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Abstract

Physical reasons suggested in [J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815–1834]
for the Quantum Gravity Problem lead us to study type-changing metrics on a manifold. The most interesting cases are Transverse
Riemann–Lorentz Manifolds. Here we study the conformal geometry of such manifolds.
c© 2007 Published by Elsevier B.V.

MSC: 53C50; 53B30; 53C15

1. Preliminaries

Let M be a connected manifold, dim M = m ≥ 2, and let g be a symmetrical covariant tensor field of order 2
on M . Assume that the set Σ of points where g degenerates is not empty. Consider p ∈ Σ and (U, x) a coordinate
system around p. We say that g is a transverse type-changing metric on p if dp(det (gab)) 6= 0 (this condition does
not depend on the choice of the coordinates). We call (M, g) transverse type-changing pseudoriemannian manifold if
g is transverse type-changing on every point of Σ . In this case, Σ is a hypersurface of M . Moreover, at every point p
of Σ the radical subspace Radp(M) of Tp M (that is, the subspace of Tp M which is g-ortogonal to the whole Tp M)
is one-dimensional, and it can be transverse or tangent to the hypersurface Σ . The index of g is constant on every
connected component of M = M − Σ , thus M is a union of connected pseudoriemannian manifolds. Locally, Σ
separates two pseudoriemannian manifolds whose indices differ in one unit (so we call Σ transverse type-changing
hypersurface, in particular Σ is orientable). The most interesting cases, at least from the physical point of view [2], are
those in which Σ separates a riemannian part from a lorentzian one. We call these cases transverse Riemann–Lorentz
manifolds.

Let τ ∈ C∞(M) be such that τ |Σ = 0 and dτ |Σ 6= 0. We say that (locally, around Σ ) τ = 0 is an equation for
Σ . Given f ∈ C∞(M), it holds: f |Σ = 0 ⇔ f = kτ , for some k ∈ C∞(M). In what follows we shall use this fact
extensively.

On M we have naturally defined all the objects associated to pseudoriemannian geometry, derived from the Levi-
Civita connection. In [4–7,1], the extendibility of geodesics, parallel transport and curvatures have been studied. Our
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aim in the present paper is to study the conformal geometry of transverse Riemann–Lorentz manifolds, including
criteria for the extendibility of the Weyl conformal curvature.

Let (M, g) be a transverse Riemann–Lorentz manifold. First of all, note that we do not have any Levi-Civita
connection ∇ defined on the whole M . However, we have [4] a unique torsion-free metric dual connection

� : X (M)× X (M) → X∗ (M)

on M defined by a Koszul-like formula. On M it holds �X Y (Z) = g (∇X Y, Z), and thus the concepts derived from
Levi-Civita connection ∇ (on M) coincide with those derived from the dual connection �.

We say that a vectorfield R ∈ X (M) is radical if Rp ∈ Radp(M)− {0} for all p ∈ Σ . Given a radical vectorfield
R ∈ X (M), �X Y (R) |Σ only depends on X |Σ and Y |Σ , thus we obtain the following well-defined map

II R
: XΣ × XΣ → C∞(Σ ), (X, Y ) 7→ �X Y (R) .

Note that the II R-orthogonal complement to Radp (M) is TpΣ ([7], 1(a)), thus X ∈ XΣ is tangent to Σ if and only
if II R (X, R) = 0.

