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ABSTRACT:
We prove that the right or left limit points set
of a geodesic ¥ in a compact manifold is union
of maximal geodesics (which are maximal null geo-
desics in the semi~Riemannian case). If such set is
Jjust a unique geodesic ¢, then this is necessarily
smoothly closed, and we establish some relation.
between the completeness of ¢ and %.
Next we obtain stronger results in the particu-
lar case of Lorentz orientable surfaces.
Finally we prove that null-completeness implies
global completeness for certain classes of Lorent-
zian manifolds.
§0 INTRODUCTION
This paper 1is devoted to the study of general geometrical
behaviour of the geodesics of an arbitrary linear connection on a

compact manifold, with additional analysis of some special cases.

Roughly speaking, our results in §1 and §2 can be summed up by
saying that geodesics rays in a compact manifold, wind up
approaching a limit set which is a union of maximal geodesics.
These geodesics are null geodesics if our connection is compatible
with a Lorentz metric, arl +the vay (s LulmMpJéYQ_

We have also discovered a certain dependence between the
completeness of the ray and that of the 1limit geodesics. This
dependence is shown in the theorem 4.5 which proves that in case
this 1imit set has a unique incomplete geodesic, then the ray is
also 1incomplete. In &6 we analyze this dependence more
thoroughly, determining the degre of incompleteness of the initial
ray, if some geodesic in the 1limit set 1is 1incomplete.

The intuitive idea of 6.2 and 6.3 is that the ray 1is more
incomplete than any closed incomplete geodesic. In fact a general

aim of §6 is to make precise this sort of statement.

(*) 1980 Mathematics subject clasification (1985 revision): 53C50
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We specialize in &5 to Lorentz surfaces wusing the
Poincaré-Bendixson theory as a tool. We get that in most cases any
incomplete ray is either dense or has limit set a null smoothly
closed geodesic.

Finally we point out 3.5 as a useful tool. This theorem states

that every maximal compact geodesic is smoothly closed.

In this paper "Lorentz manifold" can be substituted by

"semi-Riemannian manifold which is not Riemannian".

§1 INCOMPLETENESS FROM RIEMANNIAN VIEW POINT.
We describe here some geometrical tools and basic notations that
we shall use through this paper.

Henceforth M denotes a differential manifold endowed by a linear
symmetric connection I, and an auxiliary Riemannian complete
metric.

If ueT M let :llull denote the Riemannian norm. Also V 1is the
I-covariant derivate.

Let o« be a curve on M (i.e a differentiable curve) such that zero
belongs to its parameterization interval and «’ (t)#0 for all t. We
denote by the bold character a the unique riemann arc length
parameterized curve with the same image as «, such that
«(0)=a(0).

If veTpM » 7, is the maximal '-geodesic such that 7v(0)=p and
7;(0)=v. Finally, if v is a non null vector, . is the unique
I-pregeodesic parameterized proportionally to the riemann arc
lenght, with the same image than v, and such that zv(0)=p and
Z;(O)=v (note that v is not a bold character in ZVL
We show next some technical results which connect the two

structures defined on M.

PROPOSITION 1.1

There is a unique symmetric connection I' such that curves ¥, are

the maximal geodesics. Moreover, this connection is geodesically

complete.

Proof:

~

Let us define a second order differential equation Z on M by:
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Z:TMav —— z;’(O)ETTM
Then for each veTM, zv is an integral curve of Z. In fact, if

zv(so)=v0 then zv(s+so)=zvés) for sufficiently small s, hence
v, (s )= zv0(0)= E (zvo(O))= E (v)=E (3.(s.))
Moreover E is a spray, thus for all re R if zv(ks) and if zrv(s)

are defined, then it is trivial to see that zv(rs)=zrv(s).
Finally, if z:(a,b)———eM is an integral curve of Z with b<w, since
¥ 1s parameterized propoftionally to Riemann arc-length , we
conclude that égg 7(s) exists, and y is right-extendible to a
longest geodesic. Hence the unique symmetric connection T induced

to E is complete.m

The exponential map associate to I' is denoted by exp: TM——M.
Since the connections I' and I' are projectively equivalent, there

is a 1-form A on M such that

VY=Y, Y= SKIYAMX)
where z is the covariant derivate of E.The ]-form A has the

following geometric meaning.

