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APERIODICAL ISOPERIMETRIC PLANAR
HOMOGENIZATION WITH CRITICAL DIAMETER:
UNIVERSAL NON-LOCAL STRANGE TERM FOR A

DYNAMICAL UNILATERAL BOUNDARY CONDITION
©r J.1. Diaz, T. A. Shaposhnikova, A.V. Podolskiy

We study the asymptotic behavior of the solution to the diffusion equation in a planar domain,
perforated by tiny sets of different shapes with a constant perimeter and a uniformly bounded diameter,
when the diameter of a basic cell, €, goes to 0. This makes the structure of the heterogeneous domain
aperiodical. On the boundary of the removed sets (or the exterior to a set of particles, as it arises
in chemical engineering), we consider the dynamic unilateral Signorini boundary condition containing
a large-growth parameter 8(¢). We derive and justify the homogenized model when the problem’s
parameters take the «critical values». In that case, the homogenized is universal (in the sense that it
does not depend on the shape of the perforations or particles) and contains a «strange term» given
by a non-linear, non-local in time, monotone operator H that is defined as the solution to an obstacle
problem for an ODE operator. The solution of the limit problem can take negative values even if, for
any ¢, in the original problem, the solution is non-negative on the boundary of the perforations or
particles.

1. INTRODUCTION

The present paper continues the studies started in [5], [7] for dimensions n > 3 to the case of a
domain © C R%. Here, we consider the homogenization problem for the Poisson equation in a pla-
nar domain that is obtained by the removal of tiny particles of different geometrical shapes with a
constant perimeter and a uniformly bounded diameter on the boundary of which the dynamic uni-
lateral Signorini condition is imposed. It contains a term that depends on the diameter of the basic
cell, € > 0. The homogenization of the problems with the Signorini conditions of the form u. > 0,
e + ale)o(ue) = 0, ue(Opue + a(e)o(us)) = 0, (where o(u) is a function of the problem’s solution)
specified on the boundary of the perforations was studied in many works [3], [4], [8]. In the paper [§],
it was proved that for the «critical» values of the problem’s parameters, the so-called «strange term»
(see, e.g. [2]) appears in the homogenized model. It has the form AH(ul) — Bug, where H(u) is
the solution to some functional equation in the case when the perforations or particles are balls, and
in the general case H(u) is defined as a solution to some exterior boundary value problem and it is
a new non-linear term in the effective equation, moreover, it depends only on the positive part of a
solution to the homogenized problem. In contrast to the aforementioned papers, in the present paper
(where we assume o = 0 for simplicity), the «strange term» is a non-local in time non-linear monotone
operator defined as a solution to an obstacle problem with an ordinary differential operator, moreover,
it is applied not only to the positive part of a solution ug, but also to the negative part u,. Note
that the paper [3] studies the homogenization problem in the exterior of the periodically distributed
particles of the critical size with the classic Signorini boundary conditions, i.e. with the conditions of
the form u. > 0, (A(z/e)Vue,v) > 0, uc(A(z/e)Vue,v) = 0, for an elliptic operator in the divergence
form with rapidly oscillating coefficients. It was shown that the term of the form pu, appears in the
homogenized problem, for some measure p which is not well identified.

The paper [18] is devoted to the homogenization of boundary value problems in domains perforated
along (n — 1) — dimensional manifold without the condition of periodicity of the location of particles
removed from the domain. In the above work, the non-critical values of the problem’s parameters are
studied.

We also draw the difference between the results of the present paper and the case of «big» particles that
have a radius of order e. The paper [11] studied the homogenization problem for the elliptic operator
with the rapidly oscillating coefficients specified in the exterior of the particles of the size of order ¢
and the classic Signorini boundary conditions. It was shown that the solution to the homogenization
problem is always non-negative. Using the results from [12] and [13], it is easy to show that for a
domain perforated by sets of the size of the order that equals the period of the structure the solution
of the homogenized problem will also be a non-negative function. Moreover, when the big particles
have the same shape, the limit problem depends strongly on the shape and so the effectiveness can be
optimized by choosing some suitable shapes against others: see, e.g [15].



Figure 1. The perforated domain 2. and the set of perforations Ge.

2. PROBLEM STATEMENT AND SOLUTION ESTIMATES

Let Q be a bounded domain on the plane R? with a smooth boundary 9Q, ¥ = (—1/2,1/2)? and
A1, As, ..., are different domains with Lipschitz boundary lying in the ball Tlo/4 of the radius 1/4 with
the center in the coordinates origin. Suppose that for an arbitrary index i = 1,2,... the set A; is
diffeomorphic to a ball and |0A;| = I, where | = const > 0 is independent of 7. It is also possible
to consider the inclusions composed of a finite number of sets diffeomorphic to a ball with the total
boundary length equals to [.