Because of the properties of �, the restriction of II R to vectorfields in X (Σ ) is a well-defined (0, 2) symmetric
tensor field II R

Σ ∈ S2 (Σ ). Furthermore, since �X Y is a one-form on M and the radical is one-dimensional, the
condition II R

Σ = 0 does not depend on the radical vectorfield R. A transverse Riemann–Lorentz manifold is said to be
II-flat if II R

Σ = 0, for some (and thus, for any) radical vectorfield R. It turns out ([7] for transverse, [1] for tangent
radical) that M is II-flat if and only if all covariant derivatives ∇X Y , for X, Y ∈ X (M) tangent to Σ , smoothly extend
to M . Moreover, in that case, ∇X Y |Σ only depends on X |Σ and Y |Σ , thus we obtain another well-defined map

III R
: X (Σ )× X (Σ ) → C∞(Σ ), (X, Y ) 7→ II R (∇X Y, R)

which is a (0, 2) symmetrical tensorfield on Σ . A transverse Riemann–Lorentz II-flat metric is said to be III-flat if
III R

= 0.
If the radical is tangent, ∇R R becomes transverse [1]; therefore, in order that a II-flat metric becomes III-flat, the

radical must be transverse. And we have the following result [7], concerning the extendibility of curvature tensors:

Theorem 1. The covariant curvature K smoothly extends to M if and only if the radical is transverse and g is II-flat,
while the Ricci tensor Ric smoothly extends to M if and only if the radical is transverse and g is III-flat.

2. A Gauss formula for transverse Riemann–Lorentz manifolds

Let (M, g) be a transverse Riemann–Lorentz manifold with transverse radical.

Lemma 2. There exists a unique (canonically defined) radical vectorfield R such that II R (R, R) = 1.

Proof. Given a radical vectorfield U , consider R =
(
IIU (U,U )

)− 1
3 U , which is a well-defined radical vectorfield

(since the radical is transverse). Thus II R (R, R) = 1. Furthermore, if Z = f R is another radical vectorfield such that
IIZ (Z , Z) = 1, then 1 = IIZ (Z , Z) = f 3II R (R, R) = f 3, and consequently f = 1. ♣

Suppose that (M, g) is II-flat. As we said before, given X, Y ∈ X (Σ ), ∇X Y is well-defined. Moreover,
tan (∇X Y ) := ∇X Y − III R (X, Y ) R is indeed tangent to Σ , since

II R (R, tan (∇X Y )) = III R (X, Y )− III R (X, Y ) II R (R, R) = 0.

Lemma 3. If X, Y ∈ X (Σ ) and ∇
Σ is the Levi-Civita connection of (Σ , gΣ ), it holds:

∇X Y = ∇
Σ
X Y + III R (X, Y ) R.

Proof. Let be Z ∈ X (Σ ). Since (M, g) is II-flat, ∇X Y is well defined and it must hold �X Y (Z) = g (∇X Y, Z) =

gΣ (tan (∇X Y ) , Z). On the other hand, � has always a good restriction � : X (Σ ) × X (Σ ) → X∗ (Σ ), which must
coincide with �Σ , the unique torsion-free metric dual connection on (Σ , gΣ ). Since (Σ , gΣ ) is riemannian, it must
hold �Σ

X Y (Z) = gΣ
(
∇

Σ
X Y, Z

)
, and the result follows. ♣
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The existence of a canonical radical vectorfield leads to the following Gauss formula:

Proposition 4. Let (M, g) be a transverse Riemann–Lorentz manifold with transverse radical and II-flat. Then Σ is
“totally geodesic” in the sense that, if X, Y, Z , T ∈ X (Σ ) it holds:

K (X, Y, Z , T ) = KΣ (X, Y, Z , T )

where KΣ is the covariant curvature of Σ .

Proof. As we said in the proof of previous lemma we have, for X, Y, Z , T ∈ X (Σ ): �X Y (Z) = �Σ
X Y (Z), where

�Σ is the dual connection of (Σ , gΣ ). Moreover, since �X R (T ) = −�X T (R) = −II R (X, T ) = 0, again previous
lemma leads to

�X (∇Y Z) (T ) = �X

(
∇

Σ
Y Z + III R (Y, Z) R

)
(T ) = �Σ

X

(
∇

Σ
Y Z

)
(T )

what gives the result. ♣

Corollary 5. Let (M, g) be a transverse Riemann–Lorentz manifold with transverse radical. If (M, g) is flat, then
(M, g) is III-flat and Σ is flat.

