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Abstract

We consider a nonlinear system of coupled ordinary differential equations (representing
the excitatory, inhibitory, and T-cell potentials) based on the Gate Control Theory of Pain,
initially proposed by R. Melzack and P.D. Wall in 1965, and later mathematically modeled
by N.F. Britton and S.M. Skevington in 1988. Our main results focus on an optimal control
problem associated with this model, where the short frequency, understood as a bounded
time-dependent function, is treated as the control variable. The cost function accounts for a
person’s pain at a given final time and incorporates additional criteria. We demonstrate the
uniqueness of the optimal control and establish the bang-bang nature of the control. In a
previous section, we extend the mathematical analysis of the model developed by Britton and
Skevington by presenting a series of mathematical inequalities. These inequalities strengthen
the model’s alignment with the principal requirements for reproducing the core structure of
Pain Theory.
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bang-bang optimal control, monotone dependence of solutions on the data.
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1 Introduction and some preliminaries

The purpose of this paper is to analyze an optimal control problem associated with the so-called
”Pain Gate Theory” proposed in 1965 by R. Melzack and P. Wall ([MW1]) and later confirmed
and extended in their 1982 revision (see [MW2]). A mathematical model related to this theory
was proposed by N.F. Britton and S.M. Skevington [BS] (see also the review[Na]). This theory
forms the basis of the so-called ”neurostimulators,” devices implanted in patients with chronic pain
to alleviate their discomfort. Our mathematical study consists of two parts. In the first part, we
demonstrate that, under appropriate structural assumptions, the corresponding coupled system has
a unique solution. Additionally, we analyze various qualitative properties of the solutions, focusing
particularly on their continuous and monotonic dependence on the data. In the second part,
we examine the optimal control problem associated with the equation below for the potentials
V(t) =

(
VE(t),VI(t),VT(t)

)t
, considering the short frequency xs as the control variable. The

system under consideration can be expressed as follows:
•
V(t) = f

(
V(t), xs(t)

)
, 0 ≤ t,

V(0) = V0,
(1)

where V0 = (VE0,VI0,VT0)
t and

f
(
V, xs

)
=


(
−VE +VE0 + gsE(xs)

)
τ−1
E(

−VI +VI0 +GT(VT +CI

)
τ−1
I(

−VT +VT0 −GI(VI) + GE

(
VE

)
+ gsT(xs) + glT(xl)τ

−1
T

 (2)

1
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(see more details in (18) and (24) below). The formulation as an optimal control problem arises
from minimizing a functional in which the pain at the final time is assumed to be an increasing
function of the VT(tf ) potential (for a given final time tf > 0))

W(V0)
.
= min

xs∈U
JV0(xs), JV0(xs)

.
=

∫ tf

0

(
1

2
|VT(σ)|2 −QgsT

(
xs(σ)

)
dσ + S

(
VT(tf )

)
. (3)

Here, the set of controls is given by U = L∞(R+ : [xs, xs]
)
, Q is a given positive constant, and S is

a C1 function satisfying 0 < S′− ≤ S′
(
VT

)
≤ S′+. From a practical point of view, and as is common

in Control Theory, the first term of the functional JV represents the ”cost of the state” (which,
indirectly, implies that we aim to minimize the electrical energy). The second term represents a
quantitative measure of pain at a prescribed (but arbitrary) fixed final time.

This functional is not convex with respect to the control due to the nonlinearity of the state
equations; thus, the uniqueness of the minimum is not guaranteed by the abstract theory. Nev-
ertheless, we will prove that the Pontryagin Principle applies. Consequently, we will demonstrate
the existence of a ”bang-bang” type control and explicitly characterize the unique control that has
a single point of discontinuity.

The organization of this paper is as follows: Section 2 is devoted to a description of the
modeling, leading to the coupled system under consideration. The well-posedness of such a system
and, especially, the monotonicity properties of the components of the solution with respect to
the data are presented in Section 3, where we provide several quantitative estimates that give a
sharper formulation of some of the results in [BS]. We also present a series of figures showing the
simulation of some special cases using MATLAB. Finally, Section 4, containing the main results of
this paper, is devoted to the study of the optimal control problem.

We mention that our mathematical approach to this model contains several improvements over
the important paper by [BS], and, for instance, includes a series of figures resulting from some
MATLAB approximations. Moreover, the consideration of the associated control problem is entirely
new compared to the previous literature on the model. Clearly, the consideration of the control
study of the model leads to a very useful methodology in this process since it can be adapted to
each patient in a more singularized way (physical characteristics, pain sensitivity, etc.).

2 On the mathematical model

The key ideas for the construction of a mathematical model related to pain were presented in the
seminal paper by N.F. Britton and S.M. Skevington in 1988 [BS]. As stated in that work (where
some earlier references are cited), any theory of pain must be able to account for the following
observations: (i) Increased stimulation of the small nerve fibers in the skin usually increases pain.
(ii) Increased stimulation of the large nerve fibers may increase pain temporarily, but in the long
term, it may relieve it. (iii) Pain relief can be achieved through electrical stimulation of the grey
matter in the midbrain. (iv) Injuries that would normally cause severe pain sometimes cause little
or no pain, or the onset of pain is delayed. (v) In some cases, the anticipation of pain is enough to
raise anxiety levels, thereby intensifying the perception of pain.

The mathematical model used in this paper is built on the above ideas and can be sketched as
indicated in Figure 1: firing frequency x in the pathways due to a firing frequency xs, in the small
fibers and xl in the large fibers of the considered area of skin. We will assume that the frequency of
the outputs from the cognitive control and the descending inhibitory control are strictly increasing
functions of the inputs, i.e.,

descending inhibitory control︷ ︸︸ ︷
xd = φ(xT) ,

cognitive control︷ ︸︸ ︷
xc = ψ(xl) , (4)

with φ, ψ strictly increasing such that φ(0) = 0, ψ(0) = 0.
Following the ideas of Wilson & Cowan (1972) [WC], we will assume that each T-cell is stimu-

lated by one large and one small afferent nerve fiber from the skin, as well as one inhibitory and
one excitatory SG cell (substantia gelatinosa). We will use the potentials of the T-cell, VT, and
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Figure 1: Basic design of the pain gate

those of the inhibitory and excitatory SG cells, VI and VE, respectively. The frequencies xI and
xT at which these cells fire are functions of the slow potentials.

xT = fT(VT), xI = fI(VI), xE = fE(VE). (5)

We assume that these functions vanish for suitable values of V smaller than a certain threshold
Vu and are strictly increasing for values larger than the threshold.

fk(V) = −L
(
V −Vuk

)
+
, V ∈ R

(
r+

.
= max{r, 0}

)
,

(see Remark 2 below).

