

Available online at www.sciencedirect.com

JOURNAL OF GEOMETRY AND PHYSICS

Journal of Geometry and Physics 57 (2007) 1541-1547

www.elsevier.com/locate/jgp

On the conformal geometry of transverse Riemann–Lorentz manifolds

E. Aguirre*, V. Fernández, J. Lafuente

Dept. Geometría y Topología, Fac. CC. Matemáticas, UCM, Plaza de las Ciencias 3, Madrid, Spain

Received 29 September 2006; received in revised form 22 December 2006; accepted 6 January 2007 Available online 12 January 2007

Abstract

Physical reasons suggested in [J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815–1834] for the *Quantum Gravity Problem* lead us to study *type-changing metrics* on a manifold. The most interesting cases are *Transverse Riemann–Lorentz Manifolds*. Here we study the conformal geometry of such manifolds. (© 2007 Published by Elsevier B.V.

MSC: 53C50; 53B30; 53C15

1. Preliminaries

Let M be a connected manifold, dim $M = m \ge 2$, and let g be a symmetrical covariant tensor field of order 2 on M. Assume that the set Σ of points where g degenerates is not empty. Consider $p \in \Sigma$ and (\mathbb{U}, x) a coordinate system around p. We say that g is a *transverse type-changing metric* on p if $d_p(\det(g_{ab})) \ne 0$ (this condition does not depend on the choice of the coordinates). We call (M, g) *transverse type-changing pseudoriemannian manifold* if g is transverse type-changing on every point of Σ . In this case, Σ is a hypersurface of M. Moreover, at every point pof Σ the radical subspace $\operatorname{Rad}_p(M)$ of T_pM (that is, the subspace of T_pM which is g-ortogonal to the whole T_pM) is one-dimensional, and it can be transverse or tangent to the hypersurface Σ . The *index* of g is constant on every connected component of $\mathbb{M} = M - \Sigma$, thus \mathbb{M} is a union of connected pseudoriemannian manifolds. Locally, Σ separates two pseudoriemannian manifolds whose indices differ in one unit (so we call Σ *transverse type-changing hypersurface*, in particular Σ is orientable). The most interesting cases, at least from the physical point of view [2], are those in which Σ separates a riemannian part from a lorentzian one. We call these cases *transverse Riemann–Lorentz manifolds*.

Let $\tau \in C^{\infty}(M)$ be such that $\tau \mid_{\Sigma} = 0$ and $d\tau \mid_{\Sigma} \neq 0$. We say that (locally, around Σ) $\tau = 0$ is an equation for Σ . Given $f \in C^{\infty}(M)$, it holds: $f \mid_{\Sigma} = 0 \Leftrightarrow f = k\tau$, for some $k \in C^{\infty}(M)$. In what follows we shall use this fact extensively.

On \mathbb{M} we have naturally defined all the objects associated to pseudoriemannian geometry, derived from the Levi-Civita connection. In [4–7,1], the extendibility of geodesics, parallel transport and curvatures have been studied. Our

* Corresponding author.

E-mail address: edaguirr@mat.ucm.es (E. Aguirre).

^{0393-0440/\$ -} see front matter © 2007 Published by Elsevier B.V. doi:10.1016/j.geomphys.2007.01.003

aim in the present paper is to study the conformal geometry of transverse Riemann–Lorentz manifolds, including criteria for the extendibility of the *Weyl conformal curvature*.

Let (M, g) be a transverse Riemann–Lorentz manifold. First of all, note that we do not have any Levi-Civita connection ∇ defined on the whole M. However, we have [4] a unique torsion-free metric *dual connection*

$$\Box:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}^{*}(M)$$

on *M* defined by a *Koszul-like formula*. On \mathbb{M} it holds $\Box_X Y(Z) = g(\nabla_X Y, Z)$, and thus the concepts derived from Levi-Civita connection ∇ (on \mathbb{M}) coincide with those derived from the dual connection \Box .

We say that a vectorfield $R \in \mathfrak{X}(M)$ is radical if $R_p \in \operatorname{Rad}_p(M) - \{0\}$ for all $p \in \Sigma$. Given a radical vectorfield $R \in \mathfrak{X}(M), \Box_X Y(R) |_{\Sigma}$ only depends on $X|_{\Sigma}$ and $Y|_{\Sigma}$, thus we obtain the following well-defined map

$$H^{R}:\mathfrak{X}_{\Sigma}\times\mathfrak{X}_{\Sigma}\to C^{\infty}(\Sigma), (X,Y)\mapsto \Box_{X}Y(R).$$

Note that the II^R -orthogonal complement to $\operatorname{Rad}_p(M)$ is $T_p \Sigma$ ([7], 1(a)), thus $X \in \mathfrak{X}_{\Sigma}$ is tangent to Σ if and only if $II^R(X, R) = 0$.

