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Abstract

We prove existence, uniqueness, and comparison of solutions for a nonlinear stochastic
parabolic partial differential equation that includes the Solar variability in terms of a multi-
plicative Wiener cylindrical noise in the term of the absorbed radiative energy in a simplified
diffusive one-dimensional Energy Balance Model. We introduce a hybrid co-albedo nonlinear
term, which has the advantages of both the Sellers model, as it is a continuous function, and
the Budyko model, as it has an infinite derivative at u = −10◦C (the temperature at which
ice is white), allowing the location of the polar ice caps to be easily detected. We show that,
despite the lack of differentiability of this function, the method of successive approximations
can be satisfactorily applied.

1 Introduction

The radiative energy balance climate models (EBMs) are a class of tools for representing the
evolution of the global climate (spatial distribution of temperature at the Earth’s surface) over
large time scales. Despite their simplicity, the EBMs give a useful, representation of Earth’s climate
by capturing the fundamental mechanisms governing its behaviour. They were proposed in 1969,
independently (during the ”Cold War”) by an American, Sellers [52], and a Russian, Budyko [9],
maintaining an enormous resemblance that confirms their great robustness. The EBMs assume
that the averaged atmospheric temperature evolves (on a large scale of time) according to the
radiation balance of the budget, i.e. the difference in the radiations absorbed and emitted by the
planet. The Solar radiation (is the primary input) though must be corrected by the Earth’s co-
albedo (which depends of the temperature as a feedback) and the balance is taken with the infrared
radiation emitted by the Earth and also in the presence of a surface diffusion. When describing the
constitutive laws of the absorbed and emitted radiation it is needed to take into account important
elements such as the Solar constant, the Solar insolation (depending of the spatial distribution),
the atmospheric composition (which appears as coefficient when applying the Stefan-Boltzmann
for the outgoing longwave radiation) etc. Since the pioneering work of 1969, mentioned above,
EBMs have been the subject of numerous research studies and monographs ([48], [32], [35], [23],
[44], [33], [1], [26], [7], [25], [24], [37], [5], [10], etc.). Some version of the EBMs can be also obtained
by averaging in the primitive equations (see, e.g., [39], [40], [41]), as it was presented in [38]. A
different averaging approach was developed by Hasselmann [34] (see also [2] and [15]). EBMs are
also very useful in the study of past climates ([12]).
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Deterministic EBMs do not include unpredictable external forcings, as, for instance, volcanic
emissions (there are currently more than 500 active volcanoes), etc. From the mathematical point
of view, this has been treated by means of an additive white noise ([47], [19], [28], [36], [20], [43],
[14], [15]). The mathematical models can be also coupled with some simple modelling of the deep
ocean temperature ([58], [29], [30], [27], [16]) but, for simplicity in the formulation, we will not
follow this coupling in this paper.

EBMs with stochastic noise allow us to justify, through scientific arguments and the available
data, the possible increase in extreme events due to Climate Change, that is not possible under
purely deterministic approaches (see, e.g. [15]).

The main goal of this paper is to study a mathematical model taking into account the influence
on the climate of the abrupt changes in the Solar radiation (the Solar storms). The assumption that
Solar emission is constant must be replaced by a more realistic study that takes Solar variability
into account ([51], [57]). In fact, there is a whole family of space satellites whose primary mission
is to analyze and measure this Solar variability. The Earth Radiation Budget Satellite (ERBS) was
a NASA scientific research satellite. The satellite was one of three satellites in NASA’s research
program, named Earth Radiation Budget Experiment (ERBE), to investigate the Earth’s radiation
budget. NASA’s CERES instruments have continued the ERB data record after 1997. We recall
that the Solar energy that falls annually on Earth’s surface is about ten thousand times the energy
demand of the world’s population (7.7 billion people). Phenomena such as Solar flares or coronal
mass ejections (extreme Solar events) can cause brief increases in radiation. Occasionally, flares
heat the Sun’s surface, reaching temperatures of about 45 million degrees Celsius, much higher than
those in the core. Long-term variations are minimal (the magnitude of the short-term fluctuations
are small, typically less than 0.1% of the average value) but relevant in the climate and paleoclimate
studies ([12]).

The main factor that generates variations is the Solar activity. The so-called S. Schabe (1789-
1875) cycles vary over 11 years ([45]). This is too short a period to have any impact on the climate,
though it is very relevant in other aspects. This was previously measured by counting sunspots,
and is now measured using satellite radiance measurements. Other types of cycles (the so-called
W. Gleissberg (1903-1986) cycle)) has an oscillation amplitude similar to the Schwabe cycles but
its duration is approximately 87 years (70-100 years) and has a greater impact on climate due to
its duration ([50]). It is related to the well-identified past periods (Maunder Minimum (1645-1715)
and the Dalton Minimum (1800-1830)) of an extraordinarily low Solar activity. There is also the
well-known Milankowitz cycles, based on Celestial Mechanics, which are justified in another way
(on scales of thousands of years) and can be considered as periodic versions of the Solar constant
(see a mathematical study on a pure time periodical Solar datum Q(t) in [3]).

The mathematical model that we will consider in this paper includes the Solar variability in
terms of a multiplicative Wiener noise in the term of the absorbed radiative energy in a simplified
diffusive one-dimensional Energy Balance Model:

(Eβ,ε)

 dut −
∂

∂x

((
1− x2)

∂ut

∂x

)
+ g(ut) = QS(x)β(ut) (1 + εdWt) ,

u(x, 0) = u0(x).

where x ∈ I
.
= (−1, 1), x = cosϕ, with ϕ the spherical latitude, t > 0 and ε ≥ 0. Notice that

we are following the usual dynamical system notation (see, e.g., [55]), u = u(x, t;ω) = ut(x;ω)
where x ∈ I,

.
= (−1, 1), x = cosϕ, with ϕ the spherical latitude, t ≥ 0 and ω is in the probability

space {Ω,F ,P}. The cylindrical Wiener processes Wt(x;ω) is not time differentiable and thus the
notation used for deterministic models ∂u

∂t is not well justified. In what follows, we will use the
notation ρ(x) = 1 − x2, x ∈ I for the degenerate diffusion operator coefficient. Note that in this
formulation, it is not necessary to specify any boundary condition on ∂I, since the physical problem
is posed on the sphere as a Riemannian manifold without boundary. This explains the degeneracy
of the boundary operator on ∂I.

Although we can assume greater generality, here we mainly assume that Q > 0, and that the
Earth emitted radiation is given by the term g(u) such that
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(Hg) g : R → R is a continuous increasing function.

The co-albedo term is assumed to be such that

(Hβ) β is a bounded maximal monotone graph in R2, i.e. β(s) ∈ [m,M], ∀s ∈ R.

We recall that one of the important differences in the 1969 modelling of these terms was con-
cerning their regularity: In [52] it was assumed that β(s) is a Lipschitz continuous non-decreasing
function with a huge slope near u = −10◦ (the Celsius temperature at which the ice goes from
transparent to white), in contrast with [9], who assumed that the co-albedo is a discontinuous
function at u = −10, to better parameterize the regions occupied by the polar caps. Here we are
identifying the possible discontinuous non-decreasing function β(s) with the associated maximal
monotone graph ([8]) by including the entire jump interval at the discontinuity points. Although
the result leads to a possible multivalued expression, we will simplify the writing by keeping the
symbol = in the equation.

On the insolation function S(x) we assume

(Hs) S : I → R, S ∈ L∞(I), S1 ≥ S(x) ≥ S0 > 0 a.e. x ∈ I.

