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Abstract

We prove that the solutions of the damped Klein-Gordon equation
with a monotone perturbation cannot fulfill the finite extinction time
property, even if the perturbation is a non-Lipschitz (or multivalued)
function of the unknown u. This contrasts with the case of the non-
linear Schrödinger damped equation (recent results dealing with this
same monotone expressions but with a purely imaginary coefficient),
and with the case of nonlinear parabolic equations with strong absorp-
tion (for which the finite extinction time property is well-known since
the middle of the seventies of the last century).
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1 Introduction

Non-linear hyperbolic equations, like the Klein-Gordon equation, have been
of considerable interest to mathematicians and physicists since the pioneer-
ing works in 1950 by L.I. Schiff, K. Jördens and I.E. Segal. Among other
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reasons, the equations arise in Relativistic Quantum Mechanics (see the
references in [43]). The main goal of this paper is to analyze the asymp-
totic behavior of solutions when t → +∞. The long-time behavior of the
semilinear damped Klein-Gordon equation is relevant because it provides
insights into the stability, dispersion, and asymptotic dynamics of wave-like
phenomena in nonlinear systems. Understanding these aspects is crucial in
various physical applications, including field theory, optics, and condensed
matter physics. In certain asymptotic regimes, the damped semilinear Klein-
Gordon equation exhibits behavior reminiscent of the nonlinear Schrödinger
equation (NLS). This connection arises through paraxial approximations in
wave propagation, where the Klein-Gordon equation reduces to an NLS in
the weakly relativistic regime. Nevertheless, as we will show, the asymp-
totics of solutions for a long time are very different for these two dispersive
equations, and also in comparison with the semilinear parabolic equations
with non-Lipschitz terms.

The nonlinear function which appears as a perturbation of the linear
damped Klein-Gordon operator is like an additional control of the energy
dissipation. In absence of diffusion, in the linear ordinary differential equa-
tion it is well-known that the damping term suppresses oscillations and
drives monotonically the system towards the asymptotic state (u = 0). We
will show here that in the presence of a monotone perturbation β(u) the
solutions present infinitely oscillations, instead of purely exponential decay.
In particular, there is no finite time extinction property. We will prove this
for the general semilinear damped Klein-Gordon equation

utt + γut − c2∆u+mu+ β(u) 3 0 in Ω× (0,+∞),
uλ = 0 on ∂Ω× (0,+∞),
uλ(0, x) = u0(x) on Ω,
uλt(0, x) = v0(x) on Ω.

(1)

where c, γ,m > 0 and β(u) is a maximal monotone graph of R2 such that
0 ∈ β(0). Our main interest deals with the case Ω = RN , but sometimes it is
useful to start by the consideration of the case in which Ω is a bounded open
set. The two main examples are the equation with saturation (sometimes
written in a single-valued way)

utt + γut − c2∆u+mu+ a
u

|u|
= 0 in RN × (0,+∞), (2)
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which corresponds to the special case of

β(r) = asign(r) =


a if r > 0,

[−a, a] if r = 0,
−a if r < 0,

(3)

and the case with a strong absorption term

utt + γut − c2∆u+mu+ a |u|−(1−p) u = f(x, t) in RN × (0,+∞), (4)

with p ∈ (0, 1), corresponding to

β(r) = a|u|−(1−p)u. (5)

Concerning the existence of solutions, both cases were already considered by
J.-L. Lions in [44] (among many other authors), for the case of Ω bounded,
γ = m = 0.

There are many results in the literature showing that under some condi-
tions on the nonlinear term β(u) the solutions u(., t) converge to zero when
t→ +∞ (see, e.g, Chapter 10 of [22] and its many references). Here we will
prove, in any case, the absence of finite-time extinction for this semilinear
Klein-Gordon equation with damping for any choice of the maximal mono-
tone graph β(u), once we assume that 0 ∈ β(0). We will prove that the
time decay is at most exponential. This contrasts with the case of parabolic
equations with a strong absorption term (see [2]) or with a maximal mono-
tone graph β multivalued at the origin (see [15], [18] and the survey [28]),
and even with the dispersive case of damped Schrödinger equations with
single-valued non-Lipschitz perturbation (see [23], [24], [6], [7], [8], [9]) or
the damped Schrödinger equation (see [10]).