PROPOSITION 1.2
Let ¥:[0,b)——> M be a right-inextendible I'-geodesic. For te[0,b)
let sw(t) be the Riemannian length of y between O and t, i.e:

t
[O,b)at———esw(t)=J Hy’ () dn €[00, »)
o
If tw:[O,m)———e[O,b) denotes the inverse function of s , and
s
A7(5)= [ Ay’ (§))dE for all s=20
o
: s
1 A (£)
then we have that tq(S)_ﬁ§TTﬁjﬁ J ey >'dE
o

Proof:

v dy
. v dy)_ — = \_
Since d—t' [ﬁ] =0 and d——g [ E ] -—O, we have



dy dy v dy dy dy dy dy

V=)V [=]- = = loa| = = = a2 | =

d s| ds d s ds d s ds | 2 ds ds ds ds
Moreover

2 2
d dt dt  d dt_d dt | d d't /ds d
el S a ) ) a s -

ds|ds ) ds dt|ds d& ) ds d& |ds ) dat "~ dty /ds ds
dz dh/ds dt
Thus we have A[ 35 ] —% , where h(s)= s Hence,

S dt

Log h(s): J A(z’ (E))dg + I_.Og h(O), since h(O)—-_dS’a' s=0= “7) }0)"

0

1 A (s)
Ty coyn © 7

Finally we have: h(s)=
COROLLARY 1.3

With the same hypothesis of 1.2, suppose that b<w, then we have that
lim iy’ (2 = o .

t-b
Proof:

00

dt
Since b=J e Ay(g)dg < o , we have that 1lim eAz(S)=lim a§7= 0
S50 S50
o
ds
and 1lim e_Ay(S)= lim a€7 = lim iy’ (t)Il =0
S50 t-b t-b

§2 STRUCTURE OF THE LIMIT POINT SET OF A INCOMPLETE GEODESIC.

First we establish the following preliminary concept:

DEFINITION 2.1
Let a: (a,b)—M be a curve. We will say that pe M is a right-limit
point of « if there is a sequence (ti) into (a,b) such that:

lim t1=b and 1lim 7(ti)=p. We denote by lim'@ the set of such
150 1500 B
points. Analogously we can define left-limit points and lim «.

Henceforth we will consider only right-1imit points. All the

results can be easily adapted to the other case.

We prove here that the right-limit point set of an incomplete
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maximal I'—geodesic is the union of maximal geodesics, which are null
geodesics if T is Lorentzian. Note that if M is non compact, such

union can eventually be empty.

THEOREM 2. 2
Let :[0,b)—M be a right-inextendible I'-geodesic. If pe lim+7

then for all sequence (ti) into [0,b) which converges to b,
there are a subsequence (t;) and ue Tp(M)—{O}, such that

7’(t;)

" e =u

lim
i
Moreover the I'maximal geodesic L is made of right-limit points

of 7.

Proof:
Taking a compact set K such that pe ﬁ, there is an integer N with
7(t1)e B for i=N. If xe M let SX(M)={VE TXM:HVH=1} be the unit

sphere in TXM. Then S(K)= U SX(M) is a compact set which contains

xeK
7’(t1)
T2 (E 1 for izN. Hence there is a subsequence (t;) such that
i
7’(t;)
u= lim ———— exists, and by continuity u belongs to T M.
. Iy (ti)H p

,a,’ (t’ )
. . - ’ . _..__..i =
Finally, if Si_sy(ti)’ and se R then exp [ s "7,(t;)" ]
= exp Is 1’(Si)]= 1(S+Si) belongs to 7[0,w)=y[0,b) for i
sufficiently large, since lim 5, =o. Using continuity we have
7’ (t)
1
[ .

o™ (& )1 ]= exp (s = 7,(s)

lim exp
i
This proves that im 7u < lim+7. [ |

We analyze now the semi-Riemannian case:

COROLLARY 2.3
With the same hypothesis as in Theorem 2.2, we suppose now that T
is the Levi-Civita connection of a Lerentzian metric on M.

