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Abstract. The phrase ”Think globally, act locally” became prominent in the con-

text of sustainable development and environmental activism, encouraging individuals and

communities to address global challenges by taking local actions. In this paper, we offer a

mathematical framework in which such metaphor can be understood in terms of the global

homogenized formulation of some suitable control problem formulated on a domain Ωε, a

part of a given domain Ω, which is exterior to a periodic distribution of many particles.

We assume a linear heat equation on Ωε× (0, T ) and a Robin-type boundary condition on

the boundary of the particles. We prove the “approximate controllability” of the problem,

with a final observation, when the control is implemented only on the boundary of certain

particles. Firstly, we apply the homogenization process, proving that the solution of the

microscopic problem converges, as ε→ 0, to a function u0(x, t) that is the unique solution

to a suitable global state parabolic problem. We consider a microscopic optimal control

problem and prove the weak convergence of the state and the optimal control. Finally,

we prove the approximate controllability by passing to the limit in a penalty parameter

of the cost functional. This conclusion gives a certain mathematical justification for the

popular phrase used by ecologists. Moreover, it brings to light some limitations that must

be assumed on the local controls to conclude that the result is globally satisfactory.

Keywords: homogenization, perforated domain, critical case, optimal control, “strange”

term, boundary control.
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1. Introduction

The phrase ”Think globally, act locally” is widely attributed to the Scottish town

planner and social activist Patrick Geddes (1854–1932). Geddes was a pioneer in urban

planning and environmental thinking, emphasizing the interconnectedness of local and

global systems. Geddes did not use the exact phrase but promoted ideas that align with
1
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its meaning, particularly in his advocacy for regional planning and considering broader

ecological and social impacts while addressing local issues.

The exact wording ”Think globally, act locally” is believed to have emerged later and

popularized the environmental movement during the late 20th century, particularly in

the 1970s and 1980s (see [8]). In this paper, we offer a mathematical justification of this

sentence in the framework of Optimal Control Theory applied to heterogeneous media (a

spatial domain Ω) including a set of particles with Robin boundary conditions satisfied

by the state variable u and when the control operates on the particles’ boundary where,

as a metaphor, it emphasizes the interaction between global strategies and local actions

in a complex system.

The conceptual relationship is understood here on the following basis: ”Think glob-

ally” can be understood in Optimal Control Theory as a formulation involving a global

objective, such as minimizing costs, maximizing efficiency, or achieving a desired state

for the system. In a heterogeneous medium, the global objective is obtained through the

macroscopic properties of the system, which in mathematics corresponds to the formula-

tion of a homogenized Optimal Control problem. On the other hand, ”act locally” can

be understood as a formulation in which the controls are implemented on the boundary

of some particles in specific subregions. In this way, local decisions (conditions imposed

on the boundaries of certain particles) directly affect the global dynamics of the system

due to the interdependence of variables.

These conditions exemplify how local effects can be integrated into the global framework

of the system. In practice, they represent a balance between external and internal flows,

which can be subject to external controls (the ”acting locally”). In summary, the phrase

connects to the idea that decisions made at the local level (on specific boundaries or

particles) have significant implications for the global behavior of the system, and optimal

control theory formalizes this interaction through the homogenized partial differential

equations on Ω and the “microscopic” action on a certain amount of boundaries of the

particles where the control (the action) is implemented.

Our aim is to give a precise mathematical formulation of this metaphor in a simple

framework, also showing that some quantitative conditions need to be assumed. For

instance, the “intensity” of the local controls should be suitably determined in terms

of the scale and the spatial dimension: otherwise, the conclusion does not support the

desired global effect.

Many mathematical formulations can be considered. Here, we merely study a simple

optimal control problem corresponding to states satisfying a linear parabolic equation.

The main formulation, we will consider, concerns an optimal control problem associated

to a state function satisfying a linear heat equation in Ωε, the exterior of a bounded

domain Ω of Rn, n ≥ 3, containing a set of ε-periodically distributed radially symmetric

particles. We assume a homogeneous Dirichlet boundary condition on ∂Ω and, which is

more important, a Robin-type condition on the boundary of each particle. Following an

analogy with a global model proposed in climatology (the climate Energy Balance Model
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Figure 1. The control is implemented only on S
(2)
ε , the boundary of some

of the internal balls: the ones collected under the notation G
(2)
ε .

(EBM), see [17], [3]), the states uε represent the averaged Earth surface temperature

(here the Earth is represented by the domain Ω) and the EBM equation is represented

by a linear heat equation. The “particles” represent the individuals of a population that

interfere with their exterior (here represented by a Robin type boundary condition on the

boundary of each particle). Since it is impossible to act over the entire spatial domain Ωε,

it is assumed that only individuals in a small portion of the domain (ω such that ω ⊂ Ω)

can exercise some voluntary control. Thus, the set of boundaries of the internal particles is

constituted in the form Sε = S
(1)
ε

⋃
S
(2)
ε , with S

(2)
ε the set of boundaries of the controlling

particles and S
(1)
ε the set of boundaries where no control is implemented. Although, a

detailed description will be given in the next section we can anticipate that the state in

this control problem will satisfy the following equation and auxiliary conditions



∂tuε(v)−∆uε(v) = f(x, t), (x, t) ∈ Ωε × (0, T ) = QT
ε ,

∂νuε(v) + ε−γa(x)uε(v) = 0, (x, t) ∈ S
(1)
ε × (0, T ) = S

(1),T
ε ,

∂νuε(v) + ε−γa(x)uε(v) = ε−γv(x, t), (x, t) ∈ S
(2)
ε × (0, T ) = S

(2),T
ε ,

uε(v) = 0, (x, t) ∈ ∂Ω× (0, T ) = ΓT ,

uε(v)(x, 0) = 0, x ∈ Ω,

(1)

where v ∈ L2(S
(2),T
ε ) is the control, f ∈ L2(0, T ;L2(Ω)), a ∈ C∞(Ω), a(x) ≥ a0 = const >

0 are known data and ν is the unit outward normal vector to the related surfaces. Notice

that by some obvious change of variable that we can also consider the case of a non-zero

initial datum. Here we assume a “critical” relation between the problem’s parameters

(period of the structure ε, order of the particles size, α, and order of the coefficient γ),

precisely, α = γ = n
n−2

, since otherwise the global problem we would obtain after the

homogenization process (making ε↘ 0) is less relevant (see, e.g., the exposition made in
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[4]). This choice of parameters α and γ is characterized by the emergence of an “strange”

term in the effective equations (see [24, 4, 1]).

Our main goal is to prove the “approximate controllability” of the problem with a final

observation. This property can be stated in the following terms: given a “target global

state”, uT ∈ L2(Ω) (some extra regularity will be assumed in some intermediate steps),

and given δ > 0, we want to show the existence of a control v ∈ L2(S
(2),T
ε ) such that we

have the estimate

∥uε(v)(·, T )− uT∥2L2(Ωε)
≤ δ. (2)

In this way, local actions (the control is placed only on the boundary of some particles)

lead to global consequences (uε(v)(x, T ) “almost” reach the desired value uT (x) in the

whole domain Ωε): something that can be understood as a closed goal to the sentence

”think globally, act locally”.

Note that while there are several results in the literature on ”approximate controllabil-

ity” in domains with periodic particles (or perforations), our formulation differs from all

of them as the controls are applied only on the boundary of certain particles (see, e.g., [2]

and its references). Furthermore, the proof techniques employed in some other studies for

simpler spatial domains either assume that the control is applied to the entire boundary

of the domain (see, e.g., Section 3.1.3 of [12]) or they rely on auxiliary results (the unique

continuation property), which is not available for the aforementioned formulation (see

Remark 2.14 of [10]).

In order to avoid those difficulties, we will use the homogenization process as a tool.