Because of the properties of \Box , the restriction of II^R to vectorfields in $\mathfrak{X}(\Sigma)$ is a well-defined (0, 2) symmetric tensor field $II_{\Sigma}^R \in S^2(\Sigma)$. Furthermore, since $\Box_X Y$ is a one-form on M and the radical is one-dimensional, the condition $II_{\Sigma}^R = 0$ does not depend on the radical vectorfield R. A transverse Riemann–Lorentz manifold is said to be II-flat if $II_{\Sigma}^R = 0$, for some (and thus, for any) radical vectorfield R. It turns out ([7] for transverse, [1] for tangent radical) that M is II-flat if and only if all covariant derivatives $\nabla_X Y$, for $X, Y \in \mathfrak{X}(M)$ tangent to Σ , smoothly extend to M. Moreover, in that case, $\nabla_X Y|_{\Sigma}$ only depends on $X|_{\Sigma}$ and $Y|_{\Sigma}$, thus we obtain another well-defined map

$$III^{R}$$
: $\mathfrak{X}(\Sigma) \times \mathfrak{X}(\Sigma) \to C^{\infty}(\Sigma), (X, Y) \mapsto II^{R}(\nabla_{X}Y, R)$

which is a (0, 2) symmetrical tensorfield on Σ . A transverse Riemann–Lorentz II-flat metric is said to be III-flat if $III^R = 0$.

If the radical is tangent, $\nabla_R R$ becomes transverse [1]; therefore, in order that a *II*-flat metric becomes *III*-flat, the radical must be transverse. And we have the following result [7], concerning the extendibility of curvature tensors:

Theorem 1. The covariant curvature K smoothly extends to M if and only if the radical is transverse and g is II-flat, while the Ricci tensor Ric smoothly extends to M if and only if the radical is transverse and g is III-flat.

2. A Gauss formula for transverse Riemann-Lorentz manifolds

Let (M, g) be a transverse Riemann–Lorentz manifold with transverse radical.

Lemma 2. There exists a unique (canonically defined) radical vectorfield R such that $II^{R}(R, R) = 1$.

Proof. Given a radical vectorfield U, consider $R = (II^U(U, U))^{-\frac{1}{3}}U$, which is a well-defined radical vectorfield (since the radical is transverse). Thus $II^R(R, R) = 1$. Furthermore, if Z = fR is another radical vectorfield such that $II^Z(Z, Z) = 1$, then $1 = II^Z(Z, Z) = f^3II^R(R, R) = f^3$, and consequently f = 1.

Suppose that (M, g) is *II*-flat. As we said before, given $X, Y \in \mathfrak{X}(\Sigma)$, $\nabla_X Y$ is well-defined. Moreover, $\tan(\nabla_X Y) := \nabla_X Y - III^R(X, Y) R$ is indeed tangent to Σ , since

$$II^{R}(R, \tan(\nabla_{X}Y)) = III^{R}(X, Y) - III^{R}(X, Y) II^{R}(R, R) = 0.$$

Lemma 3. If $X, Y \in \mathfrak{X}(\Sigma)$ and ∇^{Σ} is the Levi-Civita connection of (Σ, g_{Σ}) , it holds:

$$\nabla_X Y = \nabla_X^{\Sigma} Y + III^R (X, Y) R.$$

Proof. Let be $Z \in \mathfrak{X}(\Sigma)$. Since (M, g) is *II*-flat, $\nabla_X Y$ is well defined and it must hold $\Box_X Y(Z) = g(\nabla_X Y, Z) = g_{\Sigma}$ (tan $(\nabla_X Y), Z$). On the other hand, \Box has always a good restriction $\Box : \mathfrak{X}(\Sigma) \times \mathfrak{X}(\Sigma) \to \mathfrak{X}^*(\Sigma)$, which must coincide with \Box^{Σ} , the unique torsion-free metric dual connection on (Σ, g_{Σ}) . Since (Σ, g_{Σ}) is riemannian, it must hold $\Box_X^{\Sigma} Y(Z) = g_{\Sigma} (\nabla_X^{\Sigma} Y, Z)$, and the result follows.

The existence of a canonical radical vectorfield leads to the following Gauss formula:

Proposition 4. Let (M, g) be a transverse Riemann–Lorentz manifold with transverse radical and II-flat. Then Σ is "totally geodesic" in the sense that, if $X, Y, Z, T \in \mathfrak{X}(\Sigma)$ it holds:

 $K(X, Y, Z, T) = K^{\Sigma}(X, Y, Z, T)$

where K^{Σ} is the covariant curvature of Σ .