The organization of this paper is as follows: Section 2 is devoted to
proving the existence of solutions. The absence of finite extinction time
property for the problem (1) will be presented in Section 3 where we start
by considering the case of the second order nonlinear ordinary differential
equation. The presentation of the new results for hyperbolic equations is
here accompanied by numerous remarks, containing a large number of refer-
ences, to place the results for these hyperbolic equations in comparison with
some results established for the nonlinear Schrödinger equation, parabolic
equations with similar nonlinear terms and, even, other hyperbolic nonlinear
equations with nonlinearities applied on the damping term ut instead of the
own unknown u.
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2 On the existence of solutions

Concerning the existence of solutions, we start by considering the case of a
bounded domain Ω and also with a possible forzing term f(x, t)

utt + γut − c2∆u+mu+ β(u) 3 f(x, t) in Ω× (0,+∞),
uλ = 0 on ∂Ω× (0,+∞),
uλ(0, x) = u0(x) on Ω,
uλt(0, x) = v0(x) on Ω.

(6)

Theorem 1. Assume Ω bounded and let β = ∂j, with 0 ∈ β(0), be such
that

D(β) = R. (7)

Let T > 0 arbitrary, and consider

u0 ∈ H1
0 (Ω) with j(u0) ∈ L1(Ω), (8)

v0 ∈ L2(Ω), (9)

f ∈ L1(0, T ;L2(Ω)). (10)

Then:
1. There exists u ∈ L∞(0, T ;H1

0 (Ω)), ut ∈ L∞(0, T ;L2(Ω)), weak solution
of (6), in the sense that there exists a function g ∈ L1(Ω× (0, T )) such that
g(x, t) ∈ β(u(x, t)) a.e. Ω× (0, T ) and the equation of (6) is satisfied in the
sense that

utt + γut − c2∆u+mu+ g = f. (11)

2. If, in addition

u0 ∈ H2(Ω), v0 ∈ H1
0 (Ω), and there exists gv ∈ L2(Ω) gv ∈ β(v0) a.e.on Ω,

(12)

f ∈ L2(0, T ;L2(Ω)) and ft ∈ L1(0, T ;L2(Ω)), (13)

then u ∈ C([0, T ];H1
0 (Ω)) ∩ L∞(0, T ;H2(Ω)), ut ∈ L∞(0, T ;H1

0 (Ω)) and
utt ∈ L∞(0, T ;L2(Ω)).

Proof. A proof of the above result, for the special case of γ = 0 and m = 0,
was given in [13, Theorem III.3], and the additional regularity in [12] (The-
orem III.3). For completeness, here we will extend their arguments to our
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formulation. We consider the approximation of β by its Yosida approxima-
tion βλ = ∂jλ and we approximating the data by more regular data u0,λ,
v0,λ, and fλ satisfying the stronger conditions (12) and (13). As a first step,
we consider the regularized problem

uλtt + γuλt − c2∆uλ +muλ + βλ(uλ) = fλ(x, t) in Ω× (0,+∞),
uλ = 0 on ∂Ω× (0,+∞),
uλ(0, x) = u0,λ(x) on Ω,
uλt(0, x) = v0,λ(x) on Ω.

(14)
We get the existence and uniqueness of a solution since the operator

D(A) =
(
H1

0 (Ω) ∩H2(Ω)
)
×H1

0 (Ω), A =

(
0 −I

−c2∆ +mI γI

)
,

is maximal monotone in the Hilbert space H = H1
0 (Ω) × L2(Ω) (see [12])

and the operator

B =

(
0
βλ

)
is Lipschitz on H (see Remark 3.14 of [14]). In that case we get a strong
solution of (14) since

U0 =

(
u0,λ

v0,λ

)
∈ D(A)

and

F =

(
0
fλ

)
is such that F ∈ L2(0, T ;H),

d

dt
F ∈ L1(0, T ;H).

Multiplying by uλt and integrating over Ω we get

1

2

d

dt
|uλt|2L2 +

c2

2

d

dt
(|∇uλ|2L2 +

m

2
|uλ|2L2) + γ |uλt|2L2 +

d

dt

∫
Ω
jλ(uλ)dx (15)

≤ |fλ|L2 |uλt|L2 .

From this we conclude that the sequences |uλt|2L2 and |∇uλ|2L2 + |uλ|2L2 are
bounded in L∞(0, T ) as λ → 0. On the other hand, multiplying (14) by
the resolvent vλ = (I + λβ)−1uλ, using that it is a contraction and the
monotonicity of the operator −c2∆uλ+muλ, integrating over Ω× (0, T ), we
obtain ∫ T

0

∫
Ω
βλ(uλ)vλ ≤

∫ T

0

∫
Ω
|fλ(x, t)| |uλ|+

∫ T

0

∫
Ω
|uλt|2

+

∫
Ω
|uλt(x, T )| |uλ(x, T )|+

∫
Ω
|v0,λ(x)| |u0,λ(x)| .
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Thus, this term is bounded as λ → 0 and so, there exists a subsequence
λn → 0 such that

uλn → u weakly in L∞(0, T ;H1
0 (Ω)),

uλnt → ut weakly in L∞(0, T ;L2(Ω)),
uλn → u a.e. on Ω× (0, T ),
βλ(uλ)→ g weakly in L1(Ω× (0, T )).