Proof. If K = 0 then Ric = 0. In particular, Ric extends to M , thus by Theorem 1, (M, g) is III-flat. By Proposition 4,
Σ is flat. ♣

We now restate Theorem 9 of [5] in the following terms (the flatness of Σ , being a consequence of the corollary,
needs not be included as an extra hypothesis):

Theorem 6. Let (M, g) be a transverse Riemann–Lorentz manifold. Then, M is locally flat around Σ if and only if,
around every singular point p ∈ Σ , there exists a coordinate system (U, x) such that g =

∑m−1
i=0

(
dx i )2

+ τ (dxm)2,
where τ = 0 is a local equation for Σ .

3. Conformal geometry and the extendibility of Weyl curvature

Let us consider a transverse Riemann–Lorentz manifold (M, g) and the family C =
{
e2 f g : f ∈ C∞(M)

}
. Take

g = e2 f g ∈ C. Then (M, g) is also a transverse Riemann–Lorentz manifold, and Σ = Σ . Moreover, for each
singular point p ∈ Σ the radical subspaces are the same: Radp(M) = Radp(M). We say that (M, C) is a transverse
Riemann–Lorentz conformal manifold if some (and thus any) g ∈ C is transverse Riemann–Lorentz. Let (M, C) be a
transverse Riemann–Lorentz conformal manifold. We say that g ∈ C is conformally II-flat if II R

Σ = hgΣ , for some
radical vectorfield R and some h ∈ C∞(Σ ). This definition does not depend on R and, even more, it is conformal: if
g = e2 f g ∈ C, then it holds

II R
Σ = e2 f

{
II R

Σ − R f |Σ gΣ

}
. (1)

Thus we say that (M, C) is conformally II-flat if some (and thus, any) metric g ∈ C is conformally II-flat.

Proposition 7. A transverse Riemann–Lorentz conformal manifold (M, C) is conformally II-flat if and only if around
every singular point p ∈ Σ there exist an open neighbourhood U in M and a metric g ∈ C which is II-flat on U, that
is IIΣ∩U = 0.

Proof. Let (U, E) be an adapted orthonormal frame near p ∈ Σ (that is, Em is radical and (E1, . . . , Em−1) are
orthonormal) and g ∈ C. If C is conformally II-flat, then there exists h ∈ C∞(Σ ) such that IIEm

Σ = hgΣ . Take
ĥ ∈ C∞(U) any local extension of h (shrinking U if necessary). There exists f ∈ C∞(U) (shrinking again U if
necessary) satisfying Em f = ĥ (since it is locally a first order linear equation), what gives on U: IIEm

Σ = (Em f ) |Σ gΣ .
Let f̂ ∈ C∞(M) be any extension of (possibly a restriction of) f . Applying (1) to g and g := e2 f̂ g ∈ C we have
IIEm

Σ = 0.
To show the converse we start considering g ∈ C. Since conformally II-flatness is a local condition, it suffices to

take an arbitrary p ∈ Σ and g = e2 f̂ g ∈ C such that g is II-flat around p. Then, formula (1) applied to g and g shows
that IIξp = (ξ f ) gp, where ξ ∈ Radp (M)− {0}. ♣
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In what follows, we study conformally II-flat Riemann–Lorentz conformal structures with transverse radical.
Let g and g = e2 f g ∈ C be two transverse Riemann–Lorentz metrics which are II-flat. Formula (1) shows that
(R f ) |Σ = 0. The expression of gradg( f ) in an adapted orthonormal frame such that R = Em is gradg( f ) =∑m−1

i=1 (Ei f ) Ei + τ−1 (R f ) R, thus gradg( f ) extends to the whole M . Now a simple computation gives:

III R
= e2 f

{III R
− II R(gradg( f ), R)gΣ }. (2)

We say that g ∈ C is conformally III-flat if it is II-flat (in order that III R exists) and it holds III R
= kgΣ , for

some radical vectorfield R and some k ∈ C∞(Σ ). Since II-flatness is not conformal, the above definition, although
independent of R, cannot be conformal. However, it is conformal in the subset of II-flat metrics.

