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Abstract
The notion of L-boundary, a new causal boundary proposed by R. Low based on
constructing a ‘sky at infinity’ for any light ray, is discussed in detail. The analysis of
the notion of L-boundary will be done in the 3-dimensional situation for the ease of
presentation. The proposed notion of causal boundary is intrinsically conformal and,
as it will be proved in the paper, under natural conditions provides a natural extension
M of the given spacetime M with smooth boundary ∂M = M\M . The extensions M
of any conformal manifold M constructed in this way are characterised exclusively
in terms of local properties at the boundary points. Such extensions are called L-
extensions and it is proved that, if they exist, they are essentially unique. Finally it is
shown that in the 3-dimensional case, any L-extension is equivalent to the canonical
extension obtained by using the L-boundary of the manifold.

Keywords Causal boundary · c-Boundary · L-boundary · Conformal spacetime

1 Introduction

In his seminal paper about the conformal treatment of infinity [29], R. Penrose argued
that in order to deal with the properties of the fields at null infinity we should seek

B A. Ibort
albertoi@math.uc3m.es

A. Bautista
abautist@math.uc3m.es; alfredo.bautista@uam.es

J. Lafuente
lafuente@mat.ucm.es

1 Dpto. de Matemáticas, Univ. Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés,
Madrid, Spain

2 Dpto. de Análisis Económico: Economía Cuantitativa, Univ. Autónoma de Madrid, C/ Francisco
Tomás y Valiente, 5, 28049 Madrid, Spain

3 Instituto de Ciencias Matemáticas CSIC - UAM - UC3M - UCM (ICMAT), Madrid, Spain

4 Dpto. de Geometría y Topología and Instituto de Matemáticas Interdisciplinar (IMI),
Univ. Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-018-2479-9&domain=pdf
http://orcid.org/0000-0002-0580-5858


  153 Page 2 of 47 A. Bautista et al.

for an extension of the conformal structure of spacetime across null infinity. In this
way, in specific examples, a geometric notion of asymptotic flatness at null infinity was
provided that allows to be represented by a conformal boundary, a hyper-surface in the
extended spacetime. Then the asymptotic behavior of fields that satisfy conformally
covariant equations is greatly simplified if the spacetime admits a conformal extension
of sufficient smoothness, that is, asymptotically simple. Since then a large body of
research has been devoted to exploit these ideas that allowed to understand better
the asymptotic behaviour of solutions of Einstein’s field equations. A large body of
literature has been devoted to study for various explicit solutions whether they admit
the required conformal extension (see for instance [1,30] and references therein). It
must be pointed out though that it is not understood yet which Cauchy data which are
asymptotically flat in the sense of the standard Cauchy problem at space-like infinity
evolve into asymptotically simple solutions (see for instance [11]).

Soon after the introduction of conformal boundaries to understand the physical
properties of fields at infinity, Geroch, Kronheimer and Penrose again, in the striking
paper [12] introduced the notion of ideal points as a way to deal with singularities in
models of space–time constructed according to the general theory of relativity, thus as
the singularities themselves cannot be regarded as actually belonging to the manifold,
we are led to consider methods of constructing additional ideal points which, when
adjoined to M , result in a unified structure M incorporating ‘singular’ as well as ‘non-
singular’ points [12]. The boundary constructed according with the ideas expressed
in the previous work, the GKR-boundary, causal boundary, or just the c-boundary for
short, is intrinsic to the given spacetime and conformally invariant and, as a difference
with the conformal one, the c-boundary only takes into account for its construction
time-like curves and directions.

However the notion of the c-boundary itself was not free from difficulties and
controversies.Wewill just mention the so called identification problem between future
and past preboundary points that affects the selection of a natural topology for it (see
for instance [31] and references therein for a detailed review on the subject). In spite
of all this, the incorporation of ideas by Marolf and Ross [27] allowed Flores, Herrera
and Sánchez [10] to put all ingredients together to prove that there is an (essentially
unique) choice for the c-boundary which is consistent with the conformal boundary
in the natural cases, giving a definitive support to both boundaries and closing in this
way a long standing debate.

Thus one of the main achievements of the aforementioned work is to provide gen-
eral conditions that guarantee that the (accessible) conformal boundary agrees with
the c-boundary and the obtention of computable conditions for the conformal bound-
ary points which are C1 [10, Sects. 4.2, 4.3]. The notion of conformal envelopments
i : M → M0 allows them to discuss the possible chronological and causal relations
definable in the conformal boundary ∂i M associated to it. In particular, the conditions
found by Flores et al. that guarantee that the accessible part of the conformal boundary
will coincide with the c-boundary (regular accessibility) will allow to prove that the
absence of time-like points at the boundary implies the equivalence of the boundaries
and is equivalent to the global hyperbolicity of the spacetime, hence for globally hyper-
bolic spacetimes with C1 conformal boundary the conformal and causal boundaries
are equivalent however, as the examples discussed in [14] show there are globally
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hyperbolic spaces without a conformal boundary. Thus some additional conditions
must be imposed on the conformal envelopments, which must be constructed on each
instance, in order to obtain a satisfactory conformal boundary and the smoothability
of the boundary plays an important role in this situation.

In this work a new approach to the construction of a smooth conformal/causal
boundary for a strongly causal spacetime M is considered. This new boundary, called
in what follows L-boundary because of its proponent R. Low and because it relies on
an imaginative use of light rays, is profoundly inspired by Penrose’s twistor program.
Actually, the main idea comes from considering the space of light rays instead of the
space of events in spacetime as the main object in the analysis of causality. In fact,
spacetime events can be identified with the congruence of light rays arriving to it, the
so called sky of the event and, in the case that there is a one-to-one correspondence
between events and skies (such spacetimes are said to be sky separating), we may try
to study the causality (and other physical aspects) of the theory by studying instead
the space of light raysN and the space of skiesΣ lying on it. A number of conjectures
regarding this program were raised by R. Low and others (see for instance the results
on the beautiful conjectures on the relation between causality and contact and sym-
plectic geometry in [6,7]). The consistency of the program was proved when various
reconstruction Theorems were obtained showing that under natural and rather mild
conditions the topological, differential and causal properties of the original spacetime
are fully characterized in terms of appropriate topological, differential and geometrical
structures on the space of light rays and a family of skies [2,3].

Thus the development of a topological characterization of causality relations in the
space of light rays started by Low [17] (see also [18–21]) led the author to sketch a
new definition of a causal boundary for a strongly causal spacetime by considering the
problem of attaching a future endpoint to a null geodesic γ in the space of light raysN
of the given spacetime [23]. The main idea is to treat all null geodesics which ‘focus’
at the same point at infinity as the ‘sky’ of the (common) future endpoint of these null
geodesics. In the recent paper [4] a precise definition of the L-boundary was presented
for 3-dimensional spaces–times as well as some preliminary properties and examples,
among them some results discussing its relation to the c-boundary discussed before.
The obtained results were encouraging enough to continue the study of this new notion
of causal boundary because, if it exists, it has a bundle of interesting properties that
complement in a natural way the discussion above on the relation between the confor-
mal and the c-boundary. To begin with the L-boundary is intrinsically conformal and
is formulated entirely in terms of the space of light rays N of the spacetime M . Sec-
ondly, and this is one of the main results of the present paper, under natural conditions
if it exists is smooth, providing a natural differentiable framework to the construction
of conformal envelopments needed for the setting of conformal boundaries discussed
before. Moreover the construction of the L-boundary is explicit and provides a beau-
tiful bridge between the structures present in the space of events M and the space
of light rays N , opening the road to a new understanding of the relations between
topology and causality outlined above. Hence in the present paper the differentiable
foundations for the construction of the L-boundary are laid and a number of results
are obtained, among them the existence, under suitable natural conditions, of a class
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of extensions of the spacetime, called in the paper L-extensions, that are the natural
candidates for conformal envelopments.

The paper will be organised as follows. Section 2 will be devoted to succinctly
review the main notions and notations regarding the space of light rays of a spacetime
and their skies. In Sect. 3 the idea behind the notion of the L-boundary sketched
before will be revised in depth and its relation to the blowing up and down techniques
in algebraic and symplectic geometry will be discussed, in particular the blow up
space ˜N of a spacetime M will be defined. Moreover the main conditions satisfied for
the spacetimes considered in this paper will be clearly established and a preliminar
notion of L-spacetimes will be stated. The example of a globally hyperbolic block in
3-dimensional Minkowski space will be thoroughly worked out as a sort of roadmap
that could help the reader with the more technical aspects of the theory developed in
subsequent sections.

Section 4 will be devoted to introduce various local descriptions for the ambient
space P(H), the projectivisation of the contact structure on the space of light rays, that
will be used widely in the rest of the paper. In Sect. 5 it will be shown that there exists a
projective parametrisation for light rays that will be used sparingly in the constructions
to follow. In Sect. 7 the canonical extension of 3-dimensional L-manifolds will be
constructed as the quotient of the natural closure ˜N of the extended space of light
rays with respect to the natural distributions⊕ and� defined by the tangent spaces to
skies at infinity. This section is the most technical part of the paper and where the main
Theorem will be proved, Theorem 7.1, that shows that under the natural conditions
stated in Sect. 3, the canonical distribution ˜D on the blow up space ˜N , defined by
the tangent spaces to the skies, is extended smoothly to its boundary. This result,
together with a compactness assumption on the leaves of the boundary distribution,
will allow to show that the extended spacetime M obtained glueing the L-boundary
to M is a smooth manifold with boundary. Finally, in Sect. 8 the general notion of L-
extension will be introduced and their main properties discussed, in particular it will
be shown that L-extensions are essentially unique and that the canonical extension
defined by the L-boundary of a L-manifold is a L-extension. Some examples showing
that the conditions used in characterising L-extensions cannot be relaxed will also be
discussed.

2 The space of light raysN of a spacetimeM and other background
notions and notations

We will summarise first some basic facts on the space of light rays of a spacetime of
dimension m > 2 in order to introduce the objects subject of this work (see [2,3] and
[4] and references therein for more details).

Consider a time-oriented m-dimensional conformal Lorentz manifold (M, C), that
is, a time-oriented m-dimensional Hausdorff smooth manifold M equipped with a
conformal class C = {g = λg0 | λ > 0} of Lorentz metrics g. We define the space of
light rays N corresponding to (M, C) by

N = {γ (I ) ⊂ M | γ : I → M is a maximal null geodesic} ,
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that is, as the set of all images of maximal null geodesics. As a consequence of [25,
Lemma 2.7] and [15, Lemma 2.1], we get that any null geodesic γ = γ (t) for the
metric g0 ∈ C is a null pregeodesic for any other metric g ∈ C and this implies that
N does not depend on any particular metric in C or, in other words, it depends just
on the conformal structure of the Lorenztian manifold M . Each one of these images
is called a light ray and, from the definition of N , one can interpret a light ray as an
unparametrised null geodesic. If there is no risk of confusion we will use the same
greek letter, usually γ , to denote both an element of N , γ ∈ N , and the image in M
of the corresponding maximal null geodesic, γ ⊂ M .

Actually, for M strongly causal, the hausdorffness of N is equivalent (see [19,
Sect. 3]) to the null pseudo-convexity of M , that is, for any compact K ⊂ M there
exist a compact K ′ ⊂ M such that any segment of light ray with endpoints in K is
contained in K ′.

It is possible to equip N with suitable topological and differentiable structures,
by using coordinate charts of subbundles of the tangent bundle T M , as done in [2,
Sect. 2.3]. Indeed, if we fix an auxiliary metric g ∈ C, then we can define the sub-
bundle of future light-like vectors on M by N

+ = {v ∈ T M : g (v, v) = 0, v �=
0, v future} ⊂ T M . Its fibre at p ∈ M will be denoted by N

+
p . We will denote by

N
+ (W ) the restriction of N

+ to some given set W ⊂ M , and by

PN (W ) = {

[u] : v ∈ [u]⇔ ∃λ > 0 : v = λu ∈ N
+ (W )

}

, (2.1)

the bundle of lines in N
+ (W ).

Observe that two different proportional vectors v1, v2 ∈ N
+
p define different null

geodesics with the same image inM , therefore both v1 and v2 define the same light ray
γ ∈ N . We will denote by γ[v] ∈ N the light ray corresponding to the image of a null
geodesic γ : I → M such that γ ′ (0) = v ∈ N

+
γ (0). Because we are assuming that M

is strongly causal, for any p ∈ M there exists a globally hyperbolic, causally convex
and convex normal neighbourhood V ⊂ M with a differentiable and spacelike Cauchy
surface C ⊂ V such that any causal curve entering in V , intersects C in a singleton
(see for instance [25]). In particular, the intersection of any light ray passing through
V with C is exactly one point. Then any [v] ∈ PN (C) defines, unambiguously, a light
ray passing through V . We can choose the restriction

Ω (C) = {

v ∈ N
+ (C) : g (v, T ) = − 1

}

as a model for PN (C), where T ∈ X (M) is a fixed global time-like vector field. The
submanifoldΩ (C) allows to define coordinates inNV = {γ ∈ N : γ∩V �= ∅} ⊂ N .
Calling Ω (V ) the corresponding restriction of N

+ (V ) analogous to Ω (C), then we
have the following diagram

Ω (V ) NV

Ω (C) PN (C)

γ

ξ
inc

πN

PN

μ

(2.2)
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where γ : Ω (V ) → NV is a submersion defined by γ (u) = γu and the map
ξ = γ|Ω(C) is a diffeomorphism obtained by the restriction of γ to the hypersurface
Ω (C) ⊂ Ω (V ), as seen in [2, Sect. 2.3]. Notice that Ω (C) is a section of the bundle
πN

PN
: N

+ (C) → PN (C)1 and the map μ : PN (C) → NV is a diffeomorphism [2,
Sect. 2.3]. We will also use the notation γ[v] = μ ([v]) ∈ N .

For any x ∈ M , the set .2

S (x) = {γ ∈ N : x ∈ γ ⊂ M} (2.3)

will be called the sky of x and consist of all light rays passing through x . Since each
[v] ∈ PNx defines a light ray γ[v] ∈ N , then S (x) is diffeomorphic to the standard
sphere S

m−2.
We will say that M is sky-separating if the sky map S from M to the set of skies

Σ = {X ⊂ N : X = S (x) for some x ∈ M} mapping any x ∈ M into its sky
S(x), is injective, that is, S (x) = S (y) implies that x = y. If we assume that M
is sky-separating, then it is possible to define the reconstructive or regular topology
[2, Definition 1], [3, Definition 13], in the set of all skies in such a way that the map
S : M → Σ is a diffeomorphism [3, Corollary 17], when the differentiable structure
of the space of skies Σ is compatible with said topology.

A light ray is an unparametrised curve, but if we fix an auxiliary metric g ∈ C, given
a local Cauchy hypersurface C as before, the geodesic parameter of a light ray γ ∈ N
in the corresponding open set in N defined by C , is determined by the initial values
γ (0) ∈ C and γ ′ (0) ∈ Ω (C). Recall that a differentiable curve Γ : (− ε, ε) → N
such that Γ (0) = γ defines the vector Γ ′ (0) ∈ TγN . Then, assumed g ∈ C is fixed,
the curve Γ corresponds to a variation f : (− ε, ε)× I → M of null geodesics in M ,
and Γ ′ (0) can be defined by the Jacobi field defined by f for s = 0, that is

J (τ ) = ∂f (s, τ )

∂s

∣

∣

∣

∣

s=0
∈ Tγ (τ)M .