The last convergence was a consequence of Theorem 18 of [13] (see also
Theorem 1.1 of [49]), thanks to the assumption (7).

For the important case of Ω = RN , it is useful to assume some supple-
mentary conditions on the support (supp) of the data.

Theorem 2. The statement of Theorem 1 remains valid for the case Ω =
RN once we assume that

supp u0 and supp v0 are compact sets of RN ,

and
supp f(·, t) is compact, for a.e. t ∈ (0, T ).

Then, in addition

supp u(·, t) is compact, for a.e. t ∈ (0, T ),

and the function g ∈ L1(Ω × (0, T )), g(x, t) ∈ β(u(x, t)) a.e. Ω × (0, T ),
satisfying (11), is such that

supp g(·, t) is compact, for a.e. t ∈ (0, T ).

The proof of this theorem is a consequence of the following basic result
on the dependence cone:

Lemma 1. Let T0 > 0 and x0 ∈ Ω. Let β satisfying (7) and let u0, v0,
f(x, t) as in the first part of Theorem 1. Let’s suppose that

B(x0, cT0) = {x ∈ RN : |x− x0| ≤ cT0} ⊂ Ω.

Assume that u0 and v0 vanish almost everywhere on B(x0, cT0) and that
f(·, t) vanishes almost everywhere on B(x0, c(T0 − t)), for a.e. t ∈ (0, T0).
Then the solution u given in Theorem 1 vanishes on the cone⋃

t∈(0,T0)

B(x0, c(T0 − t)) =
{

(x, t) ∈ RN × (0, T0) : |x− x0| ≤ c(T0 − t)
}
.
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Proof. Without loss of generality we may assume that the data u0, v0, f(x, t)
are regular as in the second part of Theorem 1 and vanishing on the indicated
sets. In addition, we can also assume that c = 1. Indeed, by rescaling the
spatial variable

X = µx, µ = 1/c, U(X, t) = u(x, t),

we find that
c2∆xu = ∆XU.

For simplicity in the notation, we keep the old notation (identifying X and U
with x and u) but assuming now c = 1. Let uλ be the solution of the approxi-
mate problem (14) with c = 1. We multiply the equation by uλtψn(|x− x0|)
with

ψn(r) =


1 if r ∈ [0, ρ− 1/n],
−n(ρ− r) if r ∈ [ρ− 1/n, ρ],
0 if r ∈ [ρ, ρ0],

where ρ0 > 0 is such that ρ0 > T0. Then we have

−
∫

Ω
∆uλ(uλtψn(|x− x0|)) =

∫
Ω
∇uλ · (∇uλtψn(|x− x0|))

+

∫
Ω
∇uλ · (uλt∇ψn(|x− x0|)).

Using spherical coordinates (r, ω) with center x0 we have

n

∫ n

ρ−1/n
uλt∇uλ ·

x− x0

|x− x0|
dx = n

∫ n

ρ−1/n

∫
SN−1

uλt∇uλ · −→υ rN−1dωdr,

where −→υ is the outward normal vector at x ∈ Sρ(x0) = ∂B(x0, ρ). As in
Lemma 2.1 of [36], from Lebesgue’s differentiation theorem and the fact
that r →

∫
SN−1 uλt∇uλ · −→υ rN−1dω ∈ L1(0, ρ0), we deduce that for almost

all ρ ∈ (0, ρ0),

lim
n→∞

n

∫ n

ρ−1/n
uλt∇uλ ·

x− x0

|x− x0|
dx =

∫
Sρ(x0)

uλt∇uλ · −→υ rN−1ds.

Then, going to the limit (n→∞), as in (15), we deduce (taking ρ = T0− t)

1

2

∫
B(x0,T0−t)

∂

∂t
((uλt)

2 + |∇uλ|2 +m |uλ|2) + γ |uλt|2L2(B(x0,T0−t))

= ((T0 − t))N−1

∫
SN−1

uλt∇uλ((T0 − t)ξ) · −→υ dξ

+

∫
B(x0,T0−t)

(fλ − βλ(uλ))uλt.
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We also point out that if φ ∈W 1,1(0, T : L1(Ω)) we have

d

dt

∫
B(x0,T0−t)

φ(x, t)dx =
d

dt

∫ T0−t

0
rN−1dr

∫
SN−1

φ(rξ, t)dξ

=

∫
B(x0,T0−t)

∂φ

∂t
(x, t)dx− (T0 − t)N−1

∫
SN−1

φ((T0 − t)ξ, t)dξ.