The potentials V are assumed to depend on the frequencies of impulses arriving at their den-
drites from various sources. We will also assume that the properties of the dendrites are constant
over time. According to An der Heiden [An], the effect of an input frequency xj to an excitatory
or inhibitory synapse of a cell with potential Vk will be to raise it by

Φjk = αjk

∫ t

−∞
hjk(t− τ)g[xj(τ)]dτ, (6)

with αjk = 1 for an excitatory and −1 for an inhibitory synapse. Here, hjk is a positive mono-
tone decreasing function, and gjk is a bounded strictly monotone increasing function such that
gjk(0) = 0. A simple choice for hjk corresponds to when it is associated with an RC-network
composed of resistors and capacitors.

Ck

•
hjk(t) +

hjk(t)

Rk
= 0 ⇒ hjk(t) = hjk(0) exp

(
− t

RkCk

)
. (7)

In that case, the total input effect on the cell k is of the form

Vk =

initial potential︷︸︸︷
Vk0 +

synapse effect︷ ︸︸ ︷∑
j

Φjk , (8)

where we have iterated over the inputs j arriving at or departing from the cell k.

From (6) and (7), differentiating (8) we get

•
Vk =

[∑
j

αjkhjk(0)gjk(xj)−
1

RkCk

Vk−Vk0︷ ︸︸ ︷∑
j

Φjk

]
. (9)
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Taking hjk(0) =
1

τk
, with τk = RkCk (a membrane constant), the dynamics of the potentials

are given by 
τE

•
VE = −(VE −VE0) + gsE(xs),

τI
•
VI = −(VI −VI0) + glI(xl) + gdI(xd) + αcIgcI(xc),

τT
•
VT = −(VT −VT0) + gsT(xs) + glT(xl) + gET(xE)− gIT(xI).

(10)

Here, αcI ∈ [−1, 1] is a cognitive control, which is positive for an excitatory input, negative for an
inhibitory input, and zero for no input from the cognitive control. For a deeper understanding of
the coefficients’ meaning (and, in particular, why alpha is associated with the intensity of cognitive
control), we send the reader to [BCS] and its references.

According to (4) and (5), we obtain the nonlinear system modeling the dynamics of the poten-
tials V = (VE,VI,VT)

t in terms of the known inputs xs and xl.
τE

•
VE = −(VE −VE0) + gsE(xs),

τI
•
VI = −(VI −VI0) + glI(xl) + gdI

(
φ
[
fT(VT)

])
+ αcIgcI

[
ψ(xl)

]
,

τT
•
VT = −(VT −VT0) + gsT(xs) + glT(xl) + gET

[
fE(VE)

]
− gIT[fI(VI)],

(11)

assuming that we prescribe an initial behaviour V(0) =
(
V0

E,V
0
I ,V

0
T

)t ∈ R3. In particular, the
equation

τT
•
VT = −(VT −VT0) + gsT(xs) + glT(xl) + gET

[
fE(VE)

]
− gIT[fI(VI)], (12)

collects the action of the frequencies xs and xl, as well as the potentials VI and VE, of the inhibitory
and excitatory SG cells on the variation of the potential VT of the T cell (see the illustrations in
Figures 4 and 5 below).

Remark 1 In 1996, N.F. Britton, M.A.J. Chaplain, and S.M. Skevington (1996) added to the ”Gate
Control Theory of Pain” a variant that takes into account the so-called wind-up mechanism, in
which certain receptors (the N-methyl-D-aspartate, NMDA), which are highly relevant in pain
sensitivity, reactivate the process (wind-up) (see [BCS]). Along with (11), they introduced a new
unknown, Vm, modeling the mid-brain input potential, and a new frequency, xm = fm(Vm). The
new system becomes

τE
•
VE = −(VE −VE0) + gsE(xs,VE),

τm
•
Vm = −(Vm −Vm0) + gmT(xT),

τI
•
VI = −(VI −VI0) + glI(xl) + gmI(xm),

τT
•
VT = −(VT −VT0) + gsT(xs) + glT(xl) + gET(xE)− glT(xI)− gmT(xm).

(13)

By using the frequency potential’s dependence

xT = fT(VT), xI = fI(VI), xE = fE(VE), xm = fm(Vm), (14)

we get the nonlinear system modeling the dynamics of the potentials V =
(
VE,Vm,VI,VT

)t
in

terms of the known frequencies xs and xl, assuming the initial behaviourV(0) =
(
V0

E,V
0
m,V

0
I ,V

0
T

)t
,

similarly to what was done for (11). Notice that now the equation

τT
•
VT = −(VT −VT0) + gsT(xs) + glT(xl) + gET

[
fE(VE)

]
− gIT[fI(VI)]− gmT[fm(Vm)], (15)

collects the action of xs and xl, as well as VI, VE, and Vm, on the variation of the potential VT

of the T cell. The qualitative treatment of both systems is quite similar. In our presentation, we
have chosen system (11) since it is easier to understand, but very slight changes lead to similar
results for the other system. 2
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3 Dynamic of the states of the control problem

In this section, we will study the dynamics of the states V =
(
VE,VI,VT

)t
of the system (11),

assuming the controls of the problem are known. We can reformulate the system in vector form as

•
V(t) = f(V(t)) (16)

with

f(V) =


(
− (VE −VE0) + gsE(xs)

)
τ−1
E(

− (VI −VI0) + glI(xl) + GT(VT

)
+ αcIgcI

[
ψ(xl)

])
τ−1
I(

− (VT −VT0) + gsT(xs) + glT(xl) + GET(VE)−GI(VI)
)
τ−1
T

 (17)

by assuming the given strictly increasing and bounded functions

GT(VT)
.
= gdI

(
φ
[
fT(VT)

])
, GE(VE)

.
= gET

[
fE(VE)

]
and GI(VI)

.
= gIT[fI(VI)]. (18)

Such functions depend on the choice of αcI ∈ [−1, 1] and the frequencies xs and xl. We will make
the following assumptions.