Despite the presence of multiplicative noise dWt, there are many abstract results which can
be applied when β is, as in the Sellers’ option, a globally Lipschitz continuous function of the
unknown (see, e.g., [13]). On the other hand, the study of the multiplicative noise in the presence
of a discontinuous co-albedo function (as in the Budyko case) looks very complex to be considered
in a first approach. In that paper, we will follow an intermediate option by considering a class
of co-albedo functions β that, being continuous, present a singularity in their derivative at the
critical value u = −10, which, following Budyko’s motivation, allows us to easily recognize the
regions occupied by the polar caps. More specifically, let us define the co-albedo function given by

β−10(u) =


βi, if u < −10,(
βw − βi

)
θδ+10(u+ 10) + βi, if −10 ≤ u ≤ −10 + δ,

βw, if u > −10 + δ,

(1)

with 0 < δ < 1, where the function θδ(u) is given by

θδ(u) = (βw − βi)
u lnu

δ ln δ
, u ≥ 0. (2)

We note that β ∈ C(R) ∩ C1
(
R \ {−10,−10 + δ}

)
, with{

β′
−10(−10−) = 0 and β′

−10(−10+) = +∞,

β′
−10

(
(−10 + δ)−

)
> 0 and β′

−10

(
(−10 + δ

)+
) = 0.

Thus, this choice of the co-albedo function (that we will call the hybrid co-albedo function in
what follows) presents a sudden change at the critical temperature for which ice becomes white
while offering a seamless transition from ice to water (see Figure 1 below where the profile of the
co-albedo function was transferred to the origin).

We recall that the uniqueness of solutions when the right-hand side term is not Lipschitz contin-
uous is a very delicate question. For deterministic parabolic PDEs, an important contribution was
offered in the paper [31]. They prove that the usual uniqueness criterion for non-monotone elliptic
equations is not enough for the parabolic equation, and they prove the uniqueness of solutions by
asking an Osgood-type condition on the non-linear term. We will extend this type of results, in
the stochastic framework, in two different directions which, in the best of our knowledge, were not
presented in [31], nor on its generalizations): our proof will be constructive (since we will prove
that the successive approximations method can be applied even in the absence of differentiability
on β). In addition, we will get some comparison results (in terms of two different initial data).

Faced with a wide range of possible choices, in this article, we will model the cylindrical Wiener
noise Wt(x;ω) produced by the erratic Solar storms using a series expansion of the eigenfunctions
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Figure 1: Hybrid co-albedo profile

generated by the Legendre diffusion mentioned above. We recall that the sequence of eigenvalues
are µn = n(n+ 1) and that after a normalization the eigenfunctions are given by

en(x) =

√
2

2n+ 1
Pn(x), −1 ≤ x ≤ 1,

with (the Rodrigues formula)

Pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
=

1

2n

n∑
k=0

(
n

k

)2

(x+ 1)n−k(x− 1).

Since µ0 = 0, to avoid strong difficulties, we artificially introduce a given (but arbitrary) µ > 0 and

then we will work with the perturbed diffusion − ∂

∂x

((
1− x2)

∂u

∂x

)
+ µu (the artificial term µu

will also be added to the corresponding right-hand side). So that the same family of eigenfunctions
corresponds now to the new sequence of eigenvalues µ̂n = µn +µ > 0. Thus, the noise we consider
will be given by

Wt =
∑
n≥0

1√
µ̂n

Bn
t en, t ≥ 0, (3)

where the processes {Bn
t }t≥0 is a family of Brownian motions mutually independent (see [11, 13, 42],

and Section 3, for a definition). We note that finally the parameter µ only appear in the noise
(see (3)).

It is important to highlight that the main difficulty in the study of the multiplicative noise comes
from the presence of the non-linear term β(u) since if this term were a linear function in β(u) the
problem would be reduced to applying a clever change of variable that leads to a deterministic
problem dependent on a parameter (see Remark 11).

The main contribution in this paper is

Theorem 1 Let us assume u0 ∈ L∞(I), let µ > 0 arbitrarily given. Assume (Hg), (Hs) and β
given by (1). Then there exists a unique mild solution uu0 , in the sense of (48), of the climate
diffusive energy balance model (Eβ,ε). Furthermore, if uu0 and uû0 denote the solutions of the
problems relative to these data, one has the continuous dependence inequality∥∥uu0 − uû0

∥∥2
Bt

≤ 4M2∥u0 − û0∥2H + ĈT

∫ T

0

θF,B
(∥∥uu0 − uû0

∥∥2
Bs

)
ds (4)
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where the constants M, ĈT and the function θF,B are given in Proposition 2 and the Banach space
Bt in (52). In addition, introducing a suitable function (15), we have the growth estimate

Ψ
4M2∥u0 − û0∥2H

(
∥uu0 − uû0∥2Bt

)
≤ ĈTt, t ∈ [0,T], (5)

provided ∥u0 − û0∥H > 0. Finally, we have the quantitative comparison estimate

∥∥(uu0 − uû0
)
+

∥∥2
Bt

≤ 4M2∥
(
u0 − û0

)
+
∥2H + ĈT

∫ T

0

θF,B
(∥∥(uu0 − uû0

)
+

∥∥2
Bs

)
ds (6)

for t ∈ [0,T] holds, where r+ = max{r, 0}. In consequence, we have the comparison of solutions:

u0 ≤ û0 in L2(I) ⇒ uu0
t (x;ω) ≤ uû0

t (x;ω) for all (x, t) ∈ I× [0,T], a.e. ω ∈ Ω.

We point out that in a separate study ([21]) we will offer some extension and related results to
those presented in this article, but in some different contexts: we will prove a strictly deterministic
version of the aforementioned improvements of the important article [31], and we will also explain
how the stochastic problem can be addressed by applying the results in an abstract framework
that offers possible applications to problems not necessarily originating from climate models ([22]).

The organization of this paper is the following. Some useful properties of the above-presented
hybrid co-albedo function will be given in Section 2. In Section 3 we collect some auxiliary and
technical results which will be useful in this stochastic framework. Finally, the proof of the main
Theorem will be given in Section 4.

2 On the hybrid co-albedo function

In this Section, we collect some results on some properties of the concave and increasing continuous
function θδ(u) used in the definition of the hybrid co-albedo function. For simplicity in the notation,
we drop the dependence with respect to the constant δ. So, let

θ(u) = (βw − βi)
u lnu

δ ln δ
, u ≥ 0. (7)

For Section 4, it will be very useful the study of the nonlinear integral equation

v(t) = v0 + α

∫ t

0

θ
(
v(s)

)
ds, 0 ≤ s ≤ T. (8)

It will have a key role in proving the existence part of the main theorem.

Theorem 2 Let v0, α > 0 and let v(t) be any nonnegative integrable function satisfying

v(t) ≤ v0 + α

∫ t

0

θ
(
v(s)

)
ds, 0 ≤ s ≤ T ≤ +∞. (9)

Then we have the implicit estimate,∫ v(t)

v0

ds

θ(s)
≤ αt, 0 ≤ t ≤ T. (10)

In fact, the unique nonnegative function v(t) such that

v(t) ≤ α

∫ t

0

θ
(
v(s)

)
ds, 0 ≤ s ≤ T (11)

is the null function. Moreover, if v0 ≥ 0 and α > 0, under the Osgood condition∫
0+

du

θ(u)
= ∞, (12)



6 G. D́ıaz & J.I. D́ıaz

the nonlinear integral equation

v(t) = v0 + α

∫ t

0

θ
(
v(s)

)
ds, 0 ≤ t ≤ T, (13)

admits a unique global nonnegative solution, on [0,T].