Then we have

1

2

d

dt

∫
B(x0,T0−t)

((uλt)
2 + |∇uλ|2 +m |uλ|2)

≤ −(T0 − t)N−1

∫
SN−1

[{
(uλt)

2 + |∇uλ|2 +m |uλ|2

−2uλt∇uλ
}

((T0 − t)ξ) · −→υ
]

+
∫
B(x0,T0−t)(fλ − βλ(uλ))uλt.

By the Cauchy and Young inequalities

|2uλt∇uλ · −→υ | ≤ 2 |uλt| |∇uλ| ≤ (uλt)
2 + |∇uλ|2 .

On the other hand, since βλ is Lipschitz continuous and |βλ(uλ)| ≤ C(λ) |uλ|,
applying that fλ(., t) vanishes almost everywhere on B(x0, T0 − t) for a.e.
t ∈ (0, T0),∫

B(x0,T0−t)
(fλ − βλ(uλ))uλt ≤

C(λ)

2
√
m

∫
B(x0,T0−t)

((uλt)
2 +m |uλ|2).

Then

1

2

d

dt

∫
B(x0,T0−t)

((uλt)
2+|∇uλ|2+m |uλ|2) ≤ C(λ)

2
√
m

∫
B(x0,T0−t)

((uλt)
2+m |uλ|2).

Integrating the above inequality∫
B(x0,T0−t)

((uλt)
2 + |∇uλ|2 +m |uλ|2)dx

≤ e
C(λ)

2
√
m

∫
B(x0,T0)

((v0λ)2 + |∇u0λ|2 +m |u0λ|2)dx = 0,

for all t ∈ (0, T0) (and not only a.e. t ∈ (0, T0), since uλ ∈ C([0, T ];H1
0 (Ω))).

This proves the result for uλ and gλ = βλ(uλ). For the more general case,
as in the proof of Theorem 1, we know that uλn → u a.e. on Ω × (0, T ).
So, u also vanishes on the same cone (notice that it is independent on λn).
Finally, since βλ(uλ) → g weakly in L1(Ω × (0, T )), and we know that
g = f − (utt + γut − c2∆u+mu) ∈ L1(Ω× (0, T )), we conclude that g also
vanishes on the same cone.
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Proof. (of Theorem 2) Given T > 0, let Ω̃ be a bounded regular set such
that the solution ũ of the problem (6) on Ω̃ × (0, T ), satisfies that support
ũ(·, t) ⊂ Ω̃, for a.e. t ∈ (0, T ) [as a consequence of Lemma 1 and the
assumptions on the data]. Then the function

u(x, t) =

{
ũ(x, t) if x ∈ Ω̃,

0 if x ∈ RN \ Ω̃,

satisfies all the requirements (after extending by zero the function g̃ such
that g̃ ∈ β(ũ) a.e. on Ω̃ ×(0, T )).

Remark 1. Lemma 1 extends Theorem 1.4.63 of [17] (stated for the case
of the linear wave equation). In particular, we have replaced their approxi-
mation argument with Lemma 2.1 of [36] and the Yosida approximation of
β. Theorem 2 is valid for unbounded domains Ω, once the dependence cone
associated with the data is assumed to be contained in Ω× (0, T )), or when
β is a monotone continuous function such that β(0) = 0 (see Theorem 2
of [49] where the compactnees of the support of the data is not required).

Remark 2. Problems like (6) are called by some authors (see, e.g., [12],
[43] and [38]) as “variational inequalities of the second type”, once they are
written in the terms of the primitive j of β:∫

Ω
(utt + γut)(v − u) +

∫
Ω
c2∇u · ∇(v − u)

+m

∫
Ω
u(v − u) +

∫
Ω
j(v)−

∫
Ω
j(v)

≥
∫

Ω
f(x, t)(v − u) for any v ∈ H1

0 (Ω) a.e. t ∈ (0, T ).

The uniqueness of solutions to this type of problem is a delicate question
when β is not a global Lipschitz continuous function. Alternatively, there
are many different criteria in the literature (see many references in [45], [49],
[48], [19], [17] , [22], and also [40], where the case of complex-valued solutions
was considered).