Proof. As we said in the proof of previous lemma we have, for $X, Y, Z, T \in \mathfrak{X}(\Sigma)$: $\Box_X Y(Z) = \Box_X^{\Sigma} Y(Z)$, where \Box^{Σ} is the dual connection of (Σ, g_{Σ}) . Moreover, since $\Box_X R(T) = -\Box_X T(R) = -II^R(X, T) = 0$, again previous lemma leads to

$$\Box_X \left(\nabla_Y Z \right) (T) = \Box_X \left(\nabla_Y^{\Sigma} Z + III^R \left(Y, Z \right) R \right) (T) = \Box_X^{\Sigma} \left(\nabla_Y^{\Sigma} Z \right) (T)$$

what gives the result.

Corollary 5. Let (M, g) be a transverse Riemann–Lorentz manifold with transverse radical. If (\mathbb{M}, g) is flat, then (M, g) is III-flat and Σ is flat.

Proof. If K = 0 then Ric = 0. In particular, Ric extends to M, thus by Theorem 1, (M, g) is *III*-flat. By Proposition 4, Σ is flat.

We now restate Theorem 9 of [5] in the following terms (the flatness of Σ , being a consequence of the corollary, needs not be included as an extra hypothesis):

Theorem 6. Let (M, g) be a transverse Riemann–Lorentz manifold. Then, M is locally flat around Σ if and only if, around every singular point $p \in \Sigma$, there exists a coordinate system (\mathbb{U}, x) such that $g = \sum_{i=0}^{m-1} (dx^i)^2 + \tau (dx^m)^2$, where $\tau = 0$ is a local equation for Σ .

3. Conformal geometry and the extendibility of Weyl curvature

Let us consider a transverse Riemann–Lorentz manifold (M, g) and the family $C = \{e^{2f}g : f \in C^{\infty}(M)\}$. Take $\overline{g} = e^{2f}g \in C$. Then (M, \overline{g}) is also a transverse Riemann–Lorentz manifold, and $\overline{\Sigma} = \Sigma$. Moreover, for each singular point $p \in \Sigma$ the radical subspaces are the same: $\overline{\operatorname{Rad}}_p(M) = \operatorname{Rad}_p(M)$. We say that (M, C) is a transverse Riemann–Lorentz conformal manifold if some (and thus any) $g \in C$ is transverse Riemann–Lorentz. Let (M, C) be a transverse Riemann–Lorentz conformal manifold. We say that $g \in C$ is conformally II-flat if $II_{\Sigma}^{R} = hg_{\Sigma}$, for some radical vectorfield R and some $h \in C^{\infty}(\Sigma)$. This definition does not depend on R and, even more, it is conformal: if $\overline{g} = e^{2f}g \in C$, then it holds

$$\overline{II}_{\Sigma}^{R} = e^{2f} \left\{ II_{\Sigma}^{R} - Rf|_{\Sigma}g_{\Sigma} \right\}.$$
(1)

Thus we say that (M, C) is conformally II-flat if some (and thus, any) metric $g \in C$ is conformally II-flat.

Proposition 7. A transverse Riemann–Lorentz conformal manifold (M, C) is conformally II-flat if and only if around every singular point $p \in \Sigma$ there exist an open neighbourhood \mathbb{U} in M and a metric $g \in C$ which is II-flat on \mathbb{U} , that is $II_{\Sigma \cap \mathbb{U}} = 0$.

Proof. Let (\mathbb{U}, E) be an adapted orthonormal frame near $p \in \Sigma$ (that is, E_m is radical and (E_1, \ldots, E_{m-1}) are orthonormal) and $g \in C$. If C is conformally II-flat, then there exists $h \in C^{\infty}(\Sigma)$ such that $II_{\Sigma}^{E_m} = hg_{\Sigma}$. Take $\hat{h} \in C^{\infty}(\mathbb{U})$ any local extension of h (shrinking \mathbb{U} if necessary). There exists $f \in C^{\infty}(\mathbb{U})$ (shrinking again \mathbb{U} if necessary) satisfying $E_m f = \hat{h}$ (since it is locally a first order linear equation), what gives on \mathbb{U} : $II_{\Sigma}^{E_m} = (E_m f) |_{\Sigma}g_{\Sigma}$. Let $\hat{f} \in C^{\infty}(M)$ be any extension of (possibly a restriction of) f. Applying (1) to g and $\overline{g} := e^{2\hat{f}}g \in C$ we have $\overline{II}_{\Sigma}^{E_m} = 0$.

