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Abstract

Consider a smooth manifold with a smooth metric which changes bilinear type on a hypersurface Σ and whose radical line field
is everywhere tangent to Σ . We describe two natural tensors on Σ and use them to describe “integrability conditions” which are
similar to the Gauss–Codazzi conditions. We show that these forms control the smooth extendibility to Σ of ambient curvatures.
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1. Preliminaries

Let M be a m-dimensional connected manifold (m > 2) endowed with a smooth, symmetric (0,2)-tensorfield
g which fails to have maximal rank on a (nonempty) subset Σ ⊂ M . Thus, at each point p ∈ Σ , there exists a
nontrivial subspace (the radical) Radp ⊂ TpM , which is orthogonal to the whole TpM . We say that (M,g) is a
singular (semiriemannian) manifold. Geodesics in these spaces were first analyzed in [6]. We say moreover that
(M,g) is a transverse type-changing (singular) manifold if, for any local coordinate system (x1, . . . , xm), the function
det(gab)a,b=1,...,m has non-zero differential at the points of Σ (here gab are the components of g in the coordinate
frame). This implies: (i) the subset Σ is a smooth hypersurface in M , called the type-changing hypersurface, (ii) at
each point p ∈ Σ the radical Radp is one-dimensional, and (iii) the signature of g changes by +1 or −1 across Σ

(see [4] for details); when this change is from riemannian to Lorentzian, we say that (M,g) is a Riemann–Lorentz
(transverse type-changing) manifold. We say moreover that (M,g) is radical transverse (respectively radical tangent)
on Σ if Radp ∩ TpΣ = {0} (respectively Radp ⊂ TpΣ ) for all p ∈ Σ . We will not consider the intermediate cases
where the radical is tangent to Σ on a submanifold of Σ . There are several geometric and physical reasons to study
transverse type-changing manifolds (see the Introduction to [4]) and there are many articles devoted to the case with
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transverse radical (see [3–5] and references therein). In this article we analyze Riemann–Lorentz manifolds with
tangent radical.

In Section 2 we study the induced metric on the hypersurface Σ (which is degenerate since the radical is assumed
to be tangent). In the familiar case of a null hypersurface in a semiriemannian manifold, the Levi-Civita connection
remains well-defined at the points of the hypersurface (however it does not induce a connection on the hypersurface),
here the hypersurface has a one-dimensional normal vector bundle, everywhere tangent to the hypersurface, and
the differential geometry (both intrinsic and extrinsic) can be studied using the Levi-Civita connection. This has
been carried out by comparing (screen) distributions on the hypersurface complementary to the normal bundle (the
selected screen is not unique) and focusing attention on those properties of the resulting connection which are screen-
independent (see e.g. [1]).

In contrast, for our setting the metric g fails to have maximal rank at the points of the hypersurface Σ and the
Levi-Civita connection fails to exist at such points. Here, the suitable tool to analyze the geometry of Σ will be the
canonically defined, torsion-free, metric, “dual connection” on the whole (M,g) (first defined in [2]) which, in the
case of one-dimensional radical, induces a (conformally defined) symmetric (0,2)-tensorfield II on Σ . All this occurs
without any assumption on the radical. If we moreover assume that the radical is tangent to Σ , the g-normal vector
bundle of Σ is two-dimensional and there exists a (locally determined up to a sign) canonical smooth vectorfield
N transverse to Σ which is normal, unit length, and II-isotropic. This vectorfield N allows us to construct a second
fundamental form H on Σ , which in turn gives rise to a canonical screen distribution S and also to a canonical vector-
field R in the radical distribution. Vectorfields tangent to Σ are uniquely decomposable in S- and R-components. We
then describe a natural family of admissible torsion-free connections on Σ . In case of II-flatness (i.e. the tensorfield
II vanishes on the whole Σ ), all such connections are metric and have the same covariant curvatures.

In Section 3 we analyze the limiting behaviour of well-defined semiriemannian objects on M − Σ as we approach
the hypersurface Σ . By a theorem in [4] (see also [6]) the transverse, II-isotropic vectorfield N along Σ has a canon-
ical (local) extension to M which is Levi-Civita geodesic on M − Σ . We use the flow of this extension to (locally)
extend every vectorfield defined on Σ to a neighborhood of Σ . We then apply this extension construction to analyze
limiting behaviours, specifically the dependence of limiting values on the vector fields used in their construction. Our
main results indicate that the symmetric (0,2)-tensorfields H and II control these limit properties. The tangent radical
case gives rise to some unavoidable divergences, which are not present in the transverse radical case. When Σ is
II-flat, we establish a “Gauss–Codazzi equation” relating the curvature of the admissible connections on Σ with the
limit of the Levi-Civita curvature on M − Σ .

It would be interesting to find: (i) natural occurrences of Riemann–Lorentz manifolds (M,g) with tangent rad-
ical, and (ii) local isometric embeddings of a given (M,g) into a lorentzian manifold. Concerning (i), orbit sub-
manifolds of indefinite isometry groups provide examples. More specifically, given a regular curve α : R � t �→
(w = 0, x(t), y = 0, z(t)) ∈ R4

1 in Minkowski 4-space, we get (for fixed a 	= 0) a 3-dimensional parametrized “heli-
coid” ϕ(t, s, r) = (−as sin r, x cosh s + z sinh s, as cos r, x sinh s + z cosh s). If α(0) = aα′(0) and 〈α′(0), α′(0)〉 = 1,
this helicoid turns out to be (for s 	= 0) a Riemann–Lorentz manifold with radical tangent to the type-changing surface
ϕ(0, s, r). Concerning (ii), by Remark 3 we can (locally) isometrically embed (M,g) into a lorentzian ambient (M̄, ḡ)

(i.e. via local coordinates (x0, . . . , xm), in such a way that x0|M = 0, dx0|M 	= 0 and it holds:

(ḡāb̄) =
⎛⎜⎝

x1 0 0 1
0 1 0 0
0 0 (ḡλμ) x1ḡλ

1 0 x1ḡλ x1ḡm

⎞⎟⎠ ,

with ḡa, ḡλμ smooth extensions of ga, gλμ in formula (10)). However (M̄, ḡ) is not flat in general; the existence of an
isometric embedding into a flat lorentzian manifold is a very subtle singular initial value problem.