For a set B and a positive number &, we denote 6B = {z : 5z e B}. Let € > 0 be a small parameter
and Q. = {z € Q: p(x,00N) > 2¢}.

Assume that

lim B(e)ace™? = Cf, (1)
e—0
and
. 1 2
lim ———— = —C5, (2)

e=0 f(e)ac In(2=)

where C1,C2 # 0. For example, the conditions (1) and (2) are satisfied if a. = sexp(—:—j), Be) =
Eexp(‘:—j), a#0.

We define
Gl=a.G' +¢ej, G-= | G,
jeTs
where G? coincides with one of the sets A;,5=1,2,...,, Yc ={j €Z*: GI C Y =Y +¢j,G4 NQ. #*

0}, |Ye| =2 de™2, d = const > 0.
We point out that the choice of G as one of the isoperimetrical sets A; can be made randomly,
nevertheless, our treatment is different from the important study made in [16].

Note that
GlcTi C T!,, CYZ,
where TY is a ball of radius 7 with the center in the point P = ¢j.
Define the sets
Q: = Q\Ge, Sc = 9G., 99 = S o9, )
QI =Q.x(0,T), T >0, =5. x(0,T), I =90 x (0,T).

Note that €. is a perforated domain that has a non-periodic structure in general. Figure 1 depicts an
example of such a domain.
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We consider in Q7 the initial boundary value problem with the dynamic Signorini conditions specified
on the boundary of the inclusions

_ACCUE = f(l’, t)? (lf,t) S ng
ue =0, (z,t) € ST,
B(e)0ue + dyue > 0, x,t) € ST 4
ue (B()Osue + pue) =0, (a,t) € ST, )
ue(z,t) =0, (x,t) €T,
ue(z,0) =0 r € Se,

where f € H'(0,T; L*()), v is outward normal vector to the boundary SZ.
By H'(Q.,09), we denote the closure in H'(£2.) of the set of the infinitely differentiable functions in Q.
vanishing near the boundary 9Q. The spaces L*(0,T; H'(Q,0%)), L*(0,T; L*(S:)), H*(0,T; L*(Q))
that are used below, are defined by standard means (see. [19], [20]).
We introduce the convex closed sets

He={v e H (Q,00) : v >0 for a.e.x € S:},

Ke={ve L*0,T; H' (Q,09)) : v(.,t) € # for ae. t € (0,T)}.

We say that the function u. € K. such that dyu. € L?(0,T;L*(S:)) and ue(x,0) = 0 is a strong
solution to the problem (4) if for an arbitrary function v € K. it satisfies the inequality

T

B(e) //&ug(v — uc)dsdt + / VueV(v — ue)dzdt > / f(v — ue)dzdt. (5)
0 S et QT
Theorem 1. There exists a unique strong solution uc(z,t) to the problem (4) and it satisfies the
estimates
lluell L2 0,101 (20 + VBENUelloqo,min2s0y) < KllfllLz 0,020 (6)
and
VBENOuellL20,1,L2(5.)) + 1 VUueslicgo, ez @0y < Kllfllatorme2@) (7)
Proof. Tt closely follows some ideas in [5] and [6]. We consider an auxiliary problem with a penalty
term
—AU&(; = f(ﬂ?,t), (m’ ) € QZv
B(g)atua,é + auus,é + ﬂ(5)5_1(us,5)_ =0, (Qi’,t) € Sga (8)
ue,5(x,t) =0, (z,t) €TT,
Ue,5(x,0) =0, z € S,
where § = const > 0 is a parameter, v = sup(0,u), v~ = u — u". Note that the function o(u) = u~

is monotone.
We say that a function u. s € L?(0,T; H'(Qe, 0Q)) is a strong solution to the problem (8), if dyue s €
L?(0,T; L*(S:)), ue,s(x,0) = 0 as « € Sc, and if it satisfies the integral identity