Then, if b<w the geodesic 7y constructed in 2.2 is a null geodesic.



Proof:

Let "| |" the Lorentzian norm. Since y is I'-geodesic then

c=]ly’(t)| (tel0,b)) is a real constant. Using 1.3 we have:
s (ti) | (ti)l 1

m—i)" |= lim m =c lim ———— =0

lul= | lim .
15b ly (ti)"

i-5b 1-b

This proves that 7, is null geodesic m

§3 MAXIMAL CLOSED GEODESICS.

Using the Baire theorem and the results of §2 we prove that the
conditions of topological and smooth closure are equivalents for
maximal I'-geodesics in compact manifolds. First we recall some

preliminary concepts

DEFINITION 3.1

A curve segment «:[a,b]——M is smoothly closed provided a(a)=a(b)
and o’ (a)=ca’ (b) for some c>0. A smoothly closed geodesic is a

geodesic y:(a,b)——M which has a segment 7/[a1,b1] smoothly
closed. (Therefore by uniqueness of geodesic im ¥y = 7([a1,b1])L

A point 7(t1) of im y is called an autointersection point of %,

if there is tze (a,b) such that 7(t1)=7(t2) and 7’(t1), 7’(t2) are

not proportional.

We say that a curve is topologically closed, if its image is a

closed set. This is equivalent to saying that lim+7 and lim ¥ are

contained into im %.

REMARK 3.2

The set of autointersection points of a non constant geodesic
7: (a,b)——> M is obviously numerable. In fact, for any compact
segment 71 of ¥ such that the autointersection set of 71 is empty,
we have that the set defined by:

{te(a,b)—[al,bl]: y(t)e im 7, and 9’ (t) is transversal to 71}

is discrete.

PROPOSITION 3.3
Let ¢:[0,b)——>M be a right-inextendible I'-geodesic. Suppose that
lim+o # 8. If o is topologically closed then, his geodesic maximal

extension ¢ is smoothly closed.
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Proof:

If pe lim'oc and ue T (M) are as in 2.2, using lime ¢ Mo = in v,
we have that pe im opand, by 2.2, we also have im yus lim+os im o.
Hence, im o = im 7us im ¢, and im ¢ = im ¢ by maximality.
Therefore for all £ >0 there is a tee [0,b) such that o(-e)=o(t€).
Since the set of autointersection points of ¢ is numerable, there is
e>0 with ¢’ (-¢) proportional to o’(te). Hence o is smoothly

closed. =

This result is completed with theorem 3.5 which requires

the following preliminary classical result.

THEOREM 3.4 (Baire Theorem)
There is no complete metric space which is a numerable union of

closed sets with empty interior.

THEOREM 3.5
Let o: (a,b) —— M be a inextendible topologically closed non

constant I'-geodesic. Then, if M is compact, ¢ is smoothly closed.

Proof:

For r>0 and te(a,b) consider S:(t)={§§g(v):<v,o’(t)>=0,HvH <r}
and K:(t)=S:(t) n im o. We claim that there is toe (a,b) and r0>0
such that:

(1) Kgr(t ) has not auto intersection points of ¢
(2) ¢ allways intersect transversally SZr(to)

In order to prove the claim (1) note that there are €>0, r1>0 such

that if O<r= r  then U s‘:(t) is open and S':(tl)nS(:(tz)=1a for
-r<t<r
t1¢t2. Hence there is to with |t0|<e such that S:(to) contains

no aut o intersection points of o. In other case such

autointersection set should be not numerable.

Moreover if we suppose that (2) is false for all r, such

that 0<r0<r, using 2.2, we have a sequence (ti)c (a,b) which

converges to a or b, such that o(ti)e SZ (to), o’(ti) is tangent
- 0’(t1) !

to S and 1lim

r Ho’(ti)H

ue T M.
. o(to)
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Obviously u is non zero and tangent to S: (to), hence it is
: 1
orthogonal to o’(to). Again by 2.2, the maximal T'-geodesic 7, is

contained in im o= im ¢. Thus im 7u= im ¢. This contradicts that
7(t0) is not an autointersection point of %, and the claim is
proved.