Proof As it is well known, if v0 > 0, the integral equation (8) is equivalent to the Cauchy
problem {

v′(t) = αθ
(
v(t)

)
,

v(0) = v0,
(14)

whose positive and continuous global solution is represented, thanks to the Leibnitz’s formula, by∫ v(t)

v0

ds

θ(s)
= αt, 0 ≤ t ≤ T.

When v(t) satisfies the inequality (9), we require a sharper refinement because an equivalence as
(8) and (14) does not hold in general. So, we introduce the positive and non decreasing function
V(t) = max

0≤τ≤t
v(τ) = v(τt), for some τt ∈ [0, t]. Next, we define

V̂(t) = v0 + α

∫ t

0

θ
(
V(s)

)
ds > 0, t > 0,

that satisfies V̂(0) = v0, as well as

V(t) = v(τt) ≤ v0 + α

∫ τt

0

θ
(
v(s)

)
≤ v0 + α

∫ t

0

θ
(
V(s)

)
= V̂(t)

and {
V̂′(t) = αθ

(
V(t)

)
≤ αθ

(
V̂(t)

)
,

V̂(0) = v0 > 0

quite similar to (14). Hence a kind of Leibnitz inequality∫ v(t)

v0

dr

θ(r)
≤
∫ V̂(t)

v0

dr

ϑ(r)
=

∫ t

0

V̂′(t)dt

θ
(
V̂(t)

) ≤ αt < +∞

holds, and then (10) follows.
On the other hand, when v0 = 0, if we suppose v(t) > 0 in some interval t ∈]0, t1] ⊂ [0,T] the

above reasoning shows that V̂(0) = 0, 0 < V(t) ≤ V̂(t) and V̂′(t) ≤ αθ
(
V̂(t)

)
, from which we

deduce that V̂(t) > 0 in t ∈]0, t1] and∫ V̂(t1)

0

dr

θ(r)
=

∫ t1

0

V̂′(t)dt

θ
(
V̂(t)

) ≤ αt < +∞,

contrary to the condition (12). 2

Since θ is continuous and increasing we may introduce the increasing function

Ψv0
(v)

.
=

∫ v

v0

ds

θ(s)
, v ≥ v0, (15)

provided v0 > 0. Then the inequality (10) can be rewritten as

v(t) ≤ Ψ−1
v0

(αt) , 0 ≤ t ≤ T, (16)

provided v(0) = Ψ−1
v0

(0) > 0. We emphasize that if v0 = 0, the inequality (16) has not sense
because the unique non negative function solving (11) is the constant function v(t) ≡ 0. It is easy
to see that the function given by (7) verifies the Osgood assumption (12)∫

0+

ds

θ(s)
= +∞.
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Remark 1 Several generalizations of the above result will be presented in [[22, 21]]. We note that
in general no convex function θ(u) satisfies (12). Certainly, if (12) holds the function θ is not
integrable near 0. For instance the functions satisfying

θ(u)

u
≤ ln

1

u
, ln

1

u
ln

(n
· · · ln 1

u
, n ≥ 0, near u = 0, (17)

provide other examples for which (12) holds near the origin. The conditions (12) and (17) coincide
with the classical Osgood’s criterion (see [49]). On the other hand, we also note that the examples
given by (17) verify

θ(u)| lnu| ≤ u| lnu| ln 1

u
ln

(n
· · · ln 1

u
= u

(
lnu
)n+2

, n ≥ 0, near v = 0,

and thus they satisfy the so-called Dini condition

lim
u↘0

θ(u)| lnu = 0. (18)

2

We also emphasize that the inequality

|θ(u)− θ(v)| ≤ θ(|u− v|), u, v ≥ 0. (19)

holds (see Remark 3 below).

Remark 2 In order to provide inequalities as (19) we may consider real functions Φ : [0,∞[→ [0,∞[
satisfying Φ(0) ≥ 0 with the subadditive property

Φ(u) + Φ(w) ≥ Φ(u+ w) ⇔ Φ(u+ w)− Φ(u) ≤ Φ(w), u, w ≥ 0. (20)

holds. So that, let u, v ≥ 0 such that v ≥ u. We define w = v − u ≥ 0 for which

0 ≤ Φ(v)− Φ(u) = Φ(w + u)− Φ(u) ≤ Φ(w) = Φ(v − u),

whenever Φ is nondecreasing. By means of a similar reasoning, we conclude that

|Φ(u)− Φ(v)| ≤ Φ(|u− v|), u, v ≥ 0, (21)

whenever Φ is nondecreasing. 2

Remark 3 The sub-additive property (20) is satisfied by real concave functions Φ : [0,∞[→ [0,∞[
satisfying Φ(0) ≥ 0. Indeed, it follows

Φ(λz) = Φ
(
λz + (1− λ)0

)
≥ λΦ(z) + (1− λ)Φ(0) ≥ λΦ(z), z ≥ 0, 0 < λ < 1.

In particular, given u,w > 0 by choosing λu,w =
u

u+ w
∈]0, 1[ it follows

{
Φ(u) = Φ

(
λu,w(u+ w)

)
≥ λu,wΦ(u+ w),

Φ(w) = Φ
(
(1− λu,w)(u+ w)

)
≥ (1− λu,w)Φ(u+ w),

whence one concludes the subadditive property

Φ(u) + Φ(w) ≥ Φ(u+ w).

Arguing as in [18, Lemma 4.3], we also may obtain the subadditive property (20) by transfer
without concavity settings. Indeed, assume

q(u) + q(v) ≥ q(u+ v), u, v ≥ 0
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and
Φ(u)

q(u)
is non increasing. (22)

Then

Φ(u) + Φ(v) = q(u)
Φ(u)

q(u)
+ q(v)

Φ(v)

q(v)
≥ (q(u) + q(v))

Φ(u+ v)

q(u+ v)
≥ Φ(u+ v),

thus, the sub-additivity of the function q(u) is transferred to the function Φ(u) provided (22). In
particular, any function Φ such that

Φ(u)

um
is non increasing

for some 0 < m ≤ 1 is sub-additive and the inequality (21) holds whenever Φ is nondecreasing. 2

Finally, we come back to the hybrid co-albedo profile (centered at the origin) of the Introduction

β(u) =


βi, if u < 0,(
βw − βi

)u lnu
δ ln δ

+ βi, if 0 ≤ u ≤ δ,

βw, if u > δ,

(23)

with 0 < δ < 1 that governs the co-albedo function (see Figure 1). We note that the profile verifies
β ∈ C(R) ∩ C1

(
R \ {0, δ}

)
, with{

β′(0−) = 0 and β′(0+) = +∞,
β′(δ−) > 0 and β′(δ+) = 0.

We claim that the profile β satisfies

|β(u)− β(v)| ≤ θ(|u− v|), u, v ∈ R. (24)

(see (19)). Indeed, when v ≤ 0 one has

β(u)− β(v) = θ(u)− θ(0) = θ(u) ≤ θ(u− v), v ≤ 0 ≤ u ≤ δ.

Analogously, if u ≥ δ one has

β(u)− β(v) = θ(δ)− θ(v) ≤ θ(δ − v) ≤ θ(u− v), u ≥ δ ≥ v ≥ 0.

Finally, the claim follows from{
β(u)− β(v) = θ(u)− θ(v) ≤ θ(u− v), δ ≥ u ≥ v ≥ 0,

β(u)− β(v) = θ(δ)− θ(0) = θ(δ) ≤ θ(u− v), u ≥ δ ≥ 0 ≥ v.

Moreover, from (18) the function β satisfies the Osgood’s criterion (12) (see also Theorem 2).