Let (M,g) be transverse type-changing on a hypersurface Σ . Vectorfields on M are denoted by calligraphic letters
A,B,C, . . . ∈ X(M); we use X ,Y,Z, . . . to denote vectorfields on M tangent to Σ . Vectorfields along Σ are denoted
by capital letters A,B,C, . . . ∈ XΣ ; if they are tangent to Σ we write X,Y,Z, . . . ∈ X(Σ). Given A ∈ X(M), we
denote A =A|Σ ∈ XΣ . In that case, we say that A is an extension of A.

Let us consider some function τ ∈ C∞(M) such that τ |Σ = 0 and dτ |Σ 	= 0 everywhere. We say that (locally,
around Σ ) τ = 0 is an equation for Σ . Given another function f ∈ C∞(M), it holds: f |Σ = 0 ⇔ f = kf τ , for some
kf ∈ C∞(M). When f |Σ = 0, we write τ−1f ∼= 0 and we say that τ−1f is extendible as an element of C∞(M).
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Let (E1, . . . ,Em) be a (local, C∞) X(M)-basis around some point of Σ . We say that (E1, . . . ,Em) is a radical
adapted frame if Em|Σ spans the radical distribution and it holds (orthonormality): gab := 〈Ea,Eb〉 = δab(±(1 −
δam) + δamτ), for some τ := 〈Em,Em〉 ∈ C∞(M) (a, b = 1, . . . ,m). Thus τ = 0 is an equation for Σ . The existence
of radical adapted frames around any point p ∈ Σ can be easily proved, e.g., starting with an orthonormal basis
(e1, . . . , em) of TpM with em ∈ Radp (i.e., g(ea, eb) = ±δab(1 − δam)), using a local chart of M around p adapted
to Σ , and applying a slight modification of the Gram–Schmidt orthonormalization procedure. If (M,g) is radical
transverse (respectively, radical tangent), all Ei ’s (i = 1, . . . ,m − 1) can be chosen to be tangent (respectively, one of
the Ei ’s must be transverse) to Σ .

We use 〈A,B〉 and g(A,B) interchangeably.

2. Local geometry of the type-changing hypersurface

On a singular manifold (M,g) there exists [2] a unique torsion-free metric dual connection, which can be charac-
terized as the unique map � :X(M) × X(M) → X∗(M) satisfying, for all A,B,C ∈ X(M), the Koszul-like formula:

(1)2�AB(C) := A〈B,C〉 +B〈C,A〉 − C〈A,B〉 + 〈[A,B],C〉 − 〈[B,C],A〉 + 〈[C,A],B〉
.

It follows that � is compatible with the Levi-Civita connection ∇ on M −Σ , in the sense that it holds: �AB(C) =
〈∇AB,C〉.

Let (M,g) be transverse type-changing on a hypersurface Σ . Then �AB := �AB|Σ ∈ X∗
Σ is well-defined (we

denote A = A|Σ ). This implies: (i) the dual connection has a good restriction � :X(Σ) × X(Σ) → X∗(Σ), which
can also be characterized as the unique torsion-free metric dual connection on the singular manifold (Σ,g|Σ); and
(ii) given any vectorfield R ∈ XΣ spanning the radical distribution, �AB(R) depends only on A and B = B|Σ , thus
�AB(R) := �AB(R)|Σ ∈ C∞(Σ) becomes well-defined and we obtain [2] a C∞(Σ)-bilinear map IIR :XΣ ×XΣ →
C∞(Σ), (A,B) �→ �AB(R), which is moreover symmetric (see [5] for details). In a similar way, given any vectorfield
N ∈ XΣ orthogonal to Σ , we obtain a C∞(Σ)-bilinear, symmetric map HN :X(Σ) × X(Σ) → C∞(Σ), (X,Y ) �→
�XY(N) := �XY(N)|Σ . We use these general constructions right now.

Let (M,g) be radical tangent on Σ . At each point p ∈ Σ , the g-orthogonal subspace T ⊥
p Σ ⊂ TpM is a 2-plane

and it holds: T ⊥
p Σ ∩ TpΣ = Radp . Let (E1, . . . ,Em) be a radical adapted frame around p. Thus Em spans the

radical distribution (we denote Ea = Ea|Σ ∈ XΣ , a = 1, . . . ,m), 〈Em,Em〉 = 0 is an equation for Σ and (without
loss of generality) E1 is transverse to Σ . Formula (1) leads to: 2IIEm(Em(p),Em(p)) = Em(p)〈Em,Em〉 = 0 and
2IIEm(E1(p),Em(p)) = E1(p)〈Em,Em〉 	= 0. It follows that IIEm turns T ⊥

p Σ into a Lorentz plane. One of the two
IIEm -isotropic directions at p is determined by Em(p). Since the other cannot be g-isotropic, it determines a unique
(up to a sign) unit vector in TpM normal to Σ . Moving from p to the neighboring points in Σ we locally obtain a
canonical (up to a sign) smooth vectorfield N ∈ XΣ satisfying: 〈N,T Σ〉 = 0, IIRad(N,N) = 0 and 〈N,N〉 = ±1. If
g changes from riemannian to Lorentzian, it must hold: 〈N,N〉 = 1. We call N the normal vectorfield on Σ .