Recall that a Jacobi field J along a geodesic γ is a vector field along γ satisfying the
differential equation

J ′′ = R
(

J , γ ′
)

γ ′ (2.4)

such that the prime symbol (′) in J denotes the covariant derivative along γ and R is the
curvature tensor [28, Definition 8.2]. When all geodesics γs = f (s, ·) of the variation
f are such that the value of g

(

γ ′s , γ ′s
)

is independent of s then the corresponding Jacobi
field J along γ = γ0 satisfies the property

g
(

J (τ ) , γ ′ (τ )
) = constant

for all τ ∈ I [8, Lemma 2.1]. We will work with variations such that g
(

γ ′s , γ ′s
) = 0

for all s.

1 We will preferably denote by π A
B the canonical projection of the bundle π A

B : A→ B.
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If we choose another metric g ∈ C, the light ray γ ∈ N can be parametrized as a
null geodesic related to g by γ = γ (τ) where τ = h (τ ) is the corresponding change
of parameter such that γ (τ) = γ (h (τ )). The same curve Γ ⊂ N defines a variation
of null geodesics f in (M, g) such that its Jacobi field along γ = γ = Γ (0) ∈ N
verifies

J (τ ) = J (h (τ ))
(

mod γ ′ (h (τ ))
)

for all τ , then the vector ξ = Γ ′ (0) ∈ TγN can be identified with an equivalence
class of Jacobi fields on γ given by

〈J 〉 = J
(

mod γ ′
)

. (2.5)

The space of light rays N has a relevant canonical contact structure, that is, a
maximal non-integrable2 hyperplane distribution H ⊂ TN , which can be described
by Jacobi fields as in [22,23] by

Hγ = {〈J 〉 ∈ TγN : g (J , γ ′
) = 0} (2.6)

where g ∈ C. Notice that the contact structure H depends only on the conformal
structure C.

Given x ∈ M then, for any parametrized γ ∈ X = S (x) ∈ Σ such that γ (s0) = x ,
we have

Tγ X =
{〈J 〉 ∈ TγN : J (s0) = 0

(

mod γ ′
)}

(2.7)

hence, for 〈J 〉 ∈ Tγ X , we have that g
(

J , γ ′
) = 0 because J (s0) = 0

(

mod γ ′
)

and
this implies that Tγ X is a (m − 2)-dimensional subspace inside of the (2m − 4)-
dimensional vector space Hγ ⊂ TγN . Therefore any sky X is a Legendrian
submanifold of the contact structureH on N .

Observe that, if γ ∈ N such that x, y ∈ γ ⊂ M satisfy 0 �= 〈J 〉 ∈ Tγ S (x) ∩
Tγ S (y), then x, y are conjugate points of the Jacobi field J along γ . Then we will say
that M is light non-conjugate if for any x, y ∈ M such that γ ∈ S (x) ∩ S (y) ⊂ N
then Tγ S (x) ∩ Tγ S (y) = {0}. Along any null geodesic γ in (M, g), we can always
find two non-conjugate points p, q ∈ γ and this means that Tγ S (p)∩ Tγ S (q) = {0}.
Since Tγ S (x) ⊂ Hγ for all x ∈ γ and dim

(

Tγ S (p)⊕ Tγ S (q)
) = dim

(Hγ

)

then
we have that

Hγ = Tγ S (p)⊕ Tγ S (q) (2.8)

for any pair of non-conjugate points p, q ∈ γ . Notice that because of (2.8) the con-
tact structure is spanned by tangent spaces to skies, hence again, it shows that H is
independent from the metric in C and is a conformal invariant.

2 Let us recall that non-integrable means that given any local 1-form α such that locally H = ker α, then
dα is non-degenerate when restricted to H.
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3 The L-boundary

As it was discussed in the introduction, the objective of this work is to construct a
new causal boundary that complements the main features of the causal c-boundary
and the conformal boundary. Such notion of causal boundary, introduced by Low
[23], was started to be developed in the recent article [4] where some examples and
preliminary results were exhibited. The main characteristic of the L-boundary is that
its construction relies only on the conformal structure of the original spacetime and,
following Penrose’s insight as developed by R. Low, it uses the geometrical structure
of the space of light rays.

3.1 Blowing up and down a spacetime

In this section we will offer another approach to the construction of the L-boundary,
closely related the well-known ‘blowing up’ and ‘blowing down’ techniques in alge-
braic and symplectic geometry, that could help to visualize the constructions leading
to the notion of the L-boundary.

The main idea behind the construction of points in the L-boundary can be sum-
marised as follows. If we identify the events x of the given spacetime M with their
corresponding skies X = S(x),3 then the L-boundary is obtained by adding ‘skies at
infinity’.

As we were indicating above, the way to do that is reminiscent of the well-known
blowing up and down techniques in algebraic and symplectic geometry (see for
instance [24, Chap. 7.1]). Blowing up the origin inC

n consists in removing the point 0
and replacing it by the lines passing through it, that is, we replace C

n by the manifold
˜C
n
0 = {(z, l) ∈ C

n × CP
n−1 : z ∈ l ∈ CP

n−1}.
As a set, the blown up space ˜Cn

0 is just C
n\{0} � CP

n−1 with CP
n−1 being the

space of complex tangent lines through the origin. Notice that CP
n−1 ⊂ ˜C

n
0 as the

subset {(0, l) : l ∈ CP
n−1} (called the exceptional divisor). The projection onto the

first factor induces a diffeomorphism between ˜Cn
0\CP

n−1 and C
n\{0} and collapses

(blows down) the exceptional divisor CP
n−1 onto the origin 0 ∈ C

n . The blown up
space ˜Cn

0 can also be visualized as the tautological line bundle L over CP
n−1 where

the fibre over l ∈ CP
n−1 is the line l itself considered as a one-dimensional space in

C
n . Notice that the zero section of the bundle can be identified with the exceptional

divisor CP
n−1. We may recover the original space by identifying back all the lines

l ∈ CP
n−1 among themselves or, if you wish, collapsing the base space of the bundle

to one point.
Actually, there is no reason to restrict ourselves to C

n or to blow up and down just
a single point 0. We may consider a time-oriented strongly causal null pseudoconvex
Lorentzian manifold M whose space of all future-oriented unparametrized causal
geodesics is a smooth Hausdorff manifold [19]. For the purposes of this work we will
only need the subspace of future oriented maximal null geodesics N as it is the one

3 Actually it can be shown that under certain natural conditions both spaces, the spacetime M and the
space of skies Σ , are diffeomorphic and the conformal structure of the spacetime can be recovered from
the structure of the pairN and Σ [2,3].
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that captures the conformal properties of the original spacetime. Thus, we may define
the blown up space ˜M of the conformal spacetime (M, C) as the smooth manifold:

˜M = {(x, γ ) ∈ M ×N : x ∈ γ ∈ X = S(x) ⊂ N } ,

with S(x) the congruence of null geodesics passing through x , that is, the sky at x .
It is clear that the natural fibration πM : ˜M → M defines a fibre bundle structure
over M (the charts defined in Sect. 2 would provide the desired local trivializations of
πM ) with standard fibre S

m−2 (m = dim M). Hence we would construct the boundary
of M determining if there exists a natural boundary ∂ ˜M and an extension π̃M of the
projection πM to it. Then ‘blowing down’ the fibres of π̃M wewill obtain the boundary
of M we are looking for.

However the previous description of the blown up space ˜M is not appropriate
because there is not an obvious embedding into a larger space ˜M ⊂ Ω that would help
to identify the boundarywe are after. As it will be clear inwhat follows, it ismuchmore
convenient to consider the projection πN : ˜M → N induced by the projection onto
the second factor of the product manifold M×N . The fibre of πN at γ is the graph of
the geodesic γ in M , but notice that each point x ∈ γ , determines the sky S(x), and
γ ∈ S(x) for all x ∈ γ , thus as the point x moves along γ the sky S(x) changes with
x . Thus we would like to follow the sky S(x) as x moves to the ‘end’ of γ . Now it is
clear that instead of considering the sky S(x) itself is more convenient to look at its
tangent space at γ . The tangent space Tγ S(x) to the sky S(x) at γ will be a (m − 2)-
plane Tγ S(x) in TγN . Even more, because of (2.7), Tγ S(x) ⊂ Hγ , and the tangent
space to the sky S(x) at γ lies in the contact hyperplane Hγ . Thus we may consider
the space ˜M as sitting inside the Grasmannian Grm−2(H) of (m − 2)-planes on the
contact distribution H by means of the canonical embbeding: ι : ˜M → Grm−2(H),
ι(x, γ ) = Tγ S(x) ∈ Grm−2(Hγ ). For the purposes of this work we will denote the
range of the embbeding ι as ˜N , thus

˜N =
{

Tγ S(x) ∈ Grm−2(Hγ ) : x ∈ γ ∈ N
}

,

and we will call it in what follows the blow up of the spacetime M . Then the projection
πN : ˜N → N becomes the restriction of the canonical projection π : Grm−2(H) →
N (that maps every (m − 2)-plane Wγ �→ γ ) that will be denoted again, with a
slight abuse of notation, by πN . The fibre at γ will be denoted for short by γ̃ , that is
π−1N (γ ) = γ̃ = {Tγ S(x) | x ∈ γ }.

Choosing a parametrization γ (t) of the geodesic γ , there is a natural way of looking
for the boundary of ˜N in Grm−2(H) by looking at the trace left by the skies at infinity.
That is, if γ : (a, b) → M is a future-oriented inextendible null geodesic, we can
define the curve γ̃ : (a, b) → Grm−2

(Hγ

)

defined by γ̃ (t) = Tγ S (γ (t)). If the
limit points

�γ = lims �→a+ γ̃ (s) ∈ Grm−2
(Hγ

)

,

⊕γ = lims �→b− γ̃ (s) ∈ Grm−2
(Hγ

)

,
(3.1)
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Fig. 1 Diagram summarizing the
spaces related to the blow up
space ˜N . The dimensions of the
various spaces are indicated as
superindices. The space of skies
Σ is identified with M and ˜N
sits inside the contact
Grassmannian Grm−2(H)

Grm−2(H)

⋃
γ∈N γ̃ = Ñ 2m−2 ∼= Σ̃2m−2 =

⋃
x∈M X̃

N 2m−3 Mm ∼= Σm

πN πM

exist, they will represent the tangent space to the ‘sky at infinity’, hence we define
the boundary ∂+ ˜N = {⊕γ | γ ∈ N } and ∂− ˜N is defined similarly (see Fig. 2 for a
pictorical representation of such construction).

Notice that given a point x ∈ M , its sky X = S(x) determines a submanifold
˜X = {Tγ X | γ ∈ X} ⊂ ˜N , which corresponds to the fibres of the canonical projection
map πM : ˜N → M given by πM (Tγ S(x)) = x (see Fig. 1). The fibres ˜X of πM define
a canonical distribution D∼ on ˜N . It will be the main contribution of this paper
(see Theorem 7.1) to show that the distribution D∼ can be extended smoothly to the
boundary of the blown up space ˜N . Hence, blowing down the integral leaves of total

distribution on the closure ˜N , that is, considering the quotient space defined by its
leaves, will provide the extension M and the L-boundary we are looking for.

3.2 L-spacetimes

Notice that in the particular simple instance of 3-dimensional spacetimes, skies are
circles and their tangent spaces are lines in the bidimensional contact plane Hγ , thus
the Grasmannian Grm−2(Hγ ) becomes P(Hγ ), the space of lines in the contact plane
Hγ which is diffeomorphic to S

1. We will take advantage of this and present the con-
struction of the L-boundary on 3-dimensional spacetimes. This choice will provide
significant technical simplifications making the main ideas involved on such construc-
tion more transparent.

Thus, if the null geodesics γ define a nice boundary ∂+ ˜N at +∞ in P(H), and
the tangent spaces to the skies at infinity ⊕γ = lims→∞ Tγ S(γ (s)) define an inte-
grable distribution, its integral leaves will define the actual skies at infinity, hence
the corresponding quotient space will define a boundary for M , its points being the
‘events’ defined by the skies at infinity (see in Fig. 2 a pictorical representation of the
correspondence between the skies at infinity and the points of the L-boundary).

Of course, in general, it is not true that the tangent spaces to the skies at infinity
define a nice boundary, or that the integral curves of the distributions ⊕, � define a
smooth manifold, however, as we will see in this article, in 3-dimensional spacetimes,
under reasonable technical conditions, the new conformal boundary defined in this
way exists and exhibits a number of interesting features: it is a smooth boundary and
sets the ground for an extension of the conformal structure of the original spacetime.
At the same time we must point out that the restriction to 3-dimensional spacetimes
is not a fundamental one. As it was commented before, in the 3-dimensional case, the
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γ

γ

γ′

γ′

x

S(x)

S(x)

S(γ+∞)

⊕(γ)

�(γ)

γ̃(t)

TγS(x) = γ̃(0)
(M, C)

(N ,H)

∂−
˜N ∼= N

∂+
˜N ∼= N

˜N ⊂ (H)

⊕(γ′)

∞+(γ)

∞−(γ)

∂+M

∂−M
S(∞−(γ))

S(∞+(γ))

S(∞+(γ))

Fig. 2 The construction of the L-boundary. On the left, the spacetime of events M ; on the right, the space
of light raysN . A light ray γ ⊂ M on the left corresponds to a point γ ∈ N on the right, and a sky S(x) (a
congruence of geodesics) on the left, corresponds to a circle on the right. The ‘skies at infinity’, S(∞+(γ )),
are integral curves of the distributions ⊕ and �, represented by blue lines on the boundaries ∂± ˜N ∼= N ,
or congruences of geodesics that approach a point∞+(γ ) at infinity. The ‘skies at infinity’ are glued to the
spacetime M forming its L-boundary (colour figure online)

geometry of the Grassmannian Grm−2(H) is particularly nice and allows to simplify
the technical conditions needed for the various constructions (and helps to visualise
better the objects entering the full picture), thus restricting to such case is just for
the purposes of brevity and clarity in the exposition, leaving a general discussion for
upcoming works (see Sect. 9).

From now on we will assume that the conformal Lorentz manifold (M, C) verifies:

1. dim M = 3.
2. (M, C) is time oriented, strongly causal, null pseudo-convex, light non-conjugate

and sky-separating.
3. The distributions ⊕,� : N → P (H) defined by ⊕γ = lims �→b− Tγ S (γ (s)) and
�γ = lims �→a+ Tγ S (γ (s)) are differentiable and regular and such that⊕γ �= �γ

for any maximally and future-directed parametrized light ray γ : (a, b)→ M .

As it will be shown along the paper, see Theorem 7.1, the set of conditions above
will be sufficient for a spacetime to possess a well defined L-boundary (perhaps not
smooth), then we may introduce the following definition.