(F) fk ∈ C(R,R+) ∩ C1((Vuk,∞) : R+), with fk(s) = 0, for s < Vuk, for some threshold Vuk,
and fk(s) is strictly increasing for s > Vuk.

(G) For any j, k, the functions gjk ∈ C1(R+,R+) are bounded and strictly increasing such that
gjk(0) = 0.

(H) The functions φ,ψ ∈ C1(R,R+) are strictly increasing and such that φ(0) = ψ(0) = 0.

(I) xs ∈ L1(0, tf ;R).

The following result extends the similar version obtained in [BS] to the case of time-dependent
small frequencies.

Theorem 1 (Existence and uniqueness of solutions) Under conditions (F), (G), (H) and (I) there
exists a unique absolutely continuous solution on the interval [0, tf ], for any arbitrarily fixed tf > 0,
to the initial value problem. Moreover, this solution is bounded for any t ∈ [0, tf ].

Proof. Function f(V) is continuous and all the terms of the gradient matrix

DVf(V) =

 −τ−1
E

−τ−1
I g′dI

(
φ′[f ′t(VT)

])
τ−1
T

g′ET[f
′
T(VE)]

)
−g′IT[f ′I(VI)]

)
−τ−1

T

 (19)

are bounded, so the function f(V) is, in fact, globally Lipschitz continuous. Thus, the existence and
uniqueness of solutions follow from the Picard-Lindelöf Theorem, even if the frequency data are
discontinuous but belong to some suitable space, such as xs ∈ L1(0, tf ;R) (see, e.g., [BP, Theorem
3.2.1]). On the other hand, it is straightforward to obtain the following inequality estimates∣∣τk •

Vk(t) + Vk(t)
∣∣ ≤ Mk ⇒ |Vk(t)| ≤

∣∣Vk(0)−Mk

∣∣e− t
τk +Mk ≤

∣∣Vk(0)−Mk

∣∣+Mk

for some positive constant Mk, which depends only on the data. 2

Remark 2 Following the reference [BCS], it is relevant to illustrate the results for the choice of

fk(x) = − K

Vk0

(
x−Vuk

)
+
, x ∈ R,

where K is a positive constant and Vuk is the pain threshold associated with the potential Vk. For
the sake of presentation, in the next examples, we will always take Vu = −55. We will also take
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gjk(x) = cjk tanh(x), with cjk ∈ R+ (see [BCS]). In addition, in all the following examples, we
replace assumption (I) with the simpler case

xs is constant in time. (20)

Finally, we will consider the simple cases φ(x) = xn and ψ(x) = xm for some odd exponents n
and m. 2

Notice that from (17) we get that the excitatory potential is uncoupled:

τEV̇E = −(VE −VE0) + gsE(xs)

More precisely, assuming (20) we obtain

VE(t) =
(
VE(0)−VE(∞)

)
e
− t

τE +VE(∞), t ≥ 0, (21)

with
VE(∞)

.
= VE0 + gsE(xs), (22)

In other words, the stationary excitatory potential depends solely on the corresponding initial
potential and the short frequency.

An example (following the special case indicated in Remark 2) of the qualitative behavior of
solutions derived from the above-mentioned a priori estimates is shown in Figure 2 below. The

Figure 2: Qualitative representation of the potentials VI,VE y VT

following series of technical results are generalizations of similar statements made in [BS], but
expressed only in qualitative terms:

Theorem 2 Assume (20). Then the dynamical system associated with (17) has a unique stationary
state V(∞) =

(
VI(∞),VE(∞),VT(∞)

)
. Moreover, the property Vuk ≤ Vk(∞) holds for all the

potential components.

Proof. Once we obtain the result for VE(∞) (see (22)), the rest of the components of the stationary
potential

(
VI(∞),VE(∞)

)
, with VI(∞) > VuI and VT(∞) > VuT, are solutions of the system{

−(VI −VI0) + glI(xl) + GT

(
VT

)
+ αcIgcI

[
ψ(xl)

]
= 0,

−(VT −VT0) + gsT(xs) + glT(xl) + GE

(
VE(∞)

)
−GI

(
VI

)
= 0.
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We can rewrite such a system as{
VI −GT(VT) = CI,

GI(VI) + VT = CT +GE

(
VE(∞)

)
,

(23)

where the constant terms are given by{
CI

.
= VI0 + glI(xl) + αcIgci

[
ψ(xl)

]
( independent of the short frequency xs),

CT
.
= VT0 + gsT(xs) + glT(xl) (independent of the choice of αcI),

(24)

(see also (18)). It is easy to see that from the system (23) we deduce that the following scalar
equation on VT

VT +GI

(
GT(VT) + CI

)
= CT +GE

(
VE(∞)

)
(25)

has a unique solution VT(∞) since the mapping VT 7→ VT + GI

(
GT(VT) + CI

)
is a strictly

increasing function, and its range is the entire space. Then we get VI(∞) = CI +GT(VT(∞)). 2

Once again, we can illustrate the above result (following the special case indicated in Remark 2)
as shown in Figure 2.

Figure 3: Phase plain for the potentials VI and VT

The following result was obtained in [BS].

Theorem 3 ([BS]) Assume (20). Then, the stationary state V(∞) is asymptotically stable.