Moreover, to make constructive the proof of the existence of the wanted control, we will

follow an idea of Jacques-Louis Lions which consists in the consideration of an auxiliary

optimal control problem ([13], [10]). In our case, we first consider a time dependent target

function uT ∈ H1(0, T ;H1
0 (Ω))

⋂
C(QT ), and if we denote by uε(v) the solution to the

above parabolic problem, the optimal control problem, we will consider, is completed by

taking the cost functional Jε : L
2(S

(2),T
ε ) → R

Jε(v) =
θ1
2
∥∇(uε(v)− uT )∥2L2(QT

ε ) +
θ2
2
∥(u(v)− uT )(·, T )∥2L2(Ωε)

+ ε−γN

2
∥v∥2

L2(S
(2),T
ε )

. (3)

Here, we assume the penalty term such that N ∈ (0,+∞), and θ1, θ2 ≥ 0. Notice

that when θ1 = 0 and θ2 > 0 the cost functional is well-defined for more general target

functions uT ∈ L2(Ω). The case θ1 > 0 will considered here in order to extend to this

framework some previous results in the literature (see, e.g., [22], [21], [5] and [20]). It is

well known that there exists a unique optimal pair (uε(vε), vε) (see [12]) with the optimal

control vε ∈ L2(S
(2),T
ε ), i.e. satisfying

Jε(vε) = min
v∈L2 (S

(2),T
ε )

Jε(v).

Our strategy will consists in several steps: firstly, we will apply the homogenization

process, proving that the extension ũε to QT , converges, as ε → 0, to a function u0(x, t)
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which is the unique solution of the global state problem
∂tu0 −∆u0 +An

(
b1(x)χ(Ω\ω)×(0,T ) + b2(x)χωT

)
u0 = f + c(x)v0(x, t)χωT , (x, t) ∈ QT ,

u0(x, t) = 0, (x, t) ∈ ΓT ,

u0(x, 0) = 0, x ∈ Ω,

(4)

where

b1(x) =
a(x)

a(x) + Bn

, b2(x) =
a(x)(a(x) + Bn)

(a(x) + Bn)2 + θ1N−1Bn

, (5)

and

c(x) =
AnBn

(a(x) + Bn)2 + θ1N−1Bn

, (6)

with An = (n− 2)Cn−2
0 ωn, Bn = (n− 2)C−1

0 , ωn the surface area of the unit sphere in Rn,

n ≥ 3 and χA the characteristic function of the set A. Here, v0 ∈ L2(ωT ), ωT = ω×(0, T ),

is the optimal control associated to a global cost functional J0 : L2(ωT ) → R such that

lim
ε→0

Jε(vε) = J0(v0), is defined in the following terms:

J0(v) =
θ1
2

∫
QT

|∇(u0 − uT )|2dxdt+
θ2
2

∫
Ω

|(u0 − uT )(x, T )|2dx

+
θ1An

2

T∫
0

∫
Ω\ω

b21(x)u
2
0dxdt+

θ1An

2

T∫
0

∫
ω

b1(x)b2(x)u
2
0dxdt

+
N

2

∫
ωT

c(x)v2dxdt. (7)

Notice that coefficients b2(x) and c(x) depend on θ1 and that no dependence with respect

θ2 arises in the coefficients.

The second step of our strategy is to prove the approximate controllability of the

homogenized parabolic problem with final observation: i.e., given the target global state,

now uT ∈ L2(Ω), and given δ > 0, we will show the existence of a control v ∈ L2(ω×(0, T ))

such that

∥u0(v)(·, T )− uT∥2L2(Ω) ≤ δ. (8)

We will construct such a control by taking N ↘ 0 in the global formulation of the optimal

control problem for the case θ1 = 0 and θ2 = 1.

Finally, as a third step, we will get the approximate controllability on the starting

problem, once we assume ε small enough. In conclusion, we must assume that the number

of individual controls must be large enough (such as the ecologist philosophy proclaims).

This conclusion gives a certain mathematical justification for the popular phrase used by

ecologists. Moreover, it brings to light some limitations that must be assumed on the local

controls to conclude that the result is globally satisfactory. For instance, the presence of

the terms in ε−γ in the local formulation (in the local state boundary conditions and in

the local cost functional) is of capital importance since it is not difficult to show that

without them the global optimal control limit problem is entirely different. The critical
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relation between problems parameters leads to the emergence of some “strange” terms in

the limit state problem along with the new term in the limit cost functional and here has

an important consequence.

Our main technique of proof consists in characterizing the optimal control vε in terms

of pε, the solution to the related adjoint problem. We will show that this relation is given

by the expression vε = −N−1pε, where N is the positive constant appearing in the local

cost functional Jε.

The organization of this paper is as follows: Section 2 is devoted to a more precise

presentation of the local optimal control problem and to obtain some a priori estimates

which will be used later. The detailed statement of the convergence theorem is given in

Section 3 and its proof is organized in several subsections in Section 4. Section 5 is devoted

to prove the convergence of the cost functionals. Finally, the approximate controllability

property is stated and proved in Section 6.

2. Problem statement

Let Ω be a bounded domain in Rn (n ≥ 3) with a smooth boundary ∂Ω. For T > 0, we

use the notation: QT = Ω × (0, T ), ΓT = ∂Ω × (0, T ). We denote by G0 the ball of unit

radius in Rn centered at the origin of coordinates. For a domain B and δ > 0, we define

set δB = {δ−1x ∈ B}. For ε > 0, we consider the domain

Ω̃ε = {x ∈ Ω : ρ(x, ∂Ω) > 2ε},

where ρ(x, y) is the Euclidean distance. We set

Gε =
⋃
j∈Υε

(aεG0 + εj) =
⋃
j∈Υε

Gj
ε,

where Υε = {j ∈ Zn : (aεG0+ εj)
⋂

Ω̃ε ̸= ∅}, |Υε| ∼= dε−n, d = const > 0 and where Zn is

the set of vectors in Rn with the integer coordinates. Define Y j
ε = εY +εj, P j

ε = εj, where

Y = (−1/2, 1/2)n. Note that Gj
ε ⊂ Y j

ε and the center of the ball Gj
ε = aεG0+εj coincides

with the center of the cube Y j
ε . We assume that aε = C0ε

α, C0 = const > 0, α > 1.

We consider a controllable region in the domain Ω given by some domain ω such that

ω ⊂ Ω. We assume the control to be placed only on balls with indexes associated with

ω, i.e. we introduce the set Υ
(2)
ε = {j ∈ Υε : Y j

ε ⊂ ω}, Υ(1)
ε = Υε \ Υ(2)

ε . Based on this

indexing, we define sets related to the particles and their boundaries

G(1)
ε =

⋃
j∈Υ(1)

ε

Gj
ε, G

(2)
ε =

⋃
j∈Υ(2)

ε

Gj
ε,

S(1)
ε = ∂G(1)

ε , S(2)
ε = ∂G(2)

ε .
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Now, we define the set of particles

Ωε = Ω \Gε, Q
T
ε = Ωε × (0, T ), ωT = ω × (0, T ),

with the boundaries

∂Ωε = ∂Ω ∪ Sε, Sε = S(1)
ε ∪ S(2)

ε , ΓT = ∂Ω× (0, T ),

ST
ε = Sε × (0, T ), S(i),T

ε = S(i)
ε × (0, T ), i = 1, 2.

Let v ∈ L2(0, T ;L2(S
(2)
ε )). By uε(v) we denote an element of L2(0, T ;H1(Ωε, ∂Ω)) with

∂tuε(v) ∈ L2(0, T ;H−1(Ωε, ∂Ω)) that is a solution to the boundary value problem

∂tuε(v)−∆uε(v) = f(x, t), (x, t) ∈ QT
ε ,

∂νuε(v) + ε−γa(x)uε(v) = 0, (x, t) ∈ S
(1),T
ε ,

∂νuε(v) + ε−γa(x)uε(v) = ε−γv(x, t), (x, t) ∈ S
(2),T
ε ,

uε(v) = 0, (x, t) ∈ ΓT ,

uε(v)(x, 0) = 0, x ∈ Ωε,

(9)

where f ∈ L2(QT ), a ∈ C∞(Ω), a(x) ≥ a0 = const > 0, ν is the unit outward normal

vector to the related surfaces. Here, by H1(Ωε, ∂Ω), we denote the closure with respect

to the norm H1(Ωε) of the set of infinitely differentiable in Ωε functions vanishing near

the boundary ∂Ω. As said before, we assume a ”critical” relation between the problem

parameters (period of the structure ε, order of the particles size, α, and the order of the

coefficient, γ), precisely, α = γ = n
n−2

.