Definition 3.1 A smooth manifold M satisfying conditions 2 and 3 above will be said
to be an L-spacetime.
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Notice that, condition 2 above summarises general conditions under which the
topological and differentiable structures of the spaces M andN are good enough (see
[2,3] for a detailed discussion of them). In particular if we consider dim M = 3, then
by [4, Lemma 2.5] M is light non-conjugate if and only if for any X �= Y ∈ Σ

with γ ∈ X ∩ Y then Tγ X �= Tγ Y . Notice that any null geodesic has no conjugate
points contained in any given normal neighbourhood. This implies that the curve
γ̃ (s) = Tγ S (γ (s)) ∈ P

(Hγ

) � S
1 is locally injective. Moreover, if we assume

M to be light non-conjugate, then γ̃ must be injective and therefore the continuity
of γ̃ would imply that the limits ⊕γ and �γ do exist in P

(Hγ

)

, that is they define
1-dimensional subspaces of Hγ .

Condition 3 refers only to the minimum regularity conditions that the distributions
⊕,�must satisfy in order to guarantee that the construction of the L-boundary makes
sense. However, see the discussion after Corollary 7.1, they will not guarantee that the
constructed boundary is smooth.

3.3 A simple example: Minkowski spacetime

We will illustrate the previous ideas using a simple family of L-spacetimes. We will
consider a globally hyperbolic block embedded in 3-dimensional Minkowski space-
time M

3, identified with R
3 = {(t, x, y) | t, x, y ∈ R} with the standard Lorentz

metric g3 = −dt2 + dx2 + dy2 and the corresponding conformal structure. Thus let
a, b be two real numbers such that a < 0 and 1 < b, we will consider the space-
time M

3(a, b) = {(t, x, y) ∈ R
3 | a < t < b} equipped with the restriction of the

Lorentz metric g3 (see Fig. 3a). Since M
3(a, b) ⊂ M

3 is open and they share the
Cauchy surface C = {t = 0} ∼= R

2, their corresponding space of light rays can be
identified with C × S

1, actually the local maps PN(C) → NV defined in Sect. 2 are
now globally defined and PN(C) ∼= C × S

1 ∼= N . Using the previous identification,
we will introduce explicit coordinates (x, y, θ) on N as follows. Given (x, y) ∈ C ,
−π < θ ≤ π , we will denote by γ(x,y,θ) ∈ N the light ray determined by the null
geodesic:

γ(x,y,θ)(t) = (t, x + t cos θ, y + t sin θ), a < t < b. (3.2)

Notice that γ(x,y,θ) cuts the Cauchy hypersurface C at (x, y) and its projection onto
C determines the angle θ with respect to the x-axis.

Thus, given (x0, y0) ∈ C , −π < θ0 ≤ π and t0 ∈ (a, b), we denote by p0 ∈
M

3(a, b), the event:

p0 = γ(x0,y0,θ0)(t0) = (t0, x0 + t0 cos θ0, y0 + t0 sin θ0).

Denoting by γ the geodesic γ(x0,y0,θ0) wewill denote by X(γ, t, s), with a < t < b,
−π < s ≤ π , the family of null geodesics passing through γ (t), that is the sky S(γ (t))
at γ (t). In particular X(γ, t0, s)(τ ) = p0 + τ(1, cos s, sin s). The intersection of the
geodesic X(γ, t0, s) with C happens when τ = −t0, and then,

X(γ, t0, s)(− t0) = (0, x0 + t0(cos θ0 − cos s), y0 + t0(sin θ0 − sin s)) ∈ C .
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(a) (b)

Fig. 3 a A bidimensional projection of the globally hyperbolic block M
3(a, b). The Cauchy hypersurface

C = {t = 0} a light ray γ are drawn. The topological boundary {t = b} is shaded. b The contact planeHγ

at the light ray γ . Lines described by homogeneous coordinates [w : v]γ are drawn in blue. The projective
circle P(Hγ ) is highligthed (the red dots should be identified). The distributions ⊕γ , �γ are marked with
blue dots and the polar coordinate φ is indicated (colour figure online)

Then, using back the notation for geodesics in Eq. (3.2), we get for the light rays in
S(p0):

X(γ, t0, s) = γ(x0+t0(cos θ0−cos s),y0+t0(sin θ0−sin s),s) = γ(x(s),y(s),s).

Hence the sky at p0 is described as the circle centered at p0 of radius t0, (x0 +
t0(cos θ0 − cos s), y0 + t0(sin θ0 − sin s), s), −π < s ≤ π in C × S

1.
The space of light rays N is a smooth Hausdorff 3-manifold (clearly M

3, hence
M

3(a, b), is a L-spacetime) and its tangent bundle TN is 6-dimensional. The global
identification N ∼= C × S

1, provides distinguished basis ∂/∂x |γ , ∂/∂ y |γ , and
∂/∂θ |γ , for TγN , that is:

TγN = span

{

∂

∂x

∣

∣

∣

∣

γ

,
∂

∂ y

∣

∣

∣

∣

γ

,
∂

∂θ

∣

∣

∣

∣

γ

}

.

Thus the tangent space Tγ S(p0) at γ of the sky at p0 is obtained by taking the derivative
at s = θ0 of the curve (x(s), y(s), s) = (x0 + t0(cos θ0 − cos s), y0 + t0(sin θ0 −
sin s), s), thus,

Tγ S(p0) = span

{

t0 sin θ0
∂

∂x

∣

∣

∣

∣

γ

− t0 cos θ0
∂

∂ y

∣

∣

∣

∣

γ

+ ∂

∂θ

∣

∣

∣

∣

γ

}

. (3.3)

If instead of p0 we choose another event in the geodesic γ = γ(x0,y0,θ0), for instance
the intersection {(0, x0, y0)} = γ ∩ C with the Cauchy hypersurface C , then the sky
passing through it has the form γ(x0,y0,s) and its tangent space:

Tγ S(0, x0, y0) = span

{

∂

∂θ

∣

∣

∣

∣

γ

}

.
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Then, because of (2.8), we obtain the 2-dimensional contact hyperplane Hγ ⊂ TγN
at γ ,

Hγ = Tγ S(p0)⊕ Tγ S(0, x0, y0)

= span

{

t0 sin θ0
∂

∂x

∣

∣

∣

∣

γ

− t0 cos θ0
∂

∂ y

∣

∣

∣

∣

γ

+ ∂

∂θ

∣

∣

∣

∣

γ

,
∂

∂θ

∣

∣

∣

∣

γ

}

. (3.4)

Notice that the 1-form α = cos θ dx + sin θ dy on N defines a contact 1-form with
ker αγ = Hγ . Then dα = (sin θ dx−cos θ dy)∧dθ restricted toHγ is nondegenerate.
In fact a simple calculation shows that ker dα is spanned by the vector field R =
cos θ ∂/∂x + sin θ ∂/∂ y, the Reeb field of the contact 1-form α, which is transversal
toH.

We are ready now to describe the blow up space ˜N of M . For that we will observe
first that the bundle of lines on the contact planes over the space of light rays, P(H)→
N , is a bundle of circles over N , that is, the fibre over γ ∈ N is the real projective
space P(Hγ ), i.e., the space of lines passing through 0 inHγ (see Fig. 3b). Such space
is easily described by using homogeneous coordinates. Given w, v two real numbers,
we define the line [w : v]γ ⊂ Hγ , as:

[w : v]γ = span{we1 + ve2},

with e1, e2 a given linear basis ofHγ . Using the natural basis provided by the descrip-

tion of Hγ given in (3.4), that is e1 = t0 sin θ0
∂
∂x

∣

∣

γ
− t0 cos θ0

∂
∂ y

∣

∣

∣

γ
+ ∂

∂θ

∣

∣

γ
and

e2 = ∂
∂θ

∣

∣

γ
, we get:

[w : v]γ = span

{

wt0 sin θ0
∂

∂x

∣

∣

∣

∣

γ

− wt0 cos θ0
∂

∂ y

∣

∣

∣

∣

γ

+ (w + v)
∂

∂θ

∣

∣

∣

∣

γ

}

⊂ Hγ .

Hence, because of (3.3) the line defined by the tangent space to the sky S(p0) at γ has
homogeneous coordinates w = 1 and v = 0, that is Tγ S(p0) = [1 : 0]γ ∈ P(Hγ ).
Similarly Tγ S(0, x0, y0) = [0 : 1]γ (see Fig. 3). We may also consider the polar
coordinate φ = arctan(w/v), then φ(Tγ S(p0)) = π/2 and φ(Tγ S(0, x0, y0)) = 0.
Notice that (x, y, θ, φ) provide a coordinate chart for P(H).

Thus given a geodesic γ = γ(x0,y0,θ0), the curve γ̃ (t) on P(Hγ ) defined by the
tangent spaces to the skies at γ (t), is given by:

γ̃ (t) = Tγ S(γ (t)) = [t : t0 − t]γ ∈ P(Hγ ), (3.5)

i.e., φ(γ̃ (t)) = arctan(t/t0 − t). Thus the blow up space ˜N consists of all lines γ̃ (t),
t ∈ (a, b), in P(Hγ ). Thus we may write:

˜N = {(γ, [t : t0 − t]γ ) : γ ∈ N , a < t < b} ⊂ P(H).
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To calculate the distribution⊕ (similarly for�) we consider the limit t → b− of (3.5),
that is:

⊕γ = lim
t→b−

γ̃ (t) = [b : t0 − b]γ ∈ P(Hγ ),

that is φ(⊕γ ) = arctan(b/t0− b). Thus the line⊕γ is the line spanned by the tangent

vector b sin θ0
∂
∂x

∣

∣

γ
− b cos θ0

∂
∂ y

∣

∣

∣

γ
+ ∂

∂θ

∣

∣

γ
and the boundary ∂+ ˜N is the graph of

the map N → P(H), given by γ �→ (γ, [b : t0 − b]γ ) or, in local coordinates
(x, y, θ) �→ (x, y, θ, φ = arctan(b/t0 − b)) (t0 if fixed for all γ ).

We obtain the sky at infinity of γ as the orbit in N of the distribution ⊕ passing
through γ , that is, we look for curves c(s) = (x(s), y(s), θ(s)) such that:

dx

ds
= b sin θ,

dy

ds
= −b cos θ,

dθ

ds
= 1, (3.6)

with initial value c(0) = (x0, y0, θ0), that is,

c(s) = (x0 + b cos θ0 − b cos(s + θ0), y0 + b sin θ0 − b sin(s + θ0), s + θ0).

Then the light ray corresponding to c(s) is given by [see Eq. (3.2)]:

γs(t) = (t, x(s)+ t cos θ(s), y(s)+ t sin θ(s))

= (t, x0 + b cos θ0 + (t − b) cos(s + θ0), y0 + b sin θ0 + (t − b) sin(s + θ0)).

Thus the orbit Xγ passing through γ consists of the family of light rays γs and all
of them satisfy that limt→b− γs(t) = (b, x0 + b cos θ0, y0 + b sin θ0) for all s, that
is, they are exactly the sky (in M

3) of the event (b, x0 + b cos θ0, y0 + b sin θ0) at
the boundary of M

3(a, b). In other words, the future L-boundary of M
3(a, b) which

is defined as the quotient of ∂+ ˜N ∼= N with respect to the integral curves of the
distribution ⊕, is bidimensional and its leaves can be naturally identified with the
points (b, x0, y0). Notice that the leaves of the distribution⊕ (respect.�) are compact

(actually diffeomorphic to S
1) and the distribution defined on ˜N is regular.

4 Coordinate charts in P (H)

Wewill construct coordinate charts inP (H) from the natural atlas in TN (see [2]).We
will succinctly review the construction of such atlas adapted to the present situation.

Fix g ∈ C an auxiliary metric. Since M is assumed to be strongly causal, by [25,
Remark 2.15], there is a topological basis of globally hyperbolic, causally convex,
normal open neighbourhoods for any q ∈ M . ChooseU ⊂ M one of such neighbour-
hoods. Since U is globally hyperbolic, by [25, Theorem 3.78], there exists a smooth
spacelike Cauchy surface C ⊂ U . Then, any light ray passing throughU intersects C
in a singleton {q} = γ ∩ C .
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Let {E1, E2, E3} be an orthonormal frame in U such that E1 is future-oriented
timelike and {E2, E3} are spacelike and such that E2 (p) and E3 (p) are tangent
to C for all p ∈ C ⊂ U . Consider c ≡ (x, y) a coordinate system for C . Given
θ ∈ (−π, π ], the light ray passing through p ∈ C can be defined by the null geodesic
γ such that γ (0) = p and γ ′ (0) = E1 (p) + cos θE2 (p) + sin θE3 (p). Then,
denoting by NU ⊂ N the open set of all light rays intersecting U , that is

NU = {γ ∈ N : γ ∩U �= ∅}

we can define local coordinates in NU by

ψ : NU → R
3; ψ = (x, y, θ) (4.1)

Notice that if M is globally hyperbolic, as in the example of the Minkowski block
M

3(a, b) discussed in Sect. 3.3, there exists a globally defined Cauchy surface C and
the space of light rays N can be identified with C × S

1. Then any local chart (x, y)
in C will define a local chart (x, y, θ) of N .

Recall [see Eq. (2.5)] that a tangent vector 〈J 〉 ∈ TγNU can be identified with a
class of Jacobi fields along γ modulo γ ′. This Jacobi field can be uniquely determined
by its initial vectors J (0) and J ′(0) at p = γ (0). Taking the equivalence modγ ′ into
account we may choose representatives of these initial vectors in the subspace TpC ,
that is we may choose the initial vectors:

{

J (0) = w2E2 (p)+ w3E3 (p)

J ′ (0) = v2E2 (p)+ v3E3 (p)
(4.2)

and since g
(

γ ′, J ′
) = 0, then v2 cos θ + v3 sin θ = 0 and therefore v2, v3 are deter-

mined one from another. Without any lack of generality we consider cos θ �= 0 then
we choose v = v3, w2 and w3 as local coordinates in TNU . So, a chart in TNU can
be defined by

ψ : TNU → R
6; ψ =

(

x, y, θ;w2, w3, v
)

.

Now, we will define coordinates in HU = H ∩ TNU = ⋃

γ∈NU
Hγ from the

chart ψ . Any 〈J 〉 ∈ Hγ verifies g
(

γ ′, J
) = 0 and therefore w2 cos θ +w3 sin θ = 0.

Then, if cos θ �= 0, we have w2 = − tan θ · w3 and w = w3 can be considered as a
coordinate forHU , then

ϕ : HU → R
5; ϕ = (x, y, θ, w, v) (4.3)

is a coordinate chart. Trivially, the initial vectors J (0) and J ′ (0) are related by

v (〈J 〉) J (0) = w (〈J 〉) J ′ (0) . (4.4)
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Moreover, observe that both J (0) and J ′ (0) have been chosen in the vector subspace

TpC ∩
{

γ ′ (0)
}⊥ ⊂ TpM (4.5)

where
{

γ ′ (0)
}⊥ = {

u ∈ TpM : g (γ ′ (0) , u
) = 0

}

is the subspace orthogonal to
γ ′ (0).