3 On the cylindrical well-adapted to the Legendre diffusion
Wiener noise

By introducing the change of variable Xt = ut − 10, ξ = u0 − 10, the problem (Eβ,ε) corresponds
to a choice of the general semilinear equation{

dXt +AXtdt = Ft

(
Xt

)
dt+Bt(Xt)dWt,

X0 = ξ,
(25)
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which will be treated on a separable Hilbert space H where we are considering the measurable
processes X : ΩT → H, ΩT = [0,T] × Ω, posed in a probability space (Ω,F ,P), equipped with
a complete right continuous filtration {Ft}t∈[0,T] ⊂ F . Moreover, as usual, we denote by PT =
B([0,T])⊗F the predictable σ- fields on defined by

PT
.
= σ

({
]s, t]×As : 0 ≤ s < t ≤ T, As ∈ Fs

}
∪ {{0} ×A0 : A0 ∈ F0}

)
.

They may also be introduced by

PT
.
= σ (Y : ΩT → R : Y is left continuous and adapted to Ft, t ∈ [0,T]) ,

more according to our purposes (see below).

Next, we make precise the framework where (25) will be formulated. Motivated by the Stochas-
tic Partial Differential Equation of (Eβ,ε), we consider the differential operator A : D(A) → H
with 

D(A) =
{
v ∈ H : Av ∈ H

}
,

Av(x) = − d

dx

((
1− x2

) d

dx
v(x)

)
, x ∈ I =]− 1,+1[, if v ∈ D(A),

(26)

defined in H = L2(I), equipped with its usual norm

∥u∥ =

(∫
I

|u(x)|2dx
) 1

2

, u ∈ H

and the scalar product

⟨u, v⟩ =
∫
I

u(x)v(x)dx, u, v ∈ H.

In [23] (see also [35]) it was proved that A is a maximal monotone operator densely defined, thus
D(A) = H. More precisely, according to [23] or [20], the domain of the operator is associated with
a suitable energy space related to the Legendre diffusion operator. It is the weighted space

V =
{
w ∈ L2(I) : w′ ∈ L2(I; ρ)

}
where

L2(I : ρ) =

{
w :

∫
I

ρ|w|2dx < +∞
}
,

equipped with its norm

∥w∥2L2(I:ρ) =

∫
I

ρ|w|2dx

(we recall that ρ(x) = 1− x2). Here, H = L2(I) is the so-called Hilbert pivot space. Notice that V
is a separable Hilbert space related to the norm

∥w∥V = ∥w∥L2(I) + ∥w′∥L2(I:ρ).

Next, we introduce the abstract version of the diffusion operator by means of the functional operator
A : V → V′ given by

Au
.
= − ∂

∂x

(
ρ
∂

∂x
u

)
, u ∈ V. (27)

Working with semigroup theory ([8]), it is useful to define the above operator A as the realization{
D(A) =

{
v ∈ H : Av ∈ H

}
,

Av(x) = Av if v ∈ D(A).
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Then, it was shown in [23] that the the operator A can be written as the subdifferential Av = ∂φ(v)
of the convex and lower semicontinuous functional, φ : H → R ∪ {+∞}, given by

φ(v) =


1

2

∫
I

ρ(x)

∣∣∣∣∂v∂x
∣∣∣∣2 dx if v ∈ V,

+∞ otherwise,

(28)

that A is densely defined (see [23, Proposition 1]) and that ∂φ(v) generates a compact semigroup
of contractions on H (see [23, Lemma 1]). Then, for any u0 ∈ H there exists a unique function
u ∈ C([0,T] : H), with the smoothing effect that u(t) ∈ D(A) for a.e. t ∈ (0,T], such that u is the
mild solution of the abstract problem

du

dt
(t) + Au(t) = 0, t > 0,

u(0) = u0 ∈ H.
(29)

Remark 4 In fact, in [23] it was obtained the complementary regularity

t
1
2
du(t)

dt
∈ L2

(
0,T : H

)
of the above mild solution. Moreover, if u0 ∈ Lp(I), 1 ≤ p ≤ ∞, then u(t) ∈ Lp(I) for a.e. t ∈ (0,T].

In fact, if u0 ∈ V ⊂ H one has
du

dt
∈ L2

(
0,T : H

)
. 2

On the other hand, we also know that H admits a Hilbertian basis given by the eigenvectors
{en}n≥0 ⊂ D(A) of the operator A, defined through the orthonormal Legendre polynomials of
degree n, defined by the property

APn = n(n− 1)Pn on H.

So that, the constants µn = n(n+ 1) are the corresponding eigenvalues. Since we have

⟨Pn,Pm⟩H =
2

2n+ 1
δn,m,

the normalized eigenvectors of A are the functions

en(x) =

√
2

2n+ 1
Pn(x), −1 ≤ x ≤ 1.

It also follows the Rodrigues formula that

Pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
=

1

2n

n∑
k=0

(
n

k

)2

(x+ 1)n−k(x− 1),

as well as the recurrence identity

(n+ 1)Pn+1(x) + nPn−1(x) = (2n+ 1)xPn(x),

(see, e.g., [48]). Then, from the direct computation P0(x) ≡ 1 and P1(x) = x, we deduce that

P2(x) =
3x2 − 1

2
, P3(x) =

x(5x2 − 3)

2
, . . . and so on (see, e.g., [46]).

As mentioned in the Introduction, we emphasize that the first eigenvalue is the null value
µ0 = 0. This implies that A is not invertible. In order to avoid loss of invertibility, given µ > 0,
we replace the differential operator A by

Aµu = Au + µu, u ∈ D(A).
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Figure 2: Legendre polynomials

Then, we get the same Hilbertian basis of H, given by the same eigenvectors {en}n≥0 ⊂ D(A) of
the operator Aµ

en(x) =

√
2

2n+ 1
Pn(x), −1 ≤ x ≤ 1,

but now, the corresponding eigenvalues are µ̂n = µn + µ > 0. So that, for any f ∈ H there exists a
unique solution of Aµv = f given by the representation

v =
∑
n≥0

⟨f, en⟩
µ̂n

en.

Denoting by {Sµt }t≥0 the semigroup generated by Aµ, for every u0 ∈ H, the mild solution of
du

dt
(t) + Aµu(t) = 0, t > 0,

u(0) = u0,

admits the representation

u(t) = Sµt u0 = e−µt
∑
n≥0

⟨u0, en⟩He−µnten, t ≥ 0. (30)

If we consider now the non-autonomous problem
du

dt
(t) + Aµu(t) = f(t), t > 0,

u(0) = u0 ∈ H,
(31)

when f ∈ L1
(
0,T;D(A)

)
, we may solve (31) via the generalized Duhamel formula (or constants

variations formula) (see [8])

u(t) = Sµ̂t u0 +

∫ t

0

Sµ̂t−sf(s)ds, 0 ≤ s < T,
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thus

u(t) =
∑
n≥0

(
⟨u0, en⟩He−µ̂nt + e−µ̂nt

∫ t

0

⟨f(s), en⟩Heµ̂nsds

)
en, t ≥ 0, (32)

and u is called the mild solution of (31).

In order to make precise the stochastic framework, we introduce the operator Qµ : H
A−1

µ→
D(A) ↪→ H, thus Qµu ∈ H is the solution of AµQµu = u with

Qµu =
∑
n≥0

⟨u, en⟩
µ̂n

un, u ∈ H

for which

∥Qµu∥2 =
∑
n≥0

1

µ̂2
n

⟨u, en⟩2, u ∈ H.

Since ∑
n≥0

1

µ̂2
n

<
∑
n≥1

1

µ2
n

<
∑
n≥1

1

µn

=
∑
n≥1

(
1

n
− 1

n+ 1

)
= 1− lim

n→∞

1

n+ 1
= 1,

the operator Qµ is a bounded, positive and symmetric operator with a finite trace

Trace Qµ =
∑
n≥1

⟨Qµen, en⟩ =
∑
n≥0

1

µ̂n
<

1

µ
+
∑
n≥1

1

µn

=
1

µ
+ 1.

