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Abstract. In this paper, we would like to study nonnegative solutions of the following problem:{
ut = div

(
u∇(−∆)−1um

)
in RN × (0,T ) ,

u(x, 0) = u0(x) in RN ,

with m ≥ 1. We establish the well-posedness theory for densities u0(x) in Cγ(RN), γ ∈ (0, 1); or
in Hs(RN), s > N

2 with compact support respectively.
Concerning the qualitative behavior of solutions, we show that the Lp-estimates of solutions,
1 < p ≤ ∞ are decreasing in time. Moreover, we demonstrate that the solutions satisfy the
following universal bound

u(x, t) ≤ (mt)−
1
m , for (x, t) ∈ RN × (0,∞).

In addition, we investigate the asymptotic profile of u when t → ∞. Precisely, for any q ∈ [1,∞)
we have ∥∥∥u(t) −W(t)

∥∥∥
Lq(RN ) ≤ Ct−

q−1+21−N

qm , t > 0,

where W(x, t) is the vortex patch solution. Hence, we extend the known results of the case
q = m = 1 in the literature.
We end the paper with a section devoted to the study of symmetrization solutions of the above
problem. In particular, we obtain some comparison results in a suitable sense for the sym-
metrization solutions.
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1. Introduction

Our main purpose of this paper is to study nonnegative solutions of the following equation
∂tu = div (u∇p) in RN × (0,T ),
pu = (−∆)−1um,
u(x, 0) = u0(x) in RN ,

(1.1)

with m ≥ 1, and space dimension N ≥ 2, and u0 is a nonnegative density function. The above
problem is a special case of a family of problems of the form

∂tu = div (un∇pu) in RN × (0,T ) ,
pu = (−∆)−1um ,
u(x, 0) = u0(x) in RN ,

(1.2)

which can be also formulated in terms of the hyperbolic-elliptic nonlinear system
∂tu + ∇un · ∇pu + um+n = 0 in RN × (0,T ) ,
−∆pu = um in RN × (0,T )
u(x, 0) = u0(x) in RN .

(1.3)

Let us discuss several important works dealing with special cases of the above doubly para-
metric system (1.2). We also mention here that a different (but quite related) formulation was
proposed in [5, 6, 7, 8, 9, 10, 11, 12, 17, 22, 31, 37, 38] in which pu = (−∆)−sum with 0 < s < 1.
Note that the limit case s = 0 leads to the usual degenerate parabolic porous media equation:

∂tu = div (un∇um ) ,

for a gas with the constitutive law between the pressure and the density given by pu = um.
The other limit case, s = 1, corresponds to Eq (1.1), when n = 1, in which the constitutive
law between the pressure and the density is given through the Newtonian potential pressure
pu = (−∆)−1um (long-range interactions). Notice that now the problem loses its parabolic na-
ture and becomes a hyperbolic-elliptic nonlinear system.

When m = 1, Eq (1.1) reads as

∂tu = div
(
u∇(−∆)−1u

)
. (1.4)

Such an equation of this type has been studied by the authors in [3, 13, 14, 27, 29, 36, 43, 44],
and the references therein. In two-dimension (N = 2), Eq (1.4) is known as a Chapman–
Rubinstein–Schatzman mean field model of superconductivity (see [16]). Note that Eq (1.4) is
directly related to the following equation

∂tu = div
(
|u|∇(−∆)−1u

)
, (1.5)

which is a mean field model for the motion of vortices in a superconductor in the Ginzburg–
Landau theory, see [23, 29, 30, 43]. There, u represents the local vortex-density, and p =
(−∆)−1u represents the induced magnetic field in the sample. Obviously, Eq (1.5) coincides
with Eq (1.4) when u ≥ 0.
The well-posedness theory of Eq (1.4) for densities u0 ∈ L1(RN) ∩ L∞(RN) was established by
the authors in [3, 27, 28, 32, 36, 42, 44] and the references cited therein (see also the book by
Majda–Bertozzi, [29]). One of the most interesting properties of solutions to Eq (1.4) is the
finite speed of propagation. That is the support of u(., t) is compact in RN and is spreading
for every t > 0 if the initial datum is compactly supported in RN . This result is known in
the literature since vector velocity field ∇p is uniformly bounded for all (x, t) ∈ RN × (0,∞)
according to the theory of Calderón–Zygmund (see, e.g., [3, 27, 29, 30, 32]).
Furthermore, solutions of Eq (1.4) in RN × (0,∞) satisfies the following universal bound

u(x, t) ≤ t−1, for (x, t) ∈ RN × (0,∞) , (1.6)
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see, e.g., [3, 27, 44]. This bound can be obtained by using the characteristic equation associated
to u: 

dΦt(x)
dt = −∇pu(Φt(x), t), Φ0(x) = x,

du(Φt(x),t)
dt = −u2(Φt(x), t), u(Φ0(x), 0) = u0(x).

(1.7)

We emphasize that the universal bound plays a role of barrier in order to prove an existence of
solutions to Eq (1.4) with densities u0 in the space of Radon measures (see [27, 36]).
In [3], Bertozzi et al. established the well-posedness theory of mixed sign solutions to Eq
(1.4) for densities u0 ∈ L1(RN) ∩ L∞(RN). We note that the authors considered the Newtonian
pressure p = (∆)−1u instead of p = (−∆)−1u as in Eq (1.4). Thus, their spreading case (the same
our study in this paper) is corresponding to the nonpositive densities u0. Besides, they obtained
the asymptotic behavior of solution u as t → ∞. Precisely, if u0 ∈ L∞c (RN), then the unique
solution u of Eq (1.4) satisfies

lim
t→∞
∥u(t) −W(t)∥L1(RN ) = 0 ,

where

W(x, t) =
∥u0∥L∞(RN )

1 + ∥u0∥L∞(RN )t
1B(0,R(t)), R(t) = R0

(
1 + ∥u0∥L∞(RN )t

) 1
N
,

and R0 depends on u0,N. Note that W(x, t) is called the vortex patch of solution. Here and
through the paper, we denote 1Ω by the characteristic function on Ω for every set Ω in RN .
On the other hand, if u0(x) is strictly negative at some point in RN , then the solution is blowing-

up in a finite time T ∗ = sup
x∈RN

1
−u0(x)

, see [3, page 2].

We would like to mention that Nieto–Poupaud–Soler [32] also studied Eq (1.4), derived from
the Vlasov–Poisson–Fokker–Planck system.
Note that this equation is also a transport equation. Such an equation of this type has been
studied by several authors in [1, 2, 15, 22, 28, 36], and the references therein, by using the
gradient flow approach. For example, using the 2-Wasserstein distance Loeper [28] obtained
a uniqueness of bounded solutions to the Vlasov–Poisson system, which can be derived to Eq
(1.4).

Eq (1.4) with fractional potential p = (−∆)−su, s ∈ (0, 1) reads as

∂tu = div
(
u∇(−∆)−su

)
. (1.8)

The pioneering study of Eq (1.8) has been made by Caffarelli–Vázquez, [10]. They obtained
an existence result of nonnegative solutions, and the L∞-estimate which is decreasing in time.
Moreover, the constructed solution satisfies the finite speed of propagation, and the L∞ − L1

decay estimate

∥u(t)∥L∞ ≤ Ct−
N

N+2−2s ∥u0∥
2−2s

N+2−2s

L1 , for t > 0 , (1.9)
with constant C = C(N, s).
We emphasize that constant C(N, s) in (1.9) stays bounded for all s near 1. Thus, universal
bound (1.6) can be derived from (1.9) by letting s → 1. This observation is due to Serfaty–
Vázquez, [36]. Some generalizations of Eq (1.8) have been studied by the authors in [5, 17, 38]
and the references cited therein.

Concerning the nonlinear mobility cases, Carrillo et al. [13, 14], studied nonnegative solu-
tions of the following equation{

∂tu = div
(
un∇(−∆)−1u

)
in RN × (0,T ) ,

u(x, 0) = u0(x) in RN .
(1.10)
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When 0 < n < 1, they proved an existence and uniqueness of solutions in the sense of vis-
cosity solutions for densities u0 ∈ L1(RN) ∩ L∞(RN) with the radial mass. In addition, the
authors proved an existence and uniqueness of radial solutions when n > 1. We want to men-
tion that the existence and uniqueness of solutions to Eq (1.10) is open for general densities
u0 ∈ L1(RN) ∩ L∞(RN).

In our knowledge, Eq (1.1) has not been studied when m > 1. Then, we would like to study
the well-posedness theory for densities u0 in Cγ(RN), γ ∈ (0, 1), or in H s(RN), for s > N/2
respectively. Moreover, we also study the regularity of solutions in those case.
On the other hand, we investigate the qualitative behavior of solutions to Eq (1.1) such as the
Lq-estimates, q ∈ (1,∞], the conservation of mass, the universal bound, and the asymptotic
profile of solutions via the vortex patch of solutions.
Finally, we study the symmetrization solutions and derive some comparison results in Lq(RN)-
norm, and in the size of support of solutions. Note that the pointwise comparison result is not
true for solutions of Eq (1.1), see [36].

Notations. Through the paper, we denote:
• constant by C, which may change from line to line. Moreover, the notation C =

C(α, p,N) means that C merely depends on α, p,N.
• ωN by the volume of the unit ball in RN .
• X = L1(RN) ∩ L∞(RN), equipped by the norm ∥ · ∥X = ∥ · ∥L1(RN ) + ∥ · ∥L∞(RN ).
• 1Ω by the characteristic function on Ω ⊂ RN .
• QT = R

N × (0,T ), for T > 0.
Next, we write A ≲ B if there exists a constant C > 0 such that A ≤ CB. Furthermore, we write
A ≈ B iff A ≲ B ≲ A.

Main results. First of all, let us point out the definition of weak solutions to Eq (1.1).

Definition 1.1. A function u ∈ L∞
(
0,T ; X

)
, T > 0 is called a weak solution of Eq (1.1) if u

satisfies ∫
QT

(uφt − u∇pu · ∇φ) dxdt = 0, ∀φ ∈ C∞c (QT ) .

In the following, we always assume that u0 ∈ X is nonnegative. Then, our main results are as
follows.

Theorem 1.1. Let m > 1,N ≥ 2. Suppose that u0 ∈ H s(RN), s > N
2 . Then, Eq (1.1) has a

weak solution u in L∞
(
0,T ; X

)
∩ L∞

(
0,T ; H s(RN)

)
for T > 0. Moreover, u has the following

properties:
• (Conservation of mass)∫

RN
u(x, t) dx =

∫
RN

u0(x) dx, ∀t ∈ (0,T ) . (1.11)

• (Lq-estimate) For any 1 < q ≤ ∞, we have

∥u(., t)∥Lq(RN ) ≤ ∥u0∥Lq(RN ), ∀t ∈ (0,T ) . (1.12)

• (Universal bound)

u(x, t) ≤ (mt)−
1
m , for a.e. (x, t) ∈ QT . (1.13)

Beside, if u0 has compact support in RN , then we obtain a uniqueness of weak solutions of Eq
(1.1).
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Remark 1.1. When m = 1, the uniqueness of bounded solutions of Eq (1.1) is known in the
literature. The proof is based an energy estimate in terms of H−1 inner product for a comparison
of two densities (see, e.g., [3, 32, 35, 42]). However, such argument cannot be applied to the
case of nonlinearity um,m > 1 due to a technical problem.
In [28], Loeper obtained the uniqueness result by using the 2-Wasserstein distance in terms
of flow Φt satisfying (1.7) (see the same argument in [36]). Note that his proof is based on
the argument of the optimal transportation, and the facts that p = (−∆)−1u, and u is of the
conservation of mass. Obviously, this argument is not able to apply to p = (−∆)−1um,m > 1
since the mass of um(t) is decreasing in time according to (1.13).

Remark 1.2. One cannot expect that all bounded weak solutions of Eq (1.1) satisfy the Hölder
regularity since the vortex patch of solutions, such as W, are even not continuous in QT when
m = 1. This is in contrast to the bounded energy solutions of Eq (1.8) satisfying Hölder
regularity, see [11, 12].

Next, we would like to study the γ-Hölder estimate of solutions to Eq (1.1) for initial data in
Cγ(RN), γ ∈ (0, 1). In fact, one cannot expect that all bounded weak solutions of Eq (1.1) satisfy
the Hölder regularity since the vortex patch of solutions, such as W, are even not continuous
in QT when m = 1. This is in contrast to the bounded energy solutions of Eq (1.8) satisfying
Hölder regularity, see [11, 12].

Theorem 1.2. Let u0 ∈ C
γ
0(RN), γ ∈ (0, 1) (the space of γ-Hölder continuous functions with

compact support). Then, there exists a unique weak solution u of Eq (1.1) satisfying (1.11)–
(1.13). Moreover, u(x, t) ∈ L∞

(
0,T ;Cγ0(RN)

)
, T > 0.

Our next result is the asymptotic profile of u as t → ∞.

Theorem 1.3. Assume hypotheses as in Theorem 1.1 (resp. Theorem 1.2). Let u0 satisfy
supp(u0) ⊂ B(0, r0), r0 > 1, ∥u0∥L1(RN ) = ωN , and ∥u0∥L∞(RN ) = 1. Then, we have the following
asymptotic profile of u via the vortex patch solution in Lq-norm, 1 ≤ q < ∞:

∥∥∥u(t) −W(t)
∥∥∥

Lq(RN )
≤ C(q,m,N)

(rN
0 − 1)

1
q

t
q−1+N21−N

qm

, for t > 0 , (1.14)

with

W(x, t) =
1B(0,R(t))

(1 + mt)
1
m

, R(t) =
(
1 + mt

) 1
mN . (1.15)

Remark 1.3. (1.14) is known when q = m = 1, see, e.g., [3, 36].