It is also easy to build coordinates in P (H) if we adapt them from the chart ϕ. If
we consider 〈J 〉 ∈ Hγ and 〈J 〉 = 〈λJ 〉 for some λ ∈ R, then we trivially have

{

w
(〈J 〉) = λw (〈J 〉)

v
(〈J 〉) = λv (〈J 〉) (4.6)

then the homogeneous coordinate φ = [w : v] (or equivalently the polar coordinate
φ = arctan(w/v), see Fig. 3b again) verifies

φ
(〈J 〉) = [

w
(〈J 〉) : v (〈J 〉)] = [w (〈J 〉) : v (〈J 〉)] = φ (〈J 〉)

and it determines the line [J ] = span {〈J 〉} ∈ P
(Hγ

)

. Therefore, a coordinate chart
in P (H) can be obtained by

ϕ̃ : P (HU )→ R
4; ϕ̃ = (x, y, θ, φ) . (4.7)

5 A projective parameter for light rays

Under the stated hypotheses, in this section we will show the existence of a maximal
parameter t ∈ (− 1, 1) such that the map defined by

NU × (− 1, 1) → M
(γ, t) �→ γ (t)

is differentiable. The properties of this particular parameter will permit us to extend
the conformal manifold M in such a way that the extension of any light ray will be
transversal to the boundary ∂M .

We need some previous Lemmas.

Lemma 5.1 Let πPN

M : PN→ M be the canonical projection. Then the map

σ : PN → P (H)

[u] �→ Tγ[u] S
(

πPN

M ([u])
) (5.1)

is differentiable.

Proof Since M is light non-conjugate, by [4, Lemma 2.5], then σ is injective.
Now, let us show that σ is differentiable. Fix some auxiliary metric g ∈ C and

consider a globally hyperbolic open set U ⊂ M with a Cauchy surface C ⊂ U .
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We can assume the existence of an orthogonal frame {E1, E2, E3} such that E2, E3
are spacelike and E1 is timelike with respect to the metric g. Also assume that
E2 (c) , E3 (c) ∈ TcC for all c ∈ C .

Let us define, as in (2.1):

PN (U ) =
{

[u] ∈ PN : πPN

M ([u]) ∈ U
}

N
+ (U ) =

{

u ∈ N
+ : πN

M (u) ∈ U
}

where πPN

M and πN

M are the corresponding canonical projection on M . Clearly, we can
identify diffeomorphically PN (U ) with Ω (U ) = {u ∈ N

+ (U ) : g (u, E1) = − 1}
and, with a slight abuse of notation, we will prove that σ : Ω (U )→ P (H) given by
σ (u) = Tγu S

(

πN

M (u)
)

is differentiable.
Define the angle of the projection of u ∈ Ω (U ) on span{E2, E3} by

θ (u) = arctan

(

g (u, E3)

g (u, E2)

)

∈ R

and the curve of vectors at πN

M (u) ∈ U given by

W (u, s) = E1

(

πN

M (u)
)

+ cos (θ (u)+ s) E2

(

πN

M (u)
)

+ sin (θ (u)+ s) E3

(

πN

M (u)
)

∈ TπN

M (u)M .

Assuming the notation of diagram (2.2), now we can define

W (u, s) = ξ−1 ◦ γ (W (u, s)) ∈ Ω (C)

where ξ = γ|Ω(C), and then we can build

f (u, s, τ ) = expπN

M◦W (u,s)

(

τ ·W (u, s)
) ∈ M .

Notice that for every fixed u ∈ Ω (U ) the map fu (s, τ ) = f (u, s, τ ) is a lightlike
geodesic variation with initial values at C running the sky S

(

πN

M (u)
)

and then its
Jacobi field along γu is

Ju (τ ) = ∂ f

∂s
(u, 0, τ )

that, by construction, it satisfies

〈Ju〉 ∈ Tγu S
(

πN

M (u)
)

= σ (u) (5.2)
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and its initial vectors for τ = 0 are given by

⎧

⎪

⎨

⎪

⎩

Ju (0) = ∂ f

∂s
(u, 0, 0)

J ′u (0) = D

dτ

∂ f

∂s
(u, 0, 0)

depending differentially on u ∈ Ω (U ), so the map

Ω (C) → H
u �→ 〈Ju〉 (5.3)

is differentiable. Since 0 �= 〈Ju〉 ∈ H for all u then we can pass to the quotient
obtaining that the map

u �→ [Ju] = Tγu S
(

πN

M (u)
)

∈ P (H)

is differentiable. Then, in virtue of (5.2), σ (u) = [Ju] = Tγu S
(

πN

M (u)
)

is differen-
tiable. ��

Recall that the distributions ⊕ and � defined in Sect. 2 assign to each γ ∈ N , if
they exist, the endpoints of the curve

γ̃ (τ ) = Tγ S (γ (τ )) ∈ P
(Hγ

)

(5.4)

where γ = γ (τ) is a parametrization of the light ray γ . Observe that it is possible to
define the curve γ̃ by

γ̃ (τ ) = σ
([

γ ′ (τ )
])

that, because of Lemma 5.1, it is a differentiable curve.

Lemma 5.2 Given a maximal null geodesic γ : I → M, then the curve γ̃ (τ ) =
Tγ S (γ (τ )) is regular for all τ ∈ I .

Proof Let us assume that γ : I → M is a null geodesic related to the metric g ∈ C.
Moreover, without any lack of generalization, we assume that 0 ∈ I , then it is sufficient
to prove that γ̃ ′ (0) �= 0. If p = γ (0) ∈ M , we can consider an orthonormal frame
{E1 (p) , E2 (p) , E3 (p)} ⊂ TpM taken from the frame used to define the charts of
Sect. 4 such that p ∈ C ⊂ U . Recall that E1 is timelike and E2, E3 are spacelike
then we can write γ ′ (0) = E1 (p)+ cos θ E2 (p)+ sin θ E3 (p). Let {E1,E2,E3} be
the basis of parallel vector fields, transported from {E1 (p) , E2 (p) , E3 (p)}, along
γ . Then we have that

γ ′ (τ ) = E1 (γ (τ ))+ cos θ E2 (γ (τ ))+ sin θ E3 (γ (τ )) .
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Let us define Jt as a Jacobi field along γ such that Jt (t) = 0
(

mod γ ′ (t)
)

, then
〈Jt 〉 ∈ γ̃ (t) and so, by Eqs. (2.6) and (4.4), its initial vectors can be chosen as

{

Jt (0) = u1 (t) (− sin θ E2 (p)+ cos θ E3 (p))

J ′t (0) = u2 (t) (− sin θ E2 (p)+ cos θ E3 (p))
(5.5)

Observe that the Jacobi field Jt is just the image of γ ′ (t) under the differentiable
map (5.3), that is Jt ≡ Jγ ′(t). This implies that the functions u1 (t) and u2 (t) are
differentiable. Moreover, since Jt �= 0 and J0 (0) = 0, then J ′0 (0) �= 0 and so
u1 (0) = 0 and u2 (0) �= 0.

The Jacobi field Jt can be written by

Jt (τ ) =
3
∑

i=1
ηi (t, τ )Ei (γ (τ )) . (5.6)

If we substitute the expression (5.6) in the differential Eq. (2.4) then we have

3
∑

i=1

d2ηi
dτ 2

Ei =
3
∑

i=1
ηi R

(

Ei , γ
′) γ ′

and hence we obtain a system of three linear ordinary differential equations given by

d2η j

dτ 2
=

3
∑

i=1
ηig

(

E j ,E j
)

g
(

R
(

Ei , γ
′) γ ′,E j

)

for j = 1, 2, 3.

whose solutions depend smooth and linearly on the initial values, then

η j (t, τ ) =
2
∑

i=1
a ji (τ ) ui (t) for j = 1, 2, 3.

where A (τ ) = (

a ji (τ )
)

is a differentiable matrix. Therefore

{

Jt (τ ) =∑3
j=1

∑2
i=1a ji (τ ) ui (t)E j (γ (τ ))

J ′t (τ ) =∑3
j=1

∑2
i=1a′j i (τ ) ui (t)E j (γ (τ ))

. (5.7)

If we evaluate (5.7) at τ = 0 and compare it with (5.5), we obtain the values

A (0) = (

a ji (0)
) =

⎛

⎝

0 0
− sin θ 0
cos θ 0

⎞

⎠ ;

A′ (0) =
(

a′j i (0)
)

=
⎛

⎝

0 0
0 − sin θ

0 cos θ

⎞

⎠ . (5.8)
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By the condition Jt (t) = 0
(

mod γ ′ (t)
)

, we get the system

⎧

⎪

⎨

⎪

⎩

a11 (t) u1 (t)+ a12 (t) u2 (t) = λ

a21 (t) u1 (t)+ a22 (t) u2 (t) = λ cos θ

a31 (t) u1 (t)+ a32 (t) u2 (t) = λ sin θ

(5.9)

and calling (B1, B2) = (a21 sin θ − a31 cos θ, a22 sin θ − a32 cos θ), from the sec-
ond and third equation of the system (5.9), we obtain

B1 (t) u1 (t)+ B2 (t) u2 (t) = 0, for all t,

and by the values in (5.8), we can have that (B1 (0) , B2 (0)) = (− 1, 0) and
(

B ′1 (0) , B ′2 (0)
) = (0,−1). Since u2 (0) �= 0 and B1 (0) �= 0, there exists ε > 0

such that u2 (t) �= 0 and B1 (t) �= 0 for all t ∈ (− ε, ε), so we have

u1 (t) = − B2 (t)

B1 (t)
u2 (t) for all t ∈ (− ε, ε)

and the curve t �→ 〈Jt 〉 ∈ Hγ is written in the coordinates (4.3) by

ϕ (Jt ) =
(

x0, y0, θ,− B2 (t)

B1 (t)
u2 (t) , u2 (t)

)

whence the coordinates (4.7) of γ̃ (t) for t ∈ (− ε, ε) are

ϕ̃ (γ̃ (t)) = ϕ̃ ([Jt ]) =
(

x0, y0, θ,

[

− B2 (t)

B1 (t)
u2 (t) : u2 (t)

])

=
(

x0, y0, θ,

[

− B2 (t)

B1 (t)
: 1
])

and because

(

− B2 (t)

B1 (t)

)∣

∣

∣

∣

′

t=0
= B2 (0) B ′1 (0)− B ′2 (0) B1 (0)

B2
1 (0)

= − 1 �= 0

then γ̃ ′ (0) �= 0 as we claimed. ��
Proposition 5.1 The map σ : PN→ P (H) defined in Lemma 5.1 is a diffeomorphism
onto its image.

Proof Using the same notation as in Lemma 5.1, we will show the statement for the
map σ : Ω (U )→ P (H) given by σ (u) = Tγu S

(

πN

M (u)
)

.
Fix some u ∈ Ω (U ). With no lack of generality we can assume that p = πN

M (u) ∈
C , because in other case, since the neighbourhoodU is globally hyperbolic it is possible
to choose another Cauchy surface containing p.
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By Lemma 5.1, σ is a differentiable and injective map. If we consider the restriction
of σ to Ω (C), then π

P(H)

N ◦ σ |Ω(C) = ξ where ξ = γ|Ω(C) : Ω (C) → NU is the
diffeomorphism of diagram (2.2). So, consider the differential

(

dπ
P(H)

N
)

σ(u)
◦ (d σ |Ω(C)

)

u = (dξ)u .

Notice that
(

dπ
P(H)

N
)

σ(u)
is surjective of rank equal to 3 and (dξ)u is an isomorphism

of rank equal to 3, then the rank of
(

d σ |Ω(C)

)

u must be 3.
Now, we will study dσu for a vector in TuΩ (U ) transversal to TuΩ (C). Take the

null geodesic γ = γ (t) such that γ ′ (0) = u, then the curve c (t) = γ ′ (t) ∈ Ω (U )

is regular and transversal to Ω (C) at u. Observe that

σ (c (t)) = Tγ S (γ (t)) = γ̃ (t)

and by Lemma 5.2, we have

dσu
(

c′ (t)
) = γ̃ ′ (t) �= 0

and this show that dσu is an isomorphism. Then, the Inverse function Theorem assures
that σ is a local diffeomorphism for any u ∈ PN and, due to its injectivity, then σ is a
diffeomorphism onto its image. ��

Since dim PN = 4 and dim P(H) = 4, then the previous Proposition has the
following consequence.

Corollary 5.1 The map σ induces a differentiable structure on ˜N = Im (σ ) such that
˜N ⊂ P(H) is an open submanifold.

Now,wewill show the existence of a common inextensible future projective param-
eter t for all γ ∈ NU such that the map (γ, t) �→ γ (t) ∈ M is differentiable. We will
need the following proposition.

Proposition 5.2 For any γ0 ∈ N there exist NU ⊂ N , an interval (a, b) ⊂ R and a
diffeomorphism ε : NU × R → P (HU )− ∞̃ such that ∞̃ is a section of the bundle

P (HU )→ NU where ∞̃∩ ˜N = ∅ and the restriction ε : NU×(a, b)→ P (HU )∩ ˜N
is the diffeomorphism defined by ε (γ, s) = γ̃ (s).

Proof Let us assume the notation of Sect. 4 and fix γ0 ∈ N . By hypotheses, ⊕,� :
N → P (H) are differentiable and regular distributions and therefore there exist an
openNU ⊂ N neighbourhood of γ0 and functions φ⊕ : NU → R and φ� : NU → R

such that φ⊕ (γ ) = φ
(⊕γ

)

and φ� (γ ) = φ
(�γ

)

(see [3, Proposition 2.7]).
Let us consider the coordinated chart (NU , ψ = (x, y, θ)) at γ0 as in Eq. (4.1), and

such that ⊕γ �= �γ for all γ ∈ NU . In this coordinate system, we have that

{

φ
(⊕γ

) ≡ φ⊕ (γ )

φ
(�γ

) ≡ φ� (γ )
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andobserve that if P ∈ P (HU ) is a line of Jacobi fields on someγ ∈ NU that annihilate
at γ ∩ C , then σ−1 (P) ∈ PN (C) and hence, there exists a differentiable function
φ0 : NU :→ R such that φ0 = φ ◦ σ ◦ μ−1, that is φ0 (γ ) = φ

(

Tγ S (γ ∩ C)
)

,

where φ is the coordinate in ˜NU = {P ∈ ˜N : π
P(H)

N (P) ∈ NU } of (4.7), the
map σ is the diffeomorphism (5.1), ˜N is the image of σ according Corollary 5.1,
μ : PN (C) → NU is the diffeomorphism of diagram (2.2) given by μ ([u]) = γ[u]

and π
P(H)

N : P (H)→ N the canonical projection.
For any γ ∈ NU , by the assumption of ⊕γ �= �γ , we can consider the projective

map tγ : P
(Hγ

)→ R ∪ {∞} such that

tγ
(⊕γ

) = 1, tγ
(�γ

) = −1, tγ
(

φ−1 (φ0 (γ ))
) = 0 (5.10)

Let us denote by ∞̃ = {P ∈ P (HU ) : tγ (P) = ∞ for P ∈ P
(Hγ

)}. So, the
function t : P (HU )− ∞̃ → R verifying (5.10) can be found to have the form

t (P) = Aφ (P)+ B

Cφ (P)+ D
, (5.11)

where A, B,C, D ∈ R depends on γ and it becomes

t (P) = (φ� − φ⊕) (φ (P)− φ0)

(2φ0 − (φ⊕ + φ�)) φ (P)+ (2φ⊕φ� − φ0 (φ⊕ + φ�))

where for brevity, we have denoted φ0 = φ0

(

π
P(H)

N (P)
)

, φ⊕ = φ⊕
(

π
P(H)

N (P)
)

and φ� = φ�
(

π
P(H)

N (P)
)

.

