In Actas XVII CEDYA-VII CMA, L. Ferragut and A. Santos, eds, Servicio de Publicaciones
de la Universidad de Salamanca, CD-Rom, 2001.

[21] J.I. Dfaz AND G. GALIANO, On the Boussinesq system with nonlinear thermal diffusion, Nenlinear
Anal., 30, (1997), 3255-3263.

[22] J.I.Diaz AxD J.E.SaA, Existence et unicité de solutions positives pour certaines équations ellip-
tiques quasilinéaires, Comptes Rendus Acad. Sc. Paris, t.305, Série I, (1987), 521-524.

[28] J. 1. D1aZ AND L.VERON, Local vanishing properties of solutions of elliptic and parabolic quasilinear
equations. Trans. American Mathematical Society, 290, (1985), 787-814.

[24] L.C. EvaNs AND B.KNERR, Instantaneous shrinking of the support of nonnegative solutions to
certain nonlinear parabolic equations and variational inequalities, Illimois J. Math. 23, (1979), 153-
166.

[25] A.C. FOWLER, Modelling ice sheet dynamics, Geophys. Astrophys. Fluid Dyn., 63, (1992), 29-65.

[26] G. GAGNEUX AND M. MADAUNE-TORT, Analyse mathematiqgue de modeles non lincaires de
Uingenierie petroliere, Mathematiques & Applications, 22, Springer-Verlag, Paris, 1995,

[27) G.P. GALDI. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Lin-
earized Steady Problems. Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York,
1994, '

(28] M. A. HERRERO AND J. L. VAzQUEZ, Asymptotic behaviour of the solutions of a strongly nonlinear
parabolic problem, Ann. Fac. Sei. Toulouse Math., 5, (1981), 113-127.

Canum 2002 85




[

Conférences pléniéres

[29] J.KAGUR, Solution of some free boundary problems by relaxation schemes, Mathematics Preprint
No. M3-94, Comenius University (1994).

[30] A. S. KALASHNIKOV, Some problems of the qualitative theory of second-order nonlinear degenerate
parabolic equations, Uspekh: Mat. Nauk, 42, (1987),135-176.

[31] M.N. LE Roux, Yemi-discretization in Time of a Fast Diffusion Equation, Journal of Mathematical
Analysis and Applications, 137, (1989), 354-370.

[32] J.L. Lions, Quelques remarques sur les &quations differentielles opérationnelles du 1° ordre, Rend.
Sem. Math. Padova, 33, (1963), 213-225.

[33] J. L. LioNs, Quelques Méthodes de resolution des problémes auz limiles non lineaéres, Dunod, Paris,
1969.

[34] E. MELENDEZ, Estudio numérico de una ecuacidn parabdlica doblemente no Iineal con datos miztos
de contorno: Propiedad de extincidn en tiempo finite de su solucion. Tésis de Licenciatura, Univ.

Complutense de Madrid, (1990).

[35] T. NAKAXI, Numerical interfaces in nonlinear diffusion equations with finite extinction phenomena,
Hiroshima Mathematical Journal, 18, (1988}, 373-397.

[36] R.H. NOCHETTO, Numerical methods for free boundary problems, in Free Boundary Problems:
Theory and Applications, (Hofiman K.H., Sprekels J., eds.), Pitman Res. Notes Math., Ser. 185,

Longman Sc. Tech., Londen, (1990), 555-566.

[37] O. PIRONNEAU, On the transport-diffusion algorithm and its application to Navier-Stokes equation,
Numer. Math., 38, (1982), 309-332.

[38] P.A. RAVIART, Surla résolution et approximation de certaines é&quations paraboliques non linéaires
dégénérées, Arch. Rat. Mech. Analysis, 25, (1967), 64-80.

Canum 2002 86

Conférences pléniéres

Equations satisfaites par des limites de solutions approchées

T. Gallouét
Université Aix-Marseille 1, CMI, 13453

Résumé

) Dans de nor_nbreuses situations “industrielles”, des schémas numériques efficaces ont été develop-
pés par des équipes d’'ingénieurs, souvent aprés de nombreux essais infructueux. L’efficacité du schéma
appa.ra..issant dans le fait que la solution trouvée semble “raisonnable” (elle satisfait, par exemple, des
coniir&_l.lnteﬁ naturelles, comme des contraintes de bornes, et semble concordante a,ve’c des observaéions
exp_en:_menta,les). Dans de nombreux cas, il n’est toutefois pas clair de voir de quel probléme est solution
la limite des solutions approchées lorsque les pas de discrétisation tendent vers 0, done, finalement, de
Cf)mprendre quelles équations (et quelle conditions aux limites) ont été discrétisé&'.’ par 1<; schéma nu;né-
nque_.,Il peut s’agir, par exemple, de comprendre une condition aux limites satisfaite par la limite de
solutions approchées ou le sens avec lequel une équation est satisfaite (condition d’entropie, par exemple)
ou encore de trouver ’équation elie méme . . . , ?

Dans cet exposé, quelques exemples de telles situations seront présentes :

— Ecoulement diphasique avec “forcing” dans un milieu poreux,

— Ecoulement diphasique dans une conduite,

— Simulation de colonnes 4 distiller,

— Ecoulement gravitaire dans un milieu poreux hétérogéne,

— Ecoulement diphasique multidimensionnel en milieux poreux,

— Simulation de la sédimentation et de I’érosion dans les basing sédimentaires.

Pour_ fes 3 premier’s exemples, il s’agit de comprendre la condition aux limites satisfaites par les limites
de solutions approchées données par des schémas “naturels”. Pour le quatriéme, il s’agit de comprendre

le sens de I’équation {condition d’entropie) et, pour le cinquitme et le sixiéme, de trouver I’équation elle
méme.
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