Finally, we present some estimates on the radial symmetrization solutions.
Let u,U ∈ L1(RN) be radially symmetric. We say that u is less concentrated than U, denoted
by u ≺ U if ∫

B(0,r)
u(x) dx ≤

∫
B(0,r)

U(x) dx, for all r > 0. (1.16)

Obviously, (1.16) implies that∫ s

0
u∗(σ) dσ ≤

∫ s

0
U∗(σ) dσ, for all s ≥ 0 ,

where u∗,U∗ are the rearrangements of u,U respectively (see the definition and properties of
rearrangement in [34, 40]).
Then, we have the following result.
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Theorem 1.4. Assume hypotheses as in Theorem 1.1 (resp. Theorem 1.2). Let U0 ∈ L∞c (RN) be
nonnegative, such that u0 ≺ U0. Let u be the unique bounded weak solution of Eq (1.1) as in
Theorem 1.1 (resp. Theorem 1.2). Suppose that U is the unique bounded weak solution of the
following problem 

∂tU = div (U∇P) in QT ,
−∆P = M0U ,
U(x, 0) = U0(x) in RN ,

(1.17)

with M0 = ∥U0∥
m−1
L∞(RN ). Note that the existence and uniqueness of solution U to Eq (1.17) for

given densities U0 ∈ L1(RN) ∩ L∞(RN) is known in the literature. Then, we have

u(t) ≺ U(t), and p(t) ≺ P(t), for t > 0 . (1.18)

And, for any q ∈ [1,+∞], there holds true

∥u(t)∥Lq(RN ) ≤ ∥U(t)∥Lq(RN ) , ∥p(t)∥Lq(RN ) ≤ ∥P(t)∥Lq(RN ) , for t > 0 . (1.19)

In addition, if ∫
RN

u0(x) dx =
∫
RN

U0(x) dx, (1.20)

then ∣∣∣supp
(
U(t)

)∣∣∣ ≤ ∣∣∣supp
(
u(t)

)∣∣∣ , for t ∈ [0,T ] . (1.21)

Remark 1.4. The isoperimetric type estimate (1.21) is very useful for non-symmetric patch of
vortices, i.e., when condition (1.20) holds since U0∗ = u0∗.

As a consequence of Theorem 1.4, we have the following corollary.

Corollary 1.1. Assume hypotheses as in Theorem 1.4. Suppose that U0 is radially symmetric,
and U0∗ = u0∗ on [0,+∞). Then, we have u(t) ≺ U(t), and∣∣∣supp

(
U(t)

)∣∣∣ ≤ ∣∣∣supp
(
u(t)

)∣∣∣ , for any t ∈ [0,T ] .

The paper is organized as follows. The next section is devoted to the preliminary results.
In Section 3, we establish the well-posedness theory to a regularizing equation of Eq (1.1) for
densities u0 ∈ X. After that we derive some a priori estimates in the Lq-spaces and the H s(RN)-
spaces for the approximating solutions. We prove Theorems 1.1, 1.2 in Section 4. Section 5
is devoted to the study of asymptotic behavior of bounded solutions to Eq (1.1) via the vortex
patch solutions. Finally, the last section is devoted to the study of radially symmetric solutions.

2. Preliminary results

At the beginning, we introduce the spaces Cγ(RN), and H s(RN) alternatively.
Given γ ∈ (0, 1), the γ-Hölder continuous space is denoted by

Cγ(RN) =
{

u : RN → R such that ∥u∥Cγ(RN ) := ∥u∥L∞(RN ) + sup
x,y

|u(x) − u(y)|
|x − y|γ

< ∞

}
.

And, the homogeneous γ-Hölder space is denoted by Ċγ(RN), equipped with the semi-norm

|u|Cγ(RN ) := sup
x,y

|u(x) − u(y)|
|x − y|γ

.

Next, the inhomogeneous Sobolev space H s(RN), s ∈ R is defined as the space of all tempered
distributions u in S′(RN) such that

∥u∥Hs(RN ) :=
(∫
RN

(1 + |ξ|2)s |̂u(ξ)|2 dξ
)1/2

,
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where û(ξ) =
∫
RN

e−ix·ξu(x) dx.

For any 0 < s < N, it is known that (−∆)−s/2 = Is, the Riesz potential is defined by

Is( f )(x) = C(N, s)
∫
RN

f (y)
|x − y|N−s dy ,

where C(N, s) = πN/22sΓ( s
2 )

Γ( N−s
2 )

(see, e.g., [39, Chapter 5]). It is clear that one can write Is( f )(x) =

K∗ f (x), with K(x) = C(N, s)|x|s−N . In particular, if s = 2, then I2 is the inverse of the Laplacian
operator. Note that K(x) = 1

2π log |x| when N = s = 2.
It is known that

∥Is( f )∥Lq(RN ) ≲ ∥ f ∥
L

qN
N+sq (RN )

, ∀ f ∈ L
qN

N+sq (RN), (2.1)

provided that qN
N+sq > 1.

Next, we denote the Riesz transforms by

R = (R j) j=1,...,N , with R j = ∂x jI1, j = 1, . . . ,N .

Since R j, j = 1, . . . ,N are the standard Calderón–Zygmund operators, then R j map Lp(RN) into
Lp(RN), 1 < p < ∞ (see [39, Chapter 3]). In this paper, we often use the Lq-estimate of vector
velocity ∇p. Thus, we have to study the Lq-estimate of operator ∇(−∆)−1. Then, one has

∥∇(−∆)−1 f ∥Lq(RN ) = ∥RI1( f )∥Lq(RN ) ≲ ∥I1( f )∥Lq(RN ) ≲ ∥ f ∥
L

qN
N+q (RN )

,

for all f ∈ L
qN

N+q (RN) provided that qN
N+q > 1⇔ N > p′ = p

p−1 . That explains why we restrict our
study to N ≥ 2. Consequently, ∇(−∆)−1 f is well-defined for all f ∈ L1(RN) ∩ L∞(RN).
On the other hand, one has that R maps Ċγ(RN)→ Ċγ(RN) (see [39, 29]). Precisely, we have∣∣∣R( f )

∣∣∣
Cγ
≲

∣∣∣ f ∣∣∣
Cγ
, ∀ f ∈ Cγ(RN) . (2.2)

Next, the following inequalities are useful for our proof below.

Lemma 2.1 (see [27]). Let s > N
2 . Then, there holds true∥∥∥∇2(−∆)−1 f

∥∥∥
L∞
= ∥RR( f )∥L∞ ≲ ∥ f ∥L∞ ln

(
1 +
∥ f ∥Hs

∥ f ∥L∞

)
+ ∥ f ∥L2

for all f ∈ H s(RN).

We prove the following interpolation inequality via the Hölder spaces.

Lemma 2.2. Let α ∈ (0, 1), and 1 ≤ p < ∞. If u ∈ Ċα(RN)∩Lp(RN), then we have u ∈ L∞(RN),
and

∥u∥L∞ ≤ C|u|
N/p

α+N/p

Cα
∥u∥

α
α+N/p

Lp ,

where C > 0 depends on N, p, α.

Proof of Lemma 2.2. Let {ϱε}ε>0 be a sequence of mollifiers. Then, we write

|u(x)| = |u(x) − u ∗ ϱε(x) + u ∗ ϱε(x)| ≤ |u(x) − u ∗ ϱε(x)| + |u ∗ ϱε(x)|

≤

∫
RN
|u(x) − u(x − y)|ϱε(y) dy + ∥u ∗ ϱε∥L∞

≤

∫
|y|<ε
|u|Cα |y|αϱε(y) dy + ∥u ∗ ϱε∥L∞

≤ εα|u|Cα + ∥u ∗ ϱε∥L∞ .

Thanks to Young’s inequality, we deduce from the last inequality that

|u(x)| ≤ εα|u|Cα + ∥u∥Lp∥ϱε∥Lp′ ≤ εα|u|Cα +Cε−N/p∥u∥Lp .
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(Here, we accept the notation p′ = ∞ whenever p = 1.)
By minimizing the last inequality with respect to α, one gets

|u(x)| ≤ C|u|
N/p

α+N/p

Cα
∥u∥

α
α+N/p

Lp .

This yields the proof of Lemma 2.2. □

It is convenient to recall the Grönwall inequality here.

Lemma 2.3 (Grönwall’s inequality, see [29]). If u, q, and c ≥ 0 are continuous on [0, t], c is
differentiable, and

q(t) ≤ c(t) +
∫ t

0
u(s)q(s) ds,

then

q(t) ≤ c(0) exp
{∫ t

0
u(s) ds

}
+

∫ t

0
c′(s)

(
exp

{∫ t

s
u(τ) dτ

})
ds .

3. A regularizing problem

To obtain an existence of weak solutions of Eq (1.1) for densities u0 ∈ X, we study the
following regularizing problem of Eq (1.1):{

∂tu − ε∆u = div (u∇pu) in RN × (0,T ) ,
u(x, 0) = u0(x) in RN .

(3.1)

Then, we have the following result.

Theorem 3.1. Let u0 ∈ X. Then, Eq (3.1) has a unique mild solution uε ∈ C ([0,T ]; X).
Moreover, for any q ∈ [1,∞] we have

∥uε(., t)∥Lq(RN ) ≤ ∥u0∥Lq(RN ), ∀t ∈ (0,T ) . (3.2)

And,
ε∥∇uε∥2L2(RN ) ≤ ∥u0∥L2(RN ), ∀ε > 0 . (3.3)

As a consequence of (3.2), uε exists globally in time (T = ∞).

Proof of Theorem 3.1 . For a brief notation, let us drop the dependence on the parameter ε of
uε, and denote u = uε. Now, we look for a mild solution u ∈ C([0,T ]; X) as a fixed point of the
map

T : u 7→ etε∆u0 +

∫ t

0
∇ · e(t−τ)ε∆(u∇pu)(τ) dτ , (3.4)

where et∆ is the semigroup corresponding to the heat kernel (4πt)−
N
2 exp(− |x|

2

4t ).
The following estimate for et∆ is fundamental (see [41, Proposition 1.2, Ch. 15]).

Proposition 3.1. For every 1 ≤ q ≤ r ≤ ∞, and for k ∈ N, there holds∥∥∥∇ketε∆u(t)
∥∥∥

Lr(RN )
≤ Ct−

N
2 ( 1

q−
1
r )− k

2 ∥u(t)∥Lq(RN ), ∀t > 0,

where the constant C > 0 depends on the parameters involved.

Let BX(0,R) ⊂ C ([0,T ]; X) be the closed ball with center at 0, and radius R. Then, we show
that T is a contraction mapping from BX(0,R)→ BX(0,R) for a suitable number R > 0.
By Proposition 3.1, we get

∥T (u)(t) − T (v)(t)∥Lr(RN ) =

∥∥∥∥∥∥
∫ t

0
∇ · e(t−τ)ε∆ (u∇pu − v∇pv) (τ) dτ

∥∥∥∥∥∥
Lr(RN )

≤ C
∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 ∥u∇pu(τ) − v∇pv(τ)∥Lq(RN ) dτ
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≤ C
∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 ∥(u − v)∇pu(τ)∥Lq(RN ) dτ

+C
∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 ∥v(∇pu − ∇pv)(τ)∥Lq(RN ) dτ

:= I1 + I2 . (3.5)

Then, we will study estimate (3.5) for r = 1 and r = ∞ alternatively. To do that, we need to
obtain the L∞-bound for ∇pu.

Lemma 3.1. There exists a constant C = C(N,m) > 0 such that for u, v ∈ C([0,T ]; X) we have

∥∇pu(t) − ∇pv(t)∥L∞(RN ) ≤ C max
{
∥u(t)∥m−1

L∞(RN ), ∥v(t)∥m−1
L∞(RN )

}
∥u(t) − v(t)∥X (3.6)

for t ∈ (0,T ).

Proof of Lemma (3.1). For λ0 > 0, we have∣∣∣∇pu(x, t) − ∇pv(x, t)
∣∣∣ = 1

ωN

∣∣∣∣∣−∫
RN

um(y, t)(x − y)
|x − y|N

dy +
∫
RN

vm(y, t)(x − y)
|x − y|N

dy
∣∣∣∣∣

≤
1
ωN

∫
|x−y|<λ0

|um(y, t) − vm(y, t)|
|x − y|N−1 dy +

1
ωN

∫
|x−y|≥λ0

|um(y, t) − vm(y, t)|
|x − y|N−1 dy

= I1 + I2 .

By the mean value theorem, we obtain

I1 ≤ m max
{
∥u(t)∥m−1

L∞(RN ), ∥v(t)∥m−1
L∞(RN )

}
∥u(t) − v(t)∥L∞(RN )

∫
|x−y|<λ0

|x − y|1−N dy

≤ C(N,m) max
{
∥u(t)∥m−1

L∞(RN ), ∥v(t)∥m−1
L∞(RN )

}
∥u(t) − v(t)∥L∞(RN )λ0 .

And

I2 ≤ C(N,m) max
{
∥u(t)∥m−1

L∞(RN ), ∥v(t)∥m−1
L∞(RN )

}
∥u(t) − v(t)∥L1(RN )λ

1−N
0

Combining the indicated inequalities yields

|∇pu(x, t) − ∇pv(x, t)| ≤ C max
{
∥u(t)∥m−1

L∞(RN ), ∥v(t)∥m−1
L∞(RN )

} (
∥u(t) − v(t)∥L∞(RN )λ0

+∥u(t) − v(t)∥L1(RN )λ
1−N
0

)
.