To show the converse we start considering $g \in C$. Since conformally *II*-flatness is a local condition, it suffices to take an arbitrary $p \in \Sigma$ and $\overline{g} = e^{2\widehat{f}}g \in C$ such that \overline{g} is *II*-flat around *p*. Then, formula (1) applied to *g* and \overline{g} shows that $\Pi_p^{\xi} = (\xi f) g_p$, where $\xi \in \operatorname{Rad}_p(M) - \{0\}$.

In what follows, we study *conformally II-flat Riemann–Lorentz conformal* structures with transverse radical. Let g and $\overline{g} = e^{2f}g \in C$ be two transverse Riemann–Lorentz metrics which are *II*-flat. Formula (1) shows that $(Rf)|_{\Sigma} = 0$. The expression of $\operatorname{grad}_g(f)$ in an adapted orthonormal frame such that $R = E_m$ is $\operatorname{grad}_g(f) = \sum_{i=1}^{m-1} (E_i f) E_i + \tau^{-1} (Rf) R$, thus $\operatorname{grad}_g(f)$ extends to the whole *M*. Now a simple computation gives:

$$\overline{III}^{R} = e^{2f} \{ III^{R} - II^{R} (\operatorname{grad}_{g}(f), R) g_{\Sigma} \}.$$
⁽²⁾

We say that $g \in C$ is conformally III-flat if it is II-flat (in order that III^R exists) and it holds $III^R = kg_{\Sigma}$, for some radical vectorfield R and some $k \in C^{\infty}(\Sigma)$. Since II-flatness is not conformal, the above definition, although independent of R, cannot be conformal. However, it is conformal in the subset of II-flat metrics.

Definition 8. We say that a transverse Riemann–Lorentz conformal manifold (M, C) with transverse radical is conformally *III*-flat if it is conformally *III*-flat and every $g \in C$ which is *II*-flat on some open \mathbb{U} of M is also conformally *III*-flat on \mathbb{U} .

Note that there may exist no conformally *III*-flat metric on a conformally *III*-flat manifold, simply because there may exist no *II*-flat metric there. However, since a conformally *III*-flat space is conformally *III*-flat, we deduce from Proposition 7 that there always exist locally *II*-flat metrics. Let us show that in fact there also exist locally *III*-flat metrics:

Proposition 9. A transverse Riemann–Lorentz conformal manifold (M, C) with transverse radical is conformally III-flat if and only if around every singular point $p \in \Sigma$ there exist an open neighbourhood \mathbb{U} in M and a metric $g \in C$ which is III-flat on \mathbb{U} , that is $III_{\Sigma \cap \mathbb{U}} = 0$.

Proof. Consider $p \in \Sigma$ and (\mathbb{U}, E) a *completely adapted orthonormal frame* (i.e., E_m is radical and (E_1, \ldots, E_{m-1}) are orthonormal and tangent to Σ). If (M, C) is conformally *III*-flat, there exist $g \in C$ which is *II*-flat on \mathbb{U} (without loss of generality) and $k \in C^{\infty}(\Sigma \cap \mathbb{U})$, such that $III^{E_m} = kg_{\Sigma}$. Since the radical is transverse, we have $II_{mm}^{E_m} \neq 0$, thus $k_1 := \frac{k}{II_{mm}^{E_m}}$ is C^{∞} on $\Sigma \cap \mathbb{U}$. As in Proposition 7 we can obtain $f \in C^{\infty}(\mathbb{U})$ such that $E_m f = \tau \hat{k}_1$, where $\tau = g(E_m, E_m)$ and $\hat{k}_1 \in C^{\infty}(\mathbb{U})$ is any local extension of k_1 . Since $(E_m f)|_{\Sigma} = 0$, we get $\operatorname{grad}_g(f) \in \mathfrak{X}(\mathbb{U})$ and we have $II^{E_m}(\operatorname{grad}_g(f), E_m) = (\tau^{-1}E_m f)_{\Sigma}II_{mm}^{E_m} = k$. Now, take any extension $\hat{f} \in C^{\infty}(M)$ of (possibly a restriction of) f. Since g is *II*-flat, we deduce from (1) that $\overline{g} = e^{2\widehat{f}}g \in C$ is also *II*-flat on \mathbb{U} . We also deduce that \overline{g} is *III*-flat on \mathbb{U} .

To prove the converse, first observe that the hypothesis implies in particular that (M, C) is conformally *II*-flat. Consider $p \in \Sigma$ and $g \in C$, *II*-flat on a neighbourhood of p. By hypothesis, there exists $\overline{g} = e^{2f}g \in C$ which is *III*-flat around p. Thus we deduce from (2) that $III^R = II^R(\operatorname{grad}_g(f), R)g_{\Sigma}$, so g is conformally *III*-flat.