Remark 5 Since Qµen =
1

µ̂n
en, n ≥ 0 the eigenvalues λ̂n of Qµ coincide with the inverse values

1

µ̂n
of those of the differential operator Aµ. 2

Remark 6 If we consider the nonnegative square root operator of Qµ, the inequality

∥Q
1
2
µu−

j∑
k=1

⟨Q
1
2
µu, ek⟩ek∥2 ≤

∞∑
k=j+1

|⟨Q
1
2
µu, ek⟩|2 ≤ ∥u∥2

∞∑
k=j+1

∥Q
1
2
µ ek∥2 ≤ ∥u∥2

∞∑
k=j+1

⟨Qµek, ek⟩,

shows thatQ
1
2
µ is a compact operator because is a limit of finite rank operators, whenceQµ = Q

1
2
µQ

1
2
µ

is also a compact operator. Moreover,
Qµu =

∑
n≥0

1

µ̂n
⟨u, en⟩en,

Q
1
2
µu =

∑
n≥0

1√
µ̂n

⟨u, en⟩en,
u ∈ H.

Finally,

∥Q
1
2
µ∥2L2(H) =

∑
n≥0

∥Q
1
2
µ en∥2 =

∑
n≥0

1

µ̂n
= ∥Qµ∥L+

1 (H) = Trace Qµ < +∞,

we have proved that Q
1
2
µ is a Hilbert-Schmidt operator on H.

Remark 7 We note the well-known representation of those Hilbert-Schmidt operators

Q
1
2
µu(x) =

∫
I

∑
n≥0

1√
µ̂n

en(x)en(y)

 u(y)dy, x ∈ I, u ∈ H,

whose kernel is

k(x, y)
.
=
∑
n≥0

1√
µ̂n

em(x)en(y) with

∫
I×I

|k(x, y)|2dxdy ≤
∑
n≥0

1

µ̂n
= Trace Qµ.

2
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The operator Qµ determines the so-called Cameron-Martin space HQµ
= Q

1
2
µH, proper subspace

dense in H, that enables us the relation

u = Q− 1
2

µ v ⇔ Q
1
2
µu = v,

thus the operator Q− 1
2

µ is defined on the Hilbert subspace HQµ
endowed with

∥u∥Qµ

.
= ∥Q− 1

2

µ̂ u∥H,

coming from the identity

⟨u, v⟩Qµ

.
= ⟨Q− 1

2
µ u,Q− 1

2
µ v⟩, u, v ∈ HQµ .

Remark 8 If there exists Q− 1
2

µ u = v ∈ H the property

Q
1
2
µv = u ⇔ 1√

µ̂n

⟨v, en⟩ = ⟨u, en⟩

requires

∥v∥2 =
∑
n≥0

µ̂n

∣∣⟨u, en⟩∣∣2 < +∞.

Since u ∈ HQµ
implies u = Q

1
2
µw for some w ∈ H one has

⟨u, en⟩ =
1√
µ̂n

⟨w, en⟩.

Then ∑
n≥0

√
µ̂n

∣∣⟨u, en⟩∣∣2 =
∑
n≥0

∣∣⟨w, en⟩∣∣2 = ∥w∥2.

Hence, we have the representation
Q− 1

2
µ u =

∑
n≥0

√
µ̂n⟨u, en⟩em,

⟨u, v⟩Qµ
=
∑
n≥0

µ̂n⟨u, em⟩⟨v, en⟩ = ⟨Q− 1
2

µ u,Q− 1
2

µ v⟩,
, u ∈ HQµ

.

In particular,
√
µ̂nen ∈ HQµ

and
∥∥√µ̂nen

∥∥
Qµ

= ∥en∥H = 1. 2

After the above notations and commentaries we consider a Qµ-cylindrical Wiener process on
H denoted by {Wt}t≥0 satisfying

i) {Wt}t≥0 has continuous trajectories and W0 = 0,

ii) {Wt}t≥0 has independent increments and

L
(
Wt −Ws

)
= N

(
0, (t− s)Qµ

)
= L

(
Wt−s

)
, t ≥ s ≥ 0

ii) L
(
Wt

)
= L

(
−Wt

)
, t ≥ 0,

(see [13]). From the above definition, {Wt}t≥0 is a Gaussian process on H with

E[Wt] = 0 and Cov Wt = tQµ, t ≥ 0.

Then, we may introduce the Brownian motions

Bn
t

.
=
√

µ̂n⟨Wt, en⟩, t ≥ 0. (33)
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Since
E
[
Bn

t B
n′

s

]
=
√
µ̂nµ̂n′E

[
⟨Wt, em⟩⟨Ws, em′⟩

]
=
√
µ̂nµ̂n′

(
E
[
⟨Wt −Ws, en⟩⟨Ws, en′⟩

]
+ E

[
⟨Ws, en⟩⟨Ws, en′⟩

])
=
√
µ̂nµ̂n′s⟨Qen, en′⟩ = sδn,n′ , 0 ≤ s ≤ t,

the processes
{
Bm

t

}
t≥0

are mutually independent. Moreover E
[
|Bk

t |2
]
= t, uniformly on k, implies

E

∥∥∥∥ n∑
k=j

1√
µ̂n

Bk
t ek

∥∥∥∥2
 = t

n∑
k=j

⟨Qµek, ek⟩ = t

n∑
k=j

1
√
µk

.

Thus, the property Trace Qµ < ∞ enables us to admit the representation on H

Wt =
∑
n≥0

1√
µ̂n

Bn
t en, t ≥ 0, (34)

for which the Wiener isometry

E
[
∥Wt∥2

]
= E

∑
n≥0

1

µ̂n
∥Bn

t en∥2
 = t

∑
n≥1

1

µ̂n
= tTrace Qµ (35)

holds.

Remark 9 In fact, from the maximality martingale inequality (see [13])

P

 sup
t∈[0,T]

n∑
k=j

1√
µ̂k

∥Bk
t ek∥ > r

 ≤ 4

r
E

∥∥ n∑
k=j

1√
µ̂k

Bj
Tek
∥∥2 ≤ 4T

r

n∑
k=j

1√
µ̂k

,

one proves that the serie (34) is uniformly convergent on [0,T] P-a.s (see [13, Theorem 4.3]). 2

Remark 10 The isometry (35), as well as

E
[
⟨Wt,u⟩⟨Ws, v⟩

]
= E

∑
n≥0

1

µ̂n
Bn

t B
n
s ⟨en,u⟩⟨en, v⟩

 = t ∧ s⟨Qµu, v⟩,

show the covariance property of the operator Qµ. 2

On the other hand, we denote by LQµ
= L2(HQµ

,H) the space of the Hilbert-Schmidt operators
D : HQµ

→ H equipped with the norm

∥D∥2LQµ
=
∑
n≥0

∥DQ
1
2
µ en∥2 =

∑
n≥0

∥DQ
1
2
µQ

1
2
µD∗en∥2.

In fact, one has

∥D∥2LQµ
=
∑
n≥0

∥DQ
1
2
µ en∥2 = Trace DQµD∗ =

∑
n≥0

1

µ̂n
∥Den∥2.