By minimizing the right hand side of the last inequality, we get

|∇pu(x, t) − ∇pv(x, t)| ≤C max
{
∥u(t)∥m−1

L∞(RN ), ∥v(t)∥m−1
L∞(RN )

}
× ∥u(t) − v(t)∥1−

1
N

L∞(RN )∥u(t) − v(t)∥
1
N

L1(RN ) . (3.7)

Therefore, the proof of Lemma 3.1 follows. □

Remark 3.1. By letting v = 0 in (3.7), for every u ∈ C([0,T ]; X) we obtain

∥∇pu(t)∥L∞(RN ) ≤ C(N,m)∥u(t)∥m−
1
N

L∞(RN )∥u(t)∥
1
N

L1(RN ), for t ∈ (0,T ). (3.8)

Now, we can treat I1. For any q ∈ [1,∞], using the interpolation inequality yields

∥u(τ)∥Lq(RN ) ≤ ∥u(τ)∥
q−1

q

L∞(RN )∥u(τ)∥
1
q

L1(RN ) ≤ ∥u∥C([0,T ];X) (3.9)

for τ ∈ (0,T ).
Then, for u, v ∈ BX(0,R), it follows from Remark 3.1, and (3.9) that

I1 ≤ C
∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 ∥(u − v)(τ)∥Lq(RN )∥∇pu(τ)∥L∞(RN ) dτ
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≤ C
∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 ∥u − v∥C([0,T ];X)Rm dτ

≤ CRm∥u − v∥C([0,T ];X)

∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 dτ . (3.10)

Concerning I2, by Lemma 3.1 and (3.9), we obtain

I2 ≤ C
∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 ∥v(τ)∥Lq(RN ) ∥∇pu(τ) − ∇pv(τ)∥L∞(RN ) dτ

≤ C∥v∥C([0,T ];X)Rm−1∥u − v∥C([0,T ];X)

∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 dτ

≤ CRm∥u − v∥C([0,T ];X)

∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 dτ . (3.11)

Combining (3.5), (3.10), and (3.11) yields

∥T (u)(t) − T (v)(t)∥Lr ≤ CRm∥u − v∥C([0,T ];X)

∫ t

0
(t − τ)−

N
2 ( 1

q−
1
r )− 1

2 dτ . (3.12)

By taking r = q = 1, and r = q = ∞ in (3.12) alternatively, we deduce

∥T (u)(t) − T (v)(t)∥X ≤ CRm∥u − v∥C([0,T ];X)

∫ t

0
(t − τ)−

1
2 dτ

≤ CRm
√

T∥u − v∥C([0,T ];X) . (3.13)

If we take T > 0 small enough such that CRm
√

T < 1
2 , then it follows from (3.13) that

∥T (u) − T (v)∥C([0,T ];X) ≤
1
2
∥u − v∥C([0,T ];X), ∀t ∈ (0,T ) . (3.14)

Therefore, it remains to prove that T maps BX(0,R) into BX(0,R) if we take R = 2Cε∥u0∥X. In
fact, applying (3.14) to v = 0 yields

∥T (u)∥C([0,T ];X) ≤ ∥T (0)∥C([0,T ];X) +
1
2
∥u∥C([0,T ];X) . (3.15)

Observe that T (0) = etε∆u0. By applying Proposition 3.1 to u0 with q = r = 1, and q = r = ∞
respectively, we get

∥T (0)(t)∥L1(RN ) ≤ Cε∥u0∥L1(RN ) ,

and

∥T (0)(t)∥L∞(RN ) ≤ Cε∥u0∥L∞(RN ) .

Therefore,
∥T (0)∥C([0,T ];X) ≤ Cε∥u0∥X . (3.16)

A combination of (3.15) and (3.16) implies that

∥T (u)∥C([0,T ];X) ≤ Cε∥u0∥X +
1
2
∥u∥C([0,T ];X) .

Since R = 2Cε∥u0∥X, then ∥T (u)∥C([0,T ];X) ≤ R whenever u ∈ BX(0,R). As a result, T maps
BX(0,R) into BX(0,R).
In conclusion, there exists a unique mild solution uε ∈ C ([0,T ]; X) to Eq. (3.1) for some T > 0.

Next, we prove the a priori Lq-estimates for solution uε. In the following, we denote pε = puε
for short.
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For every q > 1 and for t ∈ (0,T ), we multiply both sides of Eq (3.1) with uq−1
ε , and integrate

the resulting equation on RN . Then, we have

1
q

d
dt

∫
RN

uq
ε(x, t) dx + ε(q − 1)

∫
RN

uq−2
ε |∇uε(x, t)|2 dx +

∫
RN

uε∇pε · ∇uq−1
ε (x, t) dx = 0 . (3.17)

Note that ∫
RN
∇pε · ∇uq

ε(x, t) dx =
∫
RN
−∆pεuq

ε(x, t) dx =
∫
RN

um+q
ε (x, t) dx .

Combining the two identities above yields

1
q

d
dt

∫
RN

uq
ε(x, t) dx + ε(q − 1)

∫
RN

uq−2
ε |∇uε(x, t)|2 dx +

∫
RN

um+q
ε (x, t) dx ≤ 0 . (3.18)

This implies (3.2) for q ∈ (1,∞).
Obviously, (3.3) follows by taking q = 2 in (3.18).
Next, since (3.2) holds true for q > 1, then passing to the limit as q→ ∞ yields

∥uε(t)∥L∞(RN ) ≤ ∥u0∥L∞(RN ) .

Concerning the L1-estimate, for any η > 0 let us put

χη(r) =
{

sign(r) if |r| > η
r
η

if |r| ≤ η , and S η(l) =
∫ l

0
χη(r) dr .

Then, multiplying equation (3.1) by χη(uε(x, t)) and integrating the indicated equation yield

d
dt

∫
RN

S η(uε(x, t)) dx = −ε
∫
RN
|∇uε|2χ′η(uε)(x, t) dx −

∫
RN

uε∇pε · χ′η(uε)∇uε(x, t) dx

≤ −

∫
RN

uε∇pε · χ′η(uε)∇uε(x, t) dx .

Since χ′η(l) = ηχ
′

η2(l2), then we get

uεχ′η(uε)∇uε =
1
2
χ′η(uε)∇(u2

ε) =
η

2
∇χη2(u2

ε) .

With this fact noted, we deduce from the last inequality that

d
dt

∫
RN

S η(uε(x, t)) dx ≤ −
η

2

∫
RN
∇pε · ∇χη2

(
u2
ε

)
(x, t) dx

=
η

2

∫
RN
∆pε χη2

(
u2
ε

)
(x, t) dx

= −
1
2

∫
RN

um
ε χη2

(
u2
ε

)
(x, t) dx ≤ 0 . (3.19)

Thanks to the fact 0 ≤ S η(l) ≤ l, ∀l ≥ 0, we deduce from (3.19) that∫
RN

S η(uε(x, t)) dx ≤
∫
RN

S η(u0) dx ≤ ∥u0∥L1(RN ) . (3.20)

On the other hand, observe that S η(uε(x, t))→ uε(x, t) as η→ 0 for (x, t) ∈ QT .
By the dominated convergence theorem, we obtain (3.2) for q = 1.

Finally, we show the global existence of uε(t) in time. Indeed, it follows from (3.2) that

∥uε(t)∥X ≤ ∥u0(t)∥X, ∀ε > 0 .
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Fix ε > 0. One can repeat the above argument with initial data uε(T ) in order to get the local
existence in time of uε(t) in [T, 2T ], [2T, 3T ], . . . . As a result, uε(t) exists globally in time.
This completes the proof of Theorem 3.1. □

Remark 3.2. As a consequence of Remark 3.1 and (3.2), we get a uniform L∞-bound for ∇pε
in ε > 0. That is

∥∇pε(., t)∥L∞(RN ) ≤ C(N,m)∥u0∥
m− 1

N

L∞(RN )∥u0∥
1
N

L1(RN ) ≤ C(N,m)∥u0∥
m
X , ∀t > 0 , (3.21)

where C(N,m) is as in Remark 3.1.

Remark 3.3. Note that solution uε is presented in terms of the Gaussian kernel. According to
([26, Chapter 5, page 273], see also [36, page 18]), we have

∥uε∥C0,β(RN×(t1,t2)) ≤ C
(
∥uε∥L∞(RN×(t1,t2)) + ∥uε∥L1(RN×(t1,t2))

)
≤ C′∥u0∥X

for some β ∈ (0, 1). By a bootstrap argument, we deduce that uε is a classical solution in
RN × (t1, t2) for 0 < t1 < t2 < ∞.

Next, we drive the priori H s(RN)-estimate for uε when u0 ∈ H s(RN), s > 2 + N
2 .

Proposition 3.2. Let u0 ∈ L1(RN) ∩ H s(RN), s > 2 + N
2 . Let uε be the unique solution to Eq

(3.1). Then, there exists a constant C > 0 independent of ε, such that

∥uε(t)∥Hs(RN ) ≤ C, ∀t ∈ (0,T ) .

Proof of Proposition 3.2. Let us denoteΛs(D) the pseudo-differential operator with symbol (1+
|ξ|2)

s
2 , ∥ f ∥Hs(RN ) = ∥Λ

s(D) f ∥L2(RN ), and denote the commutator

[T , u](v) = uT (v) − T (uv) .

For more details on the commutator see, for instance, Kato–Ponce [24].
For short, we drop the notation ε on uε. Now, we apply the pseudo-differential operator Λs(D)
to both sides of Eq (3.1), and take the inner product with Λs(D)u in order to get

1
2

d
dt
∥u(t)∥2Hs(RN ) = ε

〈
∆Λs(D)u,Λs(D)u

〉
+

〈
Λs(D) div(u∇pu),Λs(D)u

〉
= −ε

∥∥∥∇Λs(D)u
∥∥∥2

L2(RN )
+

〈
Λs(D) div(u∇pu),Λs(D)u

〉
. (3.22)

From the definition of commutator, we find that

[Λs(D)∇,∇p](u) = ∇p · Λs(D)(∇u) − Λs(D)∇ · (u∇p) . (3.23)

Combining (3.22) and (3.23) yields
1
2

d
dt
∥u(t)∥2Hs(RN ) ≤

〈
∇p · ∇Λs(D)(u),Λs(D)u

〉
−

〈
[Λs(D)∇,∇p](u),Λs(D)u

〉
:= B1 + B2 . (3.24)

In fact, we shall estimate B j, j = 1, 2 in terms of ∥u(t)∥2Hs(RN ).
For B1, observe that

B1 =
1
2
〈
∇p,∇|Λs(D)u|2

〉
=

1
2
〈
(−∆)p, |Λs(D)u|2

〉
=

1
2
〈
um, |Λs(D)u|2

〉
.

By (3.2) and Hölder’s inequality, we obtain

|B1| ≤
1
2
∥um(t)∥L∞(RN )∥u(t)∥2Hs(RN ) ≤

1
2
∥u0∥

m
L∞(RN )∥u(t)∥2Hs(RN ) . (3.25)

To estimate B2, we use the commutator estimate by Kato–Ponce [24, Lemma X1].
Put T s+1 = Λs(D)∇, s ∈ R. Then, we have∥∥∥[Λs(D)∇,∇p](u)(t)

∥∥∥
L2(RN )

=
∥∥∥[T s+1,∇p](u)(t)

∥∥∥
L2(RN )
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≲ ∥∇2 p(t)∥L∞(RN )∥T
su(t)∥L2(RN ) + ∥u(t)∥L∞(RN )∥T

s+1∇p(t)∥L2(RN ) . (3.26)

In addition, it is not difficult to verify that

∥T su∥L2(RN ) ≤ ∥Λ
s(D)u∥L2(RN ) = ∥u(t)∥Hs(RN ) , (3.27)

and

∥T s+1∇p∥L2(RN ) ≲ ∥Λ
s(D)um∥L2(RN ) ≲ ∥u(t)∥m−1

L∞(RN )∥u(t)∥Hs(RN )

≤ ∥u0∥
m−1
L∞(RN )∥u(t)∥Hs(RN ) . (3.28)

Inserting (3.28) and (3.27) into (3.26) yields∥∥∥[Λs(D)∇,∇p](u)
∥∥∥

L2(RN )
≤ C0

(
∥∇2 p∥L∞(RN ) + ∥u0∥

m
L∞(RN )

)
∥u(t)∥Hs(RN ) , (3.29)

where C0 only depends on N, s.
Since s > N

2 , then we can apply Lemma 2.1 to v = um to get

∥∇2 p∥L∞(RN ) ≲ ∥um(., t)∥L∞
(
1 + log

∥um(., t)∥Hs(RN )

∥um(., t)∥L∞

)
+ ∥um(., t)∥L2

≲ log ∥um(., t)∥Hs(RN ) + ∥u0∥
m
L∞ + ∥u0∥

m
L2m

≲ log ∥u(., t)∥Hs(RN ) + log m∥u0∥
m−1
L∞ + ∥u0∥

m
L∞ + ∥u0∥

m
L2m . (3.30)

By inserting (3.30) into (3.29), we find∥∥∥[Λs(D)∇,∇p](u)
∥∥∥

L2(RN )
≤ C1

(
log ∥u(., t)∥Hs(RN ) +C2

)
∥u(t)∥Hs(RN ) , (3.31)

where C1 = C1(N, s,m), and C2 = C2(u0).
By (3.31), applying the Hölder inequality yields

|B2| ≤ C1

(
log ∥u(., t)∥Hs(RN ) +C2

)
∥u(t)∥2Hs(RN ) . (3.32)

A combination of (3.24), (3.25), and (3.32) leads to
d
dt
∥u(t)∥2Hs(RN ) ≤ C1

(
log ∥u(., t)∥Hs(RN ) +C′2

)
∥u(t)∥2Hs(RN ) .

