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Abstract

In this note we prove a comparison result for a class of homogeneous Dirichlet boundary problems for
anisotropic operators of the form − div(a(|∇xu|)∇xu) − uyy, by using Steiner symmetrization. We show
that the solution to the problem whose data are symmetrizated in sense of Steiner and the operator is a
p−laplacian type operator, i.e. ∆p,xu−uyy has maximum mass concentration. The proof uses the technique
of finite-differences discretization in y introduced in the previous paper by the authors jointly to some co-
authors [7], where a comparison result with respect to Steiner symmetrization in the nonlinear framework
has been proved for the first time.

1 Introduction

In pioonering papers [22, 23] Talenti developed symmetrization techniques (see also [24, 19]) that allow to obtain
a priori estimates for weak solutions to problems of the type{

−div(a(|∇u|)∇u) = f in Ω

u = 0 on ∂Ω
(1.1)

where Ω is an open bounded subset of Rn and a : (0,+∞) → (0,+∞) is a monotone function satisfying the
ellipticity condition

a(ξ)ξ · ξ ≥ |ξ|p , ∀ξ ∈ Rn.

Any Lp or any Orlicz norms of the solution u to problem (1.1) can be estimated by the same norm of the
solution v to the spherically symmetric problem{

−∆pv = f⋆ in Ω⋆

v = 0 on ∂Ω⋆
(1.2)

where Ω⋆ is the ball of Rn centered at zero having the same Lebesgue measure of Ω, f⋆ is the Schwarz rear-
rangement of f , that is the the spherically symmetric function, decreasing with respect to |x|, whose level sets
{x ∈ Ω : |f⋆(x)| > t} have the same measure of the corresponding level sets of f , {x ∈ Ω : |f(x)| > t}.

Talenti’s approach has been successfully extended for example, by introducing lower order terms, by weak-
ening the ellipticity condition, by considering parabolic equations or different boundary value problems (see,
[2, 14, 23] and references therein). In all these papers referred above a comparison results of the type

u∗(s) ≤ v∗(s)

or the weaker inequality ∫ s

0

u∗(s) ds ≤
∫ s

0

v∗(s) ds

has been proved, where u∗ is the decreasing rearrangement of u defined by

u∗(s) = sup{t ≥ 0 : µu(t) > s} (1.3)
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and µu(t) is the distribution function of u defined as

µu(t) = Ln{x ∈ Ω : |u(x)| > t}|, . (1.4)

Here, and in the following, by Lk(E) we intend the Lebesgue measure of the set E ⊂ Rk.
In any case the two inequalities implies Lp or Orlicz norms of the solution u.

This type of results simplifies the problem to derive apriori estimates for solutions to problem (1.1) since
it reduces to the study of a one-dimensional problem. In this process of global symmetrization, information
about possible symmetry properties satisfied by some subgroup of spatial variables is lost, for example due to
the presence of convection terms in certain directions that do not affect some other spatial variables, etc. In
these cases an approach based on Steiner symmetrization is useful.

To state the main results of this paper, we need to introduce a few definitions (cfr. Section 2). If u
is a function defined in Ω ⊂ Rn+k ≡ Rn × Rk: for any y ∈ Rk, denote by Ωy the y−section defined as
Ωy = {x ∈ Rn : (x, y) ∈ Ω}. Let µu(·, y) be the distribution funcion of

x ∈ Ωy 7→ u(x, y) ∈ R . (1.5)

The decreasing rearrangement (in codimension n) of this function (1.5) is

u∗(s, y) = sup{t ≥ 0 : µu(t, y) > s} , (s, y) ∈ Ω∗
y × Rk , (1.6)

where Ω∗
y = (0,Ln(Ωy)). If ωn denotes the measure of the unit ball of Rn, we define the Steiner rearrangement

of u as
u#(x, y) = u∗(ωn|x|n, y), (x, y) ∈ Ω# , (1.7)

The Steiner rearrangement of Ω denoted here by Ω# is the set whose indicator function is (χΩ)
#.

A comparison result with respect to Steiner symmetrisation is proved in [1, 4, 6, 9] for linear elliptic operators.
In these cases a mass comparison result has been proved∫ s

0

u∗(σ, y) dσ ≤
∫ s

0

v∗(σ, y) dσ ,

for a.e. s ∈ (0, |Ω|) and a.e. in y ∈ Rk, which easily imply the a priori estimate on u in Lp or Orlicz norms.
Similar results have also been proven in the paper [6] by using a simpler approach; Neumann boundary value
problems have been studied in [16] (see also [9]). In all these papers quoted above only linear elliptic operatos
have been considered.
A new approach that cover a class of nonlinear operators has been introduced in the more recent paper [7]; it
allows to obtain the first mass comparison result in the nonlinear framework. Such a technique is applied to a
class of anisotropic quasilinear operators and it is based on the discretization with respect to the variable y of
the operators and a fine approximization process.
In this paper we use a similar approach introduced in [7] for proving a mass comparison result of the same type
for a restricted class of operators. To be more specific we consider the class of homogeneous Dirichlet problems
of the type {

−divx

(
a(|∇xu|)∇xu

)
− uyy = f in Ω1 × Ω2

u = 0 on ∂(Ω1 × Ω2) .
(P)

where, for sake of simplicity,

Ω = Ω1 × Ω2 , Ω1 ⊂ Rn , is open bounded Lipschitz domain and Ω2 = (0, 1) . (1.8)

The function a : (0,+∞) → (0,+∞) is assumed to be in C1(0,+∞), such that, for some constant C > 1 and
p > 1

tp−2 ≤ a(t) ≤ Ctp−2 , (1.9)

and
−1 < ia ≤ sa <∞ , (1.10)

where

ia = inf
t>0

ta′(t)

a(t)
, sa = sup

t>0

ta′(t)

a(t)
.