The uniqueness of solutions for the multivalued hyperbolic equation (2)
was mentioned in [44] as an open problem. The following result offers a
positive answer in the class of non-degenerate solutions, already introduced
in [35] for a different parabolic problem.
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Definition 1. Let u ∈ L∞(Ω). Given ε0, 0 < ε0 < 1, for ε ∈ (0, ε0), we say
that u is a non-degenerate function if it satisfies the following property: if
there exists a constant C > 0 such that for any ε ∈ (0, ε0)∣∣{x ∈ Ω :

∣∣u∣∣ ≤ ε} ∣∣ ≤ Cε.
The key point is the following technical result:

Lemma 2. (see [35]) Let w, ŵ ∈ L∞(Ω) and assume that w satisfies the
nondegeneracy property. Let β as in (3). Then ∀q ∈ [1,∞) there exists
Ĉ > 0 such that if z, ẑ ∈ L∞(Ω), with z(x) ∈ β(w), ẑ(x) ∈ β(ŵ) a.e. x ∈ Ω,
we have

‖ z − ẑ ‖Lq(Ω)≤ aĈ ‖ w − ŵ ‖
1/q
L∞(Ω) .

Theorem 3. Assume N = 1, Ω = R, m > 0, and assume the data such that
there exists a bounded nondegenerate weak solution u of (6) with β given by
(3). Then u is the unique bounded weak solution of the problem.

Proof. Assume that there exists another bounded weak solution û corre-
sponding to the same data u0, v0, f(x, t) and let ĝ(x, t) ∈ β(û(x, t)) be the
corresponding function appearing in the equation. Let w = u− û. Subtract-
ing the two equations and multiplying the difference of them by wt we get
that, if we define the energy E(t) of the difference by

E(t) =
1

2

∫
R

(
1

2
|wt|2 +

c2

2
|wx|2 +

m

2
|w|2

)
dx,

then
d

dt
E(t) ≤ −γ

∫
R
|wt|2dx+

∫
R
|g − ĝ| |wt|.

Since N = 1, by the Morrey theorem (see Theorem 9.12 of [16])

c2

2

∫
R
|wx|2dx+

m

2

∫
R
|w|2dx ≥ min(

c2

2
,
m

2
)

(∫
R
|wx|2dx+

∫
R
|w|2dx

)
≥ C ‖ w ‖2L∞(R) .

On the other hand, by Lemma 2∫
R
|g − ĝ| |wt| ≤‖ g − ĝ ‖L2(R)‖ wt ‖L2(R)≤ 1

2 ‖ g − ĝ ‖
2
L2(R) +1

2 ‖ wt ‖
2
L2(R)

≤ aĈ

2
‖ w ‖2L∞(R) +

1

2
‖ wt ‖2L2(R)

≤ aĈ

2C min( c
2

2 ,
m
2 )

(
c2

2

∫
R
|wx|2dx+

m

2

∫
R
|w|2dx

)
+

1

2
‖ wt ‖2L2(R) .
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Then, there exists K > 0 such that

d

dt
E(t) ≤ KE(t),

and then
0 ≤ E(t) ≤ E(0)eKt.

Since E(0) = 0, we get that E(t) ≡ 0, which proves that û = u.

Remark 3. Obviously, the existence of bounded, non-degenerate solutions
requires additional conditions on the data. For instance for N = 1, the use of
the D’Alembert formula for the associated linear problem allows to see that if
the initial data and f(., t) are bounded and non-degenerate, then the solution
also satisfies both properties. For N > 1 the boundedness of the solution can
be proved once we assume bounded the data by means of the use of the
associate Green function (see [5], [37], [50]) of the associate linear equation
We emphasize that the presence of the damping term γut and the assumption
D(β) = R are, in some way, essential in our treatment. For example, for the
obstacle problem (when β is given by β(r) = {0} if r > 0, β(0) = (−∞, 0]
and β(r) = φ, the empty set, if r < 0) the term g(x, t) ∈ β(u(x, t)) becomes
a singular measure and the behavior of the solution is quite different (see,
e.g., [47] and [39]).

Remark 4. The case of a saturation nonlinearity can be understood in the
framework of Control Theory as a special case of feedback control, of bang-
bang type, for the linear wave equation, to get the exact controllability to zero
(finite time stabilization) at time Te: i.e., we can reformulate the equation
as

utt − c2∆u+mu = f(x, t) + y(x, t) in RN × (0,+∞),

with the control y(x, t) = γut + a u
|u| (see some general references on this

point of view in [10]). The more difficult case, in which the control is only
defined on a small part ω of Ω, requires additional conditions (see, e.g., the
presentation made in [41]).