By solving the ODE, we obtain

∥u(t)∥Hs(RN ) ≤ C3(T )∥u0∥
C4(T )
Hs(RN ), ∀t ∈ (0,T ) . (3.33)

Hence, we obtain the proof of Proposition 3.2. □

Remark 3.4. Since we only use Lemma 2.1 in the proof of Proposition 3.2, then all the H s-
estimates above are true for s > N

2 . This observation enable us to prove the H s-estimate,
s > N

2 in the proof of Theorem 1.2 below. In addition, from (3.30) and (3.33), we observe that
∥∇2 pε(t)∥L∞(RN ) + ∥uε(t)∥Hs(RN ) is uniformly bounded in ε > 0 for all t ∈ (0,T ).

4. Well-posedness theory, and regularity of solutions

4.1. Proof of Theorem 1.1. To obtain an existence of solutions to Eq (1.1), we first pass to
the limit as ε → in Eq (3.1) with regular initial data. Thanks to Remark 3.4, we can get an
existence of solutions to Eq (1.1) for u0 ∈ H s.
• Step 1: Passing to the limit as ε→ 0. Suppose that u0 ∈ C

∞
c (RN). Let us fix s ∈ (2+N

2 , 3+
N
2 ).

It follows from the Sobolev embedding and (3.33) that

∥uε(t)∥C2,α(RN ) ≤ C3(T )∥u0∥
C4(T )
Hs(RN ), ∀ε > 0, (4.1)

for all t ∈ [0,T ], with α = s − 2 − N
2 ∈ (0, 1).

Next, observe that∥∥∥ div(u · ∇pε)(t)
∥∥∥

L∞(RN )
=

∥∥∥∇uε · ∇pε − um+1
ε (t)

∥∥∥
L∞(RN )
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≤ ∥∇pε(t)∥L∞(RN ) ∥∇uε(t)∥L∞(RN ) +
∥∥∥um+1

ε (t)
∥∥∥

L∞(RN )

≲ ∥u0∥
m
X ∥uε(t)∥Hs(RN ) + ∥u0∥

m+1
L∞(RN )

≲ ∥u0∥
m
X∥u0∥

C4(T )
Hs(RN ) + ∥u0∥

m+1
L∞(RN ) .

Combining the two inequality yields

∥∂tuε(t)∥L∞(RN ) = ∥ε∆uε(t) + div(u · ∇pε)(t)∥L∞(RN ) ≤ C, ∀ε > 0,∀t ∈ (0,T ),

where C = C(T, u0,m,N) > 0.
As a consequence, and by the diagonal argument, there exists a subsequence of {uε} (still de-
noted as {uε}) such that uε converges to u in C

(
BR × [0,T ]

)
, for R,T > 0.

Now, we show that pε(x, t)→ pu := (−∆)−1um(x, t) in distributions sense. That is∫
QT

pεψ(x, t) dxdt →
∫

QT

puψ(x, t) dxdt, ∀ψ ∈ C∞c (QT ) (4.2)

as ε→ 0.
Observe that∫

QT

(pε − pu)ψ(x, t) dxdt =
∫

QT

(−∆)−1[um
ε − um]ψ(x, t) dxdt

=

∫
QT

(−∆)−1/2[um
ε − um](−∆)−1/2ψ(x, t) dxdt . (4.3)

To get (4.2), it is enough to show that the term in (4.3) converges to 0 as ε→ 0.
Fix test function ψ ∈ C∞c (QT ). By applying the Riesz potential estimate, one has

∥I1[ψ](t)∥Lq(RN ) ≲ ∥ψ(t)∥
L

qN
N+q (RN )

provided that q > N
N−1 . In fact, we shall take q ∈

(
N

N−1 ,N
)

by technical problem.
Thus, we deduce that

∥I1[ψ]∥qLq(QT ) ≲

∫ T

0
∥ψ(t)∥q

L
qN

N+q (RN )
dt = C(ψ) . (4.4)

By the same analogue, we also obtain∥∥∥I1[um
ε ](t)

∥∥∥
Lq′ (RN )

≲
∥∥∥um

ε (t)
∥∥∥

L
q′N

N+q′ (RN )
= ∥uε(t)∥m

L
mq′N
N+q′ (RN )

≤ ∥u0∥
m

L
mq′N
N+q′ (RN )

,

provided that q′ > N
N−1 ⇐⇒ q ∈ ( N

N−1 ,N). Remind that q′ = q
q−1 .

Then, ∥∥∥I1[um
ε ](t)

∥∥∥q′

Lq′ (QT )
≲ T ∥u0∥

m

L
mq′N
N+q′ (RN )

, ∀ε > 0 . (4.5)

As a consequence,
{
I1[um

ε ]
}
ε>0 is uniformly bounded in Lq′(QT ). Hence, there exists a sub-

sequence of
{
I1[um

ε ]
}
ε>0 (not labeled) such that I1[um

ε ] converges weakly to u∗ in Lq′(QT ) as
ε→ 0.
It remains to show that u∗ = I1[um]. In fact, it follows from (3.2) that um

ε converges weakly to
um in Lq′(QT ) as ε→ 0 (up to a subsequence).
For every test function ϕ ∈ C∞c (QT ) one has from the convolution property that∫

QT

I1[um
ε ]ϕ(x, t) dxdt =

∫
QT

um
ε I1[ϕ](x, t) dxdt . (4.6)

Passing to the limit as ε→ 0 in (4.6) yields∫
QT

u∗ϕ(x, t) dxdt =
∫

QT

umI1[ϕ](x, t) dxdt =
∫

QT

I1[um]ϕ(x, t) dxdt,
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which implies u∗ = I1[um] in distributions sense. Thus, we conclude that I1[um
ε ] → I1[um] in

distributions sense as ε→ 0, likewise (4.3) follows.
Next, from (3.21) we find that ∥∇pε∥L∞(QT ) is uniformly bounded in ε > 0. As a result, for any
r ∈ (1,∞), ∇pε converges weakly to ∇pu in Lr(BR × (0,T )

)
for R,T > 0 (up to a subsequence).

It is enough for us to pass to the limit as ε → 0 in Eq (3.1). Indeed, we write the equation
satisfied by uε in distributions sense:∫

QT

(−uεφt − εuε∆φ + uε∇pε · ∇φ) dxdt = 0, ∀φ ∈ C∞c (QT ) . (4.7)

For convenience, we summarize the above limiting results here. For any R,T > 0, we have{
uε → u in C

(
BR × [0,T ]

)
,

∇pε ⇀ ∇pu weakly in Lq(BR × (0,T )
)
, for q > 1.

(4.8)

With the help of (4.8), we find easily that∫
QT

(−uεφt − εuε∆φ + uε∇pε · ∇φ) dxdt →
∫

QT

(−uφt + u∇pu · ∇φ) dxdt .

This implies that u is a weak solution of Eq (1.1).
Moreover, we can verify easily that u satisfies (1.12) since uε satisfies (3.2).

• Conservation of mass. We show that u conserves the mass.
Let φ0(x) be a smooth function such that 0 ≤ φ0 ≤ 1; φ0(x) = 0 if |x| > 2; and φ0(x) = 1 if
|x| < 1. For R > 0 using φ0(x/R) as a test function to Eq (1.1) yields∫

RN
u(x, t)φ0(x/R) dx −

∫
RN

u0(x)φ0(x/R) dx

= −

∫ t

0

∫
RN

u∇pu(x, τ) · ∇φ0(x/R) dxdτ . (4.9)

From Remark 3.2, for any t > 0 we have∣∣∣∣∣∣
∫ t

0

∫
RN

u∇pu(x, τ) · ∇φ0(x/R) dxdτ

∣∣∣∣∣∣ ≤ 1
R

∫ t

0
∥u0∥L1(RN )∥∇pu(t)∥L∞(RN )∥φ

′
0∥L∞(RN ) dτ

≤ C
t
R
∥u0∥

m+1
X ,

where C = C(N,m, φ0).
Thus, we get

lim
R→∞

∣∣∣∣∣∣
∫ t

0

∫
RN

u∇pu(x, τ) · ∇φ0(x/R) dxdτ

∣∣∣∣∣∣ = 0 .

With the fact noted, and by the monotone convergence theorem, one can pass to the limit as
R→ ∞ in (4.9) in order to obtain∫

RN
u(x, t) dx =

∫
RN

u0(x) dx, t > 0 .

Concerning the universal bound in (1.13), and the uniqueness result, we skip the details since
their proofs will be given later on for densities u0 ∈ L∞c (RN).
In conclusion, we obtain the proof of Theorem 1.1 for u0 ∈ H s(RN), s > 2 + N

2 .

Remark 4.1. We obtain the L∞-bound of ∇pu as in (3.21). Moreover, we deduce from (3.33)
that u ∈ L∞

(
0,T ; H s(RN)

)
.
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• Step 2: The existence and uniqueness result for u0 ∈ H s(RN), s > N
2 with compact

support.
Let {u0,k}k≥1 ⊂ C

∞
c (RN) be such that u0,k converges to u0 in Lq(RN), q ∈ [1,∞) and satisfies

∥u0,k∥Lq(RN ) ≤ ∥u0∥Lq(RN ), ∀q ∈ [1,∞) .

Thanks to the result in Step 1, we see that there exists a weak solution uk ∈ L∞
(
0,T ; H s(RN)

)
to Eq (1.1). In addition, uk satisfies (1.12) for all k ≥ 1. This implies that sequence {uk(t)}k≥1 is
uniformly bounded in Lq(RN), for q ∈ [1,∞].
Now, we claim that uk(t) → u(t) strongly in L1

loc(R
N) as k → ∞ (up to a subsequence). Indeed,

it follows from Remark 3.4 that

∥uε(t)∥Hs(RN ) ≤ C, t ∈ (0,T ),

with C = C(T, ∥u0∥X, ∥u0∥Hs(RN )), s > N
2 .

This implies that ∂tuk = div (uk∇pk) is bounded in L2(0,T ; H−s(BR)
)
, for any R > 0. Here,

we denote H−s(Ω) by the dual space of H s
0(Ω), for any bounded set Ω ⊂ RN . Thanks to the

compactness result by Aubin–Simon, we obtain uk ∈ C
(
[0,T ]; L1(BR)

)
, and the above claim

follows.
As a consequence, uk converges strongly to u in C

(
[0,T ]; Lp(BR)

)
for p ∈ [1,∞) due to the L∞-

boundedness of uk, u in (1.12). So, um
k converges strongly to um in C

(
[0,T ]; Lp(BR)

)
. Repeat the

proof of (4.2), we have that

pk = (−∆)−1um
k → pu = (−∆)−1um (4.10)

in distributions sense.
Next, we show that for any R,T > 0,

∇pk → ∇pu, in C
(
[0,T ]; Lr(BR)

)
(4.11)

as k → ∞ up to a subsequence, for N
N−1 < r < ∞.

According to the fact (−∆)pk = um
k , k ≥ 1 we have

∂t pk = (−∆)−1∂tum
k = (−∆)−1

[
mum−1

k ∂tuk

]
= (−∆)−1

[
mum−1

k div(uk∇pk)
]

= (−∆)−1
[
div(um

k ∇pk) − (m − 1)u2m
k

]
= (−∆)−1 [

div(um
k ∇pk)

]
− (m − 1)(−∆)−1

[
u2m

k

]
.

Thus,

∂t∇pk = ∇(−∆)−1 [
div(um

k ∇pk)
]
− (m − 1)∇(−∆)−1

[
u2m

k

]
=

N∑
j=1

RR j
[
um

k ∇pk
]
− (m − 1)RI1

[
u2m

k

]
. (4.12)

We first treat the second term in (4.12). By (1.12), applying the fundamental estimates of the
Riesz transform and the Riesz potential yields∥∥∥∥RI1

[
u2m

]
(t)

∥∥∥∥
Lr(RN )

≲
∥∥∥∥I1

[
u2m

k

]
(t)

∥∥∥∥
Lr(RN )

≲
∥∥∥u2m

k (t)
∥∥∥

L
rN

r+N (RN )
≤ ∥u0∥

2m

L
2mrN
r+N (RN )

, ∀t > 0, (4.13)

provided that r > N
N−1 .

Thus, we deduce that

sup
t>0

∥∥∥∥RI1

[
u2m

]
(t)

∥∥∥∥
Lr(RN )

≲ ∥u0∥
2m

L
2mrN
r+N (RN )

. (4.14)
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For the first term in (4.12), we apply the estimate of the Riesz transforms twice in order to get∥∥∥∥∥∥∥
N∑

j=1

RR j
[
um

k ∇pk
]
(t)

∥∥∥∥∥∥∥
Lr(RN )

≲
N∑

j=1

∥∥∥R j
[
um

k ∇pk
]
(t)

∥∥∥
Lr(RN )

≲
∥∥∥um

k ∇pk(t)
∥∥∥

Lr(RN )
≤ ∥∇pk∥L∞(RN )

∥∥∥um
k (t)

∥∥∥
Lr(RN )

≲ ∥u0∥
m
Lmr(RN ) .

Note that the last inequality follows from (1.12) and the L∞-bound of ∇pk in Remark 4.1.
Therefore,

sup
t>0

∥∥∥∥∥∥∥
N∑

j=1

RR j
[
um

k ∇pk
]
(t)

∥∥∥∥∥∥∥
Lr(RN )

≲ ∥u0∥
m
Lmr(RN ) . (4.15)

From (4.14) and (4.15), we see that {∂t∇pk}k≥1 is uniformly bounded in L∞
(
0,T ; Lr(BR)

)
for all

R,T > 0.
On the other hand, we observe that∥∥∥∇2 pk(t)

∥∥∥
Lr(RN )

=
∥∥∥∇2(−∆)−1[um

k ](t)
∥∥∥

Lr(RN )
=

∥∥∥RR[um
k ](t)

∥∥∥
Lr(RN )

≲
∥∥∥um

k (t)
∥∥∥

Lr(RN )
≤ ∥u0∥

m
Lmr(RN ) . (4.16)

This implies that
{
∇2 pk

}
k≥1

is uniformly bounded in L∞
(
0,T ; Lr(BR)

)
for all R,T > 0.