On the type-changing hypersurface Σ we have a first (degenerate) fundamental form, namely the restriction g|Σ .
As indicated above, the normal N on Σ allows us to define the second fundamental form H ≡ HN by: H(X,Y ) :=
�XY(N), for X,Y ∈ X(Σ). This is a symmetric (0,2)-tensor field over Σ , locally determined up to a sign.

At each p ∈ Σ , since 2H(Em(p),Em(p)) = −2IIEm(Em(p),N(p)) = −N(p)〈Em,Em〉 	= 0, the IIEm -isotropic
direction determined by Em(p) cannot be H-isotropic. Thus we can select a vectorfield R ∈ X(Σ) which spans the
radical distribution and such that H(R,R) = ±1. Choosing the sign of N such that H(R,R) = −1, we locally obtain
a canonical (up to a sign) smooth vectorfield R ∈ X(Σ) satisfying: R(p) ∈ Radp , for all p ∈ Σ , and H(R,R) = −1.
We call R the radical vectorfield on Σ .

The radical vectorfield R induces a canonical C∞(Σ)-bilinear symmetric map II ≡ IIR :XΣ × XΣ → C∞(Σ),

(A,B) �→ �AB(R), whose restriction to X(Σ)×X(Σ) yields another symmetric (0,2)-tensorfield II on Σ . Note that
it holds:

(2)

⎧⎨⎩
II(N,N) = 0,

II(N,X) = −H(X,R), for all X ∈ X(Σ),

II(A,R) = 0 ⇔ A ∈ X(Σ).
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A screen distribution is a distribution on the type-changing hypersurface Σ which yields, at each p ∈ Σ , a hyper-
plane of TpΣ transversal to Radp . We now define the canonical screen distribution by choosing (at each p ∈ Σ )

(3)Sp := {
v ∈ TpΣ : H(v,Radp) = 0

}
.

We shall denote by S either the set {Sp: p ∈ Σ} or the corresponding vector subbundle (the screen bundle) S ⊂ T Σ .
We denote by Γ (S) the C∞(Σ)-module of sections of S, which is a submodule of X(Σ).

From now on, we only consider Riemann–Lorentz manifolds with tangent radical. This means that g is semi-definite
on Σ and the screen bundle S becomes a riemannian vector bundle.

We say that Σ is II-flat (respectively, H-flat) if it holds: II(V ,W) = 0 (respectively ,H(V ,W) = 0), for all V,W ∈
Γ (S). Thus II-flatness is equivalent to II(X,Y ) = 0, for all X,Y ∈ X(Σ), and H-flatness is equivalent to H(V ,X) = 0,
for all V ∈ Γ (S) and X ∈ X(Σ). Both definitions become equivalent to the vanishing of the corresponding self-adjoint
endomorphisms of S (Weingarten screen maps) induced by II and H. Since (1) leads to: R〈X,Y 〉 = 〈[R,X], Y 〉 +
〈X, [R,Y ]〉 − 2II(X,Y ), for all X,Y ∈ X(Σ), we obtain the following conclusion: Σ is II-flat if and only if R is a
Killing vectorfield on Σ .

A vectorfield A ∈ XΣ can now be decomposed in normal-, screen- and radical-components, as follows

(4)A = ν(A)N + AS + ρ(A)R,

where ν(A) := 〈A,N〉 and ρ(A) := −H(A − ν(A)N,R). Thus ρ ∈ X∗
Σ is completely determined by the 1-form

ρ = −H(.,R) ∈ X∗(Σ). Since dρ(V,W) = −ρ([V,W ]), for all V,W ∈ Γ (S), the form ρ is closed only if S is
integrable. Of course, the converse is not true: given V ∈ Γ (S), the Lie bracket [V,R] needs not belong to Γ (S).

We want to describe some natural connections on Σ . Let us first introduce the screen connection-operator as the
map DS :X(Σ) × XΣ → Γ (S), (X,A) �→ DS

XA, given by:

(5)
〈
DS

XA,V
〉 := �XA(V ), for all V ∈ Γ (S).

Thus the screen connection-operator DS gives a metric connection DS :X(Σ) × Γ (S) → Γ (S) on the riemannian
vector bundle S → Σ , and satisfies:

(i) 〈DS
XA,V 〉 = �XA(V ) (compatibility with �),

(ii) 〈DS
V R,W 〉 = −II(V ,W), and

(iii) 〈DS
V N,W 〉 = −H(V ,W), for all V,W ∈ Γ (S).

However the restriction DS :X(Σ) × X(Σ) → Γ (S) does not give a connection on Σ , since it holds: DS
X(f R) =

f DS
XR, for all f ∈ C∞(Σ).

We say that a connection D on Σ is admissible if it holds: (i) (DXY)S = DS
XY (for all X,Y ∈ X(Σ)), or equiv-

alently: 〈DXY,V 〉 = �XY(V ) (for all V ∈ Γ (S)), and (ii) D is torsion-free. The most obvious connection on Σ

satisfying the first condition is the one defined by: D̃XY := DS
XY + X(ρ(Y ))R (for all X,Y ∈ X(Σ)), which has the

following properties:

Proposition 1. The connection D̃ on the hypersurface Σ : (a) has torsion T̃or = R ⊗ dρ, and (b) is metric if and only
if Σ is II-flat.

Proof. Let X,Y,Z be arbitrary in X(Σ). (a) Since the screen operator DS is compatible with the torsion free dual
connection �, one immediately sees that: (T̃or(X,Y ))S = 0. Therefore, T̃or(X,Y ) = ρ(T̃or(X,Y ))R = dρ(X,Y )R.