Definition 8. We say that a transverse Riemann–Lorentz conformal manifold (M, C) with transverse radical is
conformally III-flat if it is conformally II-flat and every g ∈ C which is II-flat on some open U of M is also conformally
III-flat on U.

Note that there may exist no conformally III-flat metric on a conformally III-flat manifold, simply because there
may exist no II-flat metric there. However, since a conformally III-flat space is conformally II-flat, we deduce from
Proposition 7 that there always exist locally II-flat metrics. Let us show that in fact there also exist locally III-flat
metrics:

Proposition 9. A transverse Riemann–Lorentz conformal manifold (M, C) with transverse radical is conformally
III-flat if and only if around every singular point p ∈ Σ there exist an open neighbourhood U in M and a metric
g ∈ C which is III-flat on U, that is IIIΣ∩U = 0.

Proof. Consider p ∈ Σ and (U, E) a completely adapted orthonormal frame (i.e., Em is radical and (E1, . . . , Em−1)

are orthonormal and tangent to Σ ). If (M, C) is conformally III-flat, there exist g ∈ C which is II-flat on U (without
loss of generality) and k ∈ C∞(Σ ∩ U), such that IIIEm = kgΣ . Since the radical is transverse, we have IIEm

mm 6= 0,
thus k1 :=

k
IIEm

mm
is C∞ on Σ ∩ U. As in Proposition 7 we can obtain f ∈ C∞(U) such that Em f = τ k̂1, where

τ = g (Em, Em) and k̂1 ∈ C∞(U) is any local extension of k1. Since (Em f ) |Σ = 0, we get gradg( f ) ∈ X (U)
and we have IIEm (gradg( f ), Em) =

(
τ−1 Em f

)
Σ IIEm

mm = k. Now, take any extension f̂ ∈ C∞ (M) of (possibly a

restriction of) f . Since g is II-flat, we deduce from (1) that g = e2 f̂ g ∈ C is also II-flat on U. We also deduce that g
is III-flat on U.

To prove the converse, first observe that the hypothesis implies in particular that (M, C) is conformally II-flat.
Consider p ∈ Σ and g ∈ C, II-flat on a neighbourhood of p. By hypothesis, there exists g = e2 f g ∈ C which is
III-flat around p. Thus we deduce from (2) that III R

= II R(gradg( f ), R)gΣ , so g is conformally III-flat. ♣

In what follows we shall assume that dim M = m ≥ 4. We now study the extendibility of the Weyl tensor, naturally
defined on (M, CM). It is well-known that this tensor plays a main role in deciding when M is (locally) conformally
flat, according to Weyl Theorem: a pseudoriemannian conformal manifold is (locally) conformally flat if and only if
the Weyl tensor vanishes identically (see for instance the preliminaries of [3]). At the end of the paper we discuss the
problem of establishing a modified version of Weyl Theorem for transverse Riemann–Lorentz conformal manifolds.

The Weyl tensor W on (M, gM) can be defined as:

W := K − h • g ∈ I0
4 (M) ,

where h =
1

m−2

{
Ric −

Sc
2(m−1)g

}
is the Schouten tensor, Ric is the Ricci tensor and Sc is the scalar curvature

associated with (M, gM), and where:

• : S2 (M)× S2 (M) → I0
4 (M)

is the so-called Kulkarni-Nomizu product, given by

θ • ω (x, y, z, t) := det
(
θ(x, z) ω(x, t)
θ(y, z) ω(y, t)

)
+ det

(
ω (x, z) θ (x, t)
ω (y, z) θ (y, t)

)
.