Thanks to Aubin–Simon’s result, {∇pk}k≥1 is compact in C
(
[0,T ]; Lr(BR)

)
for R,T > 0. As

a result, there exists a subsequence of {∇pk}k≥1 (not labeled) such that ∇pk converges to P in
C
(
[0,T ]; Lr(BR)

)
. With the result noted, (4.11) follows immediately from (4.10) with P = ∇pu

in distributions sense.
After that, we mimic the proof of (4.7) to show that u is a weak solution to Eq (1.1).
Now, we prove universal bound (1.13).

4.1.1. Universal bound. Put v⃗(x, t) = −∇pu(x, t). Then, we study the ordinary differential
equation

d
dt
Φt(x) = v⃗

(
Φt(x), t

)
, Φt(x)|t=0 = x . (4.17)

Note that Φt(x) is a vector field corresponding to density u(x, t). Since u satisfies (1.12), and
∇pu satisfies (3.21), then it is not difficult to verify that for any T > 0,

v⃗ ∈ L1(0,T ; W1,1
loc (RN)

)
, div(⃗v) = um ∈ L1(0,T ; L∞(RN)

)
,

v⃗(x, t)
1 + |x|

∈ L1(0,T ; X
)
.

Thanks to the DiPerna–Lions theorem (see [21, Theorem III.2]), Eq (4.17) has a unique flow
Φt(x) ∈ C

(
[0,T ];M(RN)

)
. Along the characteristic flow Φt, we find that

du(Φt(x), t)
dt

= −um+1(Φt(x), t) . (4.18)

Solving the ODE yields

u
(
Φt(x), t

)
=

u0(x)[
1 + mtum

0 (x)
] 1

m

≤ (mt)−
1
m . (4.19)

If we can show that Φt(x) is continuous, and 1 − 1 onto on RN , then the inverse Φ−1
t (x) is

continuous. So, we get

u(x, t) =
u0

(
Φ−1

t (x)
)[

1 + mtum
0
(
Φ−1

t (x)
)] 1

m

,

which implies (1.13).
In fact, we show below that if u0 has compact support in RN , then Φt(x) is continuous, and 1−1
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onto on RN . Thus, we obtain (1.13) for u0 with compact support. The case where u0 ∈ X is not
compactly supported can be done by using the smoothing effect to u0.
Then, we have the following lemma.

Lemma 4.1. Let u0 ∈ L∞c (RN), and letΦt(x) satisfy (4.17). Then,Φt(x) is continuous and with a
continuous inverse mapping Φ−1

t (x). Moreover, there exist constants C j,C′j, j = 1, 2 depending
on N,m,T, u0 such that

C′1|x1 − x2|
eC′2t

≤ |Φt(x1) − Φt(x2)| ≤ C1|x1 − x2|
e−C2t

, for t ∈ (0,T ) .

Proof of Lemma 4.1. It is known that support of u(t) is spreading and compact in RN for every
t > 0. Precisely, if supp(u0) ⊂ B(0, r0) for some r0 > 0, then

supp(u(., t)) ⊂ B
(
0, r(t)

)
, (4.20)

for t > 0, where r(t) = r0

(
1 + m∥u0∥

m
L∞(RN )t

) 1
Nm .

The proof of (4.20) can be found in [36, Theorem 7.1] (see also [3, Theorem 3.1 ]) for the
case m = 1. This proof is still true for the case m > 1 since we only need to estimate velocity
v⃗ = −∇(−∆)−1um and utilize universal bound (1.13). So, we skip the detail and refer to the
reader. As a result, one has

supp(u(., t)) ⊂ B
(
0, r(T )

)
, ∀t ∈ (0,T ).

Next, let us fix T > 0. For any t ∈ (0,T ) and for x1, x2 ∈ R
N , x1 , x2, we set

l(t) =
∣∣∣Φt(x1) − Φt(x2)

∣∣∣ .
From the fact

Φt(x) = x +
∫ t

0
v⃗(x, s) ds, (4.21)

we observe that if x1 , x2, then there exists a time τ0 > 0 such that l(t) > 0 for all t ∈ (0, τ0).
By (4.20), we have that∣∣∣⃗v(Φt(x1), t) − v⃗(Φt(x2), t)

∣∣∣ = 1
ωN

∣∣∣∣∣∣
∫
RN

(
Φt(x1) − y
|Φt(x1) − y|N

−
Φt(x2) − y
|Φt(x2) − y|N

)
um(y, t) dy

∣∣∣∣∣∣
≤
∥u0∥

m
L∞(RN )

ωN

∫
{|y|<r(T )}

∣∣∣∣∣ Φt(x1) − y
|Φt(x1) − y|N

−
Φt(x2) − y
|Φt(x2) − y|N

∣∣∣∣∣ dy

:=
∥u0∥

m
L∞(RN )

ωN
(A1 + A2 + A3) ,

where 

A1 =

∫
|Φt(x1)−y|≤2l(t)

∣∣∣∣∣ Φt(x1) − y
|Φt(x1) − y|N

−
Φt(x2) − y
|Φt(x2) − y|N

∣∣∣∣∣ dy,

A2 =

∫
|Φt(x2)−y|≤2l(t)

∣∣∣∣∣ Φt(x1) − y
|Φt(x1) − y|N

−
Φt(x2) − y
|Φt(x2) − y|N

∣∣∣∣∣ dy,

A3 =

∫
|Φt(x1)−y|>2l(t),|Φt(x2)−y|>2l(t)

∣∣∣∣∣ Φt(x1) − y
|Φt(x1) − y|N

−
Φt(x2) − y
|Φt(x2) − y|N

∣∣∣∣∣ dy.

We first estimate A1. From the triangle inequality, we have

|Φt(x2) − y| ≤ |Φt(x1) − y| + |Φt(x1) − Φt(x2)| ≤ 3l(t)

whenever |Φt(x1) − y| ≤ 2l(t).
Therefore,

A1 ≤

∫
|Φt(x1)−y|≤2l(t)

dy
|Φt(x1) − y|N−1 +

∫
|Φt(x2)−y|≤3l(t)

dy
|Φt(x2) − y|N−1 ≤ C(N)l(t) .
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By the same analogue as in the proof of A1, we also obtain

A2 ≤ C(N)l(t) .

It remains to study A3. Since |Φt(x1) − y|, |Φt(x2) − y| > 2l(t), then it follows from the mean
value theorem that∣∣∣∣∣ Φt(x1) − y

|Φt(x1) − y|N
−
Φt(x2) − y
|Φt(x2) − y|N

∣∣∣∣∣ ≤ C(N) max
{
|Φt(x1) − Φt(x2)|
|Φt(x1) − y|N

,
|Φt(x1) − Φt(x2)|
|Φt(x2) − y|N

}
.

Assume without loss of generality that∣∣∣∣∣ Φt(x1) − y
|Φt(x1) − y|N

−
Φt(x2) − y
|Φt(x2) − y|N

∣∣∣∣∣ ≤ C(N)l(t)
|Φt(x1) − y|N

.

By (4.21), (3.21), and the fact |y| < r(T ), we deduce from the triangle inequality that

|Φt(x1) − y| ≤ |Φt(x1)| + |y| ≤ |x1| + t∥⃗v∥L∞(QT ) + r(T ) ≤ R∗(T ) ,

for all t ∈ (0,T ), with R∗(T ) := |x1| +C(N,m)T∥u0∥
m
X + r(T ).

Then,

A3 ≤ C(N)l(t)
∫
{2l(t)<|Φt(x1)−y|<R∗(T )}

dy
|Φt(x1) − y|N

≤ Cl(t)
[
ln R∗(T ) − ln l(t)

]
,

Combining the above estimates of A j, j = 1, 2, 3 yields∣∣∣⃗v(Φt(x1), t) − v⃗(Φt(x2), t)
∣∣∣ ≤ Cl(t) +Cl(t)

[
ln R∗(T ) − ln l(t)

]
, for t ∈ (0,T )

With the last inequality noted, we deduce from (4.17) that{
−Cl(t)

[
ln(eR∗(T )) − ln l(t)

]
≤ l′(t) ≤ Cl(t)

[
ln(eR∗(T )) − ln l(t)

]
,

l(0) = |x1 − x2| .

It is clear that y(t) = ln l(t) satisfies the ordinary differential inequalities{
−C

[
ln(eR∗(T )) − y(t)

]
≤ y′(t) ≤ C

[
ln(eR∗(T )) − y(t)

]
,

y(0) = ln |x1 − x2| .
(4.22)

Solving (4.22), we obtain

C′1|x1 − x2|
eC′2t

≤ l(t) ≤ C1|x1 − x2|
e−C2t

, for t ∈ (0,T ) , (4.23)

where constants C j,C′j, j = 1, 2 depend on T,N,m, u0, x1.
Hence, we get the proof of Lemma 4.1. □

Thanks to Lemma 4.1, we obtain the universal bound (1.13) for u0 ∈ H s(RN) with compact sup-
port. As mentioned above, (1.13) holds for the constructed solutions to Eq (1.1) with densities
u0 ∈ H s(RN) by the smoothing effect.

Next, we prove the uniqueness result of weak solutions to Eq (1.1) for u0 ∈ H s(RN) with
compact support.
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4.1.2. Uniqueness. Let u j, j = 1, 2 be the two solutions of Eq (1.1), and let Φ j
t (x) be the two

flows corresponding to u j. It suffices to show that the two flows coincide.
Fix T > 0. For any 0 < t < T , we set

δ(t) =
1
|ΩT |

∫
ΩT

∣∣∣Φ1
t (x) − Φ2

t (x)
∣∣∣ dx ,

where ΩT := B (0, r(T )), and r(T ) is defined as in (4.20).
We remind that supp

(
u j(., t)

)
⊂ ΩT , j = 1, 2 for all t ∈ [0,T ]. Now, we want to show that

δ(t) = 0 for all t ∈ [0,T ].
Remind that

Φ
j
t (x) = x +

∫ t

0
v⃗ j(Φ j

τ(x), τ) dτ, j = 1, 2 .

Then,

δ(t) ≤
1
|ΩT |

∣∣∣∣∣∣
∫
ΩT

∫ t

0

[⃗
v1(Φ1

τ(x), τ) − v⃗1(Φ2
τ(x), τ)

]
dτdx

∣∣∣∣∣∣
+

1
|ΩT |

∣∣∣∣∣∣
∫
ΩT

∫ t

0

[⃗
v1(Φ2

τ(x), τ) − v⃗2(Φ2
τ(x), τ)

]
dτdx

∣∣∣∣∣∣ := T1 + T2 . (4.24)

We first study T1. It is known that vector velocity ∇(−∆)−1[w](x) satisfies the log-Lipschitz
property (see, e.g., [3, 27, 28]). Precisely, we have∣∣∣∇(−∆)−1[w](x) − ∇(−∆)−1[w](y)

∣∣∣ ≤ CN∥w∥Xh(|x − y|), ∀x, y ∈ RN , (4.25)

where

h(s) =
{

s(1 − ln s) if s < 1,
1 if s ≥ 1.

Note that h is a concave function. Applying (4.25) to w = um
1 yields∣∣∣⃗v1(Φ1

τ(x), τ) − v⃗1(Φ2
τ(x), τ)

∣∣∣ ≤ C∥um(τ)∥X h
(
|Φ1

τ(x) − Φ2
τ(x)|

)
≤ C∥u0∥

m
X h

(
|Φ1

τ(x) − Φ2
τ(x)|

)
. (4.26)

With the last inequality noted, we deduce from the Fubini theorem, and the Jensen inequality
that

T1 ≤ C∥u0∥
m
X

∫ t

0

1
|ΩT |

∫
ΩT

h
(
Φ1
τ(x) − Φ2

τ(x)
)

dxdτ ≤ C∥u0∥
m
X

∫ t

0
h (δ(τ)) dτ . (4.27)

Concerning T2, observe that

v⃗2(Φ2
t (x), t) = −

1
ωN

∫
RN

Φ2
t (x) − y

|Φ2
t (x) − y|N

um
2 (y, t) dy

= −
1
ωN

∫
RN

Φ2
t (x) − Φ2

t (z)
|Φ2

t (x) − Φ2
t (z)|N

um
0 (z)

1 + mum
0 (z)t

det
(∂Φ2

t (z)
∂z

)
dz

= −
1
ωN

∫
RN

Φ2
t (x) − Φ2

t (z)
|Φ2

t (x) − Φ2
t (z)|N

um
0 (z)(

1 + mum
0 (z)t

)1− 1
m

dz ,

and

v⃗1(Φ2
t (x), t) = −

1
ωN

∫
RN

Φ2
t (x) − y

|Φ2
t (x) − y|N

um
1 (y, t) dy

= −
1
ωN

∫
RN

Φ2
t (x) − Φ1

t (z)
|Φ2

t (x) − Φ1
t (z)|N

um
0 (z)

1 + mum
0 (z)t

det
(∂Φ1

t (z)
∂z

)
dz
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= −
1
ωN

∫
RN

Φ2
t (x) − Φ1

t (z)
|Φ2

t (x) − Φ1
t (z)|N

um
0 (z)(

1 + mum
0 (z)t

)1− 1
m

dz .