(b) Again because DS is compatible with �, one gets: 〈D̃XY,Z〉 = 〈DS
XY,ZS〉 = 〈DS

XYS,ZS〉 + ρ(Y )〈DS
XR,

ZS〉 = 〈DS
XYS,ZS〉 − ρ(Y )II(X,Z). And since DS :X(Σ) × Γ (S) → Γ (S) is metric, one gets: 〈D̃XY,Z〉 +

〈Y, D̃XZ〉 = X〈Y,Z〉 − II(X,ρ(Y )Z + ρ(Z)Y ).
Now (⇐) is trivial. Let us prove (⇒): If D̃ is metric, last formula yields: ρ(X)II(X,X) = 0, for all X ∈ X(Σ).

Because TpΣ − Sp is dense in TpΣ (for all p ∈ Σ ), it follows that II(X,X) = 0, for all X ∈ X(Σ). Since II is
symmetric, this implies that Σ is II-flat. �
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Thus, unless dρ = 0, the connection D̃ is not admissible. However, it is straightforward to check that the connection
defined by ḊXY := D̃XY − 1

2dρ(X,Y )R (for all X,Y ∈ X(Σ)) is always admissible. Now if D is an admissible
connection, it must satisfy (for all X,Y ∈ X(Σ)):

(6)DXY = ḊXY + σ(X,Y )R,

where σ is some symmetric (0,2)-tensorfield on Σ . Indeed, the difference of the torsion-free connections D and Ḋ

must be some symmetric (1,2)-tensorfield on Σ , and the fact that (DXY)S = DS
XY = (ḊXY )S leads to the result.

Moreover, admissible connections have following properties:

Theorem 2. (a) If there exists a torsion-free metric connection on Σ , then: (i) it is admissible, and (ii) Σ is II-flat.
(b) If Σ is II-flat, all admissible connections are metric and have the same covariant curvature.

Proof. Let X,Y,Z be arbitrary in X(Σ). (a) (i) If D is a torsion-free metric connection on Σ , the induced dual
connection �D on the singular manifold (Σ,g|Σ), defined by: �D

XY(Z) := 〈DXY,Z〉, becomes torsion-free and
metric; by uniqueness, �D = � and D becomes admissible. (ii) Admissible connections, having necessarily the form
(6), are metric if and only if Ḋ is metric, if and only if D̃ is metric, if and only if (Proposition 1(b)) Σ is II-flat.

(b) The first assert was proved in (a). Let D be an admissible connection on Σ with covariant curvature RD defined
by: 〈RD(X,Y )Z,T 〉 := 〈DX(DY Z) − DY (DXZ) − D[X,Y ]Z,T 〉. Since we have: 〈DX(DY Z),T 〉 = 〈DX(ḊY Z +
σ(Y,Z)R),T 〉 = 〈ḊX(ḊY Z) + σ(Y,Z)ḊXR,T 〉 = 〈ḊX(ḊY Z),T 〉 + σ(Y,Z)〈DS

XR,T 〉 = 〈ḊX(ḊY Z),T 〉 − σ(Y,

Z)II(X,T ), we finally obtain:〈
RD(X,Y )Z,T

〉 = 〈
RḊ(X,Y )Z,T

〉 − det

(
σ(Y,Z) II(Y,Z)

σ (X,T ) II(X,T )

)
,

and the result follows. �
3. Near the type-changing hypersurface

We analyze in this section the limiting behaviour of some well-defined Levi-Civita objects on M − Σ as we
approach the type-changing hypersurface Σ , to which the radical is tangent. Thus we can replace M by a neigh-
borhood of Σ in M . Typically, we start with a semiriemannian differentiable object, say © (for example, the
Levi-Civita connection ∇ , or the curvature R) and vectorfields A,B, . . . ∈ X(M), construct ©(A,B, . . .) on M − Σ ,
and ask under what circumstances: (i) ©(A,B, . . .) ∼= 0, that is, ©(A,B, . . .) has a differentiable extension (de-
noted also by ©(A,B, . . .)) to the whole M , in that case we say that “©(A,B, . . .) is extendible”; and (ii) the
restriction ©(A,B, . . .)|Σ only depends on A = A|Σ,B = B|Σ, . . . ∈ XΣ , in that case we say that “©(A,B, . . .) is
well-defined”. When dealing with two such objects ©1 and ©2, we write ©1(A,B, . . .) ∼= ©2(A,B, . . .) to mean
©1(A,B, . . .) − ©2(A,B, . . .) ∼= 0.

We first analyze extensions of vectorfields in XΣ . Given any extension R of R, we obtain (using (1) and (2))

(7)N〈R,R〉 = 2�RN(R) =: −2II(N,R) = −2H(R,R) = 2;
it follows that 〈R,R〉 = 0 is an equation for Σ and that 〈R,R〉−1(N 〈R,R〉 − 2) ∼= 0 (for any extension N of
N ). Moreover, given A ∈ XΣ , it holds: 〈R,R〉−1〈A,R〉 ∼= 0 (for any extension A) and, given X ∈ X(Σ), it holds:
〈R,R〉−1X 〈R,R〉 ∼= 0 (for any extension X ).

Because N is nowhere tangent to Σ and II(N,N) = 0, it follows from Theorem 1 in [4] (see also [6]) that there
exists a (local) canonical extension N ∈ X(M) of N which is Levi-Civita-geodesic on M −Σ , thus �NN = 0 ∈ X∗(M)

and 〈N,N〉 = ±1. This induces, for each A ∈ XΣ , a (local) canonical extension A ∈ X(M) (we always use boldface
types to denote such extensions) such that: [N,A] = 0 (A is generated from A by the flow of N), and it holds:
N〈N,A〉 = �NA(N) = �AN(N) = A〈N,N〉 = 0. We denote in what follows τ ≡ 〈R,R〉, thus τ = 0 is an equation for
Σ and N(τ) = 2. Any extension A of A can be written in the form A = A + τ Ā, for some Ā ∈ X(M).