E. Aguirre et al. / Journal of Geometry and Physics 57 (2007) 1541–1547 1545

If we pick g = e2 f g ∈ C, then the Weyl tensor associated to
(
M, gM

)
satisfies W = e2 f W , thus the Weyl conformal

curvature W := ↑
1
2W ∈ I1

3 (M) becomes a conformal invariant. Notice that the extendibility of W (which is
equivalent to the extendibility of W) is a conformal condition, therefore it should be stated in terms of the conformal
structure. In fact, we prove that it is equivalent to conformal III-flatness.

Theorem 10. Let (M, C) be a transverse Riemann–Lorentz conformal manifold, with dim M = m ≥ 4. Then W
(smoothly) extends to the whole M if and only if the radical is transverse and C is conformally III-flat.

Proof. If (M, C) has transverse radical and is conformally III-flat, there exist (Proposition 9) a M-open covering {Uα}
of Σ and a family of metrics {gα} in C such that gα is III-flat on Uα . By Theorem 1, the covariant curvature Kα , the
Ricci tensor Ricα and the scalar curvature Scα associated to gα extend to Σ ∩ Uα , therefore the Weyl tensor Wα also
extends to Σ ∩ Uα . Since this is a conformal condition, Wα extends to Σ ∩ Uβ for all β, and thus Wα extends to the
whole M .

To show the converse we start picking an adapted orthonormal frame (U, E). Then, we can express the functions
Wabcd = W (Ea, Eb, Ec, Ed) as second order polynomials in τ−1

= (g (Em, Em)). Let us call (Wabcd)0 , (Wabcd)1
and (Wabcd)2 the differentiable coefficients of the terms of order 0, 1 and 2. Since τ = 0 is a local equation for Σ , W
extends to U if and only if the restricted functions (Wabcd)2 |Σ and (Wabcd)1 + τ−1 (Wabcd)2 |Σ identically vanish.

Suppose the radical is tangent to Σ at a singular point p ∈ Σ . We can choose the frame such that E1 (p) , E2 (p) ∈

Tp M − TpΣ . But then, using that IIEm (Em, Em) (p) = 0 (because the radical is tangent), we obtain (W1323 (p))2 =

ε3
m−2 IIEm

p (E1, Em) IIEm
p (E2, Em). Since E1 and E2 are transverse to Σ at p, (W1323 (p))2 6= 0, hence W cannot be

extended. Therefore the radical must be transverse to Σ .
Once we know that the radical must be always transverse to Σ (thus IIEm

mm 6= 0), we can choose the orthonormal
frame (U, E) completely adapted. Thus, picking i, j, k different from m, with i, j different from k, and using
IIEm

im = 0, we have: if i 6= j , then 0 =
(
Wik jk

)
2 |Σ = −

εk
m−2 IIEm

i j IIEm
mm . Since IIEm

mm 6= 0, we get IIEm
i j = 0. If i = j

(and using IIEm
i j = 0), the

(
m − 1

2

)
equalities 0 = (Wikik)2 |Σ , suitably manipulated, give us εi II

Em
i i + εkIIEm

kk =
2C

m−1 ,

where C =
∑m−1

l=1 εl II
Em
ll ∈ C∞(U). Subtracting the equation for i, k from the equation for k, j , we obtain

εi II
Em
i i − ε j II

Em
j j = 0, thus εi II

Em
i i = ε j II

Em
j j . Defining k := ε1IIEm

11 ∈ C∞(Σ ∩ U), it holds IIEm
i i = εiε1IIEm

11 = kgi i

and IIEm
i j = 0 = kgi j (where i 6= j), what means IIEm

Σ = kgΣ , that is, g is conformally II-flat on U, and therefore
(M, C) is conformally II-flat.