Since, by hypothesis, ∂+ ˜NU = {⊕γ : γ ∈ NU
}

and ∂− ˜NU = {�γ : γ ∈ U}
are differentiable hypersurfaces in P (HU ) (diffeomorphic to NU ), as well as σ ◦
μ−1 (NU ), then the functions φ⊕ ◦ π

P(H)

N and φ� ◦ π
P(H)

N are differentiable, as well

as φ0 ◦ π
P(H)

N , therefore t is a differentiable function.
Since,

dt
dφ
= 2 (φ� − φ⊕) (φ⊕ − φ0) (φ� − φ0)
[

(2φ0 − (φ⊕ + φ�)) φ (P)+ (2φ⊕φ� − φ0 (φ⊕ + φ�))
]2 �= 0

we can replace the coordinate φ by t as a new coordinate, then ˜ψ = (c, θ, t) becomes
a new coordinate system.

Observe that for any fixed γ ∈ N such that ψ (γ ) = (c, θ), the curve parametrized
by t = s such that, in the chart ˜ψ , is written by

˜ψ (γ̃ (s)) = (c, θ, s)

is precisely γ̃ (s) ∈ P (HU ) for s ∈ (− 1, 1).
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In fact, if we use the coordinates ψ in N of Eq. (4.1) and ˜ψ = (c, θ, t) in P (H),
then the map

ε : NU × R → P (HU )− ∞̃
(γ, t) �→ γ̃ (t)

(5.12)

can be expressed in coordinates by

((x, y, θ) , t) �−→ (x, y, θ, t)

hence, trivially it is a diffeomorphism such that the restriction ε|NU×(− 1,1) is also a
diffeomorphism such that ε|NU×(− 1,1) (γ, t) = γ̃ (t). ��

Observe that γ̃ (s) with s ∈ (− 1, 1) corresponds with a line of Jacobi fields along
γ such that they are proportional to γ ′ at some point in γ ⊂ M , meaning that all those
Jacobi fields are tangent to the sky of the respective point at M . By the expression in
coordinates of ε in Eq. (5.12), the curve γ̃ can be extended smoothly by

R → P (H (U))− ∞̃
s �→ γ̃ (s)

and, clearly we have

γ̃ ′ (s) =
(

∂

∂t

)

γ̃ (s)
(5.13)

becoming a regular curve for all s ∈ R.
In Sect. 7, we will use the projective parameter found in the proof of Proposition 5.2

as an auxiliary tool, but any parameter s ∈ [a, b] such that there is a diffeomorphism
h : [a, b] → [− 1, 1] where t = h (s), is another admissible parameter. This notion
will be introduced inDefinition 8.1 of Sect. 8.Notice that, for any admissible parameter
s ∈ [a, b], γ̃ (s) ∈ P

(Hγ

)

is regular and transversal to ∂± ˜N .

Remark 1 Since ε is a diffeomorphism,the map πPN

M ◦ σ−1 ◦ ε (γ, t) = γ (t) ∈ M is
differentiable for (γ, t) ∈ NU × (− 1, 1) obtaining a common parameter t ∈ (− 1, 1)
for all γ ∈ NU .

When M is globally hyperbolic, the function t can be smoothly defined for the
whole P (H) since P (H) � N ×R∪ {∞} � C × S

1 ×R∪ {∞} where C is a global
Cauchy surface. Moreover, the map ε can also be defined globally for all N ×R and
ε : N × (− 1, 1) → ˜N is a diffeomorphism. In this case, t ∈ (− 1, 1) can define a
parametrization for γ ∈ N by

γ (t) = πPN

M ◦ σ−1 ◦ ε (γ, t) ∈ M

obtaining a universal projective parameter for all maximal γ ∈ N .
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6 The boundary @ ˜N of the blow up space ˜N
Because of Corollary 5.1 we may consider the blown up space ˜N of M as an open
submanifold of the contact Grassmannian P(H), then it has a natural topological

boundary ∂ ˜N as a subset of P(H). It was shown in [4] that the closure ˜N = ˜N ∪ ∂ ˜N
is a smooth manifold with boundary, but for the sake of completeness we will sketch
the proof here.

Notice that if M is a 3-dimensional L-spacetime it is possible to define the maps:

�: N → P (H)

γ �→ � (γ ) = �γ
and

⊕ : N → P (H)

γ �→ ⊕ (γ ) = ⊕γ .

We will use these maps to identify the boundary of ˜N with N as the union of their
graphs.

Proposition 6.1 Let M be a 3-dimensional L-spacetime such that ⊕γ �= �γ for all

γ ∈ N . Then the closure ˜N of the blow-up space ˜N is a smooth manifold with

boundary embedded in P(H), moreover ∂ ˜N = {graph⊕} ∪ {graph�}.
Proof Since �γ and ⊕γ are defined by the limit of γ̃ (s) at the endpoints and γ̃ is
locally injective then γ̃ must be a connected open set in P

(Hγ

) � S
1 with boundary

{�γ ,⊕γ

}

. Now, consider P ∈ P (H) such that there exist γ ∈ N verifying �γ = P
and a coordinate chart ϕ̃ = (x, y, θ, φ) at P as in (4.3). Since � is a distribution on
N , the point �γ ∈ P

(Hγ

) ⊂ P (H) depends smoothly on the light ray γ . Hence
the function φ ◦ � : N → [0, 2π) � S

1 depends differentiably on the coordinates
(x, y, θ). Obviously, the same rules for ⊕. Let us denote by φ� = φ� (x, y, θ) and
φ⊕ = φ⊕ (x, y, θ) the coordinate representation of the functions φ ◦ � and φ ◦ ⊕
respectively.

Clearly ∂ ˜N ⊂ {graph⊕} ∪ {graph�} = {�γ ,⊕γ : γ ∈ N }

. Consider now an
open set U ⊂ N . Because �γ �= ⊕γ for any γ ∈ U we can choose, without any lack
of generality, a diffeomorphism [0, 2π) � S

1 such that

0 < φ� (x, y, θ) < φ⊕ (x, y, θ) < 2π

for all (x, y, θ) (restricting the domain of φ� and φ⊕ if needed). Then, for all γ ∈ U
the points in ˜U (recall that ˜U = π−1N (U) = ⋃

γ∈U γ̃ is a cilindrical open subset in
P(H)), can be written as

˜U � {(x, y, θ, φ) : φ� (x, y, θ) ≤ φ ≤ φ⊕ (x, y, θ)} ,

describing a manifold with boundary. Notice that using the projective parameter t
discussed in the previous section, we get

˜U � {P ∈ P(H) : πN (P) ∈ U ,−1 ≤ t(P) ≤ 1} .
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Then
{�γ ,⊕γ : γ ∈ U} ⊂ ∂ ˜N and, since � and ⊕ are regular distributions, the

condition �γ �= ⊕γ is open in N , therefore we have that {graph⊕} ∪ {graph�} =
{�γ ,⊕γ : γ ∈ N } ⊂ ∂ ˜N , which concludes the proof. ��

In what follows, in order to avoid cumbersome notations, we will just write ∂ ˜N
instead of ∂ ˜N .

As a consequence of the previous proposition, if the distributions⊕,� are different
andN is connected, the boundary ∂ ˜N has two connected components ∂+ ˜N and ∂− ˜N
that can be identified with {graph⊕} and {graph�} respectively. In what follows we
will keep this notation for the boundary, then ∂ ˜N = ∂+ ˜N ∪ ∂− ˜N , and we will
concentrate our attention on either ∂+ ˜N or ∂− ˜N unless stated otherwise.

7 The canonical extension ofM

Now, the aim of this section is to provide the analytical details of the construction of
the extension of the canonical distributionD∼ to the boundary of ˜N and to blow down

the completed space ˜N to obtain the seeked extension M of M .
First, we study the canonical 1-dimensional distribution D∼ in ˜N (see Sect. 3.1).

Notice that the orbit of D∼ passing through γ̃ (t) ∈ ˜N comprises all the lines of
Jacobi fields (as tangent vectors in TN ) which annihilate at γ (t) ∈ M , that is,
the tangent lines to sky X = S(γ (t)). If we denote by P the distribution in PN

whose orbits are the fibres of the bundle πPN

M : PN → M , then trivially, the map
ζ : M → PN/P defined by ζ (q) = PNq is a diffeomorphism. Hence, we can
define the distribution D∼ as the one whose orbit passing by γ̃ (t) ∈ ˜N is given
by σ

(

PNγ (t)
) = {σ ([v]) ∈ ˜N : [v] ∈ PNγ (t)}. Observe that the orbits of D∼ are

compact, then D∼ is a regular distribution and therefore ˜N /D∼ is a differentiable
manifold and the canonical quotient map π̃ : ˜N → ˜N /D∼ is a submersion. Now, we
can define the map σ̃ : PN/P → ˜N /D∼ by σ̃

(

PNq
) = σ

(

PNq
) ∈ ˜N /D∼. Then we

have the following diagram

PN ˜N

M PN/P ˜N /D∼

σ

κ π̃

ζ σ̃ (7.1)

where κ and π̃ are submersions and σ , ζ and σ̃ are diffeomorphisms. Therefore, we
can observe that

˜S = σ̃ ◦ ζ : M → ˜N /D∼ (7.2)

is a diffeomorphism. This fact was previously shown in a different way in [4, Proposi-
tion 2.6] and is the essence of the blowing up and down principle discussed in Sect. 3.1.
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The construction of the smooth extension M of M , (see Corollary 7.1) is a con-
sequence of the following theorem, that it properly constitutes the main result of this
paper as it shows that the canonical distribution D∼ in the blow up space ˜N of a
L-spacetime M extends smoothly to its boundary.

Theorem 7.1 (Main theorem) Let ˜N be the blow up of the L-spacetime M with its
canonical distribution D∼ such that ˜N /D∼ ∼= M. Let ∂+D∼ be the distribution
on ∂+ ˜N image under the diffeomorphism ⊕: N → ∂+ ˜N of the regular distribution

γ �→ ⊕γ onN . ThenD∼ = D∼∪∂+D∼ is a smooth distribution on ˜N = ˜N ∪∂+ ˜N .
The same result holds for ∂−D∼ on ∂− ˜N .

The key idea to prove it is to construct for each γ ∈ N a smooth biparametric
variation γ(t,s), 1 − δ < t ≤ 1, |s| < ε, with γ(·,0) = γ and γ (t) ∈ γ(t,s) (see
Fig. 5), in such a way that the curves s �→ 〈J(t,s)〉 defined by the corresponding Jacobi
fields J(t,s), 1 − δ < t < 1, will describe the integral curves of D∼, and the curves
s �→ 〈J(1,s)〉 will be the integral curves of ∂+D∼.

The construction of γ(t,s) will rely on a number of observations and definitions that
we will be the subject of the following paragraphs.

First we will define, for any given light ray γ0 ∈ N , a differentiable map Φ

describing the orbits of the distribution D∼ and then we will extend it up to ∂+ ˜N .
Consider an auxiliary metric g ∈ C and fix some γ0 ∈ N . LetNU ⊂ N be an open

neighbourhood of γ0 as the one used in the definition of the charts (4.1), that is NU

is diffeomorphic to C × S
1 where C ⊂ U is a local spacelike Cauchy surface where

U ⊂ M is a globally hyperbolic open set such that γ ∩U �= ∅. Let us assume that all
light rays γ ∈ NU are parametrized such that γ (0) ∈ C .

Without any lack of generalityU can be assumed to be relatively compact, and since
M is strongly causal, then there is no imprisoned light ray inU [26, Proposition 6.4.7].

Moreover, consider {E1 (c) , E2 (c) , E3 (c)}, c = (x, y) local coordinates for
points in C , be the orthonormal frame on the local Cauchy surface C used in the
definition of the charts of Sect. 4 such that E2, E3 are tangent to C and E1 is timelike.

For a light ray γ with coordinates ψ (γ ) = (c, θ), define {Ei (γ, t)}i=1,2,3 as the
extension of the frame {Ei (c)}i=1,2,3 by parallel transport to γ (t) along γ with respect
to the metric g.

The smooth dependence of the frames {Ei (γ, t)}i=1,2,3 on (γ, t) follows from
regular dependence on parameters of solutions of initial value problems of ODEs [16,
Chap. 5].

Now, it is possible to define the lightlike vector

V (γ, t, s) = E1 (γ, t)+ cos (θ + s)E2 (γ, t)+ sin (θ + s)E3 (γ, t) ∈ N

depending smoothly on (γ, t) and let us denote its corresponding line by

Λ(γ, t, s) = [

V (γ, t, s)
] = span{V (γ, t, s)} ∈ PN.

Using the maps σ and ε and the canonical projections p1 : N × (− 1, 1) → N and
p2 : N × (− 1, 1)→ (− 1, 1), we can define the differentiable maps
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Fig. 4 Diagram summarizing the
relations between the maps
X(γ,t), ˜X(γ,t) and Λ(γ,t), and
the structural maps σ and ε

˜X (γ, t, s) = σ (Λ (γ, t, s)) ∈ ˜N
X (γ, t, s) = p1 ◦ ε−1

(

˜X (γ, t, s)
) ∈ N

τ (γ, t, s) = p2 ◦ ε−1
(

˜X (γ, t, s)
) ∈ (− 1, 1)

(7.3)

where for fixed (γ, t) ∈ NU × (− 1, 1), the curve X(γ,t) (s) = X (γ, t, s) describes
the segment of the sky of γ (t) intersecting the neighbourhood U ⊂ M (see Fig. 5),
the function τ(γ,t) (s) = τ (γ, t, s) corresponds to the value of the parameter at γ (t)
from C along the light ray X(γ,t) (s); and ˜X(γ,t) (s) = ˜X (γ, t, s) is a curve of lines of
Jacobi fields tangent to their corresponding light ray X(γ,t) (s) at the point γ (t).

Then the family of light rays X(γ, t, s) is the biparametric variation we are looking
for:

γ(t,s) = X (γ, t, s) ∈ N .