T

T
B(e) / / Orue svdsdt + / / Ve s Vodzdt+
0 Se

0 Q¢

T
+6718(e) / / (te,5) " vdsdt = / fudadt, (9)
0 S. QT

where v is an arbitrary function from L?(0,T; H'(Qe,09)). The results of the paper [6] imply that
the problem (8) has a unique solution and the following estimates hold

||us,5||L2(o,T;H1(QE)) +/B(e) eSS[SUI]) ||ua,6\|L2(se) < KHfHLz(O,T;LZ(Q))v (10)
te[0,T
vV 5(5)”('“6,6)7 HLZ(O,T;LZ(SE)) < K\féﬂf”L?(o,T;L?(Q)w (11)
VB(E)Okue,slL2(0,1;02(5.)) + 655[51;1}) IVuesllLz oy < Kl fllaro,r02@))s (12)
te|0,

where the constant K is independent of € and §.
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From the estimates (10)-(12), we conclude that there exists a subsequence (we preserve the notation
of the original sequence for it) such that, as § — 0,

ues — ue weakly in L?(0,T; H' (e, 00)),
Ue,5 — ue strongly in C([0,T]; L*(S.)),
Orue s — Oru. weakly in LQ(O,T; LQ(Se))7
(ue,5)” — 0 strongly in L*(0,T; L*(S.)).

(13)

Now, we show that u. is a solution to (4). Taking into account that (ues)~ — 0 in L?*(0,T; L?(S:))
as § — 0, we get ue > 0 for a.e. x € Se and t € [0,T7, i.e. us € Ke.
Let v € .. From the integral identity (9), we derive

T T

B(e)//atugy(;(v—ug,(;)dsdt—i—//Vug,gV(v—ue,(;)dsdt—t—
s

0 0 Q¢
(14)

T

+5715(5)//(u5,5)7(v — Ue,s)dsdt = / f(v — ue s)dxdt.
0 Se Qg‘

According to (13), as § — 0, we have

T T

g%ﬁ(s)//atug,g(vfua,a)dsdt:ﬂ(s)//ﬁtug(vfus)dsdt, (15)
0 Se 0 Se
T

T
lim//VuE,(sV(v—uE,(s)dxdt < //VuEV(v—ue)dwdt. (16)
0 Q 0 Qe

6—0

It is easy to see that

T T T
//(ug’g;)*(v — Ue,5)dsdt = //(uag)*vdsdt - //|(u5,5)7|2dsdt < 0.
0 Se 0 Se 0 Se

Therefore, u. € K. satisfies the inequality (5) for an arbitrary function v € ..

Now, we prove that a solution to the problem (4) is unique. Suppose that there are two solutions
u1,e u2,e € Ke, and both satisfy the variational inequality (5). Taking v = ug, in the inequality for
U1,e, and v = u1, in inequality for ua ., we sum the obtained inequalities and get

T

B(e) //Bt(m,s —uz,e)(u1,e — uz,e)dsdt+
0 Se
. (17)
+//|V(u175 —ug.)Pdadt <0,
0 Q.
which implies that u1,. = ug, a.e. in Q7.
O

It is well known (see [10]) that there exists a linear extension operator P : H(Qe, 0Q) — H(Q) such
that

||(P6U)HL2(QE) < K”VUHL?(QEw ||Peu||H3(Q) < K”uHHl(Qg,BQ)u

where K > 0 is a constant independent of €. The estimates (6), (7) imply
||PEUEHL2(O,T;H5(Q)) <K, (18)
hence, for some subsequence (we preserve the original sequence notation for it), as ¢ — 0, we have

P.u. — ug weakly in L*(0,T; Hg (2)). (19)
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3. STATEMENT OF THE MAIN RESULT AND TEST FUNCTION CONSTRUCTION

Theorem 2. Let a., B(e) satisfy conditions (1), (2) and let u- be a solution to the problem (4). Then,
uo is the unique weak solution to the problem

—Aug +27CFC3 (uo — Huo) = f(x,t), (x,8) € QT =Qx (,T),
u($7t) =0, ( ’ ) € aQ X (07 )
Huo = 07 6tHu0 + [fHug = £u07 (20)
Hug (8tHu0 4 L(Huy — uo)) -0, (z,1) € Q7,
H,,(z,0) =0, z €,

where £ = 272 | = |9A;], j=1,2,....

Remark 1. To construct the «strange terms» Hy, (that does not appear in the case of big perforations
or particles) in the homogenized problem (20), we need to solve the variational inequality for an ordinary
differential operator

LHy+LHy > Lo, Hy >0,
Hy(LHy+ LHy — L§) =0, te(0,T), (21)
Hy(0) =0.
The papers [5] and [7] studied that problem and the properties of the operator H : L?(0,T) — L*(0,T),
H(¢) = H,, where ¢ € L*(0,T), Hy is the solution to the problem (21).
It is known (see. [5], [7]) that for every ¢ € L?(0,T) there exists a unique function H, € H'(0,T)
satisfying the variational inequality

T T
/H (U7H¢dt+£/H¢U7H¢ ﬂ/d)U*Hq; (22)
0 0

where v is an arbitrary function from the space L*(0,T) such that v > 0. Also, Hy4(0) = 0, Hy(t) = 0
for every t € (0,T). The inequality (22) is the variational formulation of the problem (21).