We say that a function uε(v) ∈ L2(0, T ;H1(Ωε, ∂Ω)) with ∂tuε(v) ∈ L2(0, T ;H−1(Ωε, ∂Ω))

and uε(x, 0) = 0, is a weak solution to the problem (9) if it satisfies the integral identity

T∫
0

⟨∂tuε(v), φ⟩Ωεdt+

∫
QT

ε

∇uε(v)∇φdxdt

+ε−γ

∫
S
(1),T
ε

a(x)uε(v)φdsdt+ ε−γ

∫
S
(2),T
ε

a(x)uε(v)ϕdsdt

=

∫
QT

ε

fφdxdt+ ε−γ

∫
S
(2),T
ε

vφdsdt,

(10)

for an arbitrary function φ ∈ L2(0, T ;H1(Ωε, ∂Ω)). By ⟨·, ·⟩Ωε , we denote the duality

pairing between H1(Ωε, ∂Ω) and H
−1(Ωε, ∂Ω).

We consider, at this step, a time dependent target function uT ∈ H1(0, T ;H1
0 (Ω)) ∩

C(QT ), and if we denote by uε(v) the solution to the above parabolic problem, the optimal

control problem we will consider is completed by giving the general cost functional Jε :
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L2(0, T ;L2(S
(2)
ε )) → R

Jε(v) =
θ1
2
∥∇(uε(v)− uT )∥2L2(QT

ε ) +
θ2
2

∫
Ωε

(uε(v)(x, T )− uT (x, T ))
2dx

+ε−γN

2
∥v∥2

L2(S
(2),T
ε )

.

(11)

Here, we assume the penalty coefficient such that N ∈ (0,+∞) and θ1, θ2 ≥ 0. It is

well known that there exists a unique optimal pair (uε(vε), vε) (see. [12]), such that

Jε(vε) = min
v∈L2(S

(2),T
ε )

Jε(v). (12)

One of the goals of this paper is to find the limit as ε → 0 of the optimal control vε and

of the cost functional Jε(vε).

2.1. Characterization of the optimal control. We define the adjoint problem, asso-

ciated with the state problem (9), in the following terms:

−∂tpε −∆pε = −θ1∆(uε − uT ), (x, t) ∈ QT
ε ,

∂νpε + ε−γa(x)pε = θ1∂ν(uε − uT ), (x, t) ∈ S
(1),T
ε

⋃
S
(2),T
ε ,

pε = 0, (x, t) ∈ ΓT ,

pε(x, T ) = θ2(uε(x, T )− uT (x, T )), x ∈ Ωε.

(13)

We say that a function pε ∈ L2(0, T : H1(Ωε, ∂Ω)) is a weak solution to the problem (13)

if ∂tpε ∈ L2(0, T ;H−1(Ωε, ∂Ω)), pε(x, T ) = θ2(uε(x, T ) − uT (x, T )), and for an arbitrary

ϕ ∈ L2(0, T ;H1(Ωε, ∂Ω)), it satisfies the integral identity

−
T∫

0

⟨∂tpε, ϕ⟩Ωεdt+

∫
QT

ε

∇pε∇ϕdxdt+ ε−γ

∫
S
(1),T
ε

a(x)pεϕdsdt

+ε−γ

∫
S
(2),T
ε

a(x)pεϕdsdt = θ1

∫
QT

ε

∇(uε − uT )∇ϕdxdt. (14)

Given uε and uT as before, it is well-know the existence and uniqueness of a weak solution

pε of (13).

Theorem 1. If the pair of functions (uε, vε) is optimal for the problem (9), (11), (12),

then vε = −N−1pεχS
(2),T
ε

, where pε is the weak solution to the problem (13) and with

χ
S
(2),T
ε

the characteristic function of the set S
(2),T
ε .

Proof. Let v ∈ L2(0, T ;L2(S
(2)
ε )) arbitrary. For λ > 0, we denote vλε = vε + λv. We have

Jε(v
λ
ε )− Jε(vε)

=
θ1
2
(∥∇(uε(v

λ
ε )− uT )∥2L2(QT

ε ) − ∥∇(uε(vε)− uT )∥2L2(QT
ε ))

+
θ2
2
(∥uε(vλε )(x, T )− uT (x, T )∥2L2(Ωε)

− ∥uε(vε)(x, T )− uT (x, T )∥2L2(Ωε)
)
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+ε−γN

2

∫
S
(2),T
ε

((vλε )
2 − v2ε)dsdt

=
θ1
2

∫
QT

ε

∇(uε(v
λ
ε )− uε(vε))∇(uε(v

λ
ε ) + uε(vε)− 2uT )

+
θ2
2

∫
Ωε

(uε(v
λ
ε )− uε(vε))(x, T )(uε(v

λ
ε ) + uε(vε)− 2uT )(x, T )dx

+ε−γN

2

∫
S
(2),T
ε

(2λvεv + λ2v2)dsdt.

From here, we derive

lim
λ→0

Jε(vε + λv)− Jε(vε)

λ
= θ1

∫
QT

ε

∇θε∇(uε(vε)− uT )dxdt

+θ2

∫
Ωε

θε(x, T )(uε(vε)(x, T )− uT (x, T ))dx+ ε−γN

∫
S
(2),T
ε

vεvdsdt, (15)

where θε = (uε(vε + λv)− uε(vε))λ
−1 is the unique solution of the problem

∂tθε −∆θε = 0, (x, t) ∈ QT
ε ,

∂νθε + ε−γa(x)θε = 0, (x, t) ∈ S
(1),T
ε ,

∂νθε + ε−γa(x)θε = ε−γv, (x, t) ∈ S
(2),T
ε ,

θε = 0, (x, t) ∈ ΓT ,

θε(x, 0) = 0, x ∈ Ωε.

Note that θε is independent of λ. We say that a function θε ∈ L2(0, T ;H1(Ωε, ∂Ω))

with ∂tθε ∈ L2(0, T ;H−1(Ωε, ∂Ω)) and θε(x, 0) = 0 is a weak solution of this problem, if

the following integral identity holds

T∫
0

⟨∂tθε, ψ⟩Ωεdt+

∫
QT

ε

∇θε∇ψdxdt+ ε−γ

∫
ST
ε

a(x)θεψdsdt = ε−γ

∫
S
(2),T
ε

vψdsdt,

where ψ ∈ L2(0, T ;H1(Ωε, ∂Ω)) is arbitrary. Taking as a test-function θε in (14), and pε

as a test-function in the integral identity for θε, we subtract one from the other and get

θ2

∫
Ωε

θε(x, T )(uε(x, T )− uT (x, T ))dx+ θ1

∫
QT

ε

∇θε∇(uε − uT )dx = ε−γ

∫
S
(2),T
ε

vpεdsdt.

Substituting this expression into (15), we conclude

J ′
ε(vε) · v = ε−γ

∫
S
(2),T
ε

vpεdsdt+ ε−γN

∫
S
(2),T
ε

vvεdsdt.

As vε is the optimal control, then we must have J ′
ε(vε) ·v = 0 for all v ∈ L2(0, T ;L2(S

(2)
ε )).

This implies that vε = −N−1pε for a.e. (x, t) ∈ S
(2),T
ε .
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Thus, the optimal control is characterized by the system of equations

∂tuε −∆uε = f, (x, t) ∈ QT
ε ,

−∂tpε −∆pε = −θ1∆(uε − uT ), (x, t) ∈ QT
ε ,

∂νuε + ε−γa(x)uε = 0, (x, t) ∈ S
(1),T
ε ,

∂νuε + ε−γa(x)uε = −N−1ε−γpε, (x, t) ∈ S
(2),T
ε ,

∂νpε + ε−γa(x)pε = θ1∂ν(uε − uT ), (x, t) ∈ S
(1),T
ε

⋃
S
(2),T
ε ,

uε = pε = 0, (x, t) ∈ ΓT ,

uε(x, 0) = 0, x ∈ Ωε,

pε(x, T ) = θ2(uε(x, T )− uT (x, T )), x ∈ Ωε.