Moreover, for fixed (γ, t), we define the curves V(γ,t) : [0, 2π) → Nγ (t) by
V(γ,t) (s) = V (γ, t, s) and Λ(γ,t) : [0, 2π) → PNγ (t) by Λ(γ,t) (s) = Λ(γ, t, s).
Then we have that ε−1 ◦ σ

(

Λ(γ,t) (s)
) = (

γ(t,s), τ(γ,t) (s)
)

and so γ̃(t,s)
(

τ(γ,t) (s)
) =

˜X(γ,t) (s). The following diagram, Fig. 4, illustrates these relations.
It can be observed that, since γ̃(t,s)

(

τ(γ,t) (s)
) ∈ ˜S (γ (t)) = σ(PNγ (t)) then there

exists a light ray μ ∈ S (γ (t)) such that

Tγ(t,s) S
(

γ(t,s)
(

τ(γ,t) (s)
)) = TμS (γ (t))

hence μ = γ(t,s). Due to M is light non-conjugate, then

S
(

γ(t,s)
(

τ(γ,t) (s)
)) = S (γ (t))

and because M distinguishes skies, then we obtain the following equation

γ(t,s) (τ (γ, t, s)) = γ (t) . (7.4)

Observe that for s = 0 we have X (γ, t, 0) = γ(t,0) = γ for all t ∈ (− 1, 1) and hence
τ (γ, t, 0) = t.

Now,wewill change the parameter s to amore adequate one in some neighbourhood
of the previously fixed light ray γ0. For the auxiliary metric g ∈ C in M , we consider
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Fig. 5 Illustration of the family γ(t,s) of light rays in the globally hyperbolic neighborhood U determined
by a local Cauchy surface C . The trace of the sky S(γ (t)) consists on the segments defined by the curves
γ(t,s) = X(γ, t, s). The curves c(γ,t) are the traces in C ⊂ M of γ(t,s)

the curves c(γ,t) (s) = X (γ, t, s)∩C ∈ C ⊂ U (see Fig. 5). SinceC is a differentiable
spacelike hypersurface, then the restriction g|TC×TC is a Riemannian metric onC and
therefore we can parametrize the curves c(γ,t) with the arc length parameter s defined
in C by the restriction of g. If we take a Jacobi field J(γ,t,s) ∈ ˜X (γ, t, s), because M
is light non-conjugate, then

0
(

modγ ′(t,s) (0)
)

�= J(γ,t,s) (0) = dc(γ,t) (s)

ds
= c′(γ,t) (s)

and therefore, c(γ,t) is a regular curve and there exist a differentiable function s =
h (γ, t, s) which permits to change the parameter. Abusing of the notation, we will
keep the names of the maps ˜X (γ, t, s), X (γ, t, s), τ (γ, t, s) with this new variable s.

Let us denote by B (p, r) ⊂ C the ball centered at p ∈ C of radius r > 0 related
to the metric g|TC×TC . Choose ε > 0 such that B (γ0 ∩ C, 2ε) ⊂ C and define

N ε
U = {γ ∈ NU : γ ∩ C ∈ B (γ0 ∩ C, ε)} .

Since s is the arc length parameter of c(γ,t), then c(γ,t) (s) ∈ B (γ0 ∩ C, 2ε) for any
(γ, t, s) ∈ N ε

U × (− 1, 1)× (− ε, ε) then, it is possible to restrict the maps ˜X , X and
τ as

˜X : N ε
U × (− 1, 1)× (− ε, ε) −→ ˜NU

X : N ε
U × (− 1, 1)× (− ε, ε) −→ NU

τ : N ε
U × (− 1, 1)× (− ε, ε) −→ (− 1, 1)

By construction, the maps in (7.3) satisfy

˜X (γ, t, s) = ε (X (γ, t, s) , τ (γ, t, s)) (7.5)
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and the curve ˜X(γ,t) describes the submanifold ˜S (γ (t)) ⊂ ˜N , in fact an orbit of the

distributionD∼. This implies thatD∼ is generated by the tangent vectors ∂˜X
∂s (γ, t, 0) ∈

T ˜N , but we have

∂˜X

∂s
(γ, t, 0) = (dε)(γ,t)

(

∂X

∂s
(γ, t, 0) ,

∂τ

∂s
(γ, t, 0)

)

. (7.6)

Lemma 7.1
∂τ

∂s
(γ, t, 0) = 0 for all (γ, t) ∈ N ε

U × (− 1, 1).

Proof If we consider the map

f (γ, t, s, τ ) = γ(t,s) (τ )

then we have that

∂ f

∂s
(γ, t, 0, t) = J(γ,t,0) (t) = 0

since it is the value of the Jacobi field J(γ,t,0) ∈ ˜X (γ, t, 0) along γ at the point γ (t),
and moreover

∂ f

∂τ
(γ, t, 0, t) = γ ′ (t) .

Now, defining

Ψ (γ, t, s) = f (γ, t, s, τ (γ, t, s))

then we have that the Eq. (7.4) becomes

Ψ (γ, t, s) = γ (t)

and hence, since τ (γ, t, 0) = t

∂Ψ

∂s
(γ, t, 0) = 0⇒ ∂ f

∂s
(γ, t, 0, t)+ ∂ f

∂τ
(γ, t, 0, t) · ∂τ

∂s
(γ, t, 0) = 0

⇒ J(γ,t,0) (t)+ γ ′ (t) · ∂τ

∂s
(γ, t, 0) = 0

⇒ 0+ γ ′ (t) · ∂τ

∂s
(γ, t, 0) = 0

⇒ ∂τ

∂s
(γ, t, 0) = 0

as we want to prove. ��
After all these preparations we are ready to prove Theorem 7.1.
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Proof (Theorem 7.1, main theorem) Because of Lemma 7.1 and Eqs. (7.5) and (7.6),
we have that the distribution D∼ in ˜N can be defined at any γ̃ (t) ∈ ˜N by

D∼̃γ (t) = span

{

∂˜X

∂s
(γ, t, 0)

}

= span

{

(dε)(γ,t)

(

∂X

∂s
(γ, t, 0) , 0

)}

. (7.7)

On the other hand, notice that Γ (s) is a integral curve of ⊕ : N → P (H) if
Γ ′ (s) ∈ ⊕Γ (s). So, the curve ˜Γ (s) = ε (Γ (s) , 1) is a leaf of the distribution ∂+D∼
if Γ ′ (s) ∈ ⊕Γ (s), that is

˜Γ ′ (s) = (dε)(Γ (s),1)
(

Γ ′ (s) , 0
) ∈ ∂+D∼ ⇐⇒ Γ ′ (s) ∈ ⊕Γ (s)

and therefore we have

∂+D∼̃γ (t) = span
{

(dε)(γ,1) (〈J 〉, 0)} where 〈J 〉 ∈ ⊕Γ (s). (7.8)

In order to find a vector field in ˜N defining the distributionD∼ = D∼∪∂+D∼, we
can take a non-zero differentiable local section ω : ˜U ⊂ P (H)→ H at γ̃0 (1) ∈ ∂+ ˜N
by choosing representatives 〈J(γ,t)〉 ∈ Hγ such that J(γ,t) (0) ∈ Tγ (0)C such that
g
(

J(γ,t) (0) , J(γ,t) (0)
) = 1.

Since dim
(

Tγ S (γ (t))
) = 1, we can choose two different representatives, selecting

the one such that J(γ,t) (0) = c′(γ,t) (0). It is important to notice that these conditions
determine the section ω without any condition on J ′(γ,t) (0), indeed, if Y1,Y2 ∈ γ̃ (t)
then Y1 (t) = Y2 (t) = 0

(

mod γ ′
)

, and if moreover Y1 and Y2 are such that Y1 (0) =
Y2 (0)

(

mod γ ′
)

, hence the Jacobi field K = Y1−Y2 verifies K (0) = 0
(

mod γ ′
)

and
K (t) = 0

(

mod γ ′
)

, and since M is light non-conjugate, therefore K = 0
(

mod γ ′
)

.
It is possible to assume, without any lack of generality, that

˜N (ε,δ)
U = ε

(N ε
U × (1− δ, 1+ δ)

) ⊂ ˜U for some small enough δ > 0. Indeed, by
construction of X (γ, t, s), we have that, since the curve has been parametrized by arc
length, then J(γ,t) (0) = c′(γ,t) (0), and hence the section verifies

ω (γ̃ (t)) = 〈J(γ,t)〉 = ∂X

∂s
(γ, t, 0) (7.9)

for all (γ, t) ∈ NU × (1− δ, 1).

Using the previous constructions we can define ˜NU = ε
(N ε

U × (1− δ, 1]
)

and
the map (see Fig. 6 for a graphical representation of the map Φ):

Φ : ˜NU ⊂ ˜N → Tγ̃ (t)P (H)

γ̃ (t) �→ (dε)(γ,t) (ω (γ̃ (t)) , 0)

which is clearly differentiable by composition of differentiable maps.
Now, let us see that Φ defines D∼. Then, by Eqs. (7.7) and (7.9), we have that

D∼̃γ (t) = span
{

Φ (γ̃ (t))
}
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Fig. 6 The vector field Φ in ˜N

for all (γ, t) ∈ NU × (1− δ, 1). Moreover, since ω is a non-zero local section and
recalling that γ̃ (τ ) = Tγ S (γ (τ )) and ⊕γ = limt �→1 γ̃ (t), then we have that, for
t = 1 (see Fig. 6),

ω (γ̃ (1)) ∈ ⊕γ

whence, using Eq. (7.8), we obtain

∂+D∼̃γ (1) = span
{

Φ (γ̃ (1))
}

for γ ∈ NU . Clearly, an analogous construction can be done for ∂−D∼. So, we have

D∼ = span
{

Φ (γ̃ (t)) : t ∈ [− 1, 1]}

and the distribution D∼ is a differentiable extension of D∼. ��

Corollary 7.1 If the orbits of the regular distribution ⊕ are compact, then the quo-

tient ˜N /D∼ is a differentiable manifold with boundary ∂+ ˜N /∂+D∼ ∪ ∂− ˜N /∂−D∼.
Moreover, if M = M ∪ ∂M where

∂M = ∂+M ∪ ∂−M = ∂+ ˜N /∂+D∼ ∪ ∂− ˜N /∂−D∼

then the diffeomorphism ˜S : M → ˜N /D∼ of Eq. (7.2) can be extended by

˜S : M → ˜N /D∼

such that ˜S
∣

∣

∂M is the identity map, inducing in ∂M a differentiable structure such that
the extension ˜S is a diffeomorphism.
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Proof Themain Theorem, Theorem 7.1, shows thatD∼ is a differentiable distribution.
Now, observe that ∂±D∼ are regular distribution by hypothesis, and D∼ is also a
regular distribution because its orbits are compact, then because the orbits of ∂±D∼
are assumed to be compact too, then D∼ is also a regular distribution. Then, trivially,

the quotient ˜N /D∼ is a differentiable manifold. Because ∂± ˜N is the boundary of ˜N ,

then ∂± ˜N /∂±D∼ is the boundary of ˜N /D∼.
Moreover, since˜S restricted toM is a diffeomorphism and ˜N /D∼ is a differentiable

manifold, then there exists a differentiable structure in M , compatible with the one in
M , such that the extension ˜S is a diffeomorphism. ��

Remark 2 Notice that the compactness assumption on the orbits of the boundary distri-
butions⊕ (respect.�) is a natural one as they represent the skies at infinity. Actually,
this is exactly the situation that will happen if the spacetime M would possess a com-
pact Cauchy surface C (as in the FRW cosmological models). Notice that in such case
the space of light rays N will be isomorphic to C × S

1, hence compact. Then if M
is a L-spacetime, because of Theorem 7.1, the total distribution D∼ will be regular,
hence their leaves will be closed, but because the future component of the boundary
∂+ ˜N (respect., the past component) is diffeomorphic to N , Proposition 6.1, then the
leaves of the total distribution at the boundary will be compact and the conclusion of
Corollary 7.1 will hold.

The extension M of M of Corollary 7.1 will be called the canonical extension of
(M, C) and ∂+M and ∂−M are the boundaries toward the future and past of the light
rays respectively.

Definition 7.1 We will say that a spacetime M is a proper L-spacetime if it is a L-
spacetime such that the total smooth distribution D∼ is regular with Hausdorff space
of leaves.

Notice that, the same argument used in the proof of Corollary 7.1 shows that if
M is a proper L-spacetime, the L-boundary ∂M = ∂+M ∪ ∂−M = ∂+ ˜N /∂+D∼ ∪
∂− ˜N /∂−D∼ defines a smooth boundary for the manifold M = M ∪ ∂M . Moreover
the assumption that the quotient space of the regular distribution D∼ is Hausdorff
guarantees that M is Hausdorff. Then we obtain the following consequence.

Corollary 7.2 If M is a proper L-spacetime then the conclusion of Corollary 7.1 holds,
that is, the canonical extension M of (M, C) exists.

Remark 3 The situation pointed out in Corollary 7.2 is exactly what happens in the
case of the Minkowski space M

3. It is not hard to see by repeating the computations in
Sect. 3.3 for M

3(a, b) when b→+∞, that the orbits of the future distribution ⊕ for
M

3(a,+∞) are straight lines in the Cauchy surface C , that is the future L-boundary
∂+M

3(a,+∞) is bidimensional and diffeomorphic to R× S
1.
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In fact, using the same notations than in Sect. 3.3, we get that given a null geodesic
γ = γ(x0,y0,θ0):

⊕γ = lim
t→+∞ Tγ S(γ (t)) = lim

t→+∞[t : t0 − t]γ = lim
t→+∞[1 : t0/t − 1]γ = [1 : −1]γ

= span

{

sin θ0
∂

∂x

∣

∣

∣

∣

γ

− cos θ0
∂

∂ y

∣

∣

∣

∣

γ

}

.

Therefore we can obtain the integral curve c(s) = (x(s), y(s), θ(s)) of ⊕ passing
through γ , that defines the sky S(∞+(γ )) of γ at +∞, solving the initial value
problem:

dx

ds
= sin θ,

dy

ds
= − cos θ,

dθ

ds
= 0, (7.10)

with c(0) = (x0, y0, 0). Notice that the change in dθ/ds in Eq. (7.10) with respect to
Eq. (3.6) is critical with respect to the analysis performed in Sect. 3.3. Actually, in the
case of M

3(a, b), dθ/ds = 1, see Eq. (3.6), which upon integration gave us circles
which were precisely the skies of the points in the topological bounday of M

3(a, b)
considered as a subset of M

3. However in the present situation, dθ/ds = 0, and the
integral curves of (7.10) are straight lines:

c(s) = (x0 + s sin θ0, y0 − s cos θ0, θ0),

that corresponds to the family of null geodesics with tangent vector v = (1, cos θ0,

sin θ0) and initial value in the straight line in C , recall (3.2), given by:

t = 0, cos θ0(x − x0)+ sin θ0(y − y0) = 0.