Moreover we assume that
f ∈ Lmax{2,p′}(Ω) (1.11)
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For every q ∈ [1,∞] we denote by q′ := q
q−1 its conjugate exponent.

Some comments on assumptions (1.9) and (1.10) are in order. The standard p−Laplace operator corresponds
to the choice a(t) = tp−2, with p > 1 and ia = sa = p− 2 in this case. Moreover, in [11] (see 2.29), the following
growth condition is proved

a(1)tia ≤ a(t) ≤ a(1)tsa , t > 0 (1.12)

Therefore (1.9) and (1.12) hold at the same time, or, equivalently, the operator a(t) satisfies the following
condition

max{tp−2, a(1)tia} ≤ a(t) ≤ min{Ctp−2, a(1)tsa} , t > 0 . (1.13)

Further consequences of such condition are in Section 2.
The natural space in which we consider weak solution to problem (P) is the anisotropic Sobolev spaceW 1,m

0 (Ω),
which we define in Section 2. This space takes in account the growth of the operator with respect to the partial
derivatives of u in x and in y governed by different powers.
The aim of this paper is to prove the following result

Theorem 1.1. Let a satisfy (1.9), (1.10) and let 0 ≤ f, g ∈ Lmax{2,p′}(Ω), with g = g#, u ∈ W 1,m
0 (Ω) be the

weak solution of the problem (P) and v ∈W 1,m
0 (Ω#) be the weak solution of{

−∆p,xv − vyy = g in Ω#

v = 0 on ∂Ω# .
(P#)

If ∫ s

0

f∗(σ, y)dσ ≤
∫ s

0

g∗(σ, y)dσ , for all s ∈ [0, |Ω1|] and for a.e. y ∈ Ω2 , (1.14)

then, for the decreasing rearrangements u∗ and v∗ we have the following mass comparison:∫ s

0

u∗(σ, y)dσ ≤
∫ s

0

v∗(σ, y)dσ , for all s ∈ [0, |Ω1|] and for a.e. y ∈ Ω2 . (1.15)

Note that, if g = f#, problem (P#) reduces to the symmetrized problem{
−∆p,xv − vyy = f# in Ω#

v = 0 on ∂Ω# ,
(P#)

and the mass comparison (1.15) is a Talenti’s type result, pointed out by first time in the paper [10] where an
equation with zero order terms have been considered.

Inequality (1.15) can be used to estimate any Orlicz norm of u(·, y) by the same norm of v(·, y).
As the comparison result proved in [7], Theorem 1.1 generalizes a result of [1] to the class of anisotropic
problems (P). The main difference with comparison result proved in [7] consists in the choice of symmetrizated
problem. Actually a more general class of operators a are considered in [7] which satisfy the classical growth
condition, without regularity assumption, and an argument of fine approximation allows to reduce to the case
of approximated smooth operator aε satisfying (1.10). This setting allows to compare problem (P) with the
problem having the same operator a and Steiner rearrangement of the datum f and of the domain Ω. The
present result consider a smaller class of operators a which are smooth and satisfy (1.10), but it allows to
compare all problems of the considered class with the symmetrizated problem corresponding to the operator
−∆p,xv − vyy whose data are rearranged with respect to Steiner symmetrization and the proof is simpler than
the one in [7]. In addition we present here a new quantitative estimate for the discretized problems.

The approach used in this paper is based on the techniques used in [7]. As in [7], we discretize in the
y-derivative, to obtain a family of problems

−divx

(
a(|∇xuj |)∇xuj

)
− uj+1 − 2uj + uj−1

h2
= fj in Ω1,

uj = 0 on ∂Ω1, j = 1, · · · , N,
u0 = uN+1 ≡ 0 in Ω1,

(Ph)

where
fj(x) = f(x, jh) , (N + 1)h = 1. (1.16)

Then we prove that we recover solutions of (P) as h→ 0.
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In this setting we easily prove a comparison results in a very classical manner: we rearrange each equation and
apply a comparison argument for the system (Ph). We define

Uj(s) =

∫ s

0

u∗j (σ)dσ, Vj(s) =

∫ s

0

v∗j (σ)dσ, Fj(s) =

∫ s

0

f∗j (σ)dσ

and, for j ∈ {1, · · · , N}, and we have that Uj is a weak solution of
κn(s)

(
−κn(s)

d2Uj

ds2

)p−1

− Uj+1 − 2Uj + Uj−1

h2
≤ Fj in Ω∗

1,

dUj

ds
(|Ω1|) = Uj(0) = 0,

(P∗
h)

where κn(s) denotes the perimeter of a ball of measure s, that is

κn(s) = nω1/n
n s1/n

′
(1.17)

and Vj solves the same problem, except that the above differential inequalities become equalities (see (3.12)
below). Then as in [7] we recover some regularity of Uj . This regularity is sufficient to apply accretivity results
for (P∗

h) in L
∞, from which we deduce Uj ≤ Vj for every j. We devote Section 4 to showing that we can pass

to the limit as h→ 0, and recover solutions of the original problem.