Suppose now that o is not smoothly closed and let T, and t0 be the
numbers obtained in the claim. In order to get a contradiction
using the Baire Theorem, it is sufficient to prove the following

two statements relatives to the closure C of Kr(tb):
o

a) For all xeC and all neighborhood V of x, we have Vn(C-{x})#@ .
b) C is a numerable compact set.
Note first that by compactness of M, the set lim+o is not empty
and it is contained into im ¢. By 2.2 we have that 1im+0=im c.
Let o: R—M, the arc length riemann parameterization of ¢, such
that ¢(0)=¢(0) and lo’ (0)ii=1. If x=g(s)eKP(to), using again 2.2
0

we obtain a sequence (si)c R such that

lim si=+m, lim g(si)=g(s), and lim g’(si)=g’(s)
For some 7>0 and i sufficiently large the segment
g(si—n,si+n)has transversal intersection with S:(to) in a point

0
X, and lim X =X. By the hypothesis and the property (1) of the

claim we get that xiatxj for i#j. This proves a).
In order to prove b), note that by thetransversalily property (2)
K:(t) is numerable for 0<r<2ro.Since o is topologically closed we

obtain also that Cc im o n Sz(to)' Hence C is a numerable and
r
0

compact set.m

COROLLARY 3.7
Suppose M compact, and let y be a right-inextendible I'-geodesic. If

1im+7 is the image of a geodesic ¢, then ¢ is smoothly closed.

Proof':

Obviously 1im+7 is a closed set , thus im ¢ also is closed. Use

now 3.6.
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§4 CLOSED GEODESICS INTO A LIMIT POINT SET.

In 2.2 we have proved that the right 1imit points set of a
I'-geodesic ¥ is made of a union of maximal ones. If this union

is just a unique geodesic, then by 3.7 this geodesic is smoothly
closed. As a partial converse, we prove here that if such limit
points set contains a closed isolated geodesic ¢, then this set
coincides with im o. Moreover if the initial geodesic ¥ is right
complete, then o is right or left complete.

First we prove the following technical lemma:

LEMMA 4.1

Let %:[0,B]1——M be a right inextendible non closed TI'-geodesic
and let o:(a,b)——sM be a closed maximal TI'-geodesic with
Riemannian length L such that:

(1) im ¢ c lim'y.

(2) There is pe im ¢ and U neighborhood of p in M such that
(U-im ¢)n lim' y=o.

Then there are a sequence (Si)CR+ and s*e[O,L] such that:

lim s =+w, lim (s )= o(s*), lim o’ (s )e io’(s*), lim (s, -s )=L
i - i — - i - i+l i

Proof:

Using the same sort of argument as in 3.6 and the hypothesis,we
conclude that there is a point s*e R and r>0 such that

(a) o(s )e U is not auto intersection point of ¢

(b)  s7 (s") n lin'y ={o(s)}
(c) 7 has always transversal intersection with SZP(S*)

Hence, the set {£>0: Z(g)eSf(s*)} is infinite numerable and can be
indexes by a sequence (Ek) with §k<§k+1 for keN. Note that
lim Ek=+co.

Since (z(&k)) is contained in a compact set, we see by (b) that

g(s*) is the only accumulation point. Therefore lim z(Ek)=g(s*L
Moreover, * g’(s*) are the only possible accumulation points of
z’(Ek), since in other case there is a subsequence (E;) of (gi)
such*that lim z’(§1)=u € To(s*)M’ yhich is not in the direction of
E’(s ). Thus, we obtain by 2.2 that the maximal geodesic 7u has
points into (U-im ¢) n lim+ ¥. This contradicts the hypothesis.

Let D be a oriented domain of M which contains S:. The vector
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0’(5*) defines an orientation in S:. Reversing if necessary the
parameterization of ¢, we can suppose that there are a infinite Ei
such that 7’(&1) defines the same orientation in S:. Let (Sk) be
the increasing sequence of such Ei. Thus we have that
lim 7’(sk)=o’(s*).
Let p:R——R be the function defined by p(s)=Min{|s—skl:kelN}.We
claim that 1lim p(sk+L)=0.
First note that for all h>0 we have:

lim z(sk+h)= lim exp (h 7’(sk))= exp (h 0’(5*)=0(s*+h) (*)
Let e€>0 be sufficiently small and V T'-convex neighborhood of

o(s*) such that o%(s*-e,s*+e))c V, and S:(s*) divides U in two

connected components V and V+.