We present the properties of the operator H, that were studied in the paper [7], in the following
theorem.

Theorem 3. Let the operator H : L*(0,T) — L*(0,T), that maps a function ¢ into the solution of
the problem (21) Hy. Then, H is Lipschitz continuous and monotone. In other words, for arbitrary
functions ¢ and v from L*(0,T) and related to them solutions of the problem (21), Hy and Hy, we
have the inequalities

T
1Hy — Hyllz201) < 116 — 9l 201, /HwHw (6 — $)dt > 0. (23)
(0]

Remark 2. Taking into account the properties of the operator H given in Theorem 3, the homogenized
problem (20) has a unique solution uo € L*(0,T; H () understood in the sense of the integral identity

T

//VuOVvdmdtJrQTrClCQ//uof H(uo))vdzdt = //fvd:vdt (24)

0 0

where v is an arbitrary function from L*(0,T; Hy(Q)). The proof is the same that is in the Proposition
2 of [5].
Let H} _(t), (j € Y ) be a solution on (0,T’) to the problem

%Hi,& + l"jHj,s 2 £¢(st7t)7 Hgb,s 2 07
H) (& H) + LH,  — L(PL,1)) =0, (25)
Hé,s(o) = 07

where ¢(x,t) = ¥(z)n(t), v € CF (), n € C*([0,T]) are arbitrary, z € Q is a parameter in the

problem (25).
To construct the test function, we need to define two auxiliary capacity type problems

Agl =0, 966T7/4\G57 @ =12€8G; ¢ =0, xe@T/4, (26)

and
Aw? =0, :EETJM\T%; wl =1, 2€dT]_; wl =0, xeaTg/4. (27)
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Define the function R
qu xeTg/zl\Gg:JETEa
¢ =q 1 TGt jE e, (28)
0, z € R™\ UjeTE Tsj/47

and ] ) —
wl, weT! \Ti,jeT.,
We = 17 T e TL{57 .] € TE7 (29)
0, WS Rn\UjeTE Tej/4'

Note that the solution to the problem (27) is given by
ln(%)

(%22
where we denote r = |z.
The following result is special for dimension n = 2 and it is the key point of several arguments which
will be used later.
Theorem 4. Let n = 2. The following inequality is true,

lwe = gell g1 (o) < Ke, (30)

where the constant K here and below doesn’t depend on €.

The proof of this theorem is given in [14]. It is easy to see that w. — 0 and g. — 0 weakly in Hg(Q)
as ¢ — 0. Notice that in the random framework used in the paper [16], it is assumed that we. = g..
So, in this sense, our approach is more general since only the perimeter must be the same.

We introduce an auxiliary function

@ (2)($(w,t) — H} (), =eT \GL jeT.,
0, z € R"\Ujer, T4
Taking into account properties of the functions we, ¢ and Hi)s, we get P. W, 4 — 0 weakly in H(QT)

as € — 0.
During the proof of the Theorem 2 below, we will use the «oscillating test function»

We ¢(z,t) = { (31)

v=¢(z,t) = Weo(2,t) (32)
in the variational inequality given by (4). Note that v € K.. Indeed, for z € G, t € [0,T], we have
v(a,t) = g(x,t) — d(x,t) + H} () = H} () > 0.

4. PROOF OF THE THEOREM 2

Proof. As u. satisfies the variational inequality (5), then wu. also satisfies integral inequality of the
following form

T T

//VUV(U — ue)dxdt + S(e) /S[ Orv(v — ue)dsdt > (33)

0 Q. 0

T
1 2
> [ [ #0 - uoydade = Jpe) ot 0)Facs,

0 Q¢

where v is an arbitrary function from K. such that d;v € L*(0,T; L*(S.)). _
In this inequality, we take v as the function given by (32). Taking into account that v(z,0) = H} _(0) =
0, we derive

T
//V(¢> W)V — Wey — u)dadit

0 Q.

+8(e) X / / OH, (V) (H] , — u)dsdt > (34)

JEYe i
0 a1

> /T / F(6 = W — ue)dadt.