2 Preliminary results

In this section we recall a few properties of Schwarz or Steiner rearrangements and results concerning the
solution to problem (P) which will be used in the paper.

2.1 Schwarz rearrangement

In this subsection we introduce some notation and recall classical properties of Schwarz rearrangement. Consider
a non-negative measurable u : Ω → R . We define the Schwarz rearrangement of u as

u⋆(x) = u∗(ωn|x|n), for x ∈ Ω⋆. (2.1)

The relation between u∗ and µ is the following

µ(u∗(s)) = |{x ∈ Ω : u(x) > u∗(s)}| ≤ s ≤ |{x ∈ Ω : u(x) ≥ u∗(s)}| = µ(u∗(s)−)

and equalities hold if and only if µ is continuous or, equivalently, if u∗ has no flat zone. Since µ is monotone,
the set of discontinuities is, at most, countable, hence has measure zero.

The rearrangement of u is constructed so that, for any E ⊂ Ω,∫
E

u(x)dx ≤
∫ Ln(E)

0

u∗(σ)dσ, (2.2)

and, for a.e. s ∈ Ω∗ ∫
u>u∗(s)

u dx =

∫ s

0

u∗(σ)dσ. (2.3)

It is well known that if u ∈ W 1,p
0 (Ω), for some 1 ≤ p ≤ ∞, then also u⋆ ∈ W 1,p

0 (Ω⋆), and, by the classical
Pólya-Szegö inequality, the W 1,p norm is not increased (see for example [3, 5, 8] and the references therein), in
the sense that ∫

u=t

|∇u|p−1dHn−1 ≥
∫
u⋆=t

|∇u⋆|p−1dHn−1 . (2.4)

By definition, we easily deduce that

|∇u⋆(x)| =
[
κn(s)

(
−du

∗

ds
(s)

)] ∣∣∣∣∣
s=ωn|x|n

for a.e. x ∈ Ω⋆ . (2.5)

The following result is well-known (see [7] and references therein). We repeat its proof for sake of completeness.
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Lemma 2.1. Let u ∈W 1,∞(Ω1). Then, u∗ is locally absolutely continuous and

0 ≤ −κn(s)
du∗

ds
∈ L∞(Ω∗

1).

If, furthermore, a(|∇u|)∇u ∈ H1(Ω1) and (1.9) is in force, then for a.e. s ∈ Ω∗
1, we have

−
∫
u>u∗(s)

div (a(|∇u|)∇u) dx ≥ κn(s)

(
−κn(s)

du∗

ds
(s)

)p−1

. (2.6)

Proof. We split the proof in several steps.

Step 1. u ∈ C∞
c (Ω). Denote, for a.e. s ∈ Ω∗

1 the outer normal to {x : u(x) > u∗(s)} by

ν(x) = − ∇u(x)
|∇u(x)|

for Hn−1-a.e. x ∈ {u = u∗(s)} .

By the divergence theorem and (1.9) we get

−
∫
u>u∗(s)

div (a(|∇u|)∇u(x)) dx = (2.7)

(2.8)

=

∫
u=u∗(s)

a(|∇u|)∇u(x) · ν(x) dHn−1 =

∫
u=u∗(s)

a(|∇u|)|∇u(x)| dHn−1 ≥
∫
u=u∗(s)

|∇u|p−1 dHn−1 . (2.9)

Taking (2.4) and (2.5) into account, we prove the result.

Step 2. General case. Let u be as in the statement. Since u is Lipschitz continuous and vanishes on
the boundary, then, by [18], u⋆ is Lipschitz continuous. In particular κn(s)du

∗/ds ∈ L∞(Ω∗
1). Then, by using

the density of C∞
c (Ω) in W 1,p(Ω) for any p ∈ [1,+∞) and the above regularity on u⋆ we have that there exits

a sequence uk ∈ C∞
c (Ω) such that

uk → u in L1(Ω1)

∇uk
∗
⇀ ∇u in L∞(Ω1)

n.

Moreover, by the classical Minty argument for monotone quasilinear operators ([21]) we also have that

a(|∇uk|)∇uk ⇀ a(|∇u|)∇u in H1(Ω1)
n.

Step 2a. Convergence of the rearranged term. We prove that, up to a subsequence, for any 0 ≤ φ ∈
L∞(0, |Ω1|) we have that

lim inf
k

∫ |Ω1|

0

(
−κn(s)

du∗k
ds

(s)

)p

φ(s)ds ≥
∫ |Ω1|

0

(
−κn(s)

du∗

ds
(s)

)p

φ(s)ds . (2.10)

It is clear that ∥κn(s)du∗k/ds∥L∞ ≤ C, hence, up to a subsequence (still denoted by uk)

κn(s)
du∗k
ds

⋆
⇀ ξ in L∞(Ω∗).