Thanks to the Fubini theorem, we get∣∣∣∣∣∣ 1
|ΩT |

∫
ΩT

[⃗
v1(Φ2

t (x), t) − v⃗2(Φ2
t (x), t)

]
dx

∣∣∣∣∣∣
≤

1
|ΩT |ωN

∫
ΩT

∫
ΩT

∣∣∣K(
Φ2

t (x) − Φ1
t (z)

)
− K

(
Φ2

t (x) − Φ2
t (z)

)∣∣∣ um
0 (z) dzdx(

1 + mum
0 (z)t

)1− 1
m

≤
∥u0∥

m
L∞(RN )

|ΩT |ωN

∫
ΩT

∫
ΩT

∣∣∣K(
Φ2

t (x) − Φ1
t (z)

)
− K

(
Φ2

t (x) − Φ2
t (z)

)∣∣∣ dxdz . (4.28)

Next, let us set
d =

∣∣∣Φ1
t (z) − Φ2

t (z)
∣∣∣ .

Then, we rewrite the integral in (4.28) into the sum of J1 + J2 + J3, with

J1 =
1
|ΩT |

∫
ΩT

∫
|Φ2

t (x)−Φ1
t (z)|<2d

∣∣∣K(
Φ2

t (x) − Φ1
t (z)

)
− K

(
Φ2

t (x) − Φ2
t (z)

)∣∣∣ dxdz,

J2 =
1
|ΩT |

∫
ΩT

∫
|Φ2

t (x)−Φ2
t (z)|<2d

∣∣∣K(
Φ2

t (x) − Φ1
t (z)

)
− K

(
Φ2

t (x) − Φ2
t (z)

)∣∣∣ dxdz,

J3 =
1
|ΩT |

∫
ΩT

∫
|Φ2

t (x)−Φ2
t (z)|≥2d,|Φ2

t (x)−Φ1
t (z)|≥2d

∣∣∣K(
Φ2

t (x) − Φ1
t (z)

)
− K

(
Φ2

t (x) − Φ2
t (z)

)∣∣∣ dxdz.

We first study J1. Since |Φ2
t (x) − Φ1

t (z)| < 2d, then it is obvious that

d ≤ |Φ2
t (x) − Φ2

t (z)| ≤ 3d .

Therefore, ∣∣∣K(
Φ2

t (x) − Φ1
t (z)

)
− K

(
Φ2

t (x) − Φ2
t (z)

)∣∣∣
≤ CN

 1∣∣∣Φ2
t (x) − Φ1

t (z)
∣∣∣N−1 +

1∣∣∣Φ2
t (x) − Φ2

t (z)
∣∣∣N−1

 .
This implies that

J1 ≤
CN

|ΩT |

∫
ΩT

∫
|Φ2

t (x)−Φ1
t (z)|<2d

1∣∣∣Φ2
t (x) − Φ1

t (z)
∣∣∣N−1 dxdz

+
CN

|ΩT |

∫
ΩT

∫
|Φ2

t (x)−Φ2
t (z)|<3d

1∣∣∣Φ2
t (x) − Φ2

t (z)
∣∣∣N−1 dxdz

≤
CN

|ΩT |

∫
ΩT

(∫ 2d

0

1
rN−1ωNrN−1dr +

∫ 3d

0

1
rN−1ωNrN−1dr

)
dz

≤ CN
1
|ΩT |

∫
ΩT

∣∣∣Φ1
t (z) − Φ2

t (z)
∣∣∣ dz = CNδ(t) .

Similarly as in the proof of J1, we also obtain

J2 ≤ CNδ(t) .

Finally, we treat J3. Since supp(u j(., t)) ⊂ ΩT , j = 1, 2 for all t ∈ [0,T ], then there exists a
radius R0(T ) > 0 such that∣∣∣Φ2

t (x) − Φ1
t (z)

∣∣∣ + ∣∣∣Φ2
t (x) − Φ2

t (z)
∣∣∣ < R0(T )
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for all x, z ∈ ΩT .
On the other hand, since

∣∣∣Φ2
t (x) − Φ j

t (z)
∣∣∣ ≥ 2d for j = 1, 2, then it follows from the mean value

theorem that∣∣∣K(
Φ2

t (x) − Φ1
t (z)

)
− K

(
Φ2

t (x) − Φ2
t (z)

)∣∣∣ ≤ CN max


∣∣∣Φ1

t (z) − Φ2
t (z)

∣∣∣∣∣∣Φ2
t (x) − Φ1

t (z)
∣∣∣N ,

∣∣∣Φ1
t (z) − Φ2

t (z)
∣∣∣∣∣∣Φ2

t (x) − Φ2
t (z)

∣∣∣N
 .

Thus, we find that

J3 ≤
C
|ΩT |

∫
ΩT

∫
2d≤

∣∣∣Φ2
t (x)−Φ1

t (z)
∣∣∣<R0(T )

d∣∣∣Φ2
t (x) − Φ1

t (z)
∣∣∣N dxdz

+
C
|ΩT |

∫
ΩT

∫
2d≤

∣∣∣Φ2
t (x)−Φ2

t (z)
∣∣∣<R0(T )

d∣∣∣Φ2
t (x) − Φ2

t (z)
∣∣∣N dxdz

≲
1
|ΩT |

∫
ΩT

d
(∫ R0(T )

2d

1
rNωNrN−1dr

)
dz

≲
1
|ΩT |

∫
ΩT

d (ln R0(T ) − ln 2d) dz

≲
1
|ΩT |

∫
ΩT

h
(∣∣∣Φ1

t (z) − Φ2
t (z)

∣∣∣) dz ≤ h (δ(t)) .

Note that the last inequality was obtained by the concavity of h.
By inserting the estimates of J j, j = 1, 2, 3 into (4.28), we obtain∣∣∣∣∣∣ 1

|ΩT |

∫
ΩT

[⃗
v1(Φ2

t (x), t) − v⃗2(Φ2
t (x), t)

]
dx

∣∣∣∣∣∣ ≤ C∥u0∥
m
L∞(RN )h

(
δ(t)

)
. (4.29)

Combining (4.29), (4.27), and (4.24) yields

δ(t) ≤ C
∫ t

0
h
(
δ(τ)

)
, δ(0) = 0 , (4.30)

where C = C(T, ∥u0∥X,m,N).
Thanks to the fact ∫ s

0

dτ
h(τ)

= +∞, for s > 0 ,

we deduce from (4.30) that δ(t) = 0 for all t ∈ [0,T ]. So, we obtain the uniqueness result.
This puts an end to the proof of Theorem 1.1.

4.2. Proof of Theorem 1.2. To obtain the result, we just repeat the proof of Theorem 1.1 for
the relative estimates in terms of Cγ(RN)-norm.

• Cγ(RN)-estimate. To establish the Cγ(RN)-estimate of uk, it suffices to control ∥uk(t)∥Cγ(RN ) by
means of ∥u0∥Cγ(RN ) for all k ≥ 1. For brief, we drop the dependence on k of uk. Acting ∇ to
both sides of (4.17) yields

d
dt
∇Φt(x) = ∇v⃗

(
Φt(x), t

)
∇Φt(x) .

By integrating both sides of the above equation on (0, t), we get

∇Φt(x) = IN −
∫ t

0
∇v⃗

(
Φτ(x), τ

)
∇Φτ(x) dτ , (4.31)
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where IN is the identity matrix of order N.
Therefore, we deduce that∥∥∥∇Φt

∥∥∥
L∞(RN )

≤ C(N) −
∫ t

0

∥∥∥∇v⃗
(
Φτ(.), τ

)∥∥∥
L∞(RN )

∥∇Φτ∥L∞(RN ) dτ .

Applying Grönwall’s inequality (see Lemma 2.3) yields∥∥∥∇Φt

∥∥∥
L∞(RN )

≤ C(N) exp
{∫ t

0

∥∥∥∇v⃗
(
Φτ(.), τ

)∥∥∥
L∞(RN )

dτ
}
. (4.32)

Note that ∇v⃗(x, t) = −∇2(−∆)−1um(x, t) = −RR[um](x, t).
Since R j map Ċγ(RN)→ Ċγ(RN) for all j = 1, . . . ,N (see Section 2), then we obtain∣∣∣∇v⃗

(
Φt(.), t

)∣∣∣
Cγ(RN )

≲
∣∣∣R[um(Φt(.), t)

]∣∣∣
Cγ(RN )

≲
∣∣∣um(Φt(.), t)

∣∣∣
Cγ(RN )

. (4.33)

On the other hand, it follows from the mean value theorem, (1.12), and (4.19) that∣∣∣um(Φt(.), t)
∣∣∣
Cγ(RN )

= sup
x,y

∣∣∣um(Φk(x, t), t) − um(Φk(y, t), t)
∣∣∣

|x − y|γ

= sup
x,y

∣∣∣∣ um
0 (x)

1+mtum
0 (x) −

um
0 (y)

1+mtum
0 (y)

∣∣∣∣
|x − y|γ

≤ C(T,m)∥u0∥
m−1
L∞(RN )|u0|Cγ(RN ), ∀t ∈ (0,T ) . (4.34)

Combining (4.34) and (4.33) yields∣∣∣∇v⃗
(
Φt(.), t

)∣∣∣
Cγ(RN )

≤ C(T,m,N, γ)∥u0∥
m−1
L∞(RN )|u0|Cγ(RN ), ∀t ∈ (0,T ) . (4.35)

By the interpolation inequality in Lemma 2.2, the Lp-boundedness of R, p > 1, and (4.35), we
obtain ∥∥∥∇v⃗

(
Φt(.), t

)∥∥∥
L∞(RN )

≲
∥∥∥∇v⃗

(
Φt(.), t

)∥∥∥ γ
γ+N/q

Lq(RN )

∣∣∣∇v⃗
(
Φt(.), t

)∣∣∣ N/q
γ+N/q

Cγ(RN )

≲
(∥∥∥ − RR[um(Φt(.), t)]

∥∥∥
Lq(RN )

) γ
γ+N/q

(
∥u0∥

m−1
L∞(RN )|u0|Cγ(RN )

) N/q
γ+N/q

≲
(∥∥∥um(Φt(.), t)

∥∥∥
Lq(RN )

) γ
γ+N/q

(
∥u0∥

m−1
L∞(RN )|u0|Cγ(RN )

) N/q
γ+N/q

≲
(
∥u0∥

m
Lqm(RN )

) γ
γ+N/q

(
∥u0∥

m−1
L∞(RN )|u0|Cγ(RN )

) N/q
γ+N/q (4.36)

for all t ∈ (0,T ), and for q > 1.
A combination of (4.32) and (4.36) implies that∥∥∥∇Φt(.)

∥∥∥
L∞(RN )

≤ C, ∀t ∈ (0,T ) , (4.37)

where C = C
(
u0,T,N,m, γ, q

)
.

Next, we try to obtain a priori estimate of
∣∣∣∇Φt(.)

∣∣∣
Cγ(RN )

in terms of |u0|Cγ(RN ).
Taking the semi-norm |.|Cγ(RN ) to both sides of (4.31), we obtain∣∣∣∇Φt(.)

∣∣∣
Cγ
≤

∫ t

0

∣∣∣∇v⃗
(
Φτ(.), τ

)
∇Φτ(.)

∣∣∣
Cγ

dτ

≤

∫ t

0

(∣∣∣∇v⃗
(
Φτ(.), τ

)∣∣∣
Cγ

∥∥∥∇Φτ(.)∥∥∥L∞
+

∥∥∥∇v⃗
(
Φτ(.), τ

)∥∥∥
L∞

∣∣∣∇Φτ(.)∣∣∣Cγ) dτ .

Thanks to (4.36) and (4.37), it follows from the last inequality that∣∣∣∇Φt(.)
∣∣∣
Cγ
≤ C1 +

∫ t

0

∥∥∥∇v⃗
(
Φτ(.), τ

)∥∥∥
L∞

∣∣∣∇Φτ(.)∣∣∣Cγdτ, ∀t ∈ (0,T ),
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where constant C1 > 0 depends on the parameters, and u0 as in (4.37).
Again, by applying the Grönwall inequality, and by (4.35), we arrive∣∣∣∇Φt(.)

∣∣∣
Cγ
≤ C1 exp

{∫ t

0

∣∣∣∇v⃗
(
Φτ(.), τ

)∣∣∣
Cγ

dτ
}
≤ C2 . (4.38)

In summary,
∥∥∥∇Φt(.)

∥∥∥
Cγ

and
∥∥∥∇v⃗

(
Φt(.), t

)∥∥∥
Cγ

are controlled by ∥u0∥L1 + |u0|Cγ .
Thanks to Lemma 4.1, we find that

u(x, t) =
u0

(
Φ−1

t (x)
)[

1 + mtum
0
(
Φ−1

t (x)
)] 1

m

.

This implies that

∥u(t)∥Cγ(RN ) ≤ C, ∀t ∈ (0,T ) , (4.39)

where constant C merely depends on u0,T, and the parameters involved.
Since uk verifies (4.39) for all k ≥ 1, then uk(t)→ u(t) in L∞

(
0,T ;Cγ(RN)

)
as k → ∞ according

to the Arzelà–Ascoli theorem (up to a subsequence). By repeating the proof of passing to the
limit as k → ∞ as in Theorem 1.1, one obtains u ∈ L∞

(
0,T ;Cγ(RN)

)
is a unique weak solution

to Eq (1.1). Hence, we complete the proof of Theorem 1.2.

Remark 4.2. We emphasize that (4.39) is used to obtain the compactness result for solutions
uk in the proof of Theorem 1.1.

5. Asymptotic behavior of solutions

In this section, we investigate the asymptotic behavior of solutions to Eq (1.1) via the vortex
patch of solution when t → ∞, and we give the proof of Theorem 1.3. Our proof is similar to
the one in [3, Theorem 3.1], but with a slight difference concerning the nonlinearity of um(x, t),
m > 1. Note that the nonlinear term does not conserve the mass for t > 0. This fact plays a
crucial role in ”frozen in time estimate of the velocity at the boundary”, see the proof of [3,
Theorem 3.1].

Proof of Theorem 1.3. As mentioned above, we just present some points in the proof having
slight differences according to the appearance of nonlinear term um. We first prove Theorem
1.3 for densities u0 ∈ C

1
c(RN) to be sure that vector field Φt(x) = Φ(x, t) is differentiable in time.