Taking in (*) h= L+e, and h=L-¢
we see that 1lim z(sk+L+e)=g(s*+e) and 1lim z(sk+L—e)=g(s*—e), thus
there is Ne N such that for k>N we have that z(sk+L—e) and
z(sk+L+e) belongs to V and V+ respectively.
By continuity we can suppose that z((sk+L—e,sk+L+e)) < V. Hence
this geodesic segment intersect S:(s*), transversaly in a

1
first point ¥(£€ ) and by construction 7’(&1) defines the same

orientation in S:(s*) than 0’(5*). Thus there is Si=Ej belonging
to (sk+L—e,sk+L+e). This proves the claim.

Taking necessary a subsequence (but it is not necessary!) we can
suppose that lim (sku—sk)=L. Again lim z(sk)=g(s) and

lim 3° (s )= 0’ (s ).

REMARK 4.2

Note that if (sk) is the sequence of 4.1, then we can take an
orientation for the parameterization of ¢, such that lim z’(si)=
=g’(s+). Moreover for sufficiently small >0, we have that

(sk+6) verifies the same conditions required for (skL

DEFINITION 4.3
We say that ¢ has the same orientation of ¢, if ¢ has the

orientation explained in 4.2.

The following corollary show the consistency of the previous

definition, and proves that lim+7 coincides with im o.
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COROLLARY 4.4

With the same hypothesis of 4.1, and assuming that ¢ has the
orientation explained in 4.2, let (Ek) be a sequence such that
lim §k=+w, and lim z(Ek) exists. Then there is 6€[0,1] such that
lim 1(§k)=g(Le). Moreover 1lim Z’(Ek)=g’(Le).

In particular we have that lim+7 = im o.

Proof':
Let (Ek) —> +®» be such that l(Ek) is convergent. Let

(sk) be the sequence obtained in 4.1. We define:

£ —s
6 = —%X_ 1 yhere £e [s ,s ) and A=s -s.
k Ai k i 1 +1 i1+ i

Since eke [0,1) there is a convergent subsequence. Hence we can
suppose that 6=1im eke [0,1] exists. We have then therefore,

lim z(gk)=11m l(sjk+ Ajkek)= lim exp (Ajkek 7 (Sjk))=
=exp (L 6 ¢’ (s")) =o(L6)e im o .

We prove now that lim 1’(Ek)=g’(Le)

Using the remark to change (sk) if it is necessary , we can suppose
that 8 belongs to (0,1), and we can take £€>0 and NeN such that for

k >N, the points Ekand §k=§k+e belongs to same interval [si,si+1L

Then

= §k+€_si € = €
ek=——7r———= ek+ 5 and lim ek =0 +_f_' Using the before

1 i
argument we see that lim Z(Ek+€)= c(Le+e).

Moreover if we suppose that there is a subsequence (Ek ) such
J
that lim 1(§k )= -0’ (LB), then :
J
lim l(gk +e)=1lim exp(e Z’(Ek ))=exp(-€ o’ (L6))=0(L6-¢€)

b b
which contradicts the statement above.m

We prove now the following main theorem

THEOREM 4.5
Let o: [0,b)——M be a right-inextendible I'-geodesic (b can be
eventually infinite), such that lim+7 is the image of a closed

right-incomplete I'-geodesic ¢ with the same orientation as 7.
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Then ¥ is right-incomplete.

The proof of 4.5 requires some technical preliminary lemmas

The hypothesis of theorem 4.5 are

assumed in lemmas 4.6 to 4.10

We can suppose without lossing generality that 7 is not closed,
and that the riemann length of ¢ is L=1. Let (sk) be the sequence
obtained in 4.1, i.e. (s ) verifies lim s =+w, lim y(s )=¢(0),

lim z’(sk)=g’0), Ak=sk+1—sk>0, and lim Ak=1

&-s
We define for €€ R, ®(€)=——Z—£—
"

belongs to the interval [0,1) .
Recall that A is the 1-form introduced in §1 which relate the

when £e [sk,sk+1). Note that @(£)

connection T and T. We consider A7=A.z:[0,+m)———em, and
AG=A.0’:[O,1]———9R.