Once we know that (M, C) is conformally II-flat, we can choose a metric g ∈ C which is II-flat on U (shrinking
U if neccesary). By Theorem 1, the covariant curvature K associated with g extends to Σ ∩ U and, since W also
does it, necessarily h • g extends to Σ ∩ U. Picking i, j, k different from m, with i, j different from k, we get
(h • g)ik jk = εkhi j + δi jεi hkk = Ai jk + τ−1 Bi jk , therefore the function

Bi jk :=
1

m − 2

{
εk Kim jm + δi jεi Kkmkm −

2εkδi jεi

m − 1

m−1∑
l=1

εl Klmlm

}
must vanish on Σ . Using the same argument as before, but with the equalities 0 = Bi jk |Σ , we get: IIIEm = kgΣ ,
where k := ε1IIIEm

11 ∈ C∞(Σ ∩ U), that is g is conformally III-flat on U, and thus (M, C) is conformally III-flat. ♣

Let us consider the following conjecture:

Conjecture 11. Let (M, C) be a transverse Riemann–Lorentz conformal manifold, with dim M = m ≥ 4. A necessary
condition for being W = 0 is that, around every singular point p ∈ Σ , there exist a coordinate system (U, x) and a
metric g ∈ C such that g =

∑m−1
i=0

(
dx i )2

+ τ (dxm)2, where τ = 0 is a local equation for Σ .

Using Theorem 6, it becomes obvious that the necessary condition stated in the conjecture is always sufficient for
having W = 0 around Σ .

If the conjecture is true, Σ must be (locally) conformally flat, which is well known equivalent to either WΣ
= 0

(if m > 4) or ∇
Σ
X hΣ (Y, Z) = ∇

Σ
Y hΣ (X, Z) (if m = 4). But the extendibility of W , equivalent (Theorem 10)

to conformal III-flatness, implies (Proposition 9) the existence of a metric g ∈ C which is III-flat around Σ , thus
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satisfying (Proposition 4):

W |TΣ = (K − h • g) |TΣ = KΣ
− h |TΣ •gΣ = WΣ

+ (hΣ
− h |TΣ ) • gΣ .

Because conditions W = 0 and WΣ
= 0 are conformal, any counterexample (M, C) to the above conjecture must

admit a metric g ∈ C which is III-flat around Σ and satisfies either hΣ
6= h |TΣ (if m > 4) or (Lemma 3)

∇X h(Y, Z) 6= ∇Y h(X, Z), for some X, Y, Z ∈ X(Σ ) (if m = 4). Now a straightforward computation for III-flat
metrics, using an orthonormal completely adapted frame, leads to the following expression in terms of extendible
quantities:

hΣ
i j − hi j |TΣ =

−1
m − 2

{
Kim jm

τ
−

1
m − 3

m−1∑
l=1

Kil jl −
1

m − 1

[
m−1∑
k=1

Kkmkm

τ
−

1
m − 3

m−1∑
k,l=1

Kklkl

]
δi j

}∣∣∣∣∣
Σ

,

(i, j = 1, . . . ,m − 1), which shows that the construction of counterexamples is not easy.
In fact, the conjecture is true for transverse Riemann–Lorentz warped products, as we show right now. Let us

consider a m-dimensional (m ≥ 4) transverse Riemann–Lorentz manifold (M, g) of the form M = I × S, where
dim I = 1, 0 ∈ I , and g = f (t)2 gS − tdt2, where f ∈ C∞(I ), f > 0 and gS is riemannian (we identify t , f and gS
with the corresponding pullbacks by the canonical projections). Thus Σ = {0}× S is homothetic to S with scale factor
f (0). Calling U ∈ X(M) the (nowhere zero) lift of the vectorfield d

dt ∈ X(I ), one immediately sees that U is radical
and transverse to Σ . It is not difficult to compute the curvature tensors on M. Standard results on warped products
(see [8], Chapter 7) lead to (we denote by X, Y ∈ X (M) the lifts of corresponding vectorfields X , Y ∈ X (S)): ∇U U =