Since uk → u in L1(Ω) we have u∗k → u∗ in L1(Ω∗). Hence, for φ such that κn(s)φ ∈W 1,∞(Ω∗) we have∫
Ω∗

1

ξφ = lim
k

∫
Ω∗

1

κn(s)
du∗k
ds

φ = − lim
k

∫
Ω∗

1

u∗k
d

ds
(κn(s)φ) = −

∫
Ω∗

1

u∗
d

ds
(κn(s)φ) =

∫
Ω∗

1

κn(s)
du∗

ds
φ.

Hence,

ξ = κn(s)
du∗

ds
.

Fix 0 ≤ φ ∈ L∞(0, |Ω1|). Since A(t) = tp is convex and continuous when p ≥ 1, the map

g 7→
∫ |Ω1|

0

g(s)pφ(s)ds

is convex and lower semicontinuous in the topology of Lr(Ω) for any r ≥ 1. Therefore, it is also weak-lower
semicontinuous in Lr(Ω). Thus,

lim inf
k

∫ |Ω1|

0

(
−κn(s)

du∗k
ds

(s)

)p

φ(s)ds ≥
∫ |Ω1|

0

(
−κn(s)

du∗

ds
(s)

)p

φ(s)ds
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Step 2b. Convergence of the divergence term Let us prove that

−
∫
{uk>u∗

k(·)}
div
(
a(|∇uk|)∇uk

)
dx −→ −

∫
{u>u∗(·)}

div
(
a(|∇u|)∇u

)
dx, in L1(Ω∗). (2.11)

Consider the map

s ∈ Ω∗
1 7→ Φk(s) = −

∫
{uk>u∗

k(s)}
div
(
a(|∇uk|)∇uk

)
dx = −

∫
Ω

div
(
a(|∇uk|)∇uk

)
χ{uk>u∗

k(s)} dx.

We have that div
(
a(|∇uk|)∇uk

)
converges weakly in L2. Let us prove that, for a.e. s ∈ Ω∗

χ{uk>u∗
k(s)} −→ χ{u>u∗(s)} in L2(Ω). (2.12)

First, let us prove the convergence a.e. x ∈ Ω: if, s is such that

lim
k
u∗k(s) = u∗(s) (2.13)

then {
x ∈ Ω : lim

k
χ{uk>u∗

k(s)}(x) ̸= χ{u>u∗(s)}(x)

}
⊂ {x ∈ Ω : u(x) ̸= u∗(s)}.

Indeed, let s ∈ Ω∗ and x ∈ Ω be such that u(x) < u∗(s). Take ε = (u∗(s) − u(x))/4. For k ≥ kε large
enough |u∗k(s) − u∗(s)| ≤ ε and (since uk converges in C(Ω)), |uk(x) − u(x)| ≤ ε. But then uk(x) < u∗k(s).
Hence χ{uk>u∗

k(s)}(x) = χ{u>u∗(s)}(x). The same holds for the limit. We can repeat the same argument if
u(x) > u∗(s).
Since u∗k → u∗ in L1(Ω∗), up to a subsequence, u∗k → u∗ a.e. Hence, (2.13) holds a.e. On the other hand,

Ln{x ∈ Ω : u(x) ̸= u∗(s)} = µ(u∗(s)−)− µ(u∗(s)).

Since u∗ and µ are monotone functions, the set of s such that µ(u∗(s)) is discontinuous at s is countable. Hence,
the set of s such that (2.12) does not hold has measure 0.
Since the sequence is pointwise bounded by 1, due the Dominated Convergence Theorem we have (2.12).
Hence, as k → +∞,

Φk(s) = −
∫
Ω

div
(
a(|∇uk|)∇uk

)
χ{uk>u∗

k(s)} dx −→ −
∫
Ω

div
(
a(|∇u|)∇u

)
χ{u>u∗(s)} dx, a.e. s ∈ Ω∗.

Step 2c. Comparison of the limits Apply Step 1 to this final subsequence to deduce that (2.6) holds

with u substitute by uk. Multiplying both sides by −du∗
k

ds φ(s), integrating in s and passing to the limit we
deduce that ∫ |Ω1|

0

{
−
∫
{u>u∗(s)}

div
(
a(|∇u|)∇u

)
dx

}(
−du

∗

ds

)
φ(s)ds

≥
∫ |Ω1|

0

(
−κn(s)

du∗

ds
(s)

)p

φ(s)ds .

Since this holds for any φ, we have that for a.e. s ∈ [0, |Ω1|]{
−
∫
{u>u∗(s)}

div
(
a(|∇u|)∇u

)
dx

}(
−du

∗

ds

)
≥
(
−κn(s)

du∗

ds
(s)

)p

.

Taking into account (2.7) we have that

−
∫
{u>u∗(s)}

div
(
a(|∇u|)∇u

)
= − lim

k

∫
{uk>u∗

k(s)}
div
(
a(|∇uk|)∇uk

)
dx ≥ 0.

Hence, (2.6) holds when du∗/ds = 0. Everywhere else −du∗/ds > 0 so we can divide an recover the result.
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2.2 Steiner rearrangement

If u is a function defined in Ω ⊂ Rn × R, for any y ∈ R, denote bu u# the Steiner symmetrization of u defined
in (1.7). Notice that it is spherically symmetric in x, and radially non-increasing in this variable. When there is
no y variable (i.e. m = 0), it coincides with Schwarz symmetrised of u and all the result exposed in the previous
paragraph still holds for a.e.y fixed.