LEMMA 4.6
Let (EJ) be a sequence such that 1lim €J=+m and (z(ij)) is

a convergent sequence. If (€3) verifies lim |€J—€;]=O, then

lim 7(£)=lim 7(£)).

Proof:

If 9)=®(€j), then (ek) has subsequence which converges to some
6€[0,1]. Using the argument of 4.3 and the convergence of
(z(ij))we see that 1lim z(ij)=g(9). As in4.3 we can suppose that
ee(0,1). If 93=®(€3), using that lim|€j—§3|=0 and lim AJ=1 we see
that lim|91-93|=0, hence 1lim 93=lim 9)=9. Using again the argument
of 4.2 we have lim z(i})=g(9).

LEMMA 4.7

The function A7=A.z’:[0,+m)———+R is uniformly continuous.

Proof:
If Ay were not uniformly continuous then there would be €>0, Ek

and £such that lim IEk—§k|=0 and |A7(€k)—A7(€k)|>e. Since Ay is
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continuous , lim €k= +o . Taking if it is necessary a subsequence
we can suppose that lim 1(€k)= c(6) exists, where 6€[0,1]. By 4.3
and 4.6 we have that lim z(E;)=g(9), and 1lim z’(&k)=

o' (8)=1im z’(E;)= o’ (8). Using that A is continuous we get:

lim A7(€R)=lim A(z’(&k))=h(o’(9))=lim A(z’(&;))=1im Aw(g;).

This contradicts that |A7(€k)_hy(€;)l>€'

LEMMA 4.8
Let AJ:[O,l]———e R be such that AJ(9)=A7(SJ+9 AJ). Then (Aj)

converges uniformly to A0= A.c’:[0,1]— R.

Proof:
Obviously (AJ) converges pointwise to Ao. Hence it is sufficient
to prove that (AJ) is an equicontinuous family of functions.
By 4.7 , for all £>0 there is &>0 such that if |§-£’|<8 then
|A7(€)—A7(€’)|<e. Since lim AJ=O ,there is also p>0 such that

if |6-8’|<p then |sj+9 Aj—(sj+9’AJ)|=Aj|9—9’|<6 for all j. Thus
for |6-8’ |<p we have |Aj(9)-hj(9’)|<e.l

LEMMA 4.9
For all €>0 there is Ne N such that if jzN and se[sj,sj+1] we have
8(s) s
|J A, (6)de - J' A, (£)dg |<e
0] s
J
Proof':

T T

We define A_(t)=I A (8)de and A (T)= I A (6)dée for <tel0,1]. By
Jj 0 J G 0 G

4.8, (AJ) converges uniformly to Ao’ thus (AJ) converges uniformly

to A_. In particular, there is K>0 such that |Aj(9)[<K for 6€[0,1]
and jeN. Making the change of variables §=sj+9 Aj , we have:
A (8(s)) = -1 ISA (£)d€ for sels,s. ]
j A Jg S M L1
Fixing €>0, we pick up NelN sucﬁjthat jzN implies |Aj—1| K < £/2, and
|Aj(t)—A0(1)|<e/2 for all tel0,1]. Hence for se[sj,sj+1] we have:

s 0(s)

[ 2, @28 - [ A (0a0 |= |2 4 0(s) - A (0(s))]=

sj 0

=|(Aj—l)Aj(O(s))+Aj(9(s))—A0(9(s)ISIAJ—ll K+|Aj(9(s))—A0(9(s)|se n
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PROOF OF THEOREM 4.5

00

Since ¢ is right-incomplete, by 1.2 we get J er(g)dg <+w , thus
0

lim Ao(S)=_m . Since Ao is periodic we conclude that for kelN
S->00
K

]
Ao_(k)=JZ1 IJ_?0(e)de =k Ao(l)' In particular we get A0(1)<0.