(16)

Remark 1. We also have the reverse to Theorem’s 1 statement. If the pair (uε, pε) is the

solution to (16), then vε = −N−1pεχS
(2),T
ε

is the optimal control for the problem (12).

2.2. Uniform in ε estimates for uε and vε. From the integral identities for the problem

(16), for functions pε and uε, we have

T∫
0

∂t⟨uε, pε⟩Ωεdt =

∫
QT

ε

fpεdxdt−N−1ε−γ

∫
S
(2),T
ε

p2εdsdt− θ1

∫
QT

ε

∇(uε − uT )∇uεdxdt. (17)

From here, we deduce

θ1

∫
QT

ε

|∇(uε − uT )|2dxdt+ ε−γN−1

∫
S
(2),T
ε

p2εdsdt+ θ2∥uε(x, T )− uT (x, T )∥2L2(Ωε)

=

∫
QT

ε

fpεdxdt− θ2

∫
Ωε

uT (x, T )(uε(x, T )− uT (x, T ))dx− θ1

∫
QT

ε

∇uT∇(uε − uT )dxdt. (18)

Hence, we conclude

θ1∥∇(uε − uT )∥2L2(QT
ε ) + θ2∥uε(x, T )− uT (x, T )∥2L2(Ωε)

+N−1ε−γ

∫
S
(2),T
ε

p2εdsdt

≤
∫
QT

ε

|f ||pε|dxdt+ C∥∇uT∥2L2(QT ) + C∥uT (x, T )∥2L2(Ω), (19)

where constant C is independent of ε.

Taking in (14) as a test function pε, we get

−θ
2
2

2
∥uε(x, T )− uT (x, T )∥2L2(Ωε)

+ ∥∇pε∥2L2(QT
ε ) + ε−γ

∫
ST
ε

a(x)p2εdsdt

≤ θ1

∫
QT

ε

∇(uε − uT )∇pεdxdt.

From here, we have

∥∇pε∥2L2(QT
ε ) + ε−γ∥pε∥2L2(ST

ε )

≤ C(θ21∥∇(uε − uT )∥2L2(QT
ε ) + θ22∥uε(x, T )− uT (x, T )∥2L2(Ωε)

). (20)
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From (19), (20) we derive

θ1∥∇(uε − uT )∥2L2(QT
ε ) + θ2∥uε(x, T )− uT (x, T )∥2L2(Ωε)

+N−1ε−γ∥pε∥2L2(S
(2),T
ε )

≤ C(∥f∥2L2(QT ) + ∥∇uT∥2L2(QT ) + ∥uT (x, T )∥2L2(Ω)). (21)

Estimates (20), (21) imply

∥∇pε∥2L2(QT
ε ) ≤ C(∥f∥2L2(QT ) + ∥∇uT∥2L2(QT ) + ∥uT (x, T )∥2L2(Ω)). (22)

Next, we will get some estimates for the time derivatives of uε and pε

∥∂tuε∥L2(0,T ;H−1(Ωε,∂Ω)) ≤ C, ∥∂tpε∥L2(0,T ;H−1(Ωε,∂Ω)) ≤ C.

Consider the Galerkin’s approximations of uε and pε

umε =
m∑
k=1

aεk,m(t)w
k
ε (x), pmε =

m∑
k=1

bεk,m(t)w
k
ε (x),

where {wk
ε (x)} is an orthogonal basis in H1(Ωε, ∂Ω) and an orthonormal basis in L2(Ωε).

Let v ∈ L2(0, T ;H1(Ωε, ∂Ω)) arbitrary but such that ∥v∥H1(Ωε,∂Ω) ≤ 1 for a.e. t ∈ (0, T ).

Substituting v into the equation for umε , we have for a.e. t ∈ (0, T )

⟨∂tumε , v⟩Ωε = ⟨∂tumε , vε1,m⟩Ωε = −
∫
Ωε

∇umε ∇vε1,mdx− ε−γ

∫
Sε

a(x)umε v
ε
1,mds

+

∫
Ωε

fvε1,mdx− ε−γN−1

∫
S
(2)
ε

pεv
ε
1,mds, (23)

and substituting it into the equation for pmε , we get

⟨∂tpmε , v⟩Ωε = ⟨∂tpmε , vε1,m⟩Ωε =

∫
Ωε

∇pmε ∇vε1,mdx

+ε−γ

∫
Sε

a(x)pmε v
ε
1,mds− θ1

∫
Ωε

∇(umε − uT )∇vε1,mdx, (24)

where v =
m∑
k=1

gεk,m(t)w
k
ε (x) + vε2,m ≡ vε1,m + vε2,m, (vε2,m, w

k
ε )L2(Ωε) = 0, k = 1, . . . ,m.

As the functions {wk
ε} form an orthogonal basis in H1(Ωε, ∂Ω), we have the estimate

∥vε1,m∥H1(Ωε,∂Ω) ≤ ∥v∥H1(Ωε,∂Ω) ≤ 1.

Note that for umε and pmε , we have the same estimates as in (21), (22) for uε and pε.

Using these estimations, we derive

|⟨∂tumε , v⟩Ωε| ≤ ∥∇umε ∥L2(Ωε) + Cε−γ∥umε ∥L2(Sε)∥vε1,m∥L2(Sε)

+C∥f∥L2(Ωε) + ε−γN−1∥pε∥L2(S
(2)
ε )

∥vε1,m∥L2(S
(2)
ε )
, (25)

and

|⟨∂tpmε , v⟩Ωε| ≤ ∥∇pmε ∥L2(Ωε) + Cε−γ∥pmε ∥L2(Sε)∥vε1,m∥L2(Sε) + θ1∥∇(umε − uT )∥L2(Ωε). (26)
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From Lemma 2 in [18] and [19] for any function ϕ ∈ H1(Ωε, ∂Ω) and for γ = n
n−2

, we have

the estimate

ε−γ∥ϕ∥2L2(Sε)
≤ K∥ϕ∥2H1(Ωε,∂Ω).

Applying this estimate in (25), (26), we get

∥∂tumε ∥L2(0,T ;H−1(Ωε,∂Ω)) ≤ C, ∥∂tpmε ∥L2(0,T ;H−1(Ωε,∂Ω)) ≤ C, (27)

for a constant C which does not depend on m and ε.

From (27), we have

∥∂tuε∥L2(0,T ;H−1(Ωε,∂Ω)) ≤ C, ∥∂tpε∥L2(0,T ;H−1(Ωε,∂Ω)) ≤ C. (28)

Additionally, we conclude

max
[0,T ]

∥uε(x, t)∥L2(Ωε) ≤ C, max
[0,T ]

∥pε(x, t)∥L2(Ωε) ≤ C.

Then, if we denote by ũε, p̃ε the extensions of the functions uε, pε to QT such that

ũε ∈ L2(0, T ;H1
0 (Ω)) with ∂tũε ∈ L2(0, T ;H−1(Ω)) and p̃ε ∈ L2(0, T ;H1

0 (Ω)) with ∂tp̃ε ∈
L2(0, T ;H−1(Ω)) (see [16] for the construction of such extension operator), we get the

following estimates

∥ũε∥L2(0,T ;H1
0 (Ω)) ≤ K∥uε∥L2(0,T ;H1(Ωε,∂Ω)), ∥p̃ε∥L2(0,T ;H1

0 (Ω)) ≤ K∥pε∥L2(0,T ;H1(Ωε,∂Ω)),

∥∇ũε∥L2(0,T ;L2(Ω)) ≤ K∥∇uε∥L2(0,T ;L2(Ωε)), ∥∇p̃ε∥L2(0,T ;L2(Ω)) ≤ K∥∇pε∥L2(0,T ;L2(Ωε)),

∥∂tũε∥L2(0,T ;H−1(Ω)) ≤ K
(
∥uε∥L2(0,T ;H1(Ωε,∂Ω)) + ∥∂tuε∥L2(0,T ;H−1(Ωε,∂Ω))

)
.