So that, one defines the Qµ-predictable process as the process B : ΩT → LQµ , Bt(·)(ω) ∈ LQµ for
which

∥|B∥|PT

.
=

(
E

[∫ T

0

Trace BtQµB
∗
t dt

]) 1
2

=

(
E

[∫ T

0

∥Bt∥2LQµ
dt

]) 1
2

< ∞.
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Among the Qµ-predictable processes, we focus on the stochastic integral

B ·W .
=

∫ T

0

BsdWt,

where {Bt}t≥0 ∈ PT is a {Ft}t≥0 adapted process LQµ
valued posed in HQµ

(see [11, 13, 42] for
definition) for which one introduces the processes {(B ·W)t}t∈[0,T] given by

(B ·W)t
.
= 1I[0,t]B ·W

(see [11, 42] again). Thus (B ·W)t(ω) ∈ LQµ
, ω ∈ Ω, satisfies the Ito isometry

E
[
∥(B ·W)T∥2

]
=

(
E

[∫ T

0

Trace BtQµB
∗
t dt

]) 1
2

=

(
E

[∫ T

0

∥Bt∥2LQµ
dt

]) 1
2

= ∥|B∥|2PT
< ∞.

(36)
Relative to the other terms of the general semilinear problem{

dXt +AµXtdt = Ft(Xt)dt+Bt(Xt)dWt,
X0 = ξ,

(37)

on the Hilbert space H (see (25)), we will require that Ft(u)(ω) ∈ H, (t, ω, u) ∈ ΩT ×H for which
the Bochner integral ∫ T

0

Fsds

posed in H (see [42]) is well defined. Finally, once again, we recall that Aµ is the infinitesimal

generator of a strongly linear semigroup of contractions {Sµt = e−µtSt}t≥0 in D(Aµ) = D(A) = H.
From the constants variation formula we get that a solution of (37) is a measurable process X

from (ΩT,PT) into (H,BH) satisfying for arbitrary t ∈ [0,T]

Xt = Sµt ξ +

∫ t

0

Sµt−s

(
Fs(Xs)

)
ds+

∫ t

0

Sµt−sBs(Xs)dWs, P a.e.

where ξ is a H-valued random variable. We will get later that the following property holds

P
(∫ t

0

(∥∥Sµt−sFs(Xs)
∥∥
H
+
∥∥Sµt−sBs(Xs)

∥∥2
LQ

)
ds < +∞

)
= 1,

in order to the above equality is well defined. We call such a type of function X a mild solution.
So, we will solve the semilinear integral equation by proving the existence of a process X which

is a fixed point of the operator G
X = GξX,

where (
GξX

)
t

.
= Sµt ξ +

∫ t

0

Sµt−sFs

(
Xs

)
ds+

∫ t

0

Sµt−sBs

(
Xs

)
dWs.

Certainly, any such fixed point X solves the semilinear integral equation. Among others possibili-
ties, a way to prove the existence of a fixed point X is to find some suitable topology in which the
relative Picard type of successive approximations(

X0

)
t
= Sµt ξ, Xn+1 = GξXn, n ≥ 0,

converge to X. This approximation problem will be used in the next Section 4.

Remark 11 (Doss-Sussman type transformations) There are some other ways to study semilin-
ear stochastic equations. This is the case of some useful transformations as the one due to H. Doss
and H.J. Sussman [17, 53] (see also the pioneering transformation made in [6]). In particular, in
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the multiplicative noise case, we may consider the transformation Xt = Ψ(Yt,Wt), for which Ito’
Rule gives

dXt − B(Xt)dWt =
[
Ψw(Yt,Wt)− B

(
Ψ(Yt,Wt

)]
dWt

+Ψy(Yt,Wt)dYt +
1

2
Ψww(Yt,Wt)σ(Wt)σ

∗(Wt)dt,
(38)

whence

dXt − Bt(Xt)dWt = Ψy(Yt,Wt)dYt +
1

2
Ψww(Yt,Wt)σ(Wt)σ

∗(Wt)dt, (39)

provided

Ψw(y, w) = B
(
Ψ(y, w)

)
. (40)

Thus, by means of (40) the Doss-Sussman transfomation Xt = Ψ(Yt,Wt) converts an stochastic
integral in a random integral (see (39)). In particular,

dXt =
(
AXt + Ft(Xt) + ft

)
dt+B(Xt)dWt, (41)

becomes the random differential equation (which can be considered as a kind of deterministic
nonlinear equation)

dYt

dt
=

1

Ψy(Yt,Wt)

[
AΨ(Yt,Wt) + Ft

(
Ψ(Yt,Wt)

)
+ ft +

1

2
Ψww(Yt,Wt)σ(Wt)σ

∗(Wt)

]
.

The study of (41) by the Doss-Sussman transformation is very tedious whenever B(Xt) is a general
nonlinear diffusion term.
Nevertheless, as mentioned in the Introduction, in the multiplicative linear case Bt(Xt) = aXt, we
may take Ψ(y, w) = yΦ(w). Then the Doss-Sussman equation (40) becomes

Φ′(w) = aΦ(w) ⇒ Φ(w) = eaw

and we obtain the random differential equation

dYt

dt
= e−aWtAeaWtYt + e−aWt

(
Ft

(
eaWtYt

)
+ ft

)
+

1

2
Ytσ(Wt)σ

∗(Wt).

On the other hand, in the additive noise case Bt(Xt) ≡ Bt this type of Doss-Sussman transformation
is quite simpler (see e.g., [20])

dXt − BtdWt = dYt ⇒ Xt = Yt + (B ·W)t,

and then

dYt = dXt − BdWt =
(
AXt + Ft(Xt

)
dt,

which becomes the random differential equation

dYt

dt
= AYt + Ft(Yt + (B ·W)t) + ft +A(B ·W)t.

2

4 An application of the successive approximation method to
the stochastic energy balance model with a non-Lipschitz
co-albedo

In what follows, we assume the hypotheses (Hg) and (Hs), with β given by (1), as in the In-
troduction. We will apply the stochastic framework of the Section 3. In particular, we will use
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the notations and comments made there when we look at problem (Eβ,ε) as a special case of the
abstract stochastic equation

dut +
(
Aut +Re

)
dt = Ra

(
dt+ εdWt

)
, t > 0, (42)

prescribing the initial datum u0 ∈ H (see (25) where {Wt}t≥0 was given in (34)).
As it was pointed out, different kind of notions of solutions are possible, and then it is crucial to

formulate correctly the assumptions on the data. At least formally, the problem (42) is equivalent
to the integral identity

ut = u0 +

∫ t

0

(−Aus +
(
Re − Ra

)
ds+ ε

∫ t

0

RadWs, ∀t > 0, (43)

where {ut}t≥0 must be an adapted random process to the filtration satisfying, in some sense, the
integral representation (43).
From Section 3 we recall that the operator A : D(A) → H defined in (26) generates a semi-group
{St}t≥0 of contractions on H. In fact, since A is not invertible, given µ > 0, we replace it by the
operator Aµu = Au + µu, and consider the equation

dut +
(
Aµut − µXt +Re

)
dt = Ra

(
dt+ εdWt

)
, t > 0. (44)

On the other hand, as in the Budyko proposal, we assume that the Earth’s radiation is of the type

Re(x, t, u) = g
(
u(x, t)

)
where g : R → R is a continuous increasing (see (Hg)) (see the Introduction). The above change
in the diffusion operator implies that now we include in (42) an artificial term

R̂e = g
(
ut
)
− µut.

The absorbed radiation energy is given by

Ra(x, t, u) = QS(x)β−10

(
u(x, t)

)
,

under the assumption
(
Hs

)
and involving the hybrid co-albedo function β−10(u) = β(u − 10),

where the function β is the coalbedo profile given in (23).
As before, we simplify the exposition by making the change of unknown Xt = ut − 10. Then,

(42) becomes {
dXt +AµXtdt = F(Xt)dt+B(Xt)dWt, t > 0,

X0 = u0 − 10 ∈ H,
(45)

where {
F(Xt) = µ

(
Xt + 10)− g

(
Xt + 10

)
+QSθ(Xt),

B(Xt) = εQSθ(Xt) ∈ L2
Qµ

,
(46)

(see Section 3).