1
2t U , ∇U X = ∇X U =

f ′

f X and ∇X Y = g (X, Y ) f ′

t f U + ∇
S
X

Y (where ∇
S is the Levi-Civita connection on S and

∇
S
X

Y is the lift of the corresponding vectorfield on S) and also to the following expressions for the curvature tensors:

K = f 2 K S
+

f ′2 f 2

2t
gS • gS +

f
2

(
f ′

t
− 2 f ′′

)
gS • dt2

Ric = RicS
−

(
f

2t

(
f ′

t
− 2 f ′′

)
− (m − 2)

f ′2

t

)
gS +

m − 1
2 f

(
f ′

t
− 2 f ′′

)
dt2

Sc =
ScS

f 2 −
m − 1

f 2

(
f
t

(
f ′

t
− 2 f ′′

)
− (m − 2)

f ′2

t

)
h =

m − 3
m − 2

hS
+

(
ScS

2(m − 2)2 (m − 1)
+

f ′2

2t

)
gS

+

(
tScS

2 (m − 1) (m − 2) f 2 +
1

2 f

(
f ′2

f
+

f ′

t
− 2 f ′′

))
dt2

W = f 2W S
+

1
(m − 2)

(
RicS

−
ScS

m − 1
gS

)
•

(
f 2

m − 3
gS + tdt2

)
(K S , RicS , ScS , hS and W S denote of course the pullbacks by the projection of the corresponding tensor fields on S).
It follows:

Lemma 12. The following three conditions are equivalent: (1) K extends to M, (2) f ′ (0) = 0 and (3) h extends to
M. Also the following are equivalent: (1) Ric extends to M, (2)

(
f ′/t

)
(0) = 0 and (3) Sc extends to M. Moreover,

W extends to M in any case.

The fact that W extends to M was obvious from the very beginning: the map Ψ ≡ ψ× id : (I − {0})× S → R× S,

given by T ≡ ψ (t) :=
∫ t

0
|s|

1
2 ds

f (s) , is a conformal diffeomorphism onto its (non-connected) image with the metric

g ≡ −(dT )2 + gS , thus it preserves the
(

1
3

)
-Weyl tensors, and since g is regular around T = 0 and f (0) 6= 0, W

(and therefore W ) extends to the whole M . It follows from Theorem 10 that the conformal manifold (M, [g]) is (in
any case) conformally III-flat.

Lemma 13. The following four conditions are equivalent: (1) W = 0, (2) W S
= 0 = RicS

−
ScS

m−1 gS and (3) Σ has
constant (sectional) curvature.
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Proof. (1) ⇔ (2) follows from the above formula. (2) ⇒ (3): RicS
−

ScS

m−1 gS = 0 implies (Schur’s lemma)
ScS

= (m − 1)(m − 2)C (constant), thus hS
=

C
2 gS ; moreover W S

= 0 leads to K S
=

C
2 gS • gS . (3) ⇒ (2):

From K S
=

C
2 gS • gS , one immediately gets: W S

= 0 = RicS
−

ScS

m−1 gS . ♣

Proposition 14. The Conjecture 11 is true for any transverse Riemann–Lorentz conformal manifold (M, C) such that
some g ∈ C is a warped product.

Proof. Let g = f (t)2 gS − tdt2
∈ C be a transverse warped product metric on M = I × S. Note that

g = f (t)2
{

gS −
t

f (t)2
dt2
}

. From W = 0 and Lemma 13 we get, around any p ∈ Σ , coordinates (V, y) of Σ such

that f (0)2 gS = gΣ = e2h ∑m−1
i=1

(
dyi )2, for some h ∈ C∞(Σ ). Choosing x i

:= yi
◦π , xm

:= t and τ :=
−te−2h

f (t)2
, we

get g = e2h f (t)2
{∑m−1

i=1
(
dx i )2

+ τ (dxm)2
}

, and we are finished. ♣
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