Remark 5. Concerning the uniqueness of solutions of problem with β given
by (5), the result proved in [43] (Théorème 1.2; for γ = m = 0) remains
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valid for the case γ ≥ 0 and m ≥ 0 (see also Lemma 3.1 of [49]). It requires
the condition

p ≤ N

N − 2
,

and thus it holds for p ∈ (0, 1) for any N ≥ 2. Notice that this contrasts
with Theorem 3 where it applies to the case N = 1.

3 Absence of the finite extinction time property.

It is convenient to start our analysis by the consideration of the nonlinear
ordinary differential equation (ODE) with saturation

u′′ + γu′ +mu+ a u
|u| = 0 t ∈ (0,+∞),

u(0) = u0,
u′(0) = v0.

(16)

In the case a = 0, the ODE reduces to the linear ODE u′′ + γu′ +mu =
0. This second-order ODE with constant coefficients has as characteristic
equation

r2 + γr +m = 0.

The roots of the characteristic equation are

r =
−γ ±

√
γ2 − 4m

2
.

In the case of strong damping (γ2 > 4m), the roots are real and distinct

r1 =
−γ +

√
γ2 − 4m

2
, r2 =

−γ −
√
γ2 − 4m

2
.

Both roots are negative and then the general solution is

u(t) = C1e
r1t + C2e

r2t,

where C1 and C2 are constants determined by the initial conditions. The
solution u(t) is a linear combination of two decaying exponential functions,
so there are no oscillations because the roots r1 and r2 are real. This sys-
tem is overdamped, and the solution decays to zero without crossing the
equilibrium point u = 0 more than once.

The situation radically changes when a > 0 since the ODE becomes
nonlinear. Even in the case of strong damping, the nonlinear term a u

|u|
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dominates near u = 0, causing the solution to oscillate infinitely. Indeed,
for u > 0, the ODE becomes u′′ + γu′ + mu + a = 0 and the solution in
this region is a decaying exponential (due to strong damping) shifted by the
constant term −a/m

u(t) = C1e
r1t + C2e

r2t − a/m.

When u < 0, the ODE becomes u′′ + γu′ +mu− a = 0 and the solution, in
this region, is a decaying exponential shifted by the constant term a/m.

u(t) = C1e
r1t + C2e

r2t + a/m.

This switching behavior leads to an infinite number of oscillations, even in
the case of strong damping. We can explore the sequence of crossing times
Tn. Let Tn be the n-th crossing time (the time at which u(t) crosses zero for
the n-th time). Let us explain how to calculate T2 from T1 and, in general,
Tn+1 from Tn. The ODE is piecewise linear, with different dynamics in the
regions u > 0 and u < 0. Step 1. Calculation of T2 from T1: We solve for
u(t) in t ∈ [0, T1). Assume, for instance, u(0) = u0 > 0 and u′(0) = 0. For
t ∈ [0, T1), u(t) > 0, so the solution is:

u(t) = C1e
r1t + C2e

r2t − a

m
.

Using the initial conditions, we get{
C1 + C2 − a

m = u0,
r1C1 + r2C2 = 0.

We can solve this system to find C1 and C2. Step 2: Find T1. At t = T1,
u(T1) = 0. i.e.,

C1e
r1T1 + C2e

r2T1 − a

m
= 0.

This is a transcendental equation for T1, which can be solved numerically.
Step 3: Solve for u(t) in t ∈ (T1, T 2). For t ∈ (T1, T2), u(t) < 0, so the
solution is:

u(t) = C
′r1(t−T1)
1 + C

′r2(t−T1)
2 +

a

m
.

We must use the conditions u(T1) = 0 and u′(T1) = u′(T−1 ) (continuity of
u′) to solve for C ′1 and C ′2. Step 4: Find T2. At t = T2, u(T2) = 0, which
leads to

C
′r1(T2−T1)
1 + C

′r2(T2−T1)
2 +

a

m
= 0.
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This is another transcendental equation for T2, which can be solved numeri-
cally. The process can be generalized in an obvious way: i) Solve for u(t) in
the current regime (u > 0 or u < 0) using the appropriate general solution.
ii) Use the crossing condition u(Tn) = 0 to solve for Tn, iii) Use the solution
in the new regime (opposite to the previous one) starting from t = Tn. iv)
Solve for Tn+1 using the crossing condition u(Tn+1) = 0. This recursive
process can be continued to compute all crossing times Tn. The transcen-
dental equations for Tn cannot be solved analytically, in general. However,
they can be solved numerically using methods such as Newton’s method,
Bisection method or Fixed-point iteration.