Remark 12 For the condition B(X) ∈ L2
Qµ

we mean that it is given by(
B(X)u)(x)

.
= εQS(x)θ(X)u(x), x ∈ I, u ∈ H.

Since S ∈ L∞(I) one has that B(X)u ∈ H for u ∈ H. Moreover

∥B(X)∥2L2
Qµ

≤ ε2Q2
(
θ(X)

)2∥S∥2L∞(I)Trace Qµ. (47)

2
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From the constants variation formula we have that any solution of (45) must be a measurable
process X from (ΩT,PT) into (H,BH) satisfying, for arbitrary t ∈ [0,T],

Xt = e−µtStX0 +

∫ t

0

e−µ(t−s)St−sF
(
Xs

)
ds+

∫ t

0

e−µ(t−s)St−sB(Xs)dWs, t ≥ 0. (48)

Notice that here M
.
= sup

0≤t≤T
e−µt∥St∥L(H) ≤ 1. We will also check that the following property holds

P
(∫ t

0

(∥∥e−µ(t−s)St−sF(Xs)
∥∥
H
+
∥∥e−µ(t−s)St−sB(Xs)

∥∥2
L2

Qµ

)
ds < +∞

)
= 1. (49)

When (48) and (49) hold, we say that the process X is a mild solution.
Due to the presence of nonlinear terms in (45), our goal is to prove the existence of processes

Xu0 which are fixed points of Gu0 ,
Xu0 = Gu0Xu0 ,

for the operator(
Gu0X

)
t

.
= e−µtStX0 +

∫ t

0

e−µ(t−s)St−sF
(
Xs

)
ds+

∫ t

0

e−µ(t−s)St−sB(Xs)dWs. (50)

Among other possible arguments, a way to prove the existence of a fixed point Xu0 is to find some
suitable topology in which the relative Picard type of successive approximations(

X0

)
t
= e−µtSt(u0 − 10), Xn+1 = Gu0Xn, n ≥ 0 (51)

converge to Xu0 . Some reasons (see (53) below) advise introducing the Banach space (where we
will solve the fixed-point problem) given by

BT
.
=

{
X ∈ PT : E

[
sup

0≤s≤T
∥Xs∥2H

]
< ∞

}
(52)

endowed with the norm

∥X∥BT

.
=

(
E
[

sup
0≤s≤T

∥Xs∥2H
]) 1

2

.

Certainly, we may then consider the subspaces Bt ⊂ BT equipped with

∥X∥Bt

.
=

(
E
[
sup

0≤s≤t
∥Xs∥2H

]) 1
2

≤ ∥X∥BT
,

for each t ∈ [0,T].
Under Lipschitz assumptions on the nonlinear terms F and B the applicability of the classical

successive approximation method is well known in the literature (see, e.g., [13] and [59]). When
Lipchitz assumptions do not hold, other assumptions are needed. We send to [4, 54] where the
adaptation of the method under non Lipschitz conditions is considered.

A key stone in our reasoning is based on an extension of the maximal sub-martingale inequality
(see [13, Lemma 7.2]) that we apply to the stochastic convolution term(

W
B(X)
A

)
t

.
=

∫ t

0

St−sBs

(
Xs

)
dWs.

More precisely, we will use a suitable simple consequence of [13, Proposition 7.3] (see also [56,
Theorem 1]).

Proposition 1 ([22]) . There exists a positive constant cT such that

E

[
sup

0≤t≤T

∥∥∥∥ ∫ t

0

St−sB
(
Xs

)
dWs

∥∥∥∥2
H

]
≤ cT

∫ T

0

E
[∥∥B(Xs

)∥∥2
LQµ

]
ds. (53)

holds. 2
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Remark 13 The general estimate

E
[

sup
0≤t≤T

∥∥∥∥∫ t

0

St−sB
(
Xs

)
dWs

∥∥∥∥p
H

]
≤ cTE

[∫ T

0

∥∥B(Xs

)∥∥p
LQµ

ds

]
, (54)

only holds for some power p > 2 (see [13, Proposition 7.3]). However, when {St}t≥0 is a semigroup
of contractions, the case p = 2

E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

St−sB
(
Xs

)
dWs

∥∥∥∥2
H

]
≤ cTE

[∫ T

0

∥∥B(Xs

)∥∥2
LQµ

ds

]
(55)

is valid (see [56, Theorem 1]). In fact, arguing as in [13, Theorem 4.7] we also arrive to (53) 2

The approximation (51) will be studied, in a more general framework, in [22]. As in [4], this
idea was motivated by [13, Theorem 7.2].

Remark 14 Since our datum u0 will be assumed to be a bounded function, it is natural to search
for bounded solutions of the deterministic associated problem

(Eβ,0)


∂u

∂t
(x, t)− ∂

∂x

((
1− x2)

∂u

∂x

)
(x, t) + g

(
u(x, t)

)
= QS(x)β−10

(
u(x, t)

)
,

u(x, 0) = u0(x),

when g(u) is assumed to be locally Lipschitz continuous and increasing. In short, if we try to build
a constant supersolution

u(x, t) = K,

then, we get that it is enough to assume

K ≥ max
{
∥u0∥L∞(I), g

−1
(
Q∥S∥L∞(I)βw

)}
.

(see (23)). This explains that we can assume that g(u) is globally Lipschitz continuous, since we
may replace it by the truncated function

ĝ(u) =


g(−K) + g′(−K)(u−M) if u < K,

g(u) if −K ≤ u ≤ K,

g(K) + g′(K)(u+K) if K < u,

(56)

(see Figure 3). 2

Figure 3: Lipschitz truncation

Here we will apply the successive approximation method to the case of the hybrid co-albedo function
(7). By using Theorem 2 and Lemma 1 below we will prove the following result:
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Proposition 2 Let u0, û0 ∈ H. Then the operator Gu0 : BT → BT given by (50) is well defined
and continuous. Moreover, one has the estimate∥∥Gu0X− Gû0Y

∥∥2
Bt

≤ 4M2∥u0 − û0∥2H + ĈT

∫ T

0

θF,B
(∥∥X−Y

∥∥2
Bs

)
ds, t ∈ [0,T]. (57)

Here M
.
= sup

0≤s≤T
∥St∥L(H) and ĈT = max{16M2T,CT}, where CT = ε2Q2∥S∥2L∞(I)cTTrace Qµ,

with cT the positive constant of Proposition 1. Here we are using the notation θF,B(s) = θF(s)+θ(s)
with θF(s) = (Lg +µ)s+QS∞θ(s) where S∞ = ∥S∥L∞ and Lg is a positive constant assuming that
g is a Lispchitz continuous function (see Remark 14 below) and θ is the function given in (7).

First, we obtain a technical estimate:

Lemma 1 With the notations (46) or (60) one verifies the inequality

E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

St−s

(
B
(
Xs

)
− B(

(
Ys

))
dWs

∥∥∥∥2
H

]
≤ CT

∫ T

0

θ
(∥∥X−Y

∥∥2
Bs

)
ds, (58)

where CT is the positive constant given in Proposition 2.