Proof. From (17) we consider the linearized system

•
V(t) = DVf

(
V(∞)

)
V(t)

(see (19)). The corresponding characteristic polynomial is

P(λ) =
∣∣DVf

(
V(∞)

)
− λI

∣∣
=

∣∣∣∣∣∣∣
−τ−1

E − λ

−τ−1
I − λ G′

I

(
VI(∞)

)
τ−1
I

−G′
E

(
VE(∞)

)
τ−1
T −G′

T

(
VT(∞)

)
τ−1
T −τ−1

T − λ

∣∣∣∣∣∣∣
= −

(
λ+ τ−1

E

) [(
λ+ τ−1

I

)(
λ+ τ−1

T

)
+G′

I

(
VI(∞)

)
G′

T

(
VT(∞)

)
τ−1
T τ−1

I

]
= −

(
λ+ τ−1

E

) [
λ2 +

(
τ−1
I + τ−1

T

)
λ+ τ−1

I τ−1
T +G′

I

(
VI(∞)

)
G′

T

(
VT(∞)

)
τ−1
T τ−1

I

]
.
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This polynomial has a real root λ1 = −τ−1
E and two other roots, λ2 and λ3, with negative real

parts. Then, by the Grobman-Hartman Theorem (see e.g. [Am]), we obtain the result. 2

Remark 3 Assuming (20), by applying the arguments from [CD], it is possible to prove the fol-
lowing asymptotic estimate:

lim sup
t→∞

emin{Re(λ1),Re(λ2),Re(λ2)}t∥V(t)−V(∞)∥ ∈ R+.

2

In the second part of this section, we will study the dependence of the potentials on the
parameters. The following technical result is an easy consequence of the argument used in the
proof of Theorem 2.

Lemma 1 Assume (20) and consider the identities{
VI −GT(VT) = CI,

GI(VI) + VT = CT +GE(VE),
and

{
V̂I −GT(V̂T) = ĈI,

GI(V̂I) + V̂T = ĈT +GE(V̂E),

with functions GI and GT defined in (18). Then, there exist intermediate values θT, between VT

and V̂T, and θI, between VI and V̂I, such that the following expressions hold:

VI − V̂I =

(
CI − ĈI

)
−G′

T(θT)
(
CT +GE(VE)− ĈT −GE(V̂E)

)
1 + G′

I(θI)G
′
T(θT)

(26)

and

VT − V̂T =

(
CT +GE(VE)− ĈT −GE(V̂E)

)
−G′

I(θI)
(
CI − ĈI

)
1 + G′

I(θI)G
′
T(θT)

. (27)

2

Remark 4 We point out that the expressions G′
I(θI) and G′

T(θT) are well-defined since the station-
ary potentials are beyond the corresponding threshold value. 2

The following result allows us to obtain a quantitative indication of the monotone dependence
of VT(∞).

Proposition 1 (Monotone dependence for VT(∞))
Assume (20). Then:
a) Dependence with respect to the short frequency xs. Given VE0, xl, and αcI, the
stationary potential VT(∞;xs) is a monotone function of xs with the same monotonicity as gsT(xs).
Moreover, we have the inequality[
VT

(
∞;xs

)
−VT

(
∞; x̂s

)]
+
≤
[
gsT(xs)+GE

(
VE0+gsE(xs)

)
−gsT(x̂s)−GE

(
VE0+gsE(x̂s)

)]
+
. (28)

b) Dependence with respect to αcI. Given VE0, xs and xl, the stationary potential VT(∞;αcI)
is a decreasing function on αcI. Moreover, the following inequality holds[

VT

(
∞;α1

)
−VT

(
∞;α2

)]
− ≤

(
sup
θ

G′
I(θ)

1 + G′
I(θ)G

′
T(θ)

)
gcI
[
ψ(xl)

][
α1 − α2

]
+
). (29)

Here we used the notation r+ = max{r, 0} and r− = max{−r, 0}.

Proof.
a) Given two values xs and x̂s, we consider the associated potentials VI

(
∞;xs

)
, VI

(
∞; x̂s

)
y

VT

(
∞;xs

)
, VT

(
∞; x̂s

)
, as well as the constant terms CI(xs),CI(x̂s) and CT(xs),CT(x̂s), given in

the corresponding system (23). Then (27) leads to

VT

(
∞;xs

)
−VT

(
∞; x̂s

)
=

(
CT(xs) + GE(VE(∞))− CT(x̂s)−GE(V̂E(∞))

)
1 + G′

I(ξI)G
′
T(ξT)

−
GE(V̂E(∞))

)
−G′

I(ξI)
(
CI(xs)− CI(x̂s)

)
1 + G′

I(ξI)G
′
T(ξT)

,
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for some intermediate values ξI y ξT. Since CI does not depend on xs (see (24)) one has

VT

(
∞;xs

)
−VT

(
∞; x̂s

)
=
gsT(xs) + GE

(
VE0 + gsE(xs)

)
− gsT(x̂s)−GE

(
VE0 + gsE(x̂s)

)
1 + G′

T(ξT)G
′
I(ξI)

.

Hence, the monotonicity of CT(xs) is transferred to VT(∞;xs).
b) Analogously, (27) leads to

VT

(
∞;α1

)
−VT

(
∞;α2

)
=

(
CT(α1)− CT(α2)

)
−G′

I(αI)
(
CI(α1)− CI(α2)

)
1 + G′

I(αI)G′
T(αT)

,

for some intermediate values αI y αT, where the potentials VI

(
∞;α1

)
,VI

(
∞;α2

)
and VT

(
∞;α1

)
,

VT

(
∞;α2

)
, as well as CI(α1),CI(α2) and CT(α1),CT(α2), are given in the corresponding sys-

tem (23). Thus

VT

(
∞;α1

)
−VT

(
∞;α2

)
= −

G′
I(αI)gcI

[
ψ(xl)

]
1 + G′

I(αI)G′
T(αT)

(α1 − α2),

because CT is constant with respect to αcI (see again (24)). Now, the monotonicity of the right-
hand side with respect to αcI is transferred to VT(∞;αcI) in the opposite direction. 2

As it was pointed out in Section 2, Figures 4 and 5 illustrate the above monotone dependence

Figure 4: Monotone dependence of VT with respect to xs

Remark 5 Item a) of Proposition 1 corresponds to comment (i) made in [BS] and quoted at the
beginning of Section 2. Item b) of Proposition 1 corresponds to comments (iv) and (v) made
in [BS] and quoted at the beginning of Section 2. 2

Remark 6 The biological interest of the above result is quite evident:

1. Part a) of Proposition 1 extends Lemma 5 of [BS]. Inequality (28) indicates that, under
constant pain, when the stimulation of the short fibers is slightly increased without any
other change, then, after a while, the pain felt will again be constant but of greater intensity.
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Figure 5: Monotone dependence of VT with respect to αcI