∥∂tp̃ε∥L2(0,T ;H−1(Ω)) ≤ K
(
∥pε∥L2(0,T ;H1(Ωε,∂Ω)) + ∥∂tpε∥L2(0,T ;H−1(Ωε,∂Ω))

)
.

where positive constant K doesn’t depend on ε. Using these estimates and inequalities

(21), (22), (28), we get that there is a subsequence (still denoted by ε) such that as ε→ 0

ũε ⇀ u0 weakly in L2(0, T ;H1
0 (Ω)),

p̃ε ⇀ p0 weakly in L2(0, T ;H1
0 (Ω)),

∂tũε ⇀ ∂tu0, weakly in L2(0, T ;H−1(Ω)),

∂tp̃ε ⇀ ∂tp0, weakly in L2(0, T ;H−1(Ω)).

(29)

3. Statement of the main result

The following homogenization theorem holds.

Theorem 2. Let n ≥ 3, α = γ = n
n−2

, f ∈ L2(QT ) and let (uε, pε) be the solution to

the system (16). Then, their extensions (ũε, p̃ε) to Q
T converge, as ε → 0, to the pair of
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functions (u0, p0), given in (29), which is the unique solution to the system

∂tu0 −∆u0 +An

(
b1(x)χ(Ω\ω)×(0,T ) + b2(x)χωT

)
u0

= f −N−1c(x)χωT p0, (x, t) ∈ QT ,

−∂tp0 −∆p0 +An

(
b1(x)χ(Ω\ω)×(0,T ) + b2(x)χωT

)
p0

= −θ1∆(u0 − uT ) +Anθ1
(
b21(x)χ(Ω\ω)×(0,T ) + b1(x)b2(x)χωT

)
u0, (x, t) ∈ QT ,

u0(x, t) = p0(x, t) = 0, (x, t) ∈ ΓT ,

u0(x, 0) = 0, p0(x, T ) = θ2(u0(x, T )− uT (x, T )), x ∈ Ω,

(30)

where

b1(x) =
a(x)

a(x) + Bn

, b2(x) =
a(x)(a(x) + Bn)

(a(x) + Bn)2 + θ1N−1Bn

,

c(x) =
AnBn

(a(x) + Bn)2 + θ1N−1Bn

,

and An = (n− 2)Cn−2
0 ωn, Bn = n−2

C0
, ωn is the surface area of the unit sphere in Rn and

with χA the characteristic function of the set A.

As we will show, the pair of functions (u0(v), v)) characterizes the optimal control of the

homogenized state problem associated to a suitable cost functional. The state problem,

which is related to the system (30), is given by
∂tu0(v)−∆u0(v) +An

(
b1(x)χ(Ω\ω)×(0,T ) + b2(x)χωT

)
u0(v) =

= f + c(x)vχωT , (x, t) ∈ QT ,

u0(v)(x, t) = 0, (x, t) ∈ ΓT ,

u0(v)(x, 0) = 0, x ∈ Ω.

(31)

Now, we introduce the limit cost functional

J0(v) =
θ1
2

∫
QT

|∇(u0(v)− uT )|2dxdt+
θ2
2

∫
Ω

(u0(v)(x, T )− uT (x, T ))
2dx

+
Anθ1
2

T∫
0

∫
Ω\ω

b21(x)u
2
0(v)dxdt+

Anθ1
2

∫
ωT

b1(x)b2(x)u
2
0(v)dxdt+

N

2

∫
ωT

c(x)v2dxdt. (32)

and consider the optimal control problem

J0(v0) = min
v∈L2(0,T ;L2(ω))

J0(v). (33)

Theorem 3. Under the conditions of Theorem 2, we have

lim
ε→0

Jε(vε) = J0(v0), (34)

where vε is the optimal control of the problem (9), (11), (12), and v0 is the optimal control

of the problem (31)-(33).

Remark 2. The optimal control v0 is characterized by the system (30) and the relation

v0 = −N−1χωT p0.
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4. Proof of the homogenization theorem

4.1. Characterization of the limit of uε. We start by examining the limit of the

integral identity for the function uε. The most difficult term is the integral over Sε

multiplied by the large growth coefficient ε−γ.

For j ∈ Zn, we introduce the boundary-value problem
∆wj

ε = 0, x ∈ T j
ε/4 \G

j
ε,

wj
ε = 1, x ∈ ∂Gj

ε,

wj
ε = 0, x ∈ ∂T j

ε/4,

(35)

where T j
ε/4 denotes the ball centered in P j

ε and radius ε/4.

Consider the following function

W (2)
ε =


wj

ε(x), x ∈ T j
ε/4 \G

j
ε, j ∈ Υ

(2)
ε ,

1, x ∈ Gj
ε, j ∈ Υ

(2)
ε ,

0, x ∈ Ω \
⋃

j∈Υ(2)
ε

T j
ε/4.

(36)

It is easy to see that W
(2)
ε ∈ H1

0 (Ω) and W
(2)
ε ⇀ 0 weakly in H1

0 (Ω) as ε → 0. Due to

the embedding theorem, for some subsequence for which we preserve the notation of the

original, we have W
(2)
ε → 0 strongly in L2(Ω) as ε→ 0.

In the integral identity (10), we take as a test function η(t)W
(2)
ε (x) ϕ(x)

a(x)+Bn
, where η ∈

C1[0, T ], ϕ ∈ C∞
0 (Ω). We get

T∫
0

⟨∂tuε,
η(t)W

(2)
ε (x)ϕ(x)

a(x) + Bn

⟩Ωεdt+
∑

j∈Υ(2)
ε

T∫
0

∫
T j
ε/4

\Gj
ε

∇uε∇
(η(t)W (2)

ε (x)ϕ(x)

a(x) + Bn

)
dxdt

+ε−γ

∫
S
(2),T
ε

a(x)
η(t)ϕ(x)uε
a(x) + Bn

dsdt =

∫
QT

ε

f
η(t)W

(2)
ε (x)ϕ(x)

a(x) + Bn

dxdt

−ε−γN−1

∫
S
(2),T
ε

pε
η(t)ϕ(x)

a(x) + Bn

dsdt. (37)

Using the properties of the function W
(2)
ε , we conclude

lim
ε→0

∫
QT

ε

f
η(t)W

(2)
ε (x)ϕ(x)

a(x) + Bn

dxdt = 0. (38)

Next, we compute the first integral in (37)

T∫
0

⟨∂tuε,
η(t)W

(2)
ε (x)ϕ(x)

a(x) + Bn

⟩Ωεdt =

= −
∫
QT

ε

uε∂tη(t)
W

(2)
ε (x)ϕ(x)

a(x) + Bn

dxdt+

∫
Ωε

uε(x, T )η(T )
W

(2)
ε (x)ϕ(x)

a(x) + Bn

dx.
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Using the strong convergence W
(2)
ε → 0 in L2(Ω), we conclude

lim
ε→0

T∫
0

⟨∂tuε,
η(t)W

(2)
ε ϕ(x)

a(x) + Bn

⟩Ωεdt = 0. (39)

Applying that W
(2)
ε ⇀ 0 in H1

0 (Ω) as ε→ 0, we get

∑
j∈Υ(2)

ε

T∫
0

∫
T j
ε/4

\Gj
ε

∇uε∇
(η(t)W (2)

ε ϕ(x)

a(x) + Bn

)
dxdt

=
∑

j∈Υ(2)
ε

T∫
0

∫
T j
ε/4

\Gj
ε

∇W (2)
ε ∇

(
uε

η(t)ϕ(x)

a(x) + Bn

)
dxdt+ αε,

where αε → 0 as ε→ 0. Using the definition of W
(2)
ε , we have

T∫
0

∫
Ωε

∇W (2)
ε ∇

(uεη(t)ϕ(x)
a(x) + Bn

)
dxdt

=
∑

j∈Υ(2)
ε

T∫
0

∫
∂T j

ε/4

∂νw
j
ε

uεη(t)ϕ(x)

a(x) + Bn

dsdt+
∑

j∈Υ(2)
ε

T∫
0

∫
∂Gj

ε

∂νw
j
ε

uεη(t)ϕ(x)

a(x) + Bn

dsdt

= −εCn−2
0 (n− 2)4n−1

∑
j∈Υ(2)

ε

T∫
0

∫
∂T j

ε/4

uεη(t)ϕ(x)

a(x) + Bn

dsdt

+Bnε
−γ

∑
j∈Υ(2)

ε

T∫
0

∫
∂Gj

ε

uεη(t)ϕ(x)

a(x) + Bn

dsdt+ α1,ε,

where α1,ε → 0 as ε→ 0.