2.3 Weak solutions to problem (P)

Denote m = (p, ...p, 2) ∈ Rn+1, denote by W 1,m
0 (Ω) the weak clousure of C∞

c (Ω) with respect to the norm

∥u∥1,m = ∥∇xu∥p + ∥∇yu∥2 .

Embeddings of the kind W 1,m
0 (Ω) ⊂ Lq(Ω) can be founf in [17].

As far as the existence of a solution to problem (P) concerns, note that problem (P) is the Eulero equation of
the strictly convex functional

J(u) =

∫
Ω

(
B(|∇xu|) + |∇yu|2 − fu

)
dx dy , (2.14)

in W 1,m
0 (Ω), where the function B : [0,+∞) → (0,+∞) is given by

B(t) =

∫ t

0

β(s)ds , t ≥ 0 , (2.15)

and β : [0,+∞) → (0,+∞) is defined as

β(t) =

{
a(t)t t > 0

0 t = 0
(H1)

Moreover by the first inequality in (1.10),

the function β is strictly increasing for t > 0

and hence B is strictly convex (see [12]). This implies that J is strictly convex. Therefore, a unique minimizer
exists and it is also a weak solution of (P).

3 Comparison result for discrete problem (Ph)

For sake of completeness in this Section we repeate the same arguments used in [7] for proving the existence
of a weak solution to the discrete problems (Ph), its uniqueness and a mass comparison result. We prove that
(Ph) has a unique solution uh = (uhj ) in the space Xp

N (Ω), defined as

Xp
N (Ω1) = {u ∈ L2(Ω1)

N+2 : ∇uj ∈ Lp(Ω1) , j = 1, . . . , N , u0 = uN+1 = 0} . (3.1)

Moreover it is a minimizer of the functional

Jh(u) =

N∑
j=1

∫
Ω1

B(|∇xuj |) dx+

N∑
j=0

∫
Ω1

(
uj+1 − uj

h

)2

dx−
N∑
j=1

∫
Ω1

fjuj dx . (3.2)

We explicitly remark that the data fj(x) defined in (1.16) depend only on the variable x ∈ Rn and the variable
y is not present. Therefore we denote ∇x simply by ∇ in the whole section.

3.1 Existence, uniqueness and regularity of solutions of the discrete problem (Ph)

Let us begin by giving the definition of solution to the discrete problem (Ph).

Definition 3.1. We say that a function u ∈ Xp
N (Ω1) is a weak solution of (Ph) if∫

Ω1

a(∇uj)∇uj · ∇φj −
∫
Ω1

uj+1 − 2uj + uj−1

h2
φj =

∫
Ω

fjφj , ∀j ∈ {1, · · · , N} ∀φ ∈ Xp
N (Ω1). (3.3)
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Remark 3.1. Notice that, for u,φ ∈ Xp
N (Ω1) we have that

N∑
j=1

−uj+1 + 2uj − uj−1

h2
φj =

N∑
j=0

uj+1 − uj
h

φj+1 − φj

h
=

N∑
j=1

uj
−φj+1 + 2φj − φj−1

h2
. (3.4)

Hence, it is easy to see that the weak formulation (3.3) is equivalently to the following weak formulations∫
Ω1

N∑
j=1

a(∇uj)∇uj · ∇φj +

∫
Ω1

N∑
j=0

uj+1 − uj
h

φj+1 − φj

h
=

∫
Ω1

N∑
j=1

fjφj , (3.5)

and ∫
Ω1

N∑
j=1

a(∇uj)∇uj · ∇φj +

∫
Ω1

N∑
j=1

uj
−φj+1 + 2φj − φj−1

h2
=

∫
Ω1

N∑
j=1

fjφj . (3.6)

The following result holds true

Proposition 3.1. Assume (1.9), (1.10) and let f = (fj) ∈ Lmax{2,p′}(Ω)N where fj ≥ 0. Then, according
to Definition 3.1, there exists a unique weak solution u = (uj) ∈ Xp

N (Ω1) to the discrete problem (Ph) where
uj ≥ 0. Moreover it is the global minimiser in Xp

N (Ω1) of Jh given by (3.2).

Proof. Since B′′ = β′ > 0, B is strictly convex. Hence Jh is strictly convex and it has a unique minimiser.
Applying (3.4) and reproducing the proof in [7], we deduce that the Euler-Lagrange equations for Jh are precisely
(Ph). To check that uj ≥ 0 we use φj = (uj)− as a test function, to deduce (uj)− = 0.

The weak solution u = (uj) ∈ Xp
N (Ω1) to the discrete problem (Ph) verifies some regularity properties given

by the following result

Theorem 3.1. Let f ∈ L∞(Ω1)
N . Then, the unique weak solution of (Ph) is in W 1,∞

0 (Ω1)
N+2 and

a(|∇uj |)∇uj ∈ H1(Ω1). (3.7)

Proof The discrete problem can be equivalently written as a diagonal system of equations, i.e.

−div
(
a(|∇uj |)|∇uj |

)
= Hj(u) = fj +

uj+1 − 2uj + uj−1

h
in Ω1.