2. Part b) of Proposition 1 extends Lemma 8 of [BS]. Inequality (29) indicates that activating
the cognitive control mechanism either reduces or increases the equilibrium state of T-cell po-
tentials, depending on whether it has an inhibitory or excitatory effect. Again, assuming that
the solution of the system is the equilibrium solution, this would correspond to observations
(iv) and (v) of [BS]. 2

Remark 7 Given VE0, we can study the relative potentials VI

(
∞;xl

)
,VI

(
∞; x̂l

)
and VT

(
∞;xl

)
,

VT

(
∞; x̂l

)
, as well as the expressions CI(xl),CI(x̂l) and CT(xl), CT(x̂l) given in the corresponding

system (23). So, for αcI = 0, given xs, formula (27) leads to

VT

(
∞;xl

)
−VT

(
∞; x̂l

)
=

(
glT −G′

I(ξI)glI
)
(xl)−

(
glT −G′

I(ξI)glI
)
(x̂l)

)
1 + G′

I(ξl)G
′
T(ξl)

. (30)

For some intermediate values ξI and ξT, we can use the monotonicity of the functions glT−G′
I(ξI)glI

with respect to xl in order to analyze the dependence of VT

(
∞;xl

)
on xl. Inequality (30) extends

Lemma 6 of [BS]. Note also that inequality (30) indicates that if no type of cognitive control is
exercised, constant pain is felt, and the stimulation of the long fibers is slightly increased without
other changes; then, after a short time, the pain felt will also be constant, but of greater or lesser
intensity. This will depend on the details of the model and the level of stimulation of the short
and long fibers considered. Therefore, the Gate Control Theory of Pain can explain different
consequences following an increase in the excitation of long fibers. In particular, the possibility
that the pain increases temporarily until it stabilizes at a lower intensity would explain observation
(ii) of [BS] quoted in Section 2. It is also interesting to note that Nathan and Rudge (1974) [NR]
found that stimulating the long fibers did not always reduce the pain caused by the short fibers:
they used this fact as an argument against the Gate Control Theory of Pain. However, as we have
shown, this theory is perfectly capable of explaining such observations. 2

Remark 8 There are many possible variants. For instance, we can maintain constant the param-
eters VE0, xs, xl and αcI in order to study the dependence with respect to the function fE. Under
such conditions, we consider the potentials VI

(
∞; fE

)
, VI

(
∞; f̂E

)
and VT

(
∞; fE

)
,VT

(
∞; f̂E

)
, as

well as the expressions CI(fE),CI(f̂E) and CT(fE),CT(f̂E) given in the corresponding system (23).
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Since CI − CI = 0 and CT − CT = 0, formula (27) leads to

VT

(
∞; fE

)
−VT

(
∞; f̂E

)
=
gET

[
fE(VE(∞))

]
− gET

[
f̂E(VE(∞))

]
1 + G′

I(ξI)G
′
T(ξT)

, (31)

for some intermediate values ξI y ξT. Then

fE(VE(∞)) ≤ f̂E(VE(∞)) ⇒ VT

(
∞; , fE

)
≤ VT

(
∞, f̂E

)
follows. 2

Our last result on the dependence of the potential VT concerning the function φ. We emphasize
(25) by

VT +GI

( Gφ
T(VT)︷ ︸︸ ︷

gdI
(
φ
[
fT(VT)

]))
+CI

)
=

(independent of the potentials VI and VT)︷ ︸︸ ︷
CT +GE

(
VE(∞)

)
(32)

(see (18)). We recall the action of φ in the modeling given in (4).

Proposition 2 (Dependence of VT(∞) with respect to φ) Assume (20). Given VE0, xl, xl and
αcI, the stationary potential VT(∞;φ) depends monotonically but in the opposite sense to φ. 2

Proof. Given the functions φ and φ̂, we consider the associated potentials VT

(
∞;φ

)
and VT

(
∞; φ̂

)
.

Then

VT

(
∞;φ

)
+GI

(
Gφ

T

(
VT

(
∞;φ

))
+CI

)
= VT

(
∞; φ̂

)
+GI

(
Gφ̂

T

(
VT

(
∞; φ̂

))
+CI

)
.

holds (see (32)). By construction, we have

Gφ
T(V) > Gφ̂

T(V),

whenever φ > φ̂. So that the monotonicity of the function

V 7→ V+GI

(
Gφ

T

(
V
))

concludes the result . 2

Remark 9 Proposition 2 extends Lemma 7 of [BS]. The consequence of this result is that we can
reduce the equilibrium point value of the T-cell potential by increasing the signal from the mid-
brain (the inhibitory step-down control). Assuming that the system is in a state of equilibrium,
this shows that the pain perception is more cushioned (observation (iii) of [BS] quoted at the
beginning of Section 2). 2

We can get an analogous version of Proposition 1 but now for the potential VI(∞): it follows again
from (26).

Proposition 3 (Dependence VI(∞) with respect to the data)
Assume (20).

a) Dependence on αcI. Given VE0, xs and xl, the stationary potential VI(∞;αcI) depends
increasingly on αcI. Moreover, we have the inequality[

VI

(
∞;α1

)
−VI

(
∞;α2

)]
+
≤ gcI

[
ψ(xl)

][
α1 − α2

]
+
. (33)

b) Dependence on xs. Given xl and αci the stationary potential VI(∞;xs) depends monotonically
on xs but reversing the monotonicity of the expression gsT(xs) + gET

[
fE(VE0 + gsE(xs))

]
. 2
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Proof. Given α1 and α2, the argument used in the proof of Proposition 1, from (26), we obtain

VI

(
∞;α1

)
−VI

(
∞;α2

)
=

(
CI(α1)− CI(α2)

)
−G′

T(αT)
(
CT(α1)− CT(α2)

)
1 + G′

I(αI)G′
T(αT)

,

for some intermediate values αT and αI. Since CT(αcI) does not depend αcI (see (24)) we get

VI

(
∞;α1

)
−VI

(
∞;αI

)
=

gcI
[
ψ(xl)

]
1 + G′

T(αT)G′
I(αI)

(α1 − α2).