It is easy to see that the difference Tn+1−Tn (the time intervals between
consecutive zero crossings) increases with n. Indeed, the damping term
γu′ ensures that the amplitude of the oscillations decreases over time. As
the amplitude decreases, the time intervals between consecutive crossings
Tn+1 − Tn increase because the oscillations become slower (see Figure 1,
below).

Instead to prove more rigorously that there is no finite-time extinction
for this example, we return to the study of the Klein-Gordon equation since
the same arguments apply to the nonlinear ordinary differential equation.
Notice that the above behavior of the solution is very different when con-
sidering some related elliptic problems, which in radial coordinates leads to
the equation

−u′′ − (N − 1)

t
u′ +mu+ β(u) 3 0, t ∈ (0,+∞),

with m ≥ 0 (see, e.g., Section 2.2 of [29]).

Theorem 4. Let β = ∂j with 0 ∈ β(0), satisfying (7). Let u0 and v0 as in
part 1 of Theorem 1 (if Ω is bounded) or as in Theorem 2 (for Ω = RN ),
and let f ≡ 0. Let u be any weak solution of (1). We define the energy

E(t) =

∫
Ω

(
1

2
|ut|2 +

c2

2
|∇u|2 +

m

2
|u|2 + j(u)

)
dx.

Then,
E(t) ≥ E(0)e−2γt > 0 for any t > 0. (17)

In particular, u cannot satisfy the finite extinction time property.

The proof of this result will use that if f ≡ 0, and if the data are regular
(as in Part 2 of Theorem 1) then we can get an identity for the derivative
of the energy and not only an inequality (see a related result in Théoreme
1.6 of [43] and also in [48]).
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Figure 1: Numerical experiences corresponding to different values of the
parameter a, with m = 1 γ=

√
4m+ 5 and u0 = 0.5 and v0 = 1. Notice

that u 6∈ C2 and that the oscillations are not due to the presence on any
trigonometric function (since the roots r1, r2 are negative real numbers).
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Lemma 3. Given λ > 0, let βλ be the Yosida approximation βλ = ∂jλ of
β, and let u0,λ, v0,λ, satisfying the stronger conditions (12) and (13). Let
uλ be the unique solution of the regularized problem

uλtt + γuλt − c2∆uλ +muλ + βλ(uλ) = 0 in Ω× (0,+∞),
uλ = 0 on ∂Ω× (0,+∞),
uλ(0, x) = u0,λ(x) on Ω,
uλt(0, x) = v0,λ(x) on Ω.

(18)

Define

Eλ(t) =
1

2

∫
Ω

(
1

2
|uλt|2 +

c2

2
|∇uλ|2 +

m

2
|uλ|2 + jλ(uλ)

)
dx.

Then
d

dt
Eλ(t) = −γ

∫
Ω
|uλt|2dx. (19)

Proof. We drop the subindex λ for simplicity in the notation. Since by
Part 2 of Theorem 1 we know that u ∈ C([0, T ];H1

0 (Ω))∩L∞(0, T ;H2(Ω)),
ut ∈ L∞(0, T ;H1

0 (Ω)) and utt ∈ L∞(0, T ;L2(Ω)), βλ(uλ) ∈ L2(0, T ;L2(Ω))
and βλ = ∂jλ (and the subdifferential is single-valued, since βλ is a Lipschitz
function) we can justify that

d

dt
E(t) =

∫
Ω

(
1

2

[
uttut + c2∇u · ∇ut +muut

]
+ utβλ(uλ)

)
dx. (20)

Multiplying the equation (18) by ut we get

uttut − c2∆uut +muut + βλ(u)ut = −γ (ut)
2 (21)

On the other hand, since ut ∈ L∞(0, T ;H1
0 (Ω))

−
∫

Ω
∆uut =

∫
Ω
∇u · ∇ut. (22)

Substituting, we see that there are several cancellations and finally we get
the identity (19).

Proof. (of Theorem 4) Assume for the moment the data as in Lemma 3.
Since ∫

Ω
|uλt|2dx ≤ 2Eλ(t),



J.I. Dı́az 313

(notice that jλ(uλ) ≥ 0 since jλ(0) = j′λ(0) = 0 and jλ is convex), we
conclude, by Lemma 3, that

d

dt
Eλ(t) ≥ −2γEλ(t) a.e. t ∈ (0,+∞).