Applying Lemma 5 from [24], we have

lim
ε→0

εCn−2
0 (n− 2)4n−1

∑
j∈Υ(2)

ε

T∫
0

∫
∂T j

ε/4

uεη(t)ϕ(x)

a(x) + Bn

dsdt = An

T∫
0

∫
ω

u0η(t)ϕ(x)

a(x) + Bn

dxdt. (40)

Then, from (37)-(40), we have

lim
ε→0

ε−γ

T∫
0

∫
S
(2)
ε

uεη(t)ϕ(x)dsdt

=

T∫
0

∫
ω

Anu0η(t)ϕ(x)

a(x) + Bn

dxdt−N−1 lim
ε→0

ε−γ

T∫
0

∫
S
(2)
ε

pεη(t)ϕ(x)

a(x) + Bn

dsdt. (41)

Now, the problem is with the last term since we do not know yet its limit. To find this

limit, we will examine the integral identity for the function pε.
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4.2. Characterization of u0 and p0. We take in the integral identity for the function

pε as a test function W
(2)
ε (x) (a(x)+Bn)η(t)ϕ(x)

(a(x)+Bn)2+θ1N−1Bn
. We get

−
T∫

0

⟨∂tpε,
W

(2)
ε (x)(a(x) + Bn)η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

⟩Ωεdt

+

T∫
0

∫
Ωε

∇pε∇
(W (2)

ε (x)(a(x) + Bn)η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

)
dxdt

+ε−γ

T∫
0

∫
S
(2)
ε

a(x)
(a(x) + Bn)pεη(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dsdt

= θ1

T∫
0

∫
Ωε

∇(uε − uT )∇
(W (2)

ε (x)(a(x) + Bn)η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

)
dxdt. (42)

By the same reasoning as above, we conclude

lim
ε→0

T∫
0

⟨∂tpε,
W

(2)
ε (x)(a(x) + Bn)η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

⟩Ωεdt = 0, (43)

and for the second integral in the left-hand side, we have

lim
ε→0

T∫
0

∫
Ωε

∇pε∇
(W (2)

ε (x)(a(x) + Bn)η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

)
dxdt

= −An

T∫
0

∫
ωT

(a(x) + Bn)p0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt

+ lim
ε→0

ε−γBn

T∫
0

∫
S
(2)
ε

(a(x) + Bn)pεη(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dsdt, (44)

and for the integral in the right-hand side, we get

lim
ε→0

θ1

∫
QT

ε

∇(uε − uT )∇
(W (2)

ε (x)(a(x) + Bn)η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

)
dxdt

= −Anθ1

∫
ωT

(a(x) + Bn)u0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt

+ lim
ε→0

ε−γθ1Bn

∫
S
(2),T
ε

(a(x) + Bn)uεη(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dsdt. (45)

Using the expressions (41)-(45), we get

−An

∫
ωT

(a(x) + Bn)p0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt+ ε−γ

∫
S
(2),T
ε

(a(x) + Bn)
2pεη(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dsdt
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= −Anθ1

∫
ωT

(a(x) + Bn)u0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt+ θ1BnAn

∫
ωT

u0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt

−ε−γN−1θ1Bn

∫
S
(2),T
ε

pεη(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dsdt+ αε, αε → 0, ε→ 0.

From here, we deduce

ε−γ

∫
S
(2),T
ε

pεη(t)ϕ(x)dsdt = An

∫
ωT

(a(x) + Bn)p0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt

−Anθ1

∫
ωT

(a(x) + Bn)u0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt

+AnBnθ1

∫
ωT

u0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt+ αε

= An

∫
ωT

(a(x) + Bn)p0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt

−Anθ1

∫
ωT

a(x)u0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt+ αε. (46)

where αε → 0, as ε→ 0.

From (41) and (46), we have

lim
ε→0

ε−γ

∫
S
(2),T
ε

uεη(t)ϕ(x)dsdt = An

∫
ωT

a(x) + Bn + θ1N
−1

(a(x) + Bn)2 + θ1N−1Bn

u0η(t)ϕ(x)dxdt

−AnN
−1

∫
ωT

p0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt, (47)

and consequently

lim
ε→0

∫
S
(2),T
ε

a(x)uεη(t)ϕ(x)dsdt = An

∫
ωT

a(x)(a(x) + Bn + θ1N
−1)

(a(x) + Bn)2 + θ1N−1Bn

u0η(t)ϕ(x)dxdt

−AnN
−1

∫
ωT

a(x)p0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt. (48)

Now, we introduce the function

W (1)
ε =


wj

ε(x), x ∈ T j
ε/4 \G

j
ε, j ∈ Υ

(1)
ε ,

1, x ∈ Gj
ε, j ∈ Υ

(1)
ε ,

0, x ∈ Ω \
⋃

j∈Υ(1)
ε

T j
ε/4.

(49)
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We take in the integral identity for uε as a test function W
(1)
ε (x)η(t)ϕ(x)a(x)

a(x)+Bn
and get

T∫
0

⟨∂tuε,W (1)
ε (x)

η(t)ϕ(x)a(x)

a(x) + Bn

⟩Ωεdt+

∫
QT

ε

∇uε∇
(
W (1)

ε

η(t)ϕ(x)a(x)

a(x) + Bn

)
dxdt

+ε−γ

∫
S
(1),T
ε

a(x)uε
η(t)ϕ(x)a(x)

a(x) + Bn

dsdt =

∫
QT

ε

fW (1)
ε

η(t)ϕ(x)a(x)

a(x) + Bn

dxdt.

As above, taking into account that W
(1)
ε ⇀ 0 weakly in H1

0 (Ω) and W
(1)
ε → 0 strongly

in L2(Ω) as ε→ 0, we conclude

lim
ε→0

T∫
0

⟨∂tuε,W (1)
ε

η(t)ϕ(x)a(x)

a(x) + Bn

⟩Ωεdt = 0, lim
ε→0

∫
QT

ε

fW (1)
ε

η(t)ϕ(x)a(x)

a(x) + Bn

dxdt = 0,

lim
ε→0

∫
QT

ε

∇uε∇
(
W (1)

ε

η(t)ϕ(x)a(x)

a(x) + Bn

)
dxdt = −An

T∫
0

∫
Ω\ω

u0η(t)ϕ(x)a(x)

a(x) + Bn

dxdt

+ lim
ε→0

Bnε
−γ

∫
S
(1),T
ε

uεη(t)ϕ(x)a(x)dsdt.

Thus, we have

lim
ε→0

ε−γ

∫
S
(1),T
ε

a(x)uεη(t)ϕ(x)dsdt = An

T∫
0

∫
Ω\ω

a(x)u0η(t)ϕ(x)

a(x) + Bn

dxdt. (50)

Combining (48), (50), we have the following integral identity for u0

T∫
0

⟨∂tu0, η(t)ϕ(x)⟩Ωdt+
∫
QT

∇u0∇(η(t)ϕ(x))dxdt

+An

∫
ωT

a(x)(a(x) + Bn)u0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt

+An

T∫
0

∫
Ω\ω

a(x)u0η(t)ϕ(x)

a(x) + Bn

dxdt =

∫
QT

fη(t)ϕ(x)dxdt

−AnBnN
−1

∫
ωT

p0η(t)ϕ(x)

(a(x) + Bn)2 + θ1N−1Bn

dxdt.
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By density arguments, this identity is valid for an arbitrary function ψ ∈ L2(0, T ;H1
0 (Ω)).