In what follows we shall assume that dim $M = m \ge 4$. We now study the extendibility of *the Weyl tensor*, naturally defined on $(\mathbb{M}, \mathcal{C}_{\mathbb{M}})$. It is well-known that this tensor plays a main role in deciding when \mathbb{M} is (locally) conformally flat, according to *Weyl Theorem: a pseudoriemannian conformal manifold is (locally) conformally flat if and only if the Weyl tensor vanishes identically* (see for instance the preliminaries of [3]). At the end of the paper we discuss the problem of establishing a modified version of Weyl Theorem for transverse Riemann–Lorentz conformal manifolds.

The Weyl tensor W on $(\mathbb{M}, g_{\mathbb{M}})$ can be defined as:

$$W := K - h \bullet g \in \mathcal{I}_4^0 \left(\mathbb{M} \right),$$

where $h = \frac{1}{m-2} \left\{ \text{Ric} - \frac{\text{Sc}}{2(m-1)} g \right\}$ is the *Schouten tensor*, Ric is the Ricci tensor and Sc is the scalar curvature associated with $(\mathbb{M}, g_{\mathbb{M}})$, and where:

•:
$$S^2(\mathbb{M}) \times S^2(\mathbb{M}) \to \mathcal{I}_4^0(\mathbb{M})$$

is the so-called Kulkarni-Nomizu product, given by

$$\theta \bullet \omega(x, y, z, t) := \det \begin{pmatrix} \theta(x, z) & \omega(x, t) \\ \theta(y, z) & \omega(y, t) \end{pmatrix} + \det \begin{pmatrix} \omega(x, z) & \theta(x, t) \\ \omega(y, z) & \theta(y, t) \end{pmatrix}.$$

n

If we pick $\overline{g} = e^{2f}g \in C$, then the Weyl tensor associated to $(\mathbb{M}, \overline{g}_{\mathbb{M}})$ satisfies $\overline{W} = e^{2f}W$, thus *the Weyl conformal curvature* $\mathcal{W} := \uparrow_2^1 W \in \mathcal{I}_3^1(\mathbb{M})$ becomes a conformal invariant. Notice that the extendibility of W (which is equivalent to the extendibility of \mathcal{W}) is a conformal condition, therefore it should be stated in terms of the conformal structure. In fact, we prove that it is equivalent to conformal *III*-flatness.

Theorem 10. Let (M, C) be a transverse Riemann–Lorentz conformal manifold, with dim $M = m \ge 4$. Then W (smoothly) extends to the whole M if and only if the radical is transverse and C is conformally III-flat.

Proof. If (M, \mathcal{C}) has transverse radical and is conformally *III*-flat, there exist (Proposition 9) a *M*-open covering $\{\mathbb{U}_{\alpha}\}$ of Σ and a family of metrics $\{g_{\alpha}\}$ in \mathcal{C} such that g_{α} is *III*-flat on \mathbb{U}_{α} . By Theorem 1, the covariant curvature K_{α} , the Ricci tensor Ric_{α} and the scalar curvature Sc_{α} associated to g_{α} extend to $\Sigma \cap \mathbb{U}_{\alpha}$, therefore the Weyl tensor W_{α} also extends to $\Sigma \cap \mathbb{U}_{\alpha}$. Since this is a conformal condition, W_{α} extends to $\Sigma \cap \mathbb{U}_{\beta}$ for all β , and thus W_{α} extends to the whole *M*.

To show the converse we start picking an adapted orthonormal frame (\mathbb{U} , E). Then, we can express the functions $W_{abcd} = W(E_a, E_b, E_c, E_d)$ as second order polynomials in $\tau^{-1} = (g(E_m, E_m))$. Let us call $(W_{abcd})_0$, $(W_{abcd})_1$ and $(W_{abcd})_2$ the differentiable coefficients of the terms of order 0, 1 and 2. Since $\tau = 0$ is a local equation for Σ , W extends to \mathbb{U} if and only if the restricted functions $(W_{abcd})_2 |_{\Sigma}$ and $(W_{abcd})_1 + \tau^{-1} (W_{abcd})_2 |_{\Sigma}$ identically vanish.

Suppose the radical is tangent to Σ at a singular point $p \in \Sigma$. We can choose the frame such that $E_1(p)$, $E_2(p) \in T_p M - T_p \Sigma$. But then, using that $\Pi^{E_m}(E_m, E_m)(p) = 0$ (because the radical is tangent), we obtain $(W_{1323}(p))_2 = \frac{\varepsilon_3}{m-2} \Pi_p^{E_m}(E_1, E_m) \Pi_p^{E_m}(E_2, E_m)$. Since E_1 and E_2 are transverse to Σ at p, $(W_{1323}(p))_2 \neq 0$, hence W cannot be extended. Therefore the radical must be transverse to Σ .