Then the monotonicity of CI(αcI) with respect to αcI is transferred to the function VI(∞;αcI).
b) The dependence on xs results from the identity

VI

(
∞;xs

)
−VI

(
∞; x̂s

)
=

(
CI(xs)− CI(x̂s)

)
1 + G′

I(ξI)G
′
T(ξT)

− G′
T(ξT)

1 + G′
I(ξI)

G′
T(ξT)

[
gsT(xs) + GE(VE0 + gsE(xs))− gsT(x̂s)−GE(VE0 + gsE(x̂s))

]
,

for some intermediate values ξT and ξI. Thus

VI

(
∞;xs

)
−VI

(
∞; x̂s

)
= −

G′
T(ξT)

[
gsT(xs) + GE(VE0 + gsE(xs))− gsT(x̂s)−GE(VE0 + gsE(x̂s))

]
1 + G′

I(ξI)G
′
T(ξT)

,

since CI(xs) does not depend on xs (see again (24)). Therefore the monotonicity of xs 7→ gsT(xs)+
gET

[
fE(VE0 + gsE(xs))

]
is transferred to the one of the function VI(∞;xs) but in the opposite

sense. 2

Remark 10 Note that the function xs 7→ gsT(xs) + gET [fE(VE0 + gsE(xs))] may be strictly de-
creasing for some negative values of the stationary potential VE0, even though the functions gsT(x),
gET(x), and fE(x) are strictly increasing. This occurs in Figure 6 that illustrates part b) of Propo-
sition 3. On the other hand, Figure 7 illustrates part a) of Proposition 3. 2

Figure 6: Dependence of VI with respect to xs
.
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Figure 7: Dependence of VI with respect to αcI

.

Remark 11 It is possible to get some monotone dependence results similar to the ones quoted in
Remarks 7 and 8. 2

Remark 12 The above results remain valid, with slight changes, when we replace a constant small
frequency xs by a bounded time-dependent frequency, xvs(t), verifying

lim
t→∞

xvs(t) = xs. (34)

In that case, the uncoupled equation

τE
•
VE(t) = −

(
VE(t)−VE0

)
+ gsE

(
xs(t)

)
leads to

VE(t) =
(
VE(0)−VE0

)
e
− t

τE +Ve0 +
1

τE

∫ t

0

gsE(x
v
s(r))e

− t−r
τE dr, t ≥ 0. (35)

Since gsE(x
v
s(t)) ↗ gsE(xs), as t↗ ∞, we deduce

1

τE

∫ t

0

gsE(x
v
s(r))e

− t−r
τE dr − gsE(xs)

(
1− e

− t
τE

)
=

1

τE

∫ t

0

(
gsE(x

v
s(r))e

− t−r
τE − gsE(xs)

)
e
− t−r

τE dr

and then ∣∣∣∣ 1τE
∫ t

0

gsE(x
v
s(r))e

− t−r
τE dr − gsE(xs)

(
1− e

− t
τE

)∣∣∣∣ ≤ ε
(
1− e

− t
τE

)
< ε,

assumed |gsE(xvs(r)) − gsE(xs)| ≤ ε. Then we get that VE(∞)
.
= VE0 + gsE(xs) which coincides

with the value obtained in the case of constant frequencies (see (22)). 2

Remark 13 As a consequence, all the above results concerning the stationary states remain valid
for bounded time-dependent frequencies satisfying (34). 2

Remark 14 Following [BCS], we can consider other types of frequency inputs (see Figure 10). The
mathematical analysis raises the intriguing possibility of oscillatory solutions to the equations, as
suggested by the observation behind Lemma 4 of [BS]. If such a solution exists, the VT potential
of the T-cells oscillates, causing the pain to increase and decrease rhythmically. In this case, the
model prediction would be that the transition from constant to rhythmic pain can only occur
due to a drastic variation in firing rates in the small or large fibers, assuming no change in the
descending controls. 2
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Figure 8: Representation of the potentials for time-depending frequencies

4 Optimal Control Problem

In this section, we consider the optimal control problem associated with the equation (16) for the

potentials V(t) =
(
VE(t),VI(t),VT(t)

)t
when they are controlled by the short frequency xs. Let

us emphasize the system in the following way:
•
V(t) = f

(
V(t), xs(t)

)
, 0 ≤ t,

V(0) = V0,
(36)

where V0 = (VE0,VI0,VT0)
t and

f
(
V, xs

)
=


(
−VE +VE0 + gsE(xs)

)
τ−1
E(

−VI +GT(VT) + CI

)
τ−1
I(

−VT −GI(VI) + GE

(
VE

)
+VT0 + gsT(xs) + glT(xl)︸ ︷︷ ︸

CT

)
τ−1
T

 (37)

(see (17), (18) and (24)). The formulation as an optimal control problem comes from the mini-
mization of the functional in which the pain at the final time tf > 0 is assumed to be an increasing
function of the VT(tf ) potential

W(V0)
.
= min

xs∈U
JV0

(xs), JV0
(xs)

.
=

∫ tf

0

(
1

2
|VT(σ)|2 −QgsT

(
xs(σ)

)
dσ + S

(
VT(tf )

)
(38)

(see (3)). Here, the set of controls is given by U = L∞(R+ : [xs, xs]
)
, Q is a given positive constant

and S a C1 function satisfying 0 < S′− ≤ S′
(
VT

)
≤ S′+. We emphasize that the control values

belong to the closed interval [xs, xs] ⊂ R.
As already mentioned, from [BP, Theorem 3.2.1], for each xs ∈ L1(0, tf ;R), the system (36)

admits a unique solution V(t), absolutely continuous, defined in the interval [0, tf ]. Thus, V ∈
C
(
[0, tf ];R3

)
∩W1,1(0, tf ;R3). Moreover, as proved in [BP], V(t) depends continuously on xs(·),

so that V ∈ C
(
L1(0, tf : R) : C

(
[0, tf ] : R3

))
.