It means that u0 is the unique weak solution to the problem

∂tu0 −∆u0 +An
a(x)(a(x)+Bn)

(a(x)+Bn)2+θ1N−1Bn
χωTu0

+An
a(x)

a(x)+Bn
χ(Ω\ω)×(0,T )u0

= f −AnBnN
−1 p0

(a(x)+Bn)2+θ1N−1Bn
χωT , (x, t) ∈ QT ,

u0(x, t) = 0, (x, t) ∈ ΓT ,

u0(x, 0) = 0, x ∈ Ω.

(51)

Taking W
(1)
ε

η(t)ϕ(x)
a(x)+Bn

as a test function in the integral identity for pε, we obtain

T∫
0

⟨∂tpε,W (1)
ε

η(t)ϕ(x)

a(x) + Bn

⟩Ωεdt+

∫
QT

ε

∇pε∇
(
W (1)

ε

η(t)ϕ(x)

a(x) + Bn

)
dxdt

+ε−γ

∫
S
(1),T
ε

a(x)pε
η(t)ϕ(x)

a(x) + Bn

dsdt = θ1

∫
QT

ε

∇(uε − uT )∇
(
W (1)

ε

η(t)ϕ(x)

a(x) + Bn

)
dxdt. (52)

Using the properties of the function W
(1)
ε , we conclude

lim
ε→0

T∫
0

⟨∂tpε,W (1)
ε

η(t)ϕ(x)

a(x) + Bn

⟩Ωεdt = 0.

As above, using the definition of W
(1)
ε , we transform the integrals over QT

ε in the left

and right parts of the expression (52) and derive

ε−γ

∫
S
(1),T
ε

pεη(t)ϕ(x)dsdt−An

T∫
0

∫
Ω\ω

p0
η(t)ϕ(x)

a(x) + Bn

dxdt

= −Anθ1

T∫
0

∫
Ω\ω

u0
η(t)ϕ(x)

a(x) + Bn

dxdt+ Bnθ1ε
−γ

∫
S
(1),T
ε

uε
η(t)ϕ(x)

a(x) + Bn

dsdt+ αε, (53)

where αε → 0 as ε→ 0.

Due to (50), we derive from (53)

lim
ε→0

ε−γ

∫
S
(1),T
ε

pεη(t)ϕ(x)dsdt

= An

T∫
0

∫
Ω\ω

p0η(t)ϕ(x)

a(x) + Bn

dxdt−Anθ1

T∫
0

∫
Ω\ω

a(x)u0η(t)ϕ(x)

(a(x) + Bn)2
dxdt.

Now, we are able to pass to the limit as ε→ 0 in the integral identity to pε and get the

limit relation for p0

−
T∫

0

⟨∂tp0, η(t)ϕ(x)⟩Ωdt+
∫
QT

∇p0∇(η(t)ϕ(x))dxdt+An

T∫
0

∫
Ω\ω

a(x)p0
a(x) + Bn

η(t)ϕ(x)dxdt



20

+An

∫
ωT

a(x)(a(x) + Bn)p0
(a(x) + Bn)2 + θ1N−1Bn

η(t)ϕ(x)dxdt = θ1

∫
QT

∇(u0 − uT )∇(η(t)ϕ(x))dxdt

+Anθ1

T∫
0

∫
Ω\ω

a2(x)u0η(t)ϕ(x)

(a(x) + Bn)2
dsdt+Anθ1

∫
ωT

a2(x)η(t)ϕ(x)u0
(a(x) + Bn)2 + θ1N−1Bn

dxdt.

From this identity, we have that p0 ∈ L2(0, T ;H1
0 (Ω)), ∂tp0 ∈ L2(0, T ;H−1(Ω)), p0(x, T ) =

θ2(u0(x, T )− uT (x, T )) is the unique weak solution of the problem

−∂tp0 −∆p0 +An
a(x)

a(x)+Bn
p0χ(Ω\ω)×(0,T )

+An
a(x)(a(x)+Bn)

(a(x)+Bn)2+θ1N−1Bn
p0 = −θ1∆(u0 − uT )

+Anθ1
a2(x)

(a(x)+Bn)2
u0χ(Ω\ω)×(0,T ) +Anθ1

a2(x)
(a(x)+Bn)2+θ1N−1Bn

u0χωT , (x, T ) ∈ QT ,

p0(x, t) = 0, (x, t) ∈ ΓT ,

p0(x, T ) = θ2(u0(x, T )− uT (x, T )), x ∈ Ω.

(54)

This concludes the proof of Theorem 2.

5. Characterization of the cost functional limit

Now, we will show the validity of convergence (34) and prove Theorem 3. For the

function vε = −N−1pε, we have

Jε(−N−1pε) =
θ1
2

∫
QT

ε

|∇(uε−uT )|2dxdt+
θ2
2

∫
Ωε

(uε(x, T )−uT (x, T ))2dx+
ε−γ

2N

∫
S
(2),T
ε

p2εdsdt.

Using uε as a test function in the integral identity for pε, and taking pε as a test function

in the integral identity for uε, we transform this expression into (see the derivation of (18))

Jε(−N−1pε) =
1

2

T∫
0

(
⟨∂tpε, uε⟩Ωε + ⟨∂tuε, pε⟩Ωε

)
dt+

1

2

∫
QT

ε

fpεdxdt

−θ1
2

∫
QT

ε

∇(uε − uT )∇uTdxdt−
θ2
2

∫
Ωε

(uε(x, T )− uT (x, T ))uT (x, T )dx

= −θ2
2

∫
Ωε

(uε(x, T )− uT (x, T ))uT (x, T )dxdt+
1

2

∫
QT

ε

fpεdxdt−
θ1
2

∫
QT

ε

∇(uε − uT )∇uTdxdt.

Thus, we have

lim
ε→0

Jε(−N−1pε) = −θ2
2

∫
Ω

(u0(x, T )− uT (x, T ))uT (x, T )dx+
1

2

∫
QT

fp0dxdt (55)

−θ1
2

∫
QT

∇(u0 − uT )∇uTdxdt = −θ2
2

∫
Ω

(u0(x, T )− uT (x, T ))uT (x, T )dx

+
1

2

∫
QT

fp0dxdt+
θ1
2

∫
QT

|∇(u0 − uT )|2dxdt−
θ1
2

∫
QT

∇u0∇(u0 − uT )dxdt. (56)
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From the integral identities for the functions u0 and p0, we have

∫
QT

fp0dxdt =

T∫
0

(
⟨∂tu0, p0⟩Ω + ⟨∂tp0, u0⟩Ω

)
dt

+AnBnN
−1

∫
ωT

p20
(a(x) + Bn)2 + θ1N−1Bn

dxdt

+θ1

∫
QT

∇(u0 − uT )∇u0dxdt+Anθ1

T∫
0

∫
Ω\ω

a2(x)

(a(x) + Bn)2
u20dxdt

+Anθ1

∫
ωT

a2(x)

(a(x) + Bn)2 + θ1N−1Bn

u20dxdt,

Substituting this expression into (56), we obtain

lim
ε→0

Jε(−N−1pε) =
θ1
2

∫
QT

|∇(u0 − uT )|2dxdt+
θ2
2

∫
Ω

(u0(x, T )− uT (x, T ))
2dx

+
Anθ1
2

T∫
0

∫
Ω\ω

a2(x)

(a(x) + Bn)2
u20dxdt+

Anθ1
2

∫
ωT

a2(x)

(a(x) + Bn)2 + θ1N−1Bn

u20dxdt

+
AnBnN

−1

2

∫
ωT

p20
(a(x) + Bn)2 + θ1N−1Bn

dxdt.