Once we know that the radical must be always transverse to Σ (thus $\Pi_{mm}^{E_m} \neq 0$), we can choose the orthonormal frame (U, E) completely adapted. Thus, picking i, j, k different from m, with i, j different from k, and using $\Pi_{im}^{E_m} = 0$, we have: if $i \neq j$, then $0 = (W_{ikjk})_2 |_{\Sigma} = -\frac{\varepsilon_k}{m-2} \Pi_{ij}^{E_m} \Pi_{mm}^{E_m}$. Since $\Pi_{mm}^{E_m} \neq 0$, we get $\Pi_{ij}^{E_m} = 0$. If i = j (and using $\Pi_{ij}^{E_m} = 0$), the $\binom{m-1}{2}$ equalities $0 = (W_{ikik})_2 |_{\Sigma}$, suitably manipulated, give us $\varepsilon_i \Pi_{ii}^{E_m} + \varepsilon_k \Pi_{kk}^{E_m} = \frac{2C}{m-1}$, where $C = \sum_{l=1}^{m-1} \varepsilon_l \Pi_{ll}^{E_m} \in C^{\infty}(\mathbb{U})$. Subtracting the equation for i, k from the equation for k, j, we obtain $\varepsilon_i \Pi_{ii}^{E_m} - \varepsilon_j \Pi_{jj}^{E_m} = 0$, thus $\varepsilon_i \Pi_{ii}^{E_m} = \varepsilon_j \Pi_{jj}^{E_m}$. Defining $k := \varepsilon_1 \Pi_{11}^{E_m} \in C^{\infty}(\Sigma \cap \mathbb{U})$, it holds $\Pi_{ii}^{E_m} = \varepsilon_i \varepsilon_1 \Pi_{11}^{E_m} = kg_{ii}$ and $\Pi_{ij}^{E_m} = 0 = kg_{ij}$ (where $i \neq j$), what means $\Pi_{\Sigma}^{E_m} = kg_{\Sigma}$, that is, g is conformally Π -flat on U, and therefore (M, C) is conformally Π -flat.

Once we know that (M, C) is conformally *II*-flat, we can choose a metric $g \in C$ which is *II*-flat on \mathbb{U} (shrinking \mathbb{U} if neccessary). By Theorem 1, the covariant curvature *K* associated with *g* extends to $\Sigma \cap \mathbb{U}$ and, since *W* also does it, necessarily $h \bullet g$ extends to $\Sigma \cap \mathbb{U}$. Picking *i*, *j*, *k* different from *m*, with *i*, *j* different from *k*, we get $(h \bullet g)_{ikik} = \varepsilon_k h_{ij} + \delta_{ij} \varepsilon_i h_{kk} = A_{ijk} + \tau^{-1} B_{ijk}$, therefore the function

$$B_{ijk} \coloneqq \frac{1}{m-2} \left\{ \varepsilon_k K_{imjm} + \delta_{ij} \varepsilon_i K_{kmkm} - \frac{2\varepsilon_k \delta_{ij} \varepsilon_i}{m-1} \sum_{l=1}^{m-1} \varepsilon_l K_{lmlm} \right\}$$

must vanish on Σ . Using the same argument as before, but with the equalities $0 = B_{ijk}|_{\Sigma}$, we get: $III^{E_m} = kg_{\Sigma}$, where $k := \varepsilon_1 III^{E_m}_{11} \in C^{\infty}(\Sigma \cap \mathbb{U})$, that is g is conformally III-flat on \mathbb{U} , and thus (M, \mathcal{C}) is conformally III-flat.

Let us consider the following conjecture:

Conjecture 11. Let (M, C) be a transverse Riemann–Lorentz conformal manifold, with dim $M = m \ge 4$. A necessary condition for being W = 0 is that, around every singular point $p \in \Sigma$, there exist a coordinate system (\mathbb{U}, x) and a metric $g \in C$ such that $g = \sum_{i=0}^{m-1} (dx^i)^2 + \tau (dx^m)^2$, where $\tau = 0$ is a local equation for Σ .

Using Theorem 6, it becomes obvious that the necessary condition stated in the conjecture is always sufficient for having W = 0 around Σ .