Following [FR] we consider the states,V, the co-states , P, as well as the optimality Hamiltonian

H(V,P, a) = ⟨f(V, a),P⟩ − 1

2
|VT|2 +QgsT(a), (V,P) ∈ R3 × R3, a ∈ [x, x].
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Figure 9: Phase plane for some variable frequencies

The optimality Hamiltonian system is given by
•
V∗(t) = DPH

(
V∗(t),P∗(t), x∗s(t)

)
, V∗(0) = V0 ∈ R3,

•
P∗(t) = −DVH

(
V∗(t),P∗(t), x∗s(t)

)
, P∗(tf ) =

(
0, 0,−S′

(
V∗

T(tf
))t ∈ R3.

(39)

By [BP, Theorem 6.1.1], we obtain the existence and uniqueness of the solution
(
V∗(t),P∗(t)

)t
of the Hamilton system (39), as well as the existence of an optimal control x∗s ∈ L∞(0, tf ; [xs, xs]),
which may be discontinuous (see also Theorem 4 below).

Obviously, the first equation in (39) coincides with (36) at xs = x∗s. On the other hand, the

adjoint equation in (39) is the linear system on P∗(t) = (P∗
E(t),P

∗
I (t),P

∗
T(t)

)t
•
P∗(t) = A(t)P∗(t) + F(t), (40)

with

A(t) =

 τ−1
E

τ−1
I −τ−1

I G′
T

(
V∗

T(t)
)

τ−1
T G′

I

(
V∗

I (t)
)

−τ−1
T G′

E

(
V∗

E(t)
)

τ−1
T

 and F(t) = −

 0
0

V∗
T(t)


(see (39)). Whenever P∗

1(t),P
∗
2(t) and P∗

3(t) are linearly independent solutions of the homogeneous
problem

•
P∗(t) = A(t)P∗(t), t < tf , (41)

we may construct the fundamental matrix

Φ(t− tf )
.
=

 P∗
E1(t) P∗

E2(t) P∗
E3(t)

P∗
I1(t) P∗

I2(t) P∗
I3(t)

P∗
T1(t) P∗

T2(t) P∗
T3(t)

 .

Then from the constant variation formula the solution of (40) is given by

P∗(t) = Φ
(
− (tf − t)

)(
Φ−1(0)P∗(tf ) +

∫ tf

t

Φ−1
(
− (tf − s)

)
F(s)ds

)
, t < tf . (42)
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Figure 10: Other input types of frequencies

We note that the equation for the optimal co-state P∗
E(t) satisfies

•
P∗
E(t) = τ−1

E P∗
E(t), P∗

E(tf ) = 0,

whence

P∗
E(t) ≡ 0, t ≤ tf . (43)

Then (40) becomes the reduced linear system for P̂∗(t) = (P∗
I (t),P

∗
T(t)

)t
•
P̂∗(t) = Â(t)P̂∗(t) + F̂(t), (44)

with

Â(t) =

(
τ−1
I −τ−1

I G′
T

(
V∗

T(t)
)

−τ−1
T G′

E

(
V∗

E(t)
)

τ−1
T

)
and F̂(t) = −

(
0

V∗
T(t).

)

Theorem 4 (Existence of an Optimal Control) Let us assume that

the functions GT(V) and GE(V) are convex and the function GI(V) is concave (45)

(see (18)). Then there exists an optimal control x∗s ∈ L∞(x, x).

Proof. The result follows from the proof of Theorem 5.2.2 of [BP]. Essentially, it is based on the
convexity of the set

F(V) =

{
(y, y0) ∈ R4 : y0 ≥ 1

2
|VT|2 +QgsT(xs), y(t) = f

(
V(t), xs

)
, xs ∈ [x, x]

}
, V ∈ R3.

2

Remark 15 We emphasize that the above proof does not require the convexity of the functional
JV0

(xs) with respect to the control xs(·). This remark was already pointed out in [Tr]. 2
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The property P∗
E(t) ≡ 0 is very useful. Indeed, the Hamiltonian applied to the optimal states

becomes

H
(
V∗,P∗, a

)
= (−V∗

I +GT(V
∗
T) + CI) τ

−1
I P∗

I

+
(
−(V∗

T −VT0) + gsT(a) + glT(xl) + GE

(
V∗

E

)
−GI

(
V∗

I

))
τ−1
T P∗

T

−1

2
(V∗

T(σ))
2 +QgsT(a).

Therefore the Pontryagin Maximum Principle (see [FR]) implies that

H(V∗(t),P∗(t), x∗s(t)) = max
a∈[xs,xs]

H(V∗(t),P∗(t), a).

A reduced version of it leads to(
τ−1
T P∗

T(t)−Q
)
gsT(x

∗
s(t)) = max

a∈[xs,xs]

[(
τ−1
T P∗

T(t) + Q
)
gsT(a)

]
.

This shows that the optimal control x∗s(t) is determined by the maximum values of the bounded
real function.

[xs, xs] ∋ a 7→
(
τ−1
T P∗

T(t) + Q
)
gsT(a), (46)

for almost any t.

Remark 16 We recall that in the Pontryagin Principle, the optimization is governed by the direct
dependence on the control values a (see [FR]). 2

Remark 17 The solution of the functional minimization problem W(V0)
.
= minxs∈U JV0(xs) (see

(38)) is determined by (46). 2

Then, from (46) we have obtained an optimal control given by

x∗s(t) =

{
xs, if P∗

T(t) < −τTQ,
xs, if P∗

T(t) > −τTQ.
(47)

The time for which P∗
T(t

∗) = −τTQ is called a switching time.

Remark 18 We note that if P∗
T(t

∗) = −τTQ holds for some t∗, the function

a 7→ H
(
V∗(t∗),P∗(t∗), a

)
is constant (see (46)). Then, the value x∗s(t

∗) ∈
[
xs, xs

]
is irrelevant.