It is proven in [20, Theorem 2] that, if f ∈ L∞(Ω1)
N then u ∈ L∞(Ω1)

N .
Moreover by [12], since uj ∈ L2(Ω1) by the minimisation argument, we deduce

∥∇uj∥L∞(Ω1) ≤ Cβ−1
(
∥Hj∥Ln,1(Ω1)

)
, (3.8)

and by [13],
a(|∇uj |)∇uj ∈W 1,2(Ω1). (3.9)

Now let us consider the rearranged problem of the discrete problem (Ph)
−∆p,xv −

vj+1 − 2vj + vj−1

h2
= gj in Ω⋆

1,

vj = 0 on ∂Ω⋆
1, j = 1, · · · , N,

v0 = vN+1 = 0 in Ω⋆
1

(3.10)

Our aim is to compare the weak solution of (Ph) with the weak solution of the rearranged problem (3.10).
Arguing as before, we deduce that it has a unique solution v ∈ Xp

N (Ω⋆
1).

Proposition 3.2. Let f ∈ Cc(Ω1)
N and let u ∈ Xp

N (Ω1) and v ∈ Xp
N (Ω♯

1) be the unique solutions of (Ph) and
(3.10) respectively. Define, for every j ∈ {0, · · · , N + 1}

Uj(s) =

∫ s

0

u∗j (σ) dσ, Vj(s) =

∫ s

0

v∗j (σ) dσ, Fj(s) =

∫ s

0

f∗j (σ)dσ, Gj(s) =

∫ s

0

gj(σ)dσ.

Then, for every j ∈ {1, · · · , N}, Uj and Vj are in C(Ω∗
1) and satisfy

κn(s)
d2Uj

ds2
, κn(s)

d2Vj
ds2

∈ L∞(Ω∗
1). (3.11)
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Moreover U = (Uj) is a solution of (P∗
h) and V = (Vj) is a solution of

κn(s)

(
−κn(s)

d2Vj
ds2

)p−1

− Vj+1 − 2Vj + Vj−1

h2
= Gj (3.12)

Also, U0 = UN+1 = V0 = VN+1 = 0.

Proof We proceed as in [23], and using standard inequalities for the rest. By Lemma 2.1 and Theorem 3.1, we
have (3.11). To check that the inequality of (P∗

h) is satisfied, for s ∈ [0, |Ω1|] we can integrate over the level set
of uj

−
∫
uj>u∗

j (s)

div
(
a(|∇uj |)∇uj(x)

)
dx+

∫
uj>u∗

j (s)

−uj+1 + 2uj − uj−1

h2
dx =

∫
uj>u∗

j (s)

fj(x)dx . (3.13)

Notice that, due to (3.7) is, (3.13) is well defined. Let us consider separately the three quantities which appear
above. As regards the first term in (3.13), we apply Lemma 2.1, and hence, for a.e. s ∈ Ω∗

1

−
∫
uj>u∗

j (s)

(divx (a(|∇uj |)∇uj)) dx ≥ κn(s)

(
−κn(s)

∂u∗j
∂s

(s)

)p−1

. (3.14)

As regards the other two terms in (3.13), by (2.2) and (2.3) we get∫
uj>u∗

j (s)

−uj+1 + 2uj − uj−1

h2
dx ≥

∫ s

0

−u∗j+1 + 2u∗j − u∗j−1

h2
dx (3.15)

and ∫
uj>u∗

j (s)

fj(x) dx ≤
∫ s

0

f∗j (σ) dσ . (3.16)

Collecting (3.14)-(3.16) we get that the function Uj is a weak solution of (P∗
h) with

d2Uj

ds2 ∈ L∞. This completes
the proof for Uj .

Analogously, the same arguments apply to the equation in (3.10) : since the solution vj equals v#j , then all the
inequalities in (3.14)-(3.16) hold as equalities.

3.2 Mass comparison result for discrete problem (Ph)

The aim of this section is to prove the comparison result given by Proposition 3.3 below. Its proof is a modified
version of the analogous result proved in [7] (see also [14, Theorem 1]). We repeat here a sketch of the proof.

Proposition 3.3. Let U and V be as in Proposition 3.2.Then there exists a constant CN > 0 (depending on
N) such that

∥(Uj − Vj)+∥L∞(Ω∗
1)

≤ CN∥(Fj −Gj)+∥L∞(Ω∗
1)
. (3.17)

In particular, if Fj ≤ Gj then Uj ≤ Vj for all j, and hence∫ s

0

u∗j ≤
∫ s

0

v∗j ∀j, a.e. s ∈ [0, |Ω1|]. (3.18)

Proof Let us consider the operator

AU = κn(s)

(
−κn(s)

d2U

ds2

)p−1

,

defined in the domain

D(A) =

{
U ∈ L∞(Ω∗

1) : κn(s)
d2U

ds2
∈ L∞(Ω∗

1),
dU

ds
(|Ω1|) = 0, U(0) = 0

}
.

In [7] it is proven that the operator A is T -accretive in L∞, for all U, V ∈ D(A) and λ > 0, that is∥∥∥(U − V )+

∥∥∥
L∞

≤

∥∥∥∥∥(U − V + λ(AU −AV )
)
+

∥∥∥∥∥
L∞

. (3.19)
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Due to (P∗
h) and (3.10) we have

h2

2
(AUj −AVj) + (Uj − Vj) ≤

1

2
(Uj+1 − Vj+1) +

1

2
(Uj−1 − Vj−1) + Fj −Gj .