Integrating in t we get

Eλ(t) ≥ Eλ(0)e−2γt > 0 for any t > 0. (23)

As in the proof of Theorem 1, for data u0 ∈ H1
0 (Ω) and v0 ∈ L2(Ω), we

know that Eλ(t)→ E(t) as λ→ 0. Estimate (23) is stable by approximation
of the data, and thus we get (17). In the case of Ω = RN the proof is the
same since u0 ∈ H1

0 (RN ) and v0 ∈ L2(RN ) are assumed, both, with compact
support and then we apply Theorem 2 which reduces the problem to the case
of a bounded domain Ω, large enough.

Remark 6. The role of the absorption term for the hyperbolic equation is
different with respect to parabolic semilinear equations (see, e.g., the results
quoted in [2]) concerning how the condition p ∈ (0, 1) implies the extinction
in a finite time of the solution.

Remark 7. There is a very extensive literature dealing with the study of the
decay of solutions to the Cauchy problem for the damped wave equation with
weak absorption (equation (4) with p > 1): see, e.g., [46] and its references.

Remark 8. The presence of the damping term was fundamental in the
proof of Theorem 4. We do not know the asymptotic behavior of solutions of
the equation with a strong absorption in the absence of any damping term.
It is easy to see that some special solutions may have a finite extinction
time. Indeed, consider, for instance, the wave equation with a nonlinear
absorption:

utt −∆u+ a|u|p−1u = f(x, t) (24)

where f(x, t) will be defined later. We search for a possible self-similar
solution (of separated variables) in the form:

u(x, t) = C(T − t)α+v(x), (25)

where T is the extinction time, C > 0 and α is an exponent to be determined.
Computing the derivatives we have ut = αC(T − t)α−1

+ v(x), utt = α(α −
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1)C(T − t)α−2
+ v(x). The nonlinear term is a|u|p−1u = aCp(T − t)αp+ |v|p−1v.

For consistency in the equation, the dominant terms must have the same
time dependence, which leads to the condition αp = α− 2, i.e.,

α =
2

1− p

Then, if we assume f(t, x) = λC(T − t)2/(1−p)
+ v(x), we get that constant C

is given as

C =

 a

λ− 2(1+p)
(1−p)2

1/(1−p)

,

once we assume λ > 2(1+p)
(1−p)2 , and then function v ∈ H1

0 (RN ) must satisfy

the nonlinear elliptic equation −∆v + |v|p−1v = v(x). For a study of this
equation see, e.g., [31] and its references.

Remark 9. In the case of parabolic problems, there are many papers dealing
with the finite extinction time property obtained using the construction of
super and subsolutions and the comparison principle (see, e.g., [18], [26],
[34]). For the application of some other abstract methods see, e.g., [52], [11],
[30]. An early survey on this property can be found in [28]). Curiously, this
property also holds for linear parabolic equations in the presence of suitable
delayed terms (see [25]).

Remark 10. Notice that in the case in which the multivalued maximal
monotone graph β is applied on the damping term (instead on the unknown
u) 

utt − c2∆u+mu+ β(ut) 3 f(x, t) in Ω× (0,+∞),
u = 0 on ∂Ω× (0,+∞),
u(x, 0) = u0(x) on Ω,
ut(x, 0) = v0(x) on Ω,

(26)

the conclusion, when f(x, t) ∈
◦

β(0) a.e. on Ω× (Tε,+∞) is different to the
finite extinction time: in that case, it can be proved that there exists a finite
time Te > 0, such that

u(x, t) = ς(x) on Ω for any t ≥ Te,
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with ς ∈ H1
0 (Ω)) such that −c2∆ς + mς ∈ −β(0) on Ω. See [20], [21], [4],

[42] and [33]. However, if the friction is given by a power, p ∈ (0, 1), of
ut (for instance, as it happens with the hyperbolic damped equation utt −
∆u + |ut|p−1ut = 0), in general, the extinction does not occur in a finite
time. That was rigorously proved in the case of the damped oscillator mẍ+
µ |ẋ|α−1 ẋ + kx = 0 when α ∈ (0, 1): see [32], [1] and [51]. It was shown
in those references that the generic asymptotic behavior above described for
the limit case α = 0 is only exceptional for the sublinear case α ∈ (0, 1)
since the generic orbits (x(t), ẋ(t)) decay to (0, 0) in a infinite time and only
two one-parameter families of them decay to (0, 0) in a finite time: in other
words, when α → 0 the exceptional behavior becomes generic. The finite
extinction time for the wave equation with dry friction equation fails if it is
perturbed with a linear term γut (see [3]).
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