After that, the case u0 ∈ H s(RN) (resp. u0 ∈ C
α(RN)) with compact support can be obtained by

using the smoothing effect to u0 as in [3, Theorem 3.1].
Now, let us set

W(x, t) =
h01B(0,R(t))

(1 + mhm
0 t)

1
m

, h0 = ∥u0∥L∞(RN ),

and  R(t) =
(
1 + mhm

0 t
) 1

Nm
, r(t) = R(t)

(
1 + E(t)

) 1
N ,

E(t) = E0

(
1 + mhm

0 t
) −N21−N

m
, E0 = rN

0 − 1.
(5.1)

Since we assume that ∥u0∥L∞(RN ) = 1 in Theorem 1.3, then we necessarily have

h0 = 1, R(t) = (1 + mt)
1

Nm

in the following.
• Change of variables. We define the solution U(y, τ) of the renormalized flow associated to a
solution u(x, t) as follows:

y =
x

R(t)
, τ = ln

[(
1 + mt

) 1
m

]
, U(y, τ) =

(
1 + mt

) 1
m u(x, t) , (5.2)
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as well as the corresponding change for pressure and velocity:

P(y, τ) = (−∆)−1Um(y, τ) =
[
R(t)

]mN−2(−∆)−1um(x, t) =
[
R(t)

]mN−2 p(x, t) ,

and
V(y, τ) = −∇P(y, τ) =

[
R(t)

]mN−1v(x, t) .
By a straightforward computation, one can verify that U(y, τ) satisfies

Uτ = divy

(
U

(
∇P +

y
N

))
, ∆yP = −Um(y, τ) . (5.3)

See the proof of (5.3) in the Appendix section.
Next, for every t > 0, it is clear that function g(l) = l(

1+mlmt
) 1

m
is increasing in (0,∞).

As a result, one has

u(x, t) ≤
1(

1 + mt
) 1

m

, ∀x ∈ RN

since sup
t>0
∥u(t)∥L∞(RN ) ≤ ∥u0∥L∞(RN ) = 1.

Therefore, we deduce from (5.2) that

U(y, τ) ≤ 1, ∀(y, τ) ∈ RN × (0,∞) . (5.4)

In addition, we observe that∫
RN

U(y, τ) dy = RN(t)
∫
RN

u(R(t)y, t) dy =
∫
RN

u(x, t) dx = ωN , ∀τ > 0. (5.5)

• Estimate of the size of the support.

Lemma 5.1 (Frozen in time estimate of the velocity at the boundary). Let µ ∈ L∞c (RN) be such
that

supp(µ) ⊂ B(0, r), ∥µ(t)∥L1(RN ) ≤ ωN , ∥µ∥L∞(RN ) ≤ 1
for some r ≥ 1. Note that we necessarily have r ≥ 1 since ∥µ∥L1(RN ) ≤ ωN . Then, the velocity
field

v⃗(y) = −∇(−∆)−1µ(y) −
y
N

satisfies

v⃗(y) · y ≤ −21−Nr2−N
(
rN − 1

)
, ∀|y| = r, (5.6)

for some constant C = C(N).

Remark 5.1. Since we shall apply Lemma 5.1 to µ = Um(y, τ), which does not conserve the
mass whenever m > 1, then we must extend [3, Lemma 3.1] to the case ∥µ∥L1(RN ) ≤ µ0 for some
µ0 > 0. Fortunately, the proof of [3, Lemma 3.1] still works very well on this case. Compare to
the linear case µ = U(x, t), which conserves the mass ∥u0∥L1(RN ) for all t > 0. That allows us to
”frozen in time estimate of the velocity at the boundary”.

Proof of Lemma 5.1. The proof is similar to the one of [3, Lemma 3.1] with a different scale.
For convenience, we give the proof here.
Let y ∈ RN be such that |y| = r. Thanks to the fact

−∇(−∆)−11B(0,r)(y) =
y
N

we can rewrite
v⃗(y) = ∇(−∆)−1 [

1B(0,r) − µ
]
(y).

Since supp(µ) ⊂ B(0, r) and ∥µ∥L∞(RN ) ≤ 1, then it is clear that

1B(0,r) − µ ≥ 0, and
∥∥∥1B(0,r) − µ

∥∥∥
L1(RN )

=
∣∣∣B(0, r)

∣∣∣ − ωN .
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Next, for every z ∈ B(0, r), we find easily that

|y − z|2 = |y|2 − 2y · z + |z|2 ≤ 2|y|2 − 2y · z = 2(y − z) · y .

Then,

−v⃗(y) · y =
1
ωN

∫
B(0,r)

(y − z) · y
|y − z|N

(
1B(0,r) − µ

)
(z) dz

≥
1

2ωN

∫
B(0,r)
|y − z|2−N (

1B(0,r) − µ
)

(z) dz .

≥
1

2ωN

∫
B(0,r)

(2r)2−N (
1B(0,r) − µ

)
(z) dz

=
21−Nr2−N

ωN

(∣∣∣B(0, r)
∣∣∣ − ∥µ∥L1(B(0,r))

)
≥

21−Nr2−N

ωN

(∣∣∣B(0, r)
∣∣∣ − ωN

)
= 21−Nr2−N

(
rN − 1

)
. (5.7)

This yields the proof of Lemma 5.1. □

Now, we are ready to apply Lemma 5.1 to µ = Um(y, τ). Thus, it suffices to verify that
Um(y, τ) satisfies the conditions in this lemma. In fact, it follows from (5.4) and (5.5) that

∥Um(τ)∥L∞(RN ) ≤ ∥U(τ)∥mL∞(RN ) ≤ 1, (5.8)

and

∥Um(τ)∥L1(RN ) = ∥U(τ)∥mLm(RN ) ≤ ∥U(τ)∥L1(RN )∥U(τ)∥m−1
L∞(RN ) ≤ ωN (5.9)

for all τ > 0.
Next, we define Ωτ = supp

(
U(., τ)

)
and L(τ) = sup

x∈Ωτ
|x|, and put V⃗1(y, τ) = ∇P(y, τ) + y

N .

From Eq. (5.3), we observe that V⃗1 satisfies the characteristic equation:
d
dt
Φτ(x) = V⃗1

(
Φτ(x), τ

)
, Φτ(x)|τ=0 = x .

Fix a time τ ≥ 0 and choose x0 so that Φτ(x0) ∈ Ωτ, and |Φτ(x0)| = L(τ).
Applying Lemma 5.1 to V⃗1 yields

1
2

d
dτ

L2(τ) = Φτ(x0) ·
d
dτ
Φτ(x0) = Φτ(x0) · V⃗1

(
Φτ(x0), τ

)
≤ −21−N |Φτ(x0)|2−N

(
|Φτ(x0)|N − 1

)
= −21−N L2−N(τ)

(
LN(τ) − 1

)
.

Thus, we obtain
d
dt

LN(τ) ≤ −N21−N
(
LN(τ) − 1

)
. (5.10)

Thanks to (5.10) and Lemma 5.1, we can repeat the proof of [3, Lemma 3.2] for U, but with a
different scale according to (5.8)-(5.9). Then, we obtain

supp(U(τ)) ⊂ B(0, r̃(τ)), ∀τ > 0,

where r̃ satisfies the ODE:
d
dτ

r̃N(τ) = −N21−N(
r̃N(τ) − 1

)
, r̃(0) = r0 . (5.11)

Note that supp(U(0)) = supp(u0) ⊂ B(0, r0).
By (5.10), going back to the original variable this translates into:

rN(t)
RN(t)

− 1 ≤
(
rN

0 − 1
)

(1 + mt)
−N21−N

m = E(t) . (5.12)
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Now, it suffices to prove (1.14). Observe that u(x, t) ≤ W(x, t) in B(0,R(t)), and u(x, t) ≥ W(x, t)
outside B(0,R(t)). Using moreover the fact that both W(x, t) and u(x, t) have mass ωN we easily
find that ∥∥∥u(t) −W(t)

∥∥∥
L1(RN )

=

∫
|x|≤R(t)

[W(x, t) − u(x, t)] dx +
∫
|x|>R(t)

u(x, t) dx

= 2
∫
|x|>R(t)

u(x, t) dx = 2
∫

R(t)<|x|<r(t)
u(x, t) dx . (5.13)

Note that∫
R(t)<|x|<r(t)

u(x, t) dx ≤
∫

R(t)<|x|<r(t)

dx
(1 + mt)1/m = ωN

(
rN(t)
RN(t)

− 1
)
= ωN E(t) . (5.14)

The last equality follows from (5.12).
Combining (5.14) and (5.13) yields∥∥∥u(t) −W(t)

∥∥∥
L1(RN )

≤ 2ωN E(t), for t > 0 .

Hence, we obtain (1.14) for q = 1.
For q ∈ (1,∞), it follows from the interpolation inequality and universal bound (1.13) that∥∥∥u(t) −W(t)

∥∥∥
Lq(RN )

≤
∥∥∥u(t) −W(t)

∥∥∥ q−1
q

L∞(RN )

∥∥∥u(t) −W(t)
∥∥∥ 1

q

L1(RN )

≤ C(q)(mt)−
q−1
qm

(
2ωN E(t)

) 1
q

≤ C(q,m,N)
(
rN

0 − 1
) 1

q t−
q−1+N21−N

qm , for t > 0.

This completes the proof of Theorem 1.3. □

As a consequence, we have the following asymptotic of U(y, τ).

Corollary 5.1. Let U(y, τ) be defined as in (5.2). Then, U(y, τ) converges to U∗(y) := 1{|y|≤1} in
Lq-norm, 1 ≤ q < ∞ when τ→ ∞. Specifically, we have∥∥∥U(τ) − U∗

∥∥∥
Lq(RN )

≤ C(N, q)
(

rN
0 − 1

eN21−Nτ

)1/q

, ∀τ > 0. (5.15)

Proof of Corollary 5.1. Observe that U(y, τ) ≤ U∗(y) in B(0, 1) from (5.4), and U(y, τ) ≥ U∗(y)
outside B(0, 1). Moreover, since U∗ and U(., τ) have the same mass ωN for all τ > 0, then∥∥∥U(τ) − U∗

∥∥∥
L1(RN )

=

∫
|y|<1

[
U∗(y) − U(y, τ)

]
dy +

∫
|y|≥1

U(y, τ) dy

= 2
∫
|y|≥1

U(y, τ) dy .

With the last equation noted, and by the definition of U in (5.2), we observe that∥∥∥U(τ) − U∗
∥∥∥

L1(RN )
= 2

∫
|y|≥1

U(y, τ) dy = 2RN(t)
∫
|y|≥1

u
(
yR(t), t

)
dy

= 2
∫
|x|≥R(t)

u
(
x, t

)
dx =

∫
R(t)<|x|<r(t)

u(x, t) dx

≤ 2ωN E(t) .

The last inequality follows from (5.14). Remind that τ = ln(1 + mt)1/m.
Then, we deduce that ∥∥∥U(τ) − U∗

∥∥∥
L1(RN )

≤ 2ωN
rN

0 − 1

en21−Nτ
, ∀τ > 0 .
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Finally, the estimate for
∥∥∥U(τ) − U∗

∥∥∥
Lq(RN )

can be done similarly as in the proof of
∥∥∥u(t) −

W(t)
∥∥∥

Lq(RN )
above. Then, we leave its details to the reader. □

6. Estimates via symmetrization

In this part, we study the symmetrization of solutions to Eq (1.1). Here, we will prove that,
even if the problem concerns an hyperbolic/elliptic system it is possible to compare, in a suit-
able sense, the solutions of the problem corresponding to an initial datum u0 with supersolutions
corresponding to a radially symmetric initial datum U0 with equimesurable level sets with re-
spect to u0. This kind of symmetrization process is well-known in the context of parabolic and
elliptic problems but, as far as we know, this one has not been developed for hyperbolic/elliptic
systems. Our depart point is the paper [20] (see also [19]) concerning a related system arising
in chemotaxis.

Now, let T > 0, and let u : QT → [0,∞) be a measurable function. For t ∈ [0,T ], we set
u(t) : RN → [0,∞), u(t)(x) = u(t, x). Then, we will write u∗(t, s) = u(t)∗(s) for t ∈ [0,T ] and
s ∈ [0,∞).
If u,U ∈ L∞

(
0,T ; L1(RN)

)
are nonnegative, then the concentration mass comparison u(t) ≺ U(t)

can be equivalently formulated as

k(t, s) ≤ K(t, s), for any t ∈ [0,T ], s ≥ 0,

where

k(t, s) =
∫ s

0
u∗(t, σ) dσ, K(t, s) =

∫ s

0
U∗(t, σ) dσ .

For the proof of Theorem 1.4 we will start by proving some similar results for the case of Eq
(3.1), but with Uε solution of the problem

∂tU = ε∆U + div (U∇P) in RN × (0,T ) ,
−∆P = Mm−1

0 U ,
U(x, 0) = U0(x) in RN .

(6.1)

Here, we remind that M0 = ∥U0∥L∞(RN ).

Theorem 6.1. Let m ≥ 1, N ≥ 2. Let u0,U0 ∈ L∞c (RN) be nonnegative such that

∥u0∥L∞(RN ) ≤ ∥U0∥L∞(RN ) , ∥u0∥L1(RN ) ≤ ∥U0∥L1(RN ) . (6.2)

Let uε (resp. Uε) be the unique nonnegative bounded weak solution of Eq (3.1) (resp. Eq (6.1)).
Then, for any t ∈ [0,T ], there holds∫ ∞

0
s

2(N−1)
N [k(t, s) − K(t, s)]2

+ ds ≤ etC(ε)
∫ ∞

0
s

2(N−1)
N [k0(s) − K0(s)]2

+ ds, (6.3)

with

C(ε) = Mm
0 +

C
ε
, C =

M2(m−1)
0

2N2ω
2
N
N

.