If the conjecture is true, Σ must be (locally) conformally flat, which is well known equivalent to either $W^{\Sigma} = 0$ (if m > 4) or $\nabla_X^{\Sigma} h^{\Sigma}(Y, Z) = \nabla_Y^{\Sigma} h^{\Sigma}(X, Z)$ (if m = 4). But the extendibility of W, equivalent (Theorem 10) to conformal *III*-flatness, implies (Proposition 9) the existence of a metric $g \in C$ which is *III*-flat around Σ , thus satisfying (Proposition 4):

$$W|_{T\Sigma} = (K - h \bullet g)|_{T\Sigma} = K^{\Sigma} - h|_{T\Sigma} \bullet g_{\Sigma} = W^{\Sigma} + (h^{\Sigma} - h|_{T\Sigma}) \bullet g_{\Sigma}.$$

Because conditions W = 0 and $W^{\Sigma} = 0$ are conformal, any counterexample (M, \mathcal{C}) to the above conjecture must admit a metric $g \in \mathcal{C}$ which is *III*-flat around Σ and satisfies either $h^{\Sigma} \neq h|_{T\Sigma}$ (if m > 4) or (Lemma 3) $\nabla_X h(Y, Z) \neq \nabla_Y h(X, Z)$, for some $X, Y, Z \in \mathfrak{X}(\Sigma)$ (if m = 4). Now a straightforward computation for *III*-flat metrics, using an orthonormal completely adapted frame, leads to the following expression in terms of extendible quantities:

$$h_{ij}^{\Sigma} - h_{ij}|_{T\Sigma} = \frac{-1}{m-2} \left\{ \frac{K_{imjm}}{\tau} - \frac{1}{m-3} \sum_{l=1}^{m-1} K_{iljl} - \frac{1}{m-1} \left[\sum_{k=1}^{m-1} \frac{K_{kmkm}}{\tau} - \frac{1}{m-3} \sum_{k,l=1}^{m-1} K_{klkl} \right] \delta_{ij} \right\} \Big|_{\Sigma}$$

(i, j = 1, ..., m - 1), which shows that the construction of counterexamples is not easy.

In fact, the conjecture is true for transverse Riemann–Lorentz warped products, as we show right now. Let us consider a m-dimensional $(m \ge 4)$ transverse Riemann–Lorentz manifold (M, g) of the form $M = I \times S$, where dim $I = 1, 0 \in I$, and $g = f(t)^2 g_S - t dt^2$, where $f \in C^{\infty}(I), f > 0$ and g_S is riemannian (we identify t, f and g_S with the corresponding pullbacks by the canonical projections). Thus $\Sigma = \{0\} \times S$ is homothetic to S with scale factor f(0). Calling $U \in \mathfrak{X}(M)$ the (nowhere zero) lift of the vectorfield $\frac{d}{dt} \in \mathfrak{X}(I)$, one immediately sees that U is radical and transverse to Σ . It is not difficult to compute the curvature tensors on \mathbb{M} . Standard results on warped products (see [8], Chapter 7) lead to (we denote by $X, Y \in \mathfrak{X}(M)$ the lifts of corresponding vectorfields $\overline{X}, \overline{Y} \in \mathfrak{X}(S)$): $\nabla_U U = \frac{1}{2t}U, \nabla_U X = \nabla_X U = \frac{f'}{f}X$ and $\nabla_X Y = g(X, Y)\frac{f'}{tf}U + \nabla_{\overline{X}}^{S}\overline{Y}$ (where ∇^{S} is the Levi-Civita connection on S and $\nabla_{\overline{X}}^{S}\overline{Y}$ is the lift of the corresponding vectorfield on S) and also to the following expressions for the curvature tensors:

$$\begin{cases} K = f^2 K^S + \frac{f'^2 f^2}{2t} g_S \bullet g_S + \frac{f}{2} \left(\frac{f'}{t} - 2f'' \right) g_S \bullet dt^2 \\ \text{Ric} = \text{Ric}^S - \left(\frac{f}{2t} \left(\frac{f'}{t} - 2f'' \right) - (m-2) \frac{f'^2}{t} \right) g_S + \frac{m-1}{2f} \left(\frac{f'}{t} - 2f'' \right) dt^2 \\ \text{Sc} = \frac{\text{Sc}^S}{f^2} - \frac{m-1}{f^2} \left(\frac{f}{t} \left(\frac{f'}{t} - 2f'' \right) - (m-2) \frac{f'^2}{t} \right) \\ h = \frac{m-3}{m-2} h^S + \left(\frac{\text{Sc}^S}{2(m-2)^2 (m-1)} + \frac{f'^2}{2t} \right) g_S \\ + \left(\frac{t \text{Sc}^S}{2(m-1) (m-2) f^2} + \frac{1}{2f} \left(\frac{f'^2}{f} + \frac{f'}{t} - 2f'' \right) \right) dt^2 \\ W = f^2 W^S + \frac{1}{(m-2)} \left(\text{Ric}^S - \frac{\text{Sc}^S}{m-1} g_S \right) \bullet \left(\frac{f^2}{m-3} g_S + t dt^2 \right) \end{cases}$$