Applying (3.19) with λ = h2

2 , we get

∥(Uj − Vj)+∥L∞ ≤ 1

2
∥(Uj+1 − Vj+1)+∥L∞ +

1

2
∥(Uj−1 − Vj−1)+∥L∞ + ∥(Fj −Gj)+∥L∞ .

We can rewrite this as
2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


 ∥(U1 − V1)+∥L∞

...
∥(UN − VN )+∥L∞

 ≤ h2

2

 ∥(F1 −G1)+∥L∞

...
∥(FN −GN )+∥L∞

 (3.20)

where the inequality holds coordinate by coordinate. Let us call the matrix D2 and denote the vector by X
in (3.20) and by Y the vector in the right hand side of (3.20). Notice that the vector components of X are
non-negative. We have the Cholesky decomposition

D2 = CtC, where C =


1 −1
0 1 −1

. . .
. . .

. . .

0 1 −1
0 1

 .

Multiplying (3.20) by x, we obtain

0 ≤ ∥CX∥22 = XtCtCX = XtAX ≤
∥∥C−1

∥∥ ∥CX∥2 ∥Y∥2 .
Therefore

∥CX∥2 ≤
∥∥C−1

∥∥ ∥Y∥2
and using that C is a coercive matrix we get (3.17). In particular, if Fj ≤ Gj then Y = 0 and we get
∥(Uj − Vj)+∥L∞ = 0. Hence Uj ≤ Vj .

4 Proof of main result Theorem 1.1

In order to prove Theorem 1.1, we begin by discretise with respect to y
We make use of the floor function:

⌊z⌋ = min{k ∈ Z : k ≥ z}

i.e. ⌊z⌋ = k means k ≤ z < k + 1.
Let f ∈ C∞

c (Ω1 × Ω2). Let N ∈ N and let h = 1/(N + 1), and consider the constant interpolation

fhj (x, y) = f(x, jh), j =
⌊y
h

⌋
.

Define uh = (uhj ) the unique solution of (Ph) with data fh = (fhj ).
Let us consider the linear interpolation

uh(x, y) = uhj (x) +
uhj+1(x)− uhj (x)

h
(y − jh), j =

⌊y
h

⌋
.

or equivalently

uh(x, y) =
(y
h
− j
)
uhj (x) +

(y
h
− j
)
uhj+1(x), j =

⌊y
h

⌋
.
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The weak solution uh = (uhj ) to discrete problem satisfies the mass comparison result, according to Proposition

3.3. Therefore we prove an a priori estimate of uh in W 1,m
0 (Ω), since this apriori estimate allows to identify a

limit function u which we prove to be the weak solution to problem (P). Our aim is prove that we can pass
to the limit uh → u at least in L1(Ω1 × Ω2). This will be sufficient to show that the comparison of masses is
preserved and the passage to the limit yields the mass comparison result for problem (P).
Finally a crucial tool in proving that the limit function u is the solution to problem (P) is the well-known
Minty’s trick. In the following remark we repeat the description of this tool given in [7].

Remark 4.1. We will apply the old trick of Minty [21] (see also [15, §5.1.3]): if A is a monotone operator and
Au = f , then for all test functions φ we have 0 ≤ (Au−Aφ, u− φ) = (f −Aφ, u− φ) hence

(Aφ,φ− u) ≥ (f, φ− u).

One then recovers the equation by letting φ = u + λψ, so λ(A(u + λψ), ψ) ≥ λ(f, ψ). As λ → 0+ one has
(Au,ψ) ≥ (f, ψ), while as λ → 0− one has (Au,ψ) ≤ (f, ψ). Hence (Au,ψ) = (f, ψ), or Au = f . In particular,
this trick applies if

(Au, v) =

∫
Ω

E(∇u)∇v

Since uh(x, y) depends on the two variables x, y, from now on we use again the notation ∇x.

Step 1. uh is a bounded sequence in W 1,m
0 (Ω). Let us check that uh is a bounded sequence in

W 1,m
0 (Ω). We compute∫

Ω2

∫
Ω1

|∇xu
h(x, y)|pdxdy =

N∑
j=1

∫ (j+1)h

jh

∫
Ω1

∣∣∣∣∣∇x

(
uhj (x) +

uhj+1(x)− uhj (x)

h
(y − jh)

)∣∣∣∣∣
p

dx

≤ Ch

N∑
j=1

∫
Ω1

∣∣∇xu
h
j (x)

∣∣p dxdy.
On the other hand

∂uh

∂y
(x, y) =

uhj+1(x)− uhj (x)

h
j =

⌊y
h

⌋
.