Remark 19 Since P∗
T(tf ) = −S′

(
V∗

T(tf )
)
∈ [−S′+,−S′−], if S

′
+ < τTQ, we deduce that there exists

ε > 0 such that
x∗s(t) ≡ xs for tf − ε < t ≤ tf . (48)

Thus, near the final time tf the control value does not change. 2

Theorem 5 (Uniqueness of the optimal control) Assume

S′+ < τTQ (49)

and the compatibility condition

0 < ln

(
K− S′−
K− τTQ

)τT

< tf , (50)

where K is a constant large enough such that

K > max

− min
t∈[0,τf ]

G′
E

(
V∗

E(t)
)
P∗
I (t) + V∗

T(t),S
′
−, τTQ,

τTQe
tf
τT − S′−

e
tf
τT − 1

 . (51)
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Then the optimal control is the bang-bang type control

x∗s(t) =

{
xs, 0 < t < t∗,

xs, t∗ < t < tf .
(52)

Moreover, the switching time t∗ verifies the lower estimate

0 < tf − ln

(
K− S′−
K− τTQ

)τT

< t∗. (53)

Proof. The final problem on P∗
T is

τT
•
P∗
T(t) = P∗

T(t)−G′
E

(
V∗

E(t)
)
P∗
I (t)−V∗

E(t), P∗
T(tf ) = −S′

(
V∗

T(tf )
)
.

Then we get the inequality

τT
•
P∗
T(t) > P∗

T(t) + K, with K > − max
t∈[0,tf ]

(
G′

E

(
V∗

E(t)
)
P∗
I (t) + V∗

T(t)
)
.

Therefore ( •
P∗
T(t)−

P∗
T(t)

τT

)
e
− t

τT >
K

τT
e
− t

τT ⇔ d

dt

((
P∗
T(t) + K

)
e
− t

τT

)
> 0,

implies (
P∗
T(t2) + K

)
e
− t2

τT >
(
P∗
T(t1) + K

)
e
− t1

τT , (54)

whenever t2 > t1. Next, by means of (51), we prove that assumption (49) implies the existence of
a unique switching time t∗. Indeed, otherwise

P∗
T(t) > −τEQ for all t in the interval [0, tf ]

(see (49)). Then, from (54) we obtain(
K− S′−

)
e
−

tf
τT >

(
P∗
T(tf ) + K

)
e
−

tf
τT >

(
P∗
T(t) + K

)
e
− t

τT >
(
K− τTQ

)
e
− t

τT ,

whence by choosing K > τTQ we deduce K > S′− and

(
K− S′−

)
e
−

tf−σ

τT > K− τTQ for all t in the interval [0, tf ].

Then, since S′− ≤ S′+ < τTQ (see (49)) we may derive a contradiction by choosing t̂ < tf given by

(
K− S′−

)
e
−

tf−t̂

τT = K− τTQ ⇔ 0 < tf − ln

(
K− S′−
K− τTQ

)τT

= t̂ < tf ,

provided

0 < ln

(
K− S′−
K− τTQ

)τT

< tf ⇔ K >
τTQe

tf
τT − S′−

e
tf
τT − 1

,

where we are assuming (51).
Consequently, there exists a time t∗ ∈ [0, tf [, with P∗

T(t∗) = −τTQ. In fact, in this case, we also
may deduce from the contradiction(

K− τTQ
)
e
− σ2

τT >
(
K− τTQ

)
e
− σ1

τT >
(
K− τTQ

)
e
− σ2

τT (55)

(see (54)) that there exists a unique time of change t∗ < tf with P∗
T(t∗) = −τTQ.
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The above reasoning enables us to obtain a lower estimate of t∗. Indeed, by considering (54),
we may construct the inequality(

K− S′−
)
e
−

tf−t∗
τT ≥

(
P∗
T(tf ) + K

)
e
−

tf−t∗
τT ≥ K− τTQ,

whence

0 < tf − ln

(
K− S′−
K− τTQ

)τT

= t̂ < t∗.

2

Remark 20 By means of the arguments of (54) and (55), one proves

P∗
T(t2) > P∗

T(t1), tf ≥ t2 > t1 ≥ t∗.

Then P∗
T(t) is an increasing function on [t∗, tf ]. We note that the upper bound

P∗
T(t) < −τTQ if 0 ≤ t < t∗

holds. 2

Remark 21 The optimal control given in (52) admits other alternative representations. For in-
stance, we have

x∗s(t) =
xs − xs

2

(
1 + sign(t− t∗)

)
+ xs, 0 < t < tf . (56)

To estimate t∗ from the nonlinear equation

P∗
T(t∗) = −τTQ

is a very tedious task. An alternative argument is provided in the following result.

Theorem 6 (Characterization of the optimal switching time) Under the assumptions of Theo-
rem 5, the optimal time of change t∗ of the optimal control (see (47)) is characterized by the
condition

1

2

∂

∂t∗

∫ tf

0

|V∗
T

(
σ; t∗

)
|2dσ −Q

(
gsT
(
xs
)
− gsT

(
xs
))

+ S′
(
V∗

T(tf ; t∗)
)∂V∗

T(tf ; t∗)
)

∂t∗
= 0, (57)

where we have denoting by V∗
T(t; t∗) to the optimal state .

Proof For every time t̂∗ ∈ [0, tf ] we consider a general bang-bang control

x∗s(t; t̂∗) =

{
xs, 0 ≤ t < t̂∗,

xs, t̂∗ < t ≤ tf .
(58)

Then, by the above Theorem we have that t̂∗ = t∗ ∈
(
0, tf

)
for the optimal control (47). Let

us denote by V̂∗
T(t; t̂∗) the associate state corresponding to the control x∗s(t; t̂∗). We define the

function
Φ(t̂∗) = J(x∗s(·; t̂∗)).

Therefore, one has
min
xs∈U

J(xs) = J(x∗s) = Φ(t∗) = min
t̂∗∈[0,tf ]

Φ(t̂∗).

Thus, the optimal switching time t∗ must satisfies

dΦ(t̂∗)

dt̂∗

∣∣∣∣∣
t̂∗=t∗

= 0.
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Coming back to the equation of the VE optimal potential

τE
•
V∗

E = −V∗
E +VE0 + gsE(xs), 0 ≤ t < t∗.

Straightforward computations yield

V∗
E(t) = gsE

(
xs
) (

1− e
− t

τE

)
+VE0, 0 ≤ t < t∗.

Then

V∗
E(t) = gsE

(
xs
) (

1− e
− t

τE

)
+VE0, 0 ≤ t ≤ t∗,(

VE0 + g
(
xs
)) (

1− e
− t−t∗

τE

)
+
(
g
(
xs
) (

1− e
− t∗

τE

)
+VE0

)
e
− t−t∗

τE , t∗ < t ≤ tf .

(59)

2
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