Hence we conclude that M
3(a,+∞) is a proper L-spacetime even though the orbits

of the boundary distribution are not compact.
It is straightforward to check that I−(γ1) = I−(γ2) for any two light rays γ1, γ2 ∈

S(∞+(γ )), therefore any light ray in S(∞+(γ )) defines the same TIP:

I−(γ ) = {(t, x, y) ∈M
3(a,+∞) | t < cos θ0(x − x0)+ sin θ0(y − y0)},

and the future L-boundary coincides with the future part of the c-boundary accessible
by light rays. We must point it out that there is a body of work explicating in full detail
exactly what the causal boundary is in many concrete situations that can be compared
easily with the L-boundary using computations similar to those performed above (see
for instance [9,13]). Another example of a proper L-spacetime is provided for instance
by the 3-dimensional de-Sitter spacetime as shown in [4].
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Remark 4 By Corollary 7.1, since ˜X(γ,t) (s) = ˜X (γ, t, s) is an integral curve of Φ,
then it is possible to extend smoothly the maps ˜X , X and τ as

˜X : NU × (− 1, 1]× (− ε, ε) −→ ˜N
X : NU × (− 1, 1]× (− ε, ε) −→ N
τ : NU × (− 1, 1]× (− ε, ε) −→ (− 1, 1]

(7.11)

where the non-zero vector field Φ can be written by

Φ (γ̃ (t)) = (dε)(γ,t)

(

∂X

∂s
(γ, t, 0) , 0

)

∈ Tγ̃ (t)ε (NU × {t}) (7.12)

for (γ, t) ∈ NU × (− 1, 1].

Proposition 7.1 Let M be a proper L-spacetime and let M be the canonical extension
of M. For every light ray γ ∈ N the extension γ ⊂ M parametrized by a projective
parameter γ : [− 1, 1] → M is a regular curve and transversal to ∂M. Moreover,
denoting∞±

γ = limt �→±1 γ (t), the maps∞± : N → ∂±M defined by∞± (γ ) =
∞±

γ are surjective submersions.

Proof We can consider the following diagram

˜N ˜N /D∼

M

π̃

˜S−1ρ

(7.13)

where the quotient map π̃ is a submersion,˜S−1 is a diffeomorphism and hence ρ is a
submersion. Then we have that γ (t) = ρ (γ̃ (t)) for all t ∈ [− 1, 1]. Trivially, since
γ̃ is differentiable then γ is so also. Now, since the tangent space to the orbit of the
distribution D∼ is defined by the non-zero vector field Φ, by the Eq. (7.12) we have
that Φ (γ̃ (t)) ∈ Tγ̃ (t)ε (NU × {t}) and since, by Eq. (5.13), we have 0 �= γ̃ ′ (s) /∈
Tγ̃ (t)ε (NU × {t}), then γ̃ is transversal to the orbits of the distributionD∼ in ˜N , then
the regularity of γ follows. On the other hand, in particular for t = 1, by Eq. (5.13),
we have γ̃ ′ (1) = (

∂
∂t

)

γ̃ (1) /∈ Tγ̃ (1)∂
+
˜N and due to ∂+M � ∂+ ˜N /∂+D∼ and the

regularity of γ then 0 �= γ ′ (1) /∈ Tγ (1)∂
+M and γ is transversal to ∂+M .

Moreover, the restriction of the diagram (7.13) to ∂+ ˜N gives

∂+ ˜N ∂+ ˜N /∂+D∼

∂+M

π̃

˜S−1ρ

(7.14)
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and we have the diffeomorphisms,

N i−→ N × {1} ε|N×{1}−→ ∂+ ˜N
γ �→ (γ, 1) �→ γ̃ (1)

such that we can write

∞+ = ρ|∂+ ˜N ◦ ε|N×{1} ◦ i .

Since ρ|∂+ ˜N is still a surjective submersion onto ∂+M , therefore∞+ is a surjective
submersion. The case t = − 1 and∞− is analogous. ��

8 L-extensions

In this section we will characterise the differentiable structure of the canonical
extension M defined in Corollary 7.1. We will need to distinguish several types of
parametrisations of light rays, so we will fix some nomenclature first. In what follows
and when referring to spacetimes M in any dimension, we will be assuming that M is
such that its space of light raysN is a smooth manifold, that is, we assume for instance
that M is time-oriented, strongly causal, null pseudo-convex and sky-separating.

Definition 8.1 Let γ : (a, b) → M be an inextensible parametrization of a light ray
γ ∈ N such that γ ⊂ M is future-directed, that is, γ (s1) is in the causal past of γ (s2)
for all s1 < s2. This parametrization is said to be

1. continuous if γ : (a, b)→ M is a continuous map,
2. regular if γ : (a, b) → M is a differentiable map and γ ′ (s) ∈ N is a future-

directed lightlike vector for all s ∈ (a, b),
3. projective if γ : (a, b) → M is a regular parametrization and γ̃ (s) =

σ
([

γ ′ (s)
]) ∈ P

(Hγ

)

defines a projectivity, that is, the parameter s is a func-
tion of the form (5.11), in the fibre P

(Hγ

)

, and
4. admissible if there exists a diffeomorphism h : (c, d]→ (a, b] such that h′ (t) > 0

for all t ∈ (c, d] and γ ◦ h : (c, d)→ M is a projective parametrization.

It can be trivially observed that any projective parametrization of γ ∈ N is admis-
sible.

Remark 5 It is important to notice that for every regular parametrization of γ ∈ N
can be reparametrized diffeomorphically to the canonical projective parameter, but
this does not imply that it is an admissible parameter. Indeed, if γ : (a, b) → M is a
regular parametrization, we can send it to ˜N ⊂ P

(Hγ

)

via the following composition

(a, b)
γ ′→ N

[ ]→ PN
σ→ ˜N

s �→ γ ′ (s) �→ [

γ ′ (s)
] �→ γ̃ (s)
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Since, γ (s) ∈ M is a regular curve, then γ ′ (s) ∈ N and
[

γ ′ (s)
] ∈ PN are also

regular curves. Now, the diffeomorphism σ : PN → ˜N maps regular curves into
regular curves, so γ̃ (s) ∈ ˜N is a regular parametrization of the submanifold γ̃ ⊂ ˜N .
Since the canonical projective parametrization γ̃ (t) is another regular parametrization,
then there exist a differentiable change of parameter h : (− 1, 1) → (a, b) such that
h′ (t) > 0 for all t ∈ (− 1, 1). For s ∈ (a, b) to be an admissible parameter, condition
h′ (1) > 0 remains to be satisfied.

Definition 8.2 We define a future L-extension of a conformal manifold (M, C) as a
Hausdorff smooth manifold M = M ∪ ∂+M where ∂+M = M − M is a closed
hypersurface of M called the future L-boundary such that the following properties are
satisfied:

1. If γ : (a, b) → M is a continuous parametrization of γ ∈ N , then
lims �→b− γ (s) = ∞+

γ ∈ ∂+M .
2. The map∞+ : N → ∂+M defined by∞+ (γ ) = ∞+

γ is a surjective submersion.
3. For every γ0 ∈ N there exists a neighbourhood U ⊂ N and a differentiable map

ΨU : U × (a, b]→ M , where γ (s) = ΨU (γ, s) is an admissible parametrization
of γ ∈ U for s ∈ (a, b) and such that ∂ΨU

∂s (γ, b) /∈ T∞+(γ )∂
+M .

If there exists any L-extension of (M, C), then it is said that (M, C) is L-extensible. In
an analogous and obvious way, we can define a past L-extension M = M ∪ ∂−M .

Observe that since the map ∞+ : N → ∂+M of a L-extension of (M, C) is a
surjective submersion then every of its inverse images

S (p) = (∞+)−1 (p) = {γ ∈ N : p = ∞+ (γ )} ⊂ N

defines a leaf of a regular distribution � : N → P (TN ) given by � (γ ) =
Tγ S

(∞+ (γ )
)

, and the map

S : ∂+M → N /�
p �→ S (p)

is a diffeomorphism.

Lemma 8.1 Let M be a L-extension of M and ΨU : U × (a, b] → M the differen-
tiable map of condition 3 of definition of L-extensions, then there exist a differentiable
function h : U × (− 1, 1] → (a, b] such that the map Ψ U (γ, t) = ΨU (γ, h (γ, t))
also satisfies the condition 3 of Definition 8.2 and where t ∈ (− 1, 1] is the canonical
projective parameter.

Proof First, notice that if γ : (a, b)→ M is an admissible parametrization of the light
ray γ ∈ N , then there exists a diffeomorphism h : (c, d]→ (a, b] such that dh

dt > 0.
But since t ∈ (c, d) is a projective parameter, then there are A, B,C, D ∈ R with
AD− BC > 0 such that t = At+B

Ct+D is a projective parameter diffeomorphism between

the canonical projective parameter t ∈ (− 1, 1] and t ∈ (c, d] verifying dt
dt > 0 for all
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t ∈ (− 1, 1]. Therefore, every admissible parameter is diffeomorphic to the canonical
projective t in the sense of the Definition 8.1.

Now, let us prove the existence ofΨ U . It is clear that, for any (γ, t) ∈ U× (− 1, 1],
there is a unique s ∈ (a, b] such that the equation

ΨU (γ, s) = γ (t)

is satisfied. Then, there exist a function h : U × (− 1, 1] → (a, b] such that for any
γ ∈ U , s = hγ (t) = h (γ, t) is a reparametrization of γ .

Let us see that h is differentiable. Given any (γ, t) ∈ U × (− 1, 1], consider a
coordinate chart (W , ϕ) at γ (t) ∈ M . We construct the map

F (γ, s, t) = ϕ (ΨU (γ, s))− ϕ (γ (t)) ∈ R
3

and since

∂F

∂s
(γ, s, t) = dϕγ (s)

(

∂ΨU
∂s

(γ, s)

)

= dϕγ (s)
(

γ ′ (s)
) �= 0

due to γ ′ (s) �= 0 because s ∈ (a, b] is an admissible parameter and ϕ is a diffeo-
morphism, then the Implicit function Theorem assures that h is differentiable in a
neighbourhood of (γ, t), but this is true for all (γ, t) ∈ U× (− 1, 1], therefore h is dif-
ferentiable. Moreover, ∂h

∂t (γ, 1) = dhγ

dt (1) > 0 according to definition of admissible
parameter.

So, the map Ψ U (γ, t) = ΨU (γ, h (γ, t)) is differentiable and the parameter t ∈
(− 1, 1] is admissible because it is projective. Finally, since

∂Ψ U
∂t

(γ, 1) = ∂ΨU
∂s

(γ, b) · ∂h
∂t

(γ, 1) = ∂ΨU
∂s

(γ, b) · dhγ

dt
(1) /∈ T∞+(γ )∂

+M

as claimed. ��
Remark 6 Consider a neighbourhood NU as the one of coordinate chart (4.1) and let
us assume that a neighbourhood V ⊂ N of condition 3 in Definition 8.2 is such that
V ⊂ NU . By Lemma 8.1, we can assume that the maps ΨV can be defined by the
canonical projective parameter t by

ΨV : V × (− 1, 1] → M
(γ, t) �→ γ (t).

Moreover, if {Vα}α∈I is an open covering ofNU such that Vα ⊂ NU for all α ∈ I ,
since

ΨVα

∣

∣Vα∩Vβ×(− 1,1] = ΨVβ

∣

∣

Vα∩Vβ×(− 1,1]

then trivially, it is possible to define ΨNU : NU × (− 1, 1]→ M extending all ΨVα
.
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Assuming Definition 8.2, the following Corollary follows automatically from the
previous comments, Lemma 8.1, and from the Proposition 7.1, where ΨNU = ρ ◦ ε

for the canonical extension. Then, we can summarise most of the previous discussion
stating the following Corollary that, in addition, justifies the name chosen in Sect. 3
for the 3-dimensional manifolds satisfying the properties used in this paper.

Corollary 8.1 If M is a 3-dimensional proper L-spacetime, the future (resp. past)
canonical extension of (M, C) is a future (resp. past) L-extension.

Wewill show in Lemma 8.2 that the sky of every point∞+ (γ ) ∈ ∂+M is the same
set in N for any future L-extension M .

Lemma 8.2 Let M1 = M ∪ ∂+M1 be the canonical future L-extension and M2 =
M ∪ ∂+M2 any other future L-extension of (M, C) then

S
(∞+

1 (γ )
) = S

(∞+
2 (γ )

)

for all γ ∈ N , where∞+
i : N → ∂+Mi with i = 1, 2 are the surjective submersions

of the Definition 8.2.

Proof Given γ ∈ N , consider the extended maps ˜X , X and τ of Eq. (7.11) defined in
NU × (− 1, 1] × (− ε, ε). Recall that all these maps are differentiable and, by (7.5),
˜X = ε (X , τ ). Since ˜X (γ, 1, s) ∈ ∂+ ˜N for all s ∈ (− ε, ε) then

τ (γ, 1, s) = 1 for all s ∈ (− ε, ε) . (8.1)

Let us use the notation γ(t,s) = X (γ, t, s) ∈ N . By Eq. (7.4), we have that
γ(t,s) (τ (γ, t, s)) = γ (t), hence

γ(t,s) ∈ S (γ (t)) for all (t, s) ∈ (− 1, 1]× (− ε, ε) . (8.2)

By means of the diffeomorphism ρ of diagram (7.13), we have ρ
(

˜X (γ, t, s)
) =

γ(t,s) (τ (γ, t, s)) ∈ M1, then by Eq. (8.2)

lim
t �→1

γ(t,s) (τ (γ, t, s)) = ρ
(

˜X (γ, 1, s)
) = γ (1) = ∞+

1 (γ ) ∈ ∂+M1 (8.3)

and moreover

lim
t �→1

γ(t,s) = lim
t �→1

X (γ, t, s) = X (γ, 1, s) = γ(1,s) ∈ S
(∞+

1 (γ )
) ⊂ N (8.4)

for all s ∈ (− ε, ε).
Now, we want to show that limt �→1 γ(t,s) (τ (γ, t, s)) = ∞+

2 (γ ) ∈ ∂+M2. Since
M2 is a L-extension (and according to Remark 6), then there is a differentiable map
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ΨNU : NU×(− 1, 1]→ M2 such that γ (t,s) (τ (γ, t, s)) = ΨNU

(

γ(t,s), τ (γ, t, s)
) ∈

M2. But by Eqs. (8.1) and (8.4), and since ΨNU is continuous, then

lim
t �→1

γ (t,s) (τ (γ, t, s)) = lim
t �→1

ΨNU

(

γ(t,s), τ (γ, t, s)
) = ΨNU

(

γ(1,s), 1
)

= ∞+
2

(

γ(1,s)
) ∈ ∂+M2

for all s ∈ (− ε, ε). On the other hand

lim
t �→1

γ (t) = γ (1) = ∞+
2 (γ ) ∈ ∂+M2

so, by Eq. (7.4), we have∞+
2

(

γ(1,s)
) = ∞+

2 (γ ) for all s ∈ (− ε, ε), hence γ(1,s) ∈
S
(∞+

2 (γ )
)

for all s ∈ (− ε, ε). Because of Eq. (8.4), γ(1,s) ∈ S
(∞+

1 (γ )
)

, hence the
sky S

(∞+
1 (γ )

)

coincides with S
(∞+

2 (γ )
)

locally, then they must coincide globally.
Therefore S

(∞+
1 (γ )

) = S
(∞+

2 (γ )
)

. ��
Now, we introduce the Theorem characterizing all L-extensions.

Theorem 8.1 Let M be a proper L-spacetime and M1 = M ∪ ∂+M1 be the canonical
future L-extension. Let M2 = M ∪ ∂+M2 be any other future L-extension of (M, C),
then the identity map id : M → M can be extended as a diffeomorphism id : M1 →
M2.