Hence, we have

lim
ε→0

Jε(−N−1pε) =
θ1
2

∫
QT

|∇(u0 − uT )|2dxdt+
θ2
2

∫
Ω

(u0(x, T )− uT (x, T ))
2dx

+
Anθ1
2

T∫
0

∫
Ω\ω

b21(x)u
2
0dxdt+

Anθ1
2

∫
ωT

b1(x)b2(x)u
2
0dxdt

+
1

2N

∫
ωT

c(x)p20dxdt ≡ J0(−N−1p0χωT ).

This concludes the proof.

6. On the approximate controllability of limit problem and uniform

convergence of the controls vε. Proof of the main result

As mentioned in the Introduction, we will conclude the approximate controllability of

the problem (1) by showing that the limit problem (4) satisfies such a property and by

proving that the sequence of optimal controls vε is uniformly bounded (with respect to

N), when N ↘ 0.
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Theorem 4. Let uT ∈ L2(Ω) and let u0(v) be the unique solution of the limit problem

(4) for a given control v0 ∈ L2(ω × (0, T )). Then, given δ > 0, there exists a control

v0 ∈ L2(ω × (0, T )) such that

∥u0(v)(·, T )− uT∥2L2(Ω) ≤ δ. (57)

Moreover, such a control can be obtained as the limit of the optimal controls v0,N , associ-

ated to the cost functional given by (32) with θ1 = 0 and θ2 = 1, i.e.,

J0,N(v) =
1

2

∫
Ω

|u(v)(x, T )− uT (x)|2dx

+
N

2

∫
ω×(0,T )

c(x)v2dxdt,

as N ↘ 0.

Proof. First of all we point out that, without any loss of generality, we can assume

that f(t, x) ≡ 0. Indeed, since the limit problem (4) is linear we can make the change of

variable y0 = u0 − Z, with Z satisfying
∂Z
∂t

−∆Z+An

(
b1(x)χ(Ω\ω)×(0,T ) + b2(x)χωT

)
Z = f, (x, t) ∈ Ω× (0, T ),

Z = 0, (x, t) ∈ ∂Ω× (0, T ),

Z(x, 0) = 0, x ∈ Ω,

(58)

and then it suffices to substitute the target function uT by ũT = uT − Z(·, T ). On the

other hand, we can assume ũT ̸= 0 a.e. on Ω (since otherwise the conclusion is trivially

satisfied by the control v0 ≡ 0). Thus, for a given penalty parameter N > 0 we consider

the cost functional J0,N(v) where u(v) is the solution of (4) corresponding to f(t, x) ≡ 0.

Let v0,N the corresponding optimal control (see, e.g., [12]). Notice that since J0,N(v) is

weakly continuous, strictly convex and coercive in L2(ω × (0, T )) then v0,N exists and it

is unique. Arguing as in the proof of Theorem 1 we get that the optimality condition can

be written in the following terms:
0 = J ′

0,N(v0,N)v = N

∫
ω×(0,T )

c(x)v0,Nvdxdt

+

∫
Ω

(u(v0,N)(x, T )− uT (x))u(v(x, T )dx,
(59)

for any v ∈ L2(ω × (0, T )). Since v0,N minimizes J0,N on L2(ω × (0, T )) we get that, for

any N > 0

J0,N(v0,N) ≤ J0,N(0),

and, since the solution of u(v(x, T )) (4) when v ≡ 0 is u(v(x, T )) ≡ 0, we get that

J0,N(0) =
1

2

∫
Ω

|uT (x)|2dx.

We recall (see (5)) that, since θ1 = 0,
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b1(x) = b2(x) =
a(x)

a(x) + Bn

, (60)

and

c(x) =
AnBn

(a(x) + Bn)2
, (61)

Then,

∥b2(x)∥L∞(ω) ≤ C,

for some C > 0 and we have also that

NAn

2Bn

∫
ω×(0,T )

v2dxdt ≤ N

2

∫
ω×(0,T )

c(x)v2dxdt.

Then, we get that, if N ∈ (0, 1], {u(v0,N)(., T )− uT (.)}N∈(0,1] is a bounded sequence in

L2(Ω) and {√
Nv0,N)

}
N∈(0,1]

is a bounded sequence in L2(ωT ). (62)

Then, there exists a subsequence, ξ ∈ L2(Ω) and w ∈ L2(ωT ), such that

u(v0,N)(., T )− uT (.)⇀ ξ weakly in L2(Ω), (63)

and √
Nv0,N ⇀ w weakly in L2(ωT ).

In consequence, from (??), we get that∫
Ω

ξ(x)u(v(x, T ))dx = 0,

for any v ∈ L2(ω × (0, T )). Let us show that this implies that ξ ≡ 0 in Ω. Indeed, we

consider the auxiliary problem


−∂pN

∂t
−∆pN+An

(
b1(x)χ(Ω\ω)×(0,T ) + b2(x)χωT

)
pN = 0, (x, t) ∈ Ω× (0, T ),

pN = 0, (x, t) ∈ ∂Ω× (0, T ),

pN(x, T ) = u(v0,N)(., T )− uT (.) , x ∈ Ω.

(64)

Then, multiplying (64) by u(v),using the equation satisfied by u(v), and integrating by

parts, we get

−
∫
Ω

(u(v0,N)(., T )− uT (.))u((v)(x, T ))dx+N

∫
ω×(0,T )

c(x)pNvdxdt = 0. (65)

Then we get that pN is bounded in L2(0, T ;H1
0 (Ω)) and thus pN ⇀ p in L2(0, T ;H1

0 (Ω)),

as N ↘ 0, with p solution of the problem
−∂p
∂t

−∆p+An

(
b1(x)χ(Ω\ω)×(0,T ) + b2(x)χωT

)
p = 0, (x, t) ∈ Ω× (0, T ),

p = 0, (x, t) ∈ ∂Ω× (0, T ),

p(x, T ) = ξ(x) , x ∈ Ω.

(66)
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Then, by (65 ) we get that p = 0 on ω × (0, T ). In consequence, by the Mizohata results

(see [15] and its improvement in [9] for the case of bounded coefficients) we deduce that

p ≡ 0 in Ω×(0, T ), which implies that ξ(x) ≡ 0 on Ω. In addition, we also have the strong

convergence in (63) since, from the optimality condition (??)

N

∫
ω×(0,T )

c(x) |v0,N |2 dxdt

+

∫
Ω

∣∣u(v0,N)(x, T )− uT (x))
∣∣2dx→ 0

as N → 0.■

Now we are in conditions to prove our main result

Theorem 5. Let uT ∈ L2(Ω) and let uε(v) be the unique solution of the problem (1) for

a given control v ∈ L2(S
(2)
ε × (0, T )). Then, given δ > 0, there exists ε0 > 0 and there

exists N0 ∈ (0, 1) (independent of ε0) such that if ε ∈ (0, ε0) and N ∈ (0, N0), the optimal

control vε,N ∈ L2(S
(2)
ε × (0, T )) associated to Jε(v), with θ1 = 0 and θ2 = 1, leads to the

approximate controllability property

∥uε(vε,N)(., T )− uT∥2L2(Ωε)
≤ δ. (67)

Proof. It suffices to apply the above Theorem 4 and the strong convergence ũε(v)(., T ) →
u0(v)(., T ) in L

2(Ω) proved in Theorem 2. Indeed, we have

∥uε(v)(., T )− uT∥2L2(Ωε)
≤ ∥ũε(v)(., T )− u0(v)(., T )∥2L2(Ωε)

+ ∥u0(v)(., T )− uT∥2L2(Ωε)
.

Moreover, we know (from the optimality condition (??)) that the optimal control of the

limit problem v0,N satisfies an uniforme estimate (as N → 0, when N ∈ (0, N0)) (see 62).

Then, thanks to the characterization of the optimal controls, we can also assume also that

this property holds for the microscopic optimal control vε,N , when N ∈ (0, N0), for any

ε ∈ (0, ε0).■
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