Let be X ∈ X(Σ). Since 〈N,X〉 is constant along the integral curves of N, it follows that: 〈N,X〉 = 0 ∈ C∞(M).
Since N(X(τ )) = X(N(τ )) = X(2) = 0, it follows: τ−1N(X(τ )) ∼= 0, and we have: {τ−1N(X(τ ))}τ = N(X(τ )) =
N({τ−1X(τ )}τ) = N{τ−1X(τ )}τ + {τ−1X(τ )}N(τ ). Therefore {τ−1X(τ )}|Σ = 0 and we finally obtain:

(8)τ−2X(τ ) ∼= 0.
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If X ∈ X(M) is any extension of X, a direct computation using (1) and (7) leads to: H(X,R) := �XR(N)|Σ =
− 1

2 (N〈X ,R〉)|Σ = − 1
2N({τ−1〈X ,R〉}τ) = − 1

2 {τ−1〈X ,R〉}|ΣN(τ) = −{τ−1〈X ,R〉}|Σ . Therefore, given A ∈ XΣ ,
and for any extensions A of A and f ∈ C∞(M) of ν(A), we have:

(9)ρ(A) := −H
(
A − ν(A)N,R

) = {
τ−1〈A− f N,R〉}∣∣

Σ
= {

τ−1〈A,R〉}∣∣
Σ

.

Remark 3. The following construction gives all local examples of Riemann–Lorentz manifolds with tangent radical.
Around each point of Σ , there exist adapted coordinates (x1, . . . , xm) in M such that: (i) ∂x1 = N and ∂xm = R, (ii)
x1 = 0 is an equation for Σ , and (iii) it holds:

(10)(gab) =
(1 0 0

0 (gλμ) x1gλ

0 x1gλ x1gm

)
(a, b = 1, . . . ,m; λ,μ = 2, . . . ,m − 1),

for some gi ∈ C∞(M) (i = 2, . . . ,m) with gm(0, x2, . . . , xm) = 2. To see this, at p ∈ Σ , we first choose coordinates
(x2, . . . , xm) in Σ such that ∂xm = R. Using the flow of N, we construct coordinates (x1, . . . , xm) in M such that ∂x1 =
N (thus g11 = 1) and ∂xi is the canonical extension of the (equally denoted) vectorfield ∂xi ∈ X(Σ) (i = 2, . . . ,m);
in particular , ∂xm = R. Obviously , x1 = 0 is an equation for Σ . It follows that: g1i = 0 (i = 2, . . . ,m). On the other
hand, gim|Σ = 0 implies: gim = x1gi , for some gi ∈ C∞(M) (i = 2, . . . ,m). And finally, because τ = gmm, it follows
from (7): gm|Σ = 2.

Note that, in these adapted coordinates, a vectorfield
∑

fa∂xa ∈ X(M) is the canonical extension A of A =∑
fa|Σ∂xa ∈ XΣ if and only if all fa’s (a = 1, . . . ,m) do not depend on x1. Setting Γcab := �∂xa ∂xb (∂xc ), the

first Christoffel symbols of �, it is straightforward to see from (1) that the components of H and II are given by:
Hij = Γ1ij |Σ = − 1

2
∂gij

∂x1 |x1=0 and IIij = Γmij |Σ = − 1
2

∂gij

∂xm |x1=0 (i, j = 2, . . . ,m).

We now analyze the limiting behaviour of some Levi-Civita objects. Around each point p ∈ Σ , there exist radical
adapted frames (E1, . . . ,Em = R) such that E1 = N and E2, . . . ,Em−1 ∈ Γ (S). In what follows, we always use such
frames.

Let us first consider covariant derivatives. Let be A,B ∈ X(M). Since we have (on M − Σ ):

(11)∇AB =
m−1∑
i=1

�AB(Ei )Ei + τ−1�AB(R)R,

it follows that: ∇AB ∼= 0 if and only if II(A,B) = 0. Let now be A,B ∈ XΣ with II(A,B) = 0 and let A,B be
extensions. If the restriction ∇AB|Σ does not depend on the extensions, we say that ∇AB is well-defined. Writing
A = A + τ Ā,B = B + τ B̄, for some Ā, B̄ ∈ X(M), it is straightforward to see that it holds (we denote Ā = Ā|Σ ,
B̄ = B̄|Σ ): {τ−1�AB(R)}|Σ = {τ−1�AB(R)}|Σ + A(τ){τ−1〈B̄,R〉}|Σ + II(A, B̄) + II(Ā,B). Then (11) leads to:

(12)∇AB|Σ = ∇ABΣ + A(τ)

m−1∑
i=1

〈B̄,Ei〉Ei + (
A(τ)

{
τ−1〈B̄,R〉}∣∣

Σ
+ II(A, B̄) + II(Ā,B)

)
R

from which part (b) in the following proposition easily follows.

Proposition 4. (a) ∇AB ∼= 0 if and only if II(A,B) = 0. In particular, ∇AB ∼= 0, for all A,B tangent to Σ , if and
only if Σ is II-flat. (b) ∇AB is not well-defined, if one vectorfield is either N or R. (c) ∇AB is well-defined, for all
A,B ∈ Γ (S), if and only if Σ is II-flat.