From (3.5) we deduce that

∫
Ω1

N∑
j=1

a(|∇uhj |)|∇uhj |2dx+

∫
Ω1

N∑
j=0

(
∂uhj
∂y

)2

dx =

∫
Ω1

N∑
j=1

fhj u
h
j dx,

Since a satisfies growth conditions (1.9), C > 1 and the previous estimate, we deduce that∫
Ω1

∫
Ω2

|∇xu
h|pdydx+

∫
Ω1

∫
Ω2

(
∂uh

∂y

)2

dydx ≤ C

∫
Ω2

∫
Ω1

fhuhdx . (4.1)

In [17] it has been proven that, if u ∈W 1,m
0 (Ω) there exist positive constants C1 and C2 such that

∥u∥p ≤ C1∥∇xu∥p and ∥u∥2 ≤ C2

∥∥∥∥∂u∂y
∥∥∥∥
2

. (4.2)

Collecting (4.1) and (4.2), we deduce that for some positive constant C we have

∥∇xu
h∥pp ≤ C∥fh∥p

′

p′ and

∥∥∥∥∂uh∂y
∥∥∥∥2
2

≤ C∥fh∥22 ,

which means that {uh} is bounded in W 1,m
0 (Ω), since, by assumption, fh ∈ Lmax{2,p′}.

Step 2. uh ⇀ u weakly in W 1,m
0 (Ω) as h = 1

N+1 → 0. By Step 1 we deduce there exists a subsequence,

which we still denote by {uh}, and a function u ∈W 1,m
0 (Ω) such that

uh ⇀ u in W 1,m
0 (Ω) .
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Step 3. u is a solution of (P). It remains to prove that u is a solution of (P). Let φ ∈ C∞
c (Ω). Define

Dh
yφ(x, y) =

φ(x, (j + 1)h)− φ(x, jh)

h
, j =

⌊y
h

⌋
.

Going back to the weak formulation (3.5) with φj(x) = φ(x, jh) we have∫
Ω1

N∑
j=1

a(|∇xu
h(x, jh)|)∇xu

h(x, jh) · ∇xφ(x, jh)dx+

∫
Ω1

N∑
j=1

∂uh

∂y
(x, jh)Dh

yφ(x, y)dx

=

∫
Ω1

N∑
j=1

f(x, jh)φ(x, jh)dx. . (4.3)

Since the derivatives with respect to y are piecewise constant∫
Ω1

h

N∑
j=1

a(|∇xu
h(x, jh)|)∇xu

h(x, jh) · ∇xφ(x, jh)dx+

∫
Ω

∂uh

∂y
(x, y)Dh

yφ(x, y)dy dx

=

∫
Ω1

h

N∑
j=1

f(x, jh)φ(x, jh)dx.

By the Taylor expansion, we know that∥∥∥∥∂φ∂y −Dh
yφ

∥∥∥∥
L∞

≤ h

∥∥∥∥∂2φ∂y2
∥∥∥∥
L∞

Thus∫
Ω1

h

N∑
j=1

a(|∇xu
h(x, jh)|)∇xu

h(x, jh) · ∇xφ(x, jh)dx+

∫
Ω

∂uh

∂y

∂φ

∂y
dy dx =

∫
Ω1

h

N∑
j=1

f(x, jh)φ(x, jh)dx+R(h)

where

|R(h)| ≤ Ch

∥∥∥∥∂uh∂y
∥∥∥∥
L2

∥∥∥∥∂2φ∂y2
∥∥∥∥
L2

≤ Ch.

Since a(|ξ|)ξ is monotone we can apply Minty’s trick (see Remark 4.1). We can write∫
Ω1

h

N∑
j=1

a(|∇xφ(x, jh)|)∇xφ(x, jh) · ∇x(φ(x, jh)− uh(x, jh))dx+

∫
Ω

∂φ

∂y
(x, y)

(
∂φ

∂y
(x, y)− ∂uh

∂y
(x, y)

)
dy dx

≥
∫
Ω1

h

N∑
j=1

f(x, jh)(φ(x, jh)− uh(x, jh))dx+R(h).

We can apply the regularity of φ and f to deduce∫
Ω

a(|∇xφ(x, y)|)∇xφ(x, y) · ∇x(φ(x, y)− uh(x, y))dxdy +

∫
Ω

∂φ

∂y
(x, y)

(
∂φ

∂y
(x, y)− ∂uh

∂y
(x, y)

)
dy dx

≥
∫
Ω

f(x, y)(φ(x, y)− uh(x, y))dx+ R̄(h).

where R̄(h) also tends to zero. So we can pass to the limit for h→ 0, to deduce∫
Ω

a(|∇xφ(x, y)|)∇xφ(x, y) · ∇x(φ(x, y)− u(x, y))dxdy +

∫
Ω

∂φ

∂y
(x, y)

(
∂φ

∂y
(x, y)− ∂u

∂y
(x, y)

)
dy dx

≥
∫
Ω

f(x, y)(φ(x, y)− u(x, y))dx. (4.4)

By density, we deduce that the formula also holds for φ ∈ W 1,m
0 (Ω). We take φ = u+ λw with w ∈ W 1,m

0 (Ω).
As λ→ 0± we recover the equation (P). This completes the proof.
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Step 4. Passage to the limit We have that uh → u in L1(Ω) as h → 0. Analogously for Ω# we have
that vh → v in L1(Ω#). Therefore (uh)∗ → u∗ and (vh)∗ → v∗ in L1(Ω∗

1 ×Ω2). Due to Proposition 3.3 we have
that ∫ s

0

(uh)∗(σ, y)dσ ≤
∫ s

0

(vh)∗(σ, y)dσ, ∀s ∈ (0, |Ω1|), y ∈ Ω2.

Passing to the limit we recover the result. Finally, arguing by density, we recover the result also whenf belongs
to Lmax{2,p′}.
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