0 Q.
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Using that W 4 — 0 weakly in H*(QT) as ¢ — 0, we have

;%O/Tlf(¢—we,¢—ug)dxzo/:/f@—uo)dxdt.

Analogously,

;%/T/quv(qﬁ — We.p — ue)dadt = O/TQ/V¢V(¢ — wg)dadt.

0 Q¢

Using the definition of We 4 and Theorem 4, we get

T
//VWE@V((? — We,6 — ue)dxdt =

0 Q.
T
=3 [ [ Gt - HL0ET @0 - W - uo)dudst
7€Te o Tj/4\?§
+> / / EVIV (b — We p — ue)dzdt =
JGTE 0 o
TZ)a\G
T
S [ Va0~ H ()6~ W — u)dude + . =
i€ i \or
6/4\G5
T
= [ [ V@ a0 — )6~ W — )i
JETeD Taj/4\CTé
T
+ _Z / / VwlV((¢(PLt) — H ()¢ — Weyp — ue))dadt + ke =
JETe0 Tsj/4\CT§
T
= Z / / Vw!V((¢(PL,t) — H ())(¢ — We,p — ue))dadt + 0. =
5/4 ae

=J: + 6.,
where 0. — 0 as € — 0,
=y / [ VTR ) L (0)(6 ~ We o)t

JEYe 0 o
/4\T(1

By using that 9, w? =2 9l =——1  _  we have
y g & j 7 € j b
., < 1n(4“5) 0Ta, ae h,(‘h%)

4 J
= gln( Z// S(PL,t) = H (6))(6(x, 1) — ue)dsdt—

e ) i€Yey
or? ,

() / [ P20~ )01 .~ s

]ETE 0 ord_

Qe
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Next, we use the estimate derived in [14].

> / /(¢(P§vt)—Hf;,g(t))(as(x,t)—ug)dsdt_

JEYe i
0 561

7% Z/ / (6(P2,1) — HI_(0)(8(a, 1) — ue)dsdt| < Kaze™.

jexe 0 a1
ag

Due to conditions (1) and (2), the right-hand side of the estimate (38) converges to zero as € — 0.
From the estimate (38), we derive

—1) S [ [ @R i 00— s =

Qe ln( e ) I€Teh ooy
T
{ B(e) - / / (G(P2,t) — HI, )(HD (t) — u.)dsdi+
/B(E)a ln( ‘15) JEY: o1
7 (39)
2w B(e . . )
" C > [ [ @ — 0 (0 — wdsar} -
1B(e)ac In ;) i€y 2
8(e) [
2mf(e i i i
— 2O S o) — (0 (1)~ uodsdr =
18(e)a. 1n( z ) =R
=DBi1.+ B2
According to (38), we have lir% B, = 0. Considering (2), we derive
E—>
lim B2’E =
e—0
GBE) v | (40)
. 2nC2B(e , - ,
— ting 2P 57 o2 0) — ] (] (1)~ w)dsdt) =0
JE€Ye Py
Taking into account (39), (40) and (34), we collect the integrals over Sc, and get
T
Ble) Y. / / O HY, (t)(H, . — uc)dsdt+
I Had
GBBE) s [
27 € i i i
2RI S [ [ - o2 ) (] (0) — we)dsit) = (41)
I Had
T o
. 2 . . .
= fB(e) Z / / (@Hi,e + ”l 2(H),, — ¢(PL, 1) (HY,, — uc)dsdt < 0.
€Ty )t

For the integrals over 0T E] /4 We have the convergence "from length to surface averaging" (see. [5])

T
lim

5;0(_$4a5)) Z / / (HY, . — ¢(PL,t))(HS , — uc)dsdt =

€

(42)
=21CiCh / / (Hy — ¢)(¢ — uo)dxdt.
0 Q
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The inequality (34) and (35)-(42) imply that ug satisfies the inequality

T

/ / VOV (6 — uo)dwdt + 2 CiC3 / / (¢ — H(6)) (¢ — uo)dadt >

’ , (43)

> [ Q/ £(6 — wo)dadt,

0

where ¢ is an arbitrary function from L?(0,T; Hg(€2)). Now, using the continuity of the operator H,
we can prove that ug is a unique weak solution to the problem (20). Indeed, to show this, we substitute
¢ = uo + Aw, where w € L?*(0,T; H}(Q)) is arbitrary, A > 0, and pass to the limit as A\ — 0 in the
integral inequality. Thus, we get that the function uo exactly satisfies the integral identity (24).

O
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