Furthermore, if u0 ≺ U0, then for any t > 0, we have uε(t) ≺ Uε(t), and pε(t) ≺ Pε(t) for all
ε > 0.

Proof of Theorem 6.1. Let us put

µ(t, θ) = meas {x ∈ Ω, u(t, x) > θ} .
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The proof is just an adaptation and generalization of the proof of [20, Proposition 3.2] (see also
[19, Theorem 2 and Proposition A.1]). At the beginning, we assume that initial data u0 and U0

are regular enough. Specifically, we can pick u0,U0 ∈ C
1
c(RN). Then, we have∫ µ(t,θ)

0

∂u(t, σ)∗
∂t

dσ =
∫
{u(t)>θ}

∂u(t, x)
∂t

dx, for a.e. t ∈ (0,T ).

Thus, it is possible to extend the computations in [19, Lemma 4] to the case of the spatial
domain Ω = RN . These computations lead, in case of u solution of problem (3.1), to the
following auxiliary problem

∂k
∂t − εd(s)∂

2k
∂s2 −

(∫ µ(t,θ)

0
(u(t, σ)∗)m dσ

)
∂k
∂s ≤ 0 a.e. in (0,T ) × (0,+∞),

k(t, 0) = 0, k(t,+∞) =
∫
RN u0dx t ∈ (0,T ),

k(0, s) = k0(s) =
∫ s

0
u0(σ)∗dσ s ≥ 0,

with k ∈ L∞((0,T ) × (0,+∞)) ∩ H1(0,T : W1,q
loc (0,+∞)) ∩ L2(0,T : W2,q

loc (0,+∞)), for some

q > N, and d(s) = N2ω
2
N
N s

2(N−1)
N .

Since
0 ≤ [u(t, σ)∗]m ≤ Mm−1

0 u(t, σ)∗ for a.e. (t, σ) ∈ [0,T ] × (0,+∞),

then we get as in [20, Proposition 3.1] that

∂k
∂t
− εd(s)

∂2k
∂s2 − Mm−1

0 k
∂k
∂s
≤ 0 for a.e. (t, σ) ∈ [0,T ] × (0,+∞) .

Next, let us set z(t, s) =
∫ s

0
p(t, σ)∗ dσ. Then, it satisfies
−d(s) ∂

2z
∂s2 ≤ k a.e. in (0,T ) × (0,+∞),

z(t, 0) = 0, lim
s→∞

∂z
∂s

(t, s) = 0, t ∈ (0,T ).
(6.4)

Repeating the proof as in [19, Lemma 6], we get

∂K
∂t − εd(s)∂

2K
∂s2 − Mm−1

0 K ∂K
∂s = 0 a.e. in (0,T ) × (0,+∞),

K(t, 0) = 0, K(t,+∞) =
∫
RN

U0(x) dx t ∈ (0,T ),

K(0, s) = K0(s) =
∫ s

0
U0(σ)∗ dσ s ≥ 0.

On the other hand, if we set Z(t, s) =
∫ s

0
P(t, σ)∗ dσ, then we see that −d(s)∂

2Z
∂s2 = K a.e. in (0,T ) × (0,+∞),

Z(t, 0) = 0, lim
s→∞

∂Z
∂s

(t, s) = 0 t ∈ (0,T ).
(6.5)

Now, we modify the comparison result in [20, Proposition 3.2] (see also [19, Proposition A1]).
By defining w = k − K, and by (6.2), we get

∂w
∂t − εd(s)∂

2w
∂s2 − Mm−1

0 (k ∂k
∂s − K ∂K

∂s ) ≤ 0 a.e. in (0,T ) × (0,+∞),

w(t, 0) = 0, w(t,+∞) ≤ 0 t ∈ (0,T ),

w(0, s) = k0(s) − K0(s) s ≥ 0.
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Multiplying the differential inequality by s2(N−1)/Nw+, integrating by parts over (δ, L), with 0 <
δ < 1 < L, and using the fact from Theorem 3.1 that

∂k
∂s
= u∗ ≤ ∥u0∥L∞(RN ) ≤ M0,

we find that
1
2

d
dt

∫ L

δ

s
2(N−1)

N |w+|2 ds + εN2ω
2
N
N

∫ L

δ

∣∣∣∣∣∂w+
∂s

∣∣∣∣∣2 ds

≤ Mm−1
0

∫ L

δ

s
2(N−1)

N

{
|w+|2

∂k
∂s
+ w+

∂w+
∂s

K
}

ds + εR(t, δ, L)

≤ Mm
0

∫ L

δ

s
2(N−1)

N |w+|2 ds + Mm−1
0

∫ L

δ

s
2(N−1)

N w+
∂w+
∂s

K ds + εR(t, δ, L),

where

R(t, δ, L) = C
{∣∣∣∣∣∂w
∂s

(t, δ)
∣∣∣∣∣ w+(t, δ) + ∣∣∣∣∣∂w

∂s
(t, L)

∣∣∣∣∣ w+(t, L)
}

satisfies R(t, δ, L) ≤ C′ for some constant C′ > 0, and

R(t, δ, L)→ 0 as δ→ 0 and L→ ∞ .

Thanks to the Cauchy inequality, we have

Mm−1
0

∫ L

δ

s2(N−1)/Nw+
∂w+
∂s

K ds ≤
1
2
εN2(ωN)2/N

∫ L

δ

(
∂w+
∂s

)2 ds

+
C
ε

∫ L

δ

s2(N−1)/N(w+)2 ds,

with C = M2(m−1)
0

2N2(ωN )2/N . Then, for t ∈ (0,T ) one has

d
dt

∫ L

δ

s
2(N−1)

N |w+|2 ds ≤
Mm

0 +
C
ε

 ∫ L

δ

s
2(N−1)

N |w+|2 ds + εR(t, δ, L) .

Then, letting δ→ 0 and L→ ∞, by Grönwall’s inequality we conclude that∫ ∞

0
s

2(N−1)
N |w+(t, s)|2 ds ≤ et

(
Mm

0 +
C
ε

) ∫ ∞

0
s

2(N−1)
N |w+(0, s)|2 ds ,

which proves estimate (6.3).
Thus, if u0 is less concentrated than U0, then we find that w+(0, s) = 0 on (0,+∞). It follows
from the last inequality that for any t > 0 there holds

w+(t, s) = 0 for s ∈ (0,+∞) .

Hence, we obtain
uε(t) ≺ Uε(t), for t > 0 . (6.6)

Using (6.4) and (6.5), by the theory of rearrangement (see [40]), we deduce that

pε(t) ≺ Pε(t), for t > 0 . (6.7)

Thus, we get the proof of Theorem 6.1 for regular initial data u0,U0 ∈ C
1
c(RN).

Finally, if u0,U0 ∈ L∞c (RN), then by using the smoothing effect to initial data u0,U0, one can
obtain (6.6) and (6.7).
It is well-known that due to a result by Hardy–Littlewood–Pólya (see, e.g., Talenti [40]) the
above comparison in mass concentration implies Lq-estimate (1.19) for q ∈ (1,∞).
This puts an end to the proof of Theorem 6.1. □

Now, it suffices to give the proof of Theorem 1.4.
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Proof of Theorem 1.4. At the beginning, we show that (6.6) and (6.7) hold for (u,U) and (p, P)
respectively. Remind that u,U are the unique solutions of the two equations (1.1), (6.1) with
densities u0,U0 respectively.
It suffices to show that (6.6) holds true for (u,U); and (6.7) is true for (p, P).
Thanks to the uniqueness result, and by the same argument as in the proof of Theorem 1.1, we
observe that solution uε(t) (resp. Uε(t)) of Eq (3.1) (resp. Eq (6.1)) converges weakly to u(t)
(resp. U(t)) in Lq(RN), 1 < q < ∞ as ε→ 0 (up to a subsequence if necessary).
Next, uε(t) (resp. Uε(t)) is uniformly bounded in X with respect to ε for all t > 0. As a con-
sequence, the restriction of

{
uε(t)

}
ε>0 (resp.

{
Uε(t)

}
ε>0) to Ω is equi-integrable for any bounded

set Ω in RN . Thanks to the Dunford–Pettis theorem,
{
uε(t)

}
ε>0 (resp.

{
Uε(t)

}
ε>0) is a relatively

compact subset in L1(Ω) with the weak topology. Thus, for any ball B(0, r) ⊂ RN , we have
∫

B(0,r)
uε(x, t)ψ(x) dx→

∫
B(0,r)

u(x, t)ψ(x) dx, ∀ψ ∈ L∞(B(0, r)) ,∫
B(0,r)

Uε(x, t)ψ(x) dx→
∫

B(0,r)
U(x, t)ψ(x) dx, ∀ψ ∈ L∞(B(0, r)) ,

as ε→ 0.
Therefore, it follows from (6.6) that u(t) ≺ U(t) for all t > 0.
By the same argument, we also obtain from (6.7) that p(t) ≺ P(t) for all t > 0. As before, the
above comparison in mass concentration implies (1.19).
To finish the proof, it remains to prove (1.21). By (1.20), and by the conservation of mass, for
any t ∈ [0,T ] we have∫ +∞

0
u(t, σ)∗ dσ =

∫ +∞

0
u0(σ)∗ dσ =

∫ +∞

0
U0(σ)∗ dσ =

∫ +∞

0
U(t, σ)∗ dσ .

Since u(t) ≺ U(t) for t ∈ [0,T ], then for any s ∈ [0,∞) we find that∫ +∞

s
u(t, σ)∗ dσ =

∫ +∞

0
u(t, σ)∗ dσ −

∫ s

0
u(t, σ)∗ dσ

≥

∫ +∞

0
U(t, σ)∗ dσ −

∫ s

0
U(t, σ)∗ dσ =

∫ +∞

s
U(t, σ)∗ dσ . (6.8)

For any t ∈ [0,T ], let [0,Ru(t)] and [0,RU(t)] be the supports of u(t)∗ and U(t)∗ respectively.

Since
∫ +∞

Ru(t)
u(t, σ)∗ dσ = 0, then it follows from (6.8) that

∫ +∞

Ru(t)
U(t, σ)∗ dσ = 0 .

In addition, since U(t, σ)∗ is non-increasing and nonnegative, then we deduce that Ru(t) ≥
RU(t). This yields the desired result.
Thus, we complete the proof of Theorem 1.4. □

Remark 6.1. Arguing as in [18], it seems possible to get alternative estimates to the one given
in (6.3) [in L2 with a weight] but now in L∞(0,+∞).

Remark 6.2. An iterative implicit Euler discretization method was used to get a result similar
to Theorem 6.1 in references [25, 15] when m = 1. Note that this method does not give estimate
(6.3). Unfortunately, the proof of Lemma A.6 given in [25] is not complete (the proof of that
for any regular vectorial function the operator is accretive requires some nontrivial additional
arguments).
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7. Appendix

Proposition 7.1. Let s > 0 be noninteger, and let Γ be a Lipschitz function on R such that
Γ(0) = 0. Then, there exists a constant C = C(Γ) > 0 such that

∥Γ(u)∥Hs(RN ) ≤ C
∥∥∥Γ′∥∥∥

L∞(RN )
∥u∥Hs(RN )

Proof of Proposition 7.1. From the condition Γ(0) = 0, we have that

∥Γ(u)∥L2(RN ) ≤ ∥Γ
′∥L∞(R)∥u∥L2(RN ) .

Moreover, it is known that H s(RN), s > 0 coincides with the fractional Sobolev spaces W s,2(RN).
Thus,

∥Γ(u)∥2Hs(RN ) ≈ ∥Γ(u)∥2W s,2(RN ) = ∥Γ(u)∥2L2(RN ) +

∫ ∫
|Γ(u)(x) − Γ(u)(y)|2

|x − y|N+2s dxdy

≤ ∥Γ′∥2L∞(R)∥u∥
2
L2(RN ) + ∥Γ

′∥2L∞(R)

∫ ∫
|u(x) − u(y)|2

|x − y|N+2s dxdy

= ∥Γ′∥2L∞(R)∥u∥
2
W s,2(RN ) ≈ ∥Γ

′∥2L∞(R)∥u∥
2
Hs(RN ) .

Combining the two indicated inequalities yields the desired result. □

Proposition 7.2 (Proof of (5.3)).

We have

Uτ(y, τ) =
d
dτ

[
eτu

(
e
τ
N y,

emτ − 1
m

)]
= U(y, τ) + eτ

[
∇xu(x, t) ·

y
N

eτ/N + ∂tu(x, t)emτ
]

= U(y, τ) + RN+1(t)∇xu(x, t) ·
y
N
+ R(m+1)N(t) divx(u∇p)

= U + RN+1(t)∇xu(x, t) ·
y
N
+ R(m+1)N(t)∇xu · ∇p(x, t) −

[
RN(t)u(x, t)

]m+1
.

And

divy

(
U

(
∇P +

y
N

))
= divy (U∇P) + divy

(
U

y
N

)
= divy (U∇P) + ∇yU ·

y
N
+ U

= ∇yU ·
(
∇P +

y
N

)
+ U − Um+1

= RN+1(t)∇xu ·
(
−
[
R(t)

]mN−1
∇p(x, t) +

y
N

)
+ U − Um+1

= −R(m+1)N(t)∇xu · ∇p(x, t) + RN+1(t)∇xu ·
y
N
+ U − Um+1.

Then, it is easy to see that

Uτ(y, τ) = divy

(
U

(
∇P +

y
N

))
.
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[34] Jean-Michel Rakotoson, Réarrangement relatif. Un instrument d’estimations dans les problèmes aux limites,
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