The following two formulas are very useful in dealing with covariant derivatives. Let X ∈ X(M) be tangent to Σ

and let R be any extension of R. Using (7), (8) and (9) we easily obtain the following: restricted to Σ

(13)

{ 〈∇XR,W 〉 = �XR(W) = −II(X,W), for all W ∈ Γ (S),

ρ(∇XR) = τ−1〈∇XR,R〉 = 1
2τ−1X (τ ) = 1

2 (X̄ (τ )) = ν(X̄),
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where X̄ ∈ X(M) is such that X = X + τ X̄ . Moreover, given Y ∈ X(M) tangent to Σ with II(X,Y ) = 0, we obtain:
restricted to Σ

(14)

{
ν(∇XY) := 〈∇XY,N〉 = �XY(N) =:H(X,Y ),

ρ([X,Y ]) = τ−1〈[X ,Y],R〉 = 2τ−1〈∇XY,R〉Ant,

where Ant means antisymmetrization under the permutation of X and Y .
If Σ is II-flat, a natural map III :X(Σ)×X(Σ)×X(Σ) → C∞(Σ), (X,Y,Z) �→ II(∇XY|Σ,Z) arises, which turns

out to be (straightforward computation) C∞(Σ)-trilinear and symmetric in its first two entries. It follows from (14)
that III(X,Y,R) = ν(∇XY|Σ) = H(X,Y ), for all X,Y ∈ X(Σ). In particular, III(V ,R,R) = 0 and III(R,R,R) =
−1. We say that Σ is III-flat if it is II-flat and moreover it holds: III(V ,W,R) = 0, for all V,W ∈ Γ (S). Thus Σ is
III-flat if and only if it is II-flat and H-flat.

Let us now consider covariant curvatures. Let be A,B,C,D ∈ X(M). First of all, we have (on M − Σ ):〈
R(A,B)C,D

〉 := �A(∇BC)(D) − �B(∇AC)(D) − �[A,B]C(D)

=
m−1∑
i=1

{
A

(
�BC(Ei )

) −B
(
�AC(Ei )

)}〈Ei ,D〉

+
m−1∑
i=1

{
�BC(Ei )�AEi (D) − �AC(Ei )�BEi (D)

}
+A

(
�BC(R)

{
τ−1〈R,D〉}) −B

(
�AC(R)

{
τ−1〈R,D〉}) − �[A,B]C(D)

(15)+ τ−1{�AC(R)�BD(R) − �BC(R)�AD(R)
}
.

Observe that 〈R(A,B)C,D〉 ∼= τ−1{�AC(R)�BD(R) − �BC(R)�AD(R)}, whereas: ∇BC ∼= τ−1�BC(R)R.
Thus it may happen that 〈R(A,B)C,D〉 is extendible but ∇BD is not. As an example, 〈R(N ,V)N ,V〉 ∼= 0, for
any extension N of N and for any V ∈X (M) tangent to the screen S (see next theorem); however, if Σ is not II-flat,
it may be ∇VV � 0.

It follows from (15) that Υ (A,B,C,D) := τ 〈R(A,B)C,D〉 defines a tensorfield Υ ∈ T0
4(M), whose restriction to

Σ is given by:

Υ (A,B,C,D) = det

(
II(A,C) II(A,D)

II(B,C) II(B,D)

)
= Υ (AS,BS,CS,DS) − det

(
ν(A) ν(B)

ρ(A) ρ(B)

)
· det

(
ν(C) ν(D)

ρ(C) ρ(D)

)
+ II

(
ν(A)BS − ν(B)AS,ρ(C)DS − ρ(D)CS

)
(16)+ II

(
ρ(A)BS − ρ(B)AS, ν(C)DS − ν(D)C

)S
.

Theorem 5.

(a) If we consider the assertions:

(i) 〈
R(A,B)C,D

〉 ∼= 0 ⇐ det

(
ν(A) ν(B)

ρ(A) ρ(B)

)
· det

(
ν(C) ν(D)

ρ(C) ρ(D)

)
= 0,

(ii) Σ is II-flat,

(iii) 〈
R(A,B)C,D

〉 ∼= 0 ⇒ det

(
ν(A) ν(B)

ρ(A) ρ(B)

)
· det

(
ν(C) ν(D)

ρ(C) ρ(D)

)
= 0,

then it holds: (i) ⇔ (ii) ⇒ (iii).
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(b) 〈R(A,B)C,D〉 is well-defined if and only if it holds: Υ (·,B,C,D) = Υ (A, ·,C,D) = Υ (A,B, ·,D) =
Υ (A,B,C, ·) = 0. If Σ is II-flat, this occurs if and only if : either det

( ν(A) ν(B)

ρ(A) ρ(B)

) = 0 = det
( ν(C) ν(D)

ρ(C) ρ(D)

)
, or one of

these two matrices vanishes.

Proof. (a) First of all, 〈R(A,B)C,D〉 ∼= 0 if and only if Υ (A,B,C,D) = 0. Implications (i) ⇐ (ii) and (ii) ⇒ (iii)
are now immediate from (16). To prove (i) ⇒ (ii), note that 0 = Υ (N,V,R,W) = II(V ,W), for all V,W ∈ Γ (S).