Proof From (53) we deduce

E

[
sup

0≤t≤T

∥∥∥∥ ∫ t

0

St−s

(
B
(
Xs

)
− B(

(
Ys

))
dWs

∥∥∥∥2
H

]
≤ CT

∫ T

0

E
[∥∥B(Xs

)
− B

(
Ys

)∥∥2
LQµ

]
ds. (59)

On the other hand, by definition of the functional space L2
Q̂

and (24), one has∥∥B(Xs

)
− B

(
Ys

)∥∥2
LQ̂

≤ ε2Q2∥S∥2L∞(I)

(
β
(
Xs

)
− β

(
Ys

))2
Trace Qµ

≤ ε2Q2∥S∥2L∞(I)

(
θ
(
Xs −Ys

))2
Trace Qµ,

(see (47)), and then

E
[∥∥B(Xs

)
− B

(
Ys

)∥∥2
LQ

]
≤ ε2Q2∥S∥2L∞(I)E

[∥∥θ(Xs −Ys

)∥∥2
H

]
Trace Qµ

≤ ε2Q2∥S∥2L∞(I)θ
(
E
[∥∥Xs −Ys

)∥∥2
H

])
Trace Qµ,

(see in Section 2 the concavity and other properties of the function θ). Therefore, from (59) the
proof ends. 2

Proof of Proposition 2. Estimate (57) follows from

E
[
sup

0≤s≤t

∥∥(Gu0X
)
s
−
(
Gû0Y

)
s

∥∥2
H

]
≤ 4 sup

0≤s≤t
∥Ss
(
u0 − û0

)
∥2H

+16t

(
E
[
sup

0≤s≤t

∫ s

0

∥∥Ss−τ

(
F(Xτ )− F(Yτ )

)∥∥2
H
dτ

]
+E

[
sup

0≤s≤t

∫ s

0

∥∥Ss−τ

(
B(Xτ )− B(Yτ )

)∥∥2
H
dWτ

])

≤ 4M2∥u0 − û0∥2H + 16M2tE

[∫ T

0

∥∥F(X)− F(Y)
∥∥2
Bs
ds

]

+CT

∫ T

0

θ
(∥∥X−Y

∥∥2
Bs

)
ds

≤ 4M2∥u0 − û0∥2H + 16M2t

∫ T

0

θF
(∥∥X−Y

∥∥2
Bs

)
ds

+CT

∫ T

0

θ
(∥∥X−Y

∥∥2
Bs
ds
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(see (24) and (58)). 2

Now we are in a position to give the proof of the main theorem of this paper.
Proof of Theorem 1 As said before (see Remark 14), without loss of generality we may assume
that g(u) is globally Lipschitz and increasing function. We may adapt the reasoning of the proof
of Proposition 2 to the functions{

F(Xt) = µ
(
Xt + 10

)
− ĝ
(
Xt + 10

)
+QSθ(Xt),

B(Xt) = εQSθ(Xt).
(60)

(see (56)). More precisely, since (57) implies
∥∥Gu0X

∥∥2
Bt

≤ 22
(∥∥Gû00

∥∥2
Bt

+
∥∥Gu0X− Gû00

∥∥2
Bt

)
≤ 22

(∥∥Gû00
∥∥2
Bt

+ 4M2∥u0∥2H + ĈT

∫ T

0

θF,B
(∥∥X∥∥2Bs

)
ds

)
, t ∈ [0,T],

we deduce

∥Xn+1∥2Bt
≤ v0 + α

∫ t

0

θF,B
(
∥Xn∥2Bs

)
ds, n ≥ 0, (61)

where v0 = 4
(
max{4M2, 1}∥X0∥2H +

∥∥Gû00
∥∥2
Bt

)
and α = 4ĈT > 0. Next, from Theorem 2, we

consider a global solution v on [0,T] of the simple integral equation

v(t) = v0 + α

∫ t

0

θF,B
(
v(s)

)
ds, t ∈ [0,T]. (62)

From (62) we have

v(t)− ∥Xn+1∥2Bt
≥ α

∫ t

0

(
θF,B

(
v(s)

)
− θF,B

(
∥Xn∥2Bs

))
ds.

Certainly ∥X0∥2H ≤ v0 (see (51)). Then, the monotonicity of the function θF,B(U) implies, by
induction, the inequality

∥Xn∥2Bt
≤ v(t) for t ∈ [0,T],

where the function v(t) is independent on n (see (62)). Thus, {Xn}n≥0 is a bounded sequence in
BT. Therefore, for each n ≥ 0

rn(t)
.
= sup

m≥n
∥Xm −Xn∥2Bt

is a nonnegative, uniformly bounded, and nondecreasing function on t ∈ [0,T]. By construction,
for each t ∈ [0,T], we may consider the nonincreasing sequence {rn(t)}n≥0. It implies the existence
of a nonnegative, and nondecreasing function given by

r(t) = lim
n→∞

rn(t), t ∈ [0,T].

On the other hand, a similar reasoning as in the proof of Proposition 2 leads to

∥Xm −Xn∥2Bt
≤ α

∫ t

0

θF,B
(
∥Xm−1(s)−Xn−1(s)∥2Bs

)
ds.

Therefore we obtain

r(t) ≤ rn(t) ≤ α

∫ r

0

θF,B
(
rn−1(s)

)
ds, t ∈ [0,T]

whence, by the Lebesgue Convergence Theorem,

r(t) ≤ α

∫ r

0

θF,B
(
r(s)

)
ds, t ∈ [0,T].
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Now, we deduce that r(t) ≡ 0 for t ∈ [0,T] thanks to Theorem 2. Since

∥Xm −Xn∥pBT
≤ rn(T)

we conclude that

∥Xm −Xn∥2BT
→ 0 as m,n → ∞.

Therefore, the Picard type approximation, {Xn}n≥0 ⊂ BT given by (51), is a Cauchy sequence in
BT and then we have proved the existence of a point fixed, X, of the operator Gu0 . So, we get the
existence and uniqueness of the solution Xu0 . Moreover, the inequality (57) becomes

∥uu0 − uû0∥2Bt
≤ 4M2∥u0 − û0∥pH + ĈT

∫ t

0

θF,B
(
∥uu0 − uû0∥2Bs

)
ds, (63)

for ∈ [0,T]. Therefore, we may rewrite (63) using the integral inequality

∫ ∥uu0 − uû0∥2Bt

4M2∥u0 − û0∥2H

ds

θF,B(s)
≤ ĈTt, 0 ≤ t ≤ T.

Finally, since we are working in H = L2(I), we have((
Gu0X

)
s
−
(
Gû0X

)
s

)
+
≤ Ss

(
u0 − û0

)
+
.

Then, by the reasoning of the proof of Proposition 2, we deduce

∥
(
uu0 − uû0

)
+
∥2Bt

≤ 4M2

(
∥
(
u0 − û0

)
+
∥2H + ĈT

∫ t

0

θF,B
(
∥
(
uu0 − uû0

)
+
∥2Bs

)
ds

)
(64)

for which the conclusion holds. The proof of the comparison part of the Theorem is as follows:
From (64) we get

∥
(
Xu0 −Xû0

)
+
∥2Bt

≤ ĈT

∫ t

0

θF,B
(
∥
((
uu0 − uû0

)
+
∥2Bs

)
ds, t ∈ [0,T].

Then, from the above conclusions of the Theorem we find that ∥
(
uu0
t − uû0

t

)
+
∥2H = 0. 2

Remark 15 Many extensions of the main result of this paper seem to be possible. For instance,
we can consider the case of function c(x) taking into account the different heat capacity of conti-
nents and seas, we can replace the emitted radiative energy by a more general term of the form
g(t, x, u), we can consider a more general diffusion operator, and , finally, we can also consider the
noise corresponding to a time-periodic Solar function Q(t) (whose case deterministic was treated
in [3]). 2

Remark 16 Other types of generalizations will be presented in the paper [22] where, for instance,
we prove the uniqueness of solutions of some abstract stochastic differential equations, under
Nagumo’s type conditions, which are especially useful when there are some singularities in terms
that depend on time. 2
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