Proof By Lemma 8.2, we have S
(∞+

1 (γ )
) = S

(∞+
2 (γ )

)

for all γ ∈ N , then it is
possible to define a bijection φ : ∂+M1 → ∂+M2 by φ

(∞+
1 (γ )

) = ∞+
2 (γ ). Then,

we have the following diagram

N

∂+M1 ∂+M2

∞+
1 ∞+

2

φ (8.5)

and since∞+
1 is a submersion and∞+

2 = φ ◦ ∞+
1 is differentiable, by [5, Proposi-

tion6.1.2], thenφ is differentiable.Also, since∞+
2 is submersion and∞+

1 = φ−1◦∞+
2

is differentiable then φ−1 is differentiable, hence φ is a diffeomorphism.
Now, let us show that every map ΨU (γ, t) = γ (t) with (γ, t) ∈ U × (− 1, 1]

is a submersion. Clearly, since ΨU |U×(− 1,1) = ρ ◦ ε|U×(− 1,1) where ρ is the sub-
mersion of diagram (7.13) and ε is the diffeomorphism (5.12), then ΨU |U×(− 1,1) is a
submersion.

On the other hand, observe that the restriction of ΨU to U × {1} verifies that
ΨU |U×{1} = φ|∞+1 (U) and since φ is a diffeomorphism and

(dΨU )(γ,1)

(

∂

∂t

)

(γ,1)
= γ ′ (1)
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with 0 �= γ ′ (1) /∈ Tγ (1)∂
+M2, then (dΨU )(γ,1) is surjective, then we get that ΨU is a

submersion.
Let us denote

V 1 = ρ ◦ ε (U × (− 1, 1]) ⊂ M1

V 2 = ΨU (U × (− 1, 1]) ⊂ M2

V1 = V 1 ∩ M

V2 = V 2 ∩ M

then, V = V1 = V2 = {γ (t) ∈ M : γ ∈ U}. So, the following diagram

U × (− 1, 1]

M1 ⊃ V 1 V 2 ⊂ M2

ρ ◦ ε ΨU

id (8.6)

defines id as a bijection such that id
∣

∣

V = id : V → V is the identity map. Using
again [5, Proposition 6.1.2] as before, since ρ ◦ ε and ΨU are submersions, then id is a
diffeomorphism extending the identity map in V ⊂ M . Taking a covering {Uα}α∈I ⊂
N with their corresponding maps {ΨUα

}α∈I , we can define globally id = M1 → M2
as a diffeomorphism. This concludes the proof. ��

Observe that if ψ : (M1, C1) → (M2, C2) is a conformal diffeomorphism, then
there is a diffeomorphisms Ψ : N1 → N2 preserving skies, that is, for any sky
X ∈ Σ1 of N1, then Ψ (X) ∈ Σ2 is a sky of N2. Then, in virtue of Theorem 8.1
and the way of construction of the L-extension of Sect. 7, if one of the conformal
manifolds is a proper L-spacetime for any metric in C, then the other is also a proper
L-spacetime for any metric and both L-extensions are diffeomorphic by the extension
of ψ . This is summarized in the following corollary.

Corollary 8.2 Let (M1, C1) and (M2, C2) be conformal manifolds such that (M1, C1) is
a proper L-spacetime for any metric in C1 and there exists a conformal diffeomorphism
ψ : (M1, C1) → (M2, C2), then (M2, C2) is a proper L-spacetime for any metric in
C2.

Moreover, if Mi = Mi ∪ ∂Mi for i = 1, 2 are the corresponding L-extensions,
then the map ∂ψ : ∂M1 → ∂M2 defined by ∂ψ (∞1 (γ )) = ∞2 (Ψ (γ )) is a diffeo-
morphism, where Ψ : N1 → N2 is the diffeomorphism preserving skies between the
corresponding spaces of light rays. In addition, the extension ψ : M1 → M2, such
that ψ

∣

∣

M1
= ψ and ψ

∣

∣

∂M1
= ∂ψ , is a diffeomorphism.

The transversality to the L-boundary of the extension of any light ray is a key feature
of L-extensions. The next example shows the existence of extensions, constructed in
a natural way, which they are not L-extensions because the lack of transversality of
light rays at the boundary.
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Example 1 Let us consider M = {

(t, x, y) ∈ R
3 : t > 0

}

equipped with the metric
g = − 1

t dt ⊗ dt + dx ⊗ dx + dy ⊗ dy. M has a natural extension given by M =
{

(t, x, y) ∈ R
3 : t ≥ 0

}

, where the past boundary ∂−M = {

(t, x, y) ∈ R
3 : t = 0

}

has the standard differentiable structure.
Fix the Cauchy surface C = {(1, x, y) ∈ M} to obtain a coordinate chart for

its space of light rays N as in (4.1), then the null geodesic γ such that γ (0) =
(1, x0, y0) ∈ C and γ ′ (0) = (1, cos θ0, sin θ0) ∈ N

+
γ (0) can be written by

γ (s) =
(

1

4
(s + 2)2 , x0 + s cos θ0, y0 + s sin θ0

)

, s ∈ (− 2,∞)

where it is possible to identify γ by the coordinates (x0, y0, θ0) in N = C × S
1.

Repeating the computations performed in Sect. 3.3 we get that in the extension M ,
each point (0, u, v) ∈ ∂−M corresponds to the integral curve of the distribution �
given by the set of null geodesics:

γθ (s) =
(

1

4
(s + 2)2 , u + (s + 2) cos θ, v + (s + 2) sin θ

)

,

s ∈ (− 2,∞) , θ ∈ (−π, π ] . (8.7)

Then the map∞− : N → ∂−M can be expressed in coordinates by

∞− (x, y, θ) = (0, x − 2 cos θ, y − 2 sin θ) ∈ ∂−M .

But observe that the extensions γ θ to the interval s ∈ [− 2,∞) verify

γ ′θ (− 2) = lim
s �→−2+

γ ′θ (s) = (0, cos θ, sin θ) ,

whence we obtain that γ ′θ (− 2) ∈ Tγ θ (− 2)C , and therefore the transversality of the
extended light rays to the boundary does not occur. This shows that M is not a L-
extension.

In fact, since (M, g) is isometric to the hyperbolic block inMinkowski space M1 ∼=
M

3(0,+∞) (see the example in Remark 3) by the transformation:

(t1, x1, y1) =
(

2
√
t, x, y

)

,

then the L-extension of M can be obtained as the one of (M1, g1). Thus, we get that
M1 =

{

(t1, x1, y1) ∈ R
3 : t1 ≥ 0

}

is the L-extension of M , where its L-boundary:

∂−M1 =
{

(t1, x1, y1) ∈ R
3 : t1 = 0

}

,

has the standard differentiable structure.
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The following example shows that, in order to characterize the canonical L-
extension, it is not possible to weaken condition 3 of Definition 8.2 assuming that
the parametrizations is not admissible but regular.

Example 2 Consider the upper infinity block M
3(0,+∞) = {

(t, x, y) ∈ R
3 : t > 0

}

with the standard Minkowski metric g = −dt⊗dt+dx⊗dx+dy⊗dy. We obtain a
coordinate chart forN using theCauchy surfaceC = {t = 1} ⊂M

3(0,+∞). The null
geodesic γ such that γ (0) = (1, x0, y0) ∈ C and γ ′ (0) = (1, cos θ0, sin θ0) ∈ N

+
γ (0)

can be written by

γ (s) = (s + 1, x0 + s cos θ0, y0 + s sin θ0) , s ∈ (− 1,∞) ,

then, using the standard chart in N , we can identify γ � (x0, y0, θ0).
The parameter s is admissible, hence the map

Ψ (γ, s) = Ψ (x0, y0, θ0, s) = (s + 1, x0 + s cos θ0, y0 + sin θ0),

with s ∈ [− 1,∞) verifies condition 3 of Definition 8.2 and, as it was argued before,
the past L-extension of M

3(0,+∞) is
{

(t, x, y) ∈ R
3 : t ≥ 0

}

with the standard dif-
ferentiable structure.

Observe now, that M
3(0,+∞) is isometric to M = {

(w, u, v) ∈ R
3 : w > 0

}

equipped with the metric g = −w2dw ⊗ dw + du ⊗ du + dv ⊗ dv by the isometry
φ :M3(0,+∞)→ M given by

(w, u, v) = φ (t, x, y) =
(√

2t, x, y
)

,

then the past L-extension of M must be M = {

(w, u, v) ∈ R
3 : w ≥ 0

}

with the
differentiable structure such that the extension of the isometry φ to ∂−M

3(0,+∞)

is a diffeomorphism. Then, if we denote by M∗ such differentiable manifold and by
Mc the same topological manifold equipped with the standard differentiable structure,
clearly the identity map id : M∗ → Mc is not a diffeomorphism and therefore Mc is
not the L-extension of M .

Notice that

γ (s) = φ (γ (s)) =
(
√

2 (s + 1), x0 + s cos θ0, y0 + s sin θ0

)

, s ∈ (− 1,∞) ,

is an inextensible null geodesic in M . We can change the parameter by τ 2 = s + 1,
obtaining a regular parameter τ ∈ (0,∞) (diffeomorphic to the canonical projective
parameter t ∈ (− 1, 1) according to Remark 5). The map Ψ : N × [0,∞) → Mc

defined in coordinates by

Ψ (x0, y0, θ0, s) = (
√
2s, x0 + (s2 − 1) cos θ0, y0 + (s2 − 1) sin θ0),

satisfies all conditions of Definition 8.2 except that s ∈ [0,∞) is not admissible but
regular.
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Definition 8.2 gives a characterization ofL-extensions. Indeed, the followingPropo-
sition is a converse result of Theorem 8.1. The same result for past L-extensions can
be shown in an analogous way.

Proposition 8.1 Let M be a 3-dimensional, strongly causal, light non-conjugate, sky-
separating, conformal Lorentz manifold. If M admits a future L-extension M, then
the canonical field of directions ⊕ : N → P (H) defines a regular and smooth
distribution. Moreover, the distribution � defined by the L-extension verifies � = ⊕.
Proof Let us denote by Ψ : NU × (− 1, 1] → M and ∞+ : N → ∂+M the
parametrization and the surjective submersion involved in the definition (8.2) of L-
extensions, and let � : N → P (H) the distribution whose integral manifolds are the
inverse images of∞+. Since γ (t) = Ψ (γ, t) runs a light ray and t ∈ (− 1, 1] can be
assumed to be a projective parameter in virtue of Lemma 8.1, then

γ̃ (t) = σ

([

∂Ψ

∂t
(γ, t)

])

, (7.8)

defines a projectivity in each fibre P
(Hγ

)

such that the map

εΨ : NU × (− 1, 1) → P (H)

(γ, t) �→ γ̃ (t),
(7.9)

is differentiable by composition, because Ψ and σ are smooth and t is regular. But
observe that any projectivity in the fibre P

(Hγ

)

is completely determined when three
values are given and, in fact, we have already defined the projectivity of γ (t) for
t ∈ (− 1, 1) depending smoothly on γ according to the differentiability of the map
(7.9). Then for any γ ∈ NU the projectivity γ̃ : R→ P

(Hγ

)

is automatically defined
and it permits to extend the map εΨ in a smooth way as

εΨ : NU × R → P (H)

(γ, t) �→ γ̃ (t),
(7.10)

Since the map εΨ
t0 : NU → P (H) given by εΨ

t0 (γ ) = εΨ (γ, t0) = γ̃ (t0) is a local

smooth section of the fibre bundle π
P(H)

N : P (H) → N due to π
P(H)

N ◦ εΨ
t0 (γ ) =

π
P(H)

N (γ̃ (t0)) = γ , then

εΨ
t0 : NU → εΨ

t0 (NU ) ⊂ P (H) ,

is a diffeomorphism. So, taking t = 1, the map εΨ
1 is the diffeomorphism onto its

image such that εΨ
1 (γ ) = γ̃ (1). By continuity of Ψ and Eq. (7.8), we have that

γ̃ (1) = � (γ ), but since εΨ coincides with the canonical ε map for t ∈ (− 1, 1), then
by continuity

� (γ ) = εΨ (γ, 1) = ε (γ, 1) = ⊕ (γ ) ,
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and since � is regular and smooth, therefore so ⊕ is. ��

Remark 7 We have studied L-extensions in the case⊕γ �= �γ for all γ ∈ N , but there
are simple examples (such as 3-dimensional Minkowski spacetime) in which ⊕ = �
(see [4, Sect. IV.C]). In these cases, the projective parameter of the canonical future L-
extension can be obtained by choosing two (local) smooth spacelike Cauchy surfaces
C0,C−1 ⊂ M such that every point q ∈ C−1 is in the chronological past of C0. Then,
the projective parameter t verifies that γ (− 1) ∈ C−1, γ (0) ∈ C0 and γ (1) ∈ ∂+M .
With this parameter, the construction of the canonical future L-extension of M is
done in the same way as in Sect. 7. The canonical past L-extension can be built in an
analogous way.

9 Discussion and conclusions

It has been shown that for a class of 3-dimensional spacetimes M a new causal bound-
ary, called L-bounday, can be constructed that defines a smooth extension of the
original spacetime. The construction of the new boundary is explicit and intrinsically
conformal invariant. It uses in a direct way the space of light rays N with its contact
structure H and the natural projective bundle P(H) over it.

Moreover a class of extensions of spacetimes, called L-extensions has been
introduced, their properties defined exclusively in terms of local properties of the
corresponding boundary points, that encode the transversality properties of the light
rays accessing to them. It has been shown that such L-extensions, if they exist, are
essentially unique and that the canonical extension defined by the L-boundary is an
L-extension. It remains to analyse the relation of L-extensions and conformal envel-
opments, a key notion to investigate the relation of the L-boundary with the conformal
boundary of a given spacetime. This problemwill be discussed in a forthcoming work.

Even if some of the constructions has been done in the realm of 3-dimensional
spacetimes, the results can be extended naturally to higher dimensions. All basic
ingredients needed in the detailed proofs are available in higher dimensional space-
times. Most conspicuous is the projective parameter used to prove the smoothness
of the canonical extension. Actually, one of the main reasons to restrict ourselves in
this presentation to three dimensionas was that in such case, the projective param-
eter is naturally defined because it is the natural projective parameter on the fibres
of the projective bundle P(H) (which are projective circles). In higher dimensions
a technical construction is needed to obtain such projective parameter that requires
using an adapted Fermi–Walker connection and using the associated affine parameter.
The details of such constructions and new significative examples will be discussed
elsewhere.

Finally wewould like to comment that a discussion on the detailed relation between
the proposed L-boundary and conformal boundaries is still missing.While the relation
between the L-boundary and the causal boundary was explored in [4], the relation
between the L-boundary and conformal extensions of the given space–time has not
been addressed yet. We believe that the L-boundary provides an intermediate step in
between the conformal boundary, an ad-hoc construction but immediately available,
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and the causal boundary, the fundamental abstract construction of ideal points at
infinity which is hard to describe, if not impossible, in more general situations. The
clarification of such issues will be the subject of forthcoming work.
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