(b) Starting with A = A + τ Ā,B = B + τ B̄,C = C + τ C̄,D = D + τ D̄, for some Ā, B̄, C̄, D̄ ∈ X(M), one im-
mediately sees that it holds (we denote Ā = Ā|Σ, . . .): 〈R(A,B)C,D〉|Σ − 〈R(A,B)C,D〉|Σ = Υ (Ā,B,C,D) +
Υ (A, B̄,C,D) + Υ (A,B, C̄,D) + Υ (A,B,C, D̄), and the result follows. �

The property that four vectorfields on Σ make the covariant curvature well-defined has a pointwise character,
in the following sense: Given a point p ∈ Σ , four vectors a, b, c, d ∈ TpM and two sets A,B,C,D ∈ XΣ and
A′,B ′,C′,D′ ∈ XΣ of extensions of a, b, c, d such that both 〈R(A,B)C,D〉 and 〈R(A′,B ′)C′,D′〉 are well-defined,
then it holds: 〈R(A′,B ′)C′,D′〉(p) = 〈R(A,B)C,D〉(p). The proof uses the fact that canonical extensions of vec-
torfields on Σ giving the same tangent vector at p must coincide along the integral curve trough p of the canonical
extension of N .

To discuss the limiting behaviour of sectional curvatures, we should consider all pairs of C∞(M)-linearly inde-
pendent vectorfields A,B ∈ X(M) such that the plane(field) A∧B is non-degenerate on M − Σ .

Let us first assume that the plane A ∧ B never degenerates. Then the behaviour of the sectional curvature
KA∧B := 〈R(A,B)A,B〉/det(g(A,B)) near Σ can be directly read out from the behaviour of the covariant curva-
ture 〈R(A,B)A,B〉, thus Theorem 5(a) leads to the following result: KA∧B ∼= 0, for all A,B with ANR ∧ BNR = 0
(we denote ANR ≡ ν(A)N + ρ(A)R), if and only if Σ is II-flat. And Theorem 5(b) implies moreover that, if Σ is
II-flat, KA∧B is well-defined, for all A,B with ANR ∧ BNR = 0 (here “∧” denotes the exterior product).

Let us now assume that the plane A ∧ B degenerates everywhere on Σ . Then R must belong to the plane A ∧ B

and, since 〈A,B〉 = 〈ANS,BNS〉 (we denote ANS ≡ ν(A)N + AS ), it must hold: ANS ∧ BNS = 0. Thus (16) leads to:
Υ (A,B,A,B) = −(ν(A)ρ(B) − ν(B)ρ(A))2, which vanishes if and only if ANR ∧ BNR = 0, what implies (since
A ∧ B 	= 0) ν(A) = 0 = ν(B). We arrive to the conclusion (Theorem 5(a)) that: if KA∧B ∼= 0, then it must hold:
AS ∧ BS = 0 and ν(A) = 0 = ν(B). For the converse we prove:

Proposition 6. The following assertions are equivalent: (i) KX∧Y ∼= 0, if X ,Y ∈ X(Σ) and XS ∧ YS = 0, and (ii) Σ

is III-flat.

Proof. Assertion (i) reads equivalently: KV∧R ∼= 0, for any extension R of R and for any vectorfield V ∈ X(M)

tangent to S, or in other words (take into account that τ−1 det(g(V,R)) is a nowhere vanishing regular function, for
the radical distribution is one-dimensional), 〈R(V,R)V,R〉 is proportional to τ , for all R,V . This implies (Theo-
rem 5(b)): 0 = Υ (V,N,V,R) = II(V ,V ), for all V ∈ Γ (S). Thus, not only (ii) but also (i) implies that Σ is II-flat.

To prove the equivalence (i) ⇔ (ii), let us start with the expression: 〈R(V,R)V,R〉 = �V (∇RV)(R) −
�R(∇VV)(R) − �[V,R]V(R). Because Σ is in either case II-flat, we know that the first and third terms in the
right-hand side are proportional to τ : the first one, because it follows from (14) that ν(∇RV|Σ) = H(V ,R) = 0, thus
∇RV is tangent to Σ and II(V ,∇RV|Σ) = 0; and the third one, because II([V,R],V ) = 0. Now the second term
will be proportional to τ if and only if it holds: 0 = II(R,∇VV|Σ) =: III(V ,V,R). Therefore 〈R(V,R)V,R〉 will be
proportional to τ , for all R,V , if and only if III(V ,V,R) = 0, for all V ∈ Γ (S); and the result follows. �

On the other hand, it is easy to prove that KA∧B cannot be well-defined if A ∧ B degenerates everywhere on Σ .
We finally consider Ricci curvatures. Starting with two vectorfields A,B ∈ X(M), we have (on M − Σ ):

Ric(A,B) =
m−1∑
i=1

〈
R(A,Ei )B,Ei

〉 + τ−1〈R(A,R)B,R
〉

(17)⇒ τRic(A,B) =
m−1∑
i=1

Υ (A,Ei ,B,Ei ) + 〈
R(A,R)B,R

〉
.
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Proposition 7. Let be V ∈ Γ (S). Given any extensions N = N + τN̄ ,V = V + τ V̄,R = R + τR̄ of N,V,R (with
N,V,R the canonical extensions of N,V,R and N̄ , V̄, R̄ ∈ X(M)), it holds:

(i) Ric(N ,N ) � 0.
(ii) Ric(N ,V) ∼= 0 ⇔ ρ([V,R]) + ν(V̄ ) = 0. In particular: dρ = 0 ⇒ Ric(N ,V) ∼= 0, for all V ∈ Γ (S).

(iii) Ric(N ,R) ∼= 0 ⇔ trace(IIS) − ν(R̄) = 0, where IIS is the self-adjoint endomorphism of S induced by II. In
particular: Σ is II-flat ⇒ Ric(N ,R) ∼= 0.

(iv) Ric(V,R) ∼= 0, for all V ∈ Γ (S).
(v) Ric(R,R) � 0.

(vi) Σ is II-flat ⇒ (Ric(V,W) ∼= 0 ⇔ H(V ,W) = 0). In particular: Σ is III-flat ⇒ Ric(V,W) ∼= 0, for all
V,W ∈ Γ (S).