 $(K^S, \operatorname{Ric}^S, \operatorname{Sc}^S, h^S \text{ and } W^S \text{ denote of course the pullbacks by the projection of the corresponding tensor fields on S}.$ It follows:

Lemma 12. The following three conditions are equivalent: (1) K extends to M, (2) f'(0) = 0 and (3) h extends to M. Also the following are equivalent: (1) Ric extends to M, (2) (f'/t)(0) = 0 and (3) Sc extends to M. Moreover, W extends to M in any case.

The fact that W extends to M was obvious from the very beginning: the map $\Psi \equiv \psi \times id : (I - \{0\}) \times S \to \mathbb{R} \times S$, given by $T \equiv \psi(t) := \int_0^t \frac{|s|^{\frac{1}{2}} ds}{f(s)}$, is a conformal diffeomorphism onto its (non-connected) image with the metric $\overline{g} \equiv -(dT)^2 + g_S$, thus it preserves the $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ -Weyl tensors, and since \overline{g} is regular around T = 0 and $f(0) \neq 0$, \overline{W} (and therefore W) extends to the whole M. It follows from Theorem 10 that the conformal manifold (M, [g]) is (in any case) conformally *III*-flat.

Lemma 13. The following four conditions are equivalent: (1) W = 0, (2) $W^S = 0 = \text{Ric}^S - \frac{\text{Sc}^S}{m-1}g_S$ and (3) Σ has constant (sectional) curvature.

Proof. (1) \Leftrightarrow (2) follows from the above formula. (2) \Rightarrow (3): $\operatorname{Ric}^{S} - \frac{Sc^{S}}{m-1}g_{S} = 0$ implies (Schur's lemma) Sc^S = (m-1)(m-2)C (constant), thus $h^{S} = \frac{C}{2}g_{S}$; moreover $W^{S} = 0$ leads to $K^{S} = \frac{C}{2}g_{S} \bullet g_{S}$. (3) \Rightarrow (2): From $K^{S} = \frac{C}{2}g_{S} \bullet g_{S}$, one immediately gets: $W^{S} = 0 = \operatorname{Ric}^{S} - \frac{Sc^{S}}{m-1}g_{S}$.

Proposition 14. The Conjecture 11 is true for any transverse Riemann–Lorentz conformal manifold (M, C) such that some $g \in C$ is a warped product.

Proof. Let $g = f(t)^2 g_S - t dt^2 \in C$ be a transverse warped product metric on $M = I \times S$. Note that $g = f(t)^2 \left\{ g_S - \frac{t}{f(t)^2} dt^2 \right\}$. From W = 0 and Lemma 13 we get, around any $p \in \Sigma$, coordinates (\mathbb{V}, y) of Σ such that $f(0)^2 g_S = g_{\Sigma} = e^{2h} \sum_{i=1}^{m-1} (dy^i)^2$, for some $h \in C^{\infty}(\Sigma)$. Choosing $x^i := y^i \circ \pi$, $x^m := t$ and $\tau := \frac{-te^{-2h}}{f(t)^2}$, we get $g = e^{2h} f(t)^2 \left\{ \sum_{i=1}^{m-1} (dx^i)^2 + \tau (dx^m)^2 \right\}$, and we are finished.

References

- [1] E. Aguirre, J. Lafuente, Trasverse Riemann–Lorentz metrics with tangent radical, Differential Geom. Appl. 24 (2) (2005) 91–100.
- [2] J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815–1834.
- [3] U. Hertrich-Jeromin, Introduction to Möbius Differential Geometry, Cambridge Univ. Press, 2003.
- [4] M. Kossowski, Fold singularities in pseudoriemannian geodesic tubes, Proc. Amer. Math. Soc. 95 (1985) 463–469.
- [5] M. Kossowski, Pseudo-riemannian metric singularities and the extendability of parallel transport, Proc. Amer. Math. Soc. 99 (1987) 147–154.
- [6] M. Kossowski, M. Kriele, Transverse, type changing, pseudo riemannian metrics and the extendability of geodesics, Proc. R. Soc. Lond. Ser. A 444 (1994) 297–306.
- [7] M. Kossowski, M. Kriele, The volume blow-up and characteristic classes for transverse, type changing, pseudo-riemannian metrics, Geom. Dedicata 64 (1997) 1–16.
- [8] B. O'Neill, Semi-Riemannian Geometry, Academic Press, 1983.