Proof. Since: Ric(A,B) ∼= 0 ⇔ {τRic(A,B)}|Σ = 0, it follows from (17): Ric(A,B) ∼= 0 ⇔ ∑m−1
i=1 Υ (A,Ei,B,

Ei) + 〈R(A,R)B,R〉|Σ = 0 ⇒ Υ (A,R,B,R) = 0.
(i) Υ (N,R,N,R) = −1, thus 〈R(N ,R)N ,R〉 diverges like τ−1 and Ric(N ,N ) diverges like τ−2.
(ii) We use (15) and (2) to compute: 〈R(N ,R)V,R〉 = kτ − �[V,R]N (R) − �RN (R){τ−1〈∇VR,R〉}, for some

k ∈ C∞(M). This leads, using again (2), (13) and (9), to: 〈R(N ,R)V,R〉|Σ =H([V,R],R)− ν(V̄ ) = −ρ([V,R])−
ν(V̄ ). Finally take into account that Υ (N,Ei,V ,Ei) = 0 (i = 1, . . . ,m − 1).

(iii) As in (ii), we get: 〈R(N ,R)R,R〉 = kτ − �RN (R){τ−1〈∇RR,R〉}, which leads to: 〈R(N ,R)R,R〉|Σ =
−ν(R̄). But

∑m−1
i=1 Υ (N,Ei,R,Ei) = trace(IIS).

(iv) Since 〈R(V,R)R,R〉 is well-defined, it follows: 〈R(V,R)R,R〉|Σ = 〈R(V,R)R,R〉|Σ = 0. But Υ (V,Ei,R,

Ei) = 0 (i = 1, . . . ,m − 1).
(v) As in (iv), we get: 〈R(R,R)R,R〉|Σ = 0. But Υ (R,N,R,N) = −1 and Υ (R,Eλ,R,Eλ) = 0 (λ = 2, . . . ,

m − 1), thus Ric(R,R) diverges like τ−1.
(vi) As in (ii), we get: 〈R(V,R)W,R〉 = kτ −�VW(E1)�RE1(R)+∑m−1

λ=2 �RW(Eλ)�VEλ(R)−R(�VW(R))−
�[V,R]W(R), which leads to: 〈R(V,R)W,R〉|Σ = −H(V ,W) − 〈IIS(V ), IIS(W)〉 − (LRII)(V ,W) (we denote by
LRII the Lie-derivative of the tensorfield II ∈ T0

2(Σ)). If Σ is II-flat, we have: 〈R(V,R)W,R〉|Σ = −H(V ,W) and∑m−1
i=1 Υ (V,Ei,W,Ei) = 0. �
Moreover, it is possible to prove that Ric(A,B) is never well-defined, for all A,B ∈ XΣ .
Concerning differences between the radical transverse and radical (everywhere) tangent cases, Theorem 5a and

Propositions 6 and 7 are missing in the case of transverse radical, as indicated by Theorem 3 in [5], which uses the
same notions of II- and III-flatness. The intermediate cases of radical tangent to Σ on a submanifold of Σ are more
subtle.

Finally we have the following analogue of the “Gauss–Codazzi equation”. Let Σ be II-flat. Then we get (Proposi-
tion 4(a)) a natural connection (the tangential connection) on Σ , given by

∇Σ :X(Σ) × X(Σ) → X(Σ),

(X,Y ) �→ ∇Σ
X Y := ∇XY|Σ − ν(∇XY|Σ)N,

where X,Y ∈ X(M) are the canonical extensions of X,Y . From (13) and (14) we obtain: ∇RR|Σ = −N , thus the
radical vectorfield R is ∇Σ -geodesic. Moreover, if Σ is III-flat, it follows from (14) that: ∇Σ

X Y = ∇XY|Σ , for all
X,Y ∈ X(Σ).

Using (5) we get (∇Σ
X Y)S = DS

XY and a straightforward argument leads to the conclusion that ∇Σ is torsion-free,
thus it is admissible. From Theorem 2(b) it follows that ∇Σ is metric and all admissible connections on Σ have the
same covariant curvature RΣ as ∇Σ . Let us compute this curvature.

Theorem 8. Let Σ be II-flat and let be X,Y,Z,T ∈ X(Σ). Then it holds (Gauss–Codazzi equation):

〈
RΣ(X,Y )Z,T

〉 = 〈
R(X,Y )Z,T

〉 − det

(
H(X,Z) H(Y,Z)

H(X,T ) H(Y,T )

)
.
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Proof. By Theorem 5(b), 〈R(X,Y )Z,T 〉 is well-defined. To compute it, we use: (i) canonical extensions, (ii) the
fact that (∇Σ is admissible) �XY(Z) = 〈∇Σ

X Y,Z〉, and (iii) the following consequence of (14): ∇YZ|Σ = ∇Σ
Y Z +

H(Y,Z)N , thus: �X(∇YZ|Σ)(T ) = �X(∇Σ
Y Z)(T ) − H(Y,Z)H(X,T ) = 〈∇Σ

X (∇Σ
Y Z),T 〉 − H(Y,Z)H(X,T ).

Therefore we obtain:〈
R(X,Y )Z,T

〉 := �X(∇YZ|Σ)(T ) − �Y (∇XZ|Σ)(T ) − �[X,Y ]Z(T )

= 〈∇Σ
X (∇Σ

Y Z),T
〉 −H(Y,Z)H(X,T ) − 〈∇Σ

Y (∇Σ
X Z),T

〉 +H(X,Z)H(Y,T ) − 〈∇Σ[X,Y ]Z,T
〉

= 〈
RΣ(X,Y )Z,T

〉 + det

(
H(X,Z) H(Y,Z)

H(X,T ) H(Y,T )

)
. �
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