For sels ,s ] we write:
k k+1

s e(s) S a1
= - k - = k -
5 (s)= JSAW(E)dE Iho(e)de A IS A (£)dE and = A -A (1)
k 0 k

Note that € =8 (s ).
k. k k+1

Using 4.9 we get a number NelN such that if k=N then

|A,(1)] |AL(1)]

|€k|< — and |6k(s)|< — for all Se[sk,sk+1] (4.5.1)

Translating if necessary the origin in ¥ we can suppose for
simplicity that N=0 and So=0' If se[sk,sk+1) we get:
k-1 s k-1 e(s)
]
A (s)=1) A +] A dg = A (1)+e )+38 +| A _(6)de
() JZO ] js ML ,Zo( S (1)+e )43 (5) Io _(6)

k
a(s)

thus we have A (s)= A (s)+I A _(e)de (4.5.2)
oy k 0 O

k-1
where Ak(s)= JZo(Ao_(l)+eJ)+6k(s) . Using (4.5.1) and taking
A (1)
o

H= >

we obtain that Ak(s) < k H<0. Using now (4.4.2) we get

8(s) A(s) | o A (B(s))
A (s) <k H+I A _(0)de, e 7 <e e for se[s ,s ) and
7 0 © K’ Tkl

S S
k+1 k+1 1

A _(s) A _(B(s)) A _(8)
J e L4 ds < ek H J e c ds = ek H Ak J e a de

S S (o]
k k

(the last equality has been obtained making the change of variable:
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S-S

6=—¢ X =0(s)).
k 1
A_(8)
Defining J= J e ? do, using the convergence of the geometric
kH °
series Z e for H<O and lim Ak=1, we have:
0 ekH +
Z 2 =B € R, thus for all nelN we get:
k=0 k
s s
nA(S) k+1A(S) n-1 kK H
J e’ ds=) J e 7 ds = J ) Z <JB
k=0 k=0 k
o Sk

By 1.2 we conclude that ¥ is right-incomplete.m

We have proved that if the closed geodesic ¢ is right-incomplete
1

then Ao(1)= I A@(e)de is negative. Reciprocally it is easy to
0

prove that if such integral is negative then o is
right-incomp lete. Therefore, the sign of Ao(l) must have a
geometric meaning which is independent of the Riemannian auxiliary

metric. In fact we have the following result.

PROPOSITION 4. 10
Let o be a smoothly closed I'-geodesic with Riemannian length L>O0,
and let B be the first teR+ such that ¢’ (t) is proportional to

-A (L)
o’ (0) . If o’ (B)=cc’ (0), then c= e . In particular ¢ is

complete iff Ao(L)=O.

Proof:

Let us consider the function v: [0,B)t>——e Ho’(t)HeR+. Then

Vo
v (t)=2 <—§€— , ¢’ (t)>. Changing the roles of ' and T in 1.1 we
Vo
get: —— = Ao’ (t) v(t), thus v’ (t)=-2 Al(c’ (t)) v(t).
If we suposse for simplicity that lle’ (0)ll=1, we can write:

t

-2 JU(B
Jo(t)=f Ao’ (t))dt, and we get v(B)= e
0

-J _(B)
Since ¢’ (B)=+Vv(B)c’ (0) we have that o’ (B)= e T 6°(0). But
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making t=to(s) we get:

B dt B dt L
- ’ o — ’ o - —_
Jo(B)—IOA(o (t_(s) 2 ds= Ioa(o (t_(s) £2) ds—Ioko(s)ds—Ao(L)l

We have finally the following main result:

THEOREM 4. 11
Let 9:[0,b)——>M be a right inextendible I'-geodesic such that
lim+7 is the image of a smoothly closed I'-geodesic o¢. Let >0 and
c>0 such that ¢’ (B)=co’ (0). Suppose c<1, then:

if ¥y has the same orientation as o, ¥ is right-complete.

Otherwise ¥y is right-incomplete.

Proof':
Using 4.10 we see that the last assert is a reformulation of 4.5.

In order to prove the first assertion, note that we can use the same

A (1)
argument as in the proof of 4.5 with H= 5 >0, and we get:
0(s) k-1
A, ()= Ak(s)+I0A0(9)d9 where A (s)= JZO(A0(1)+3J)+6k(S)

and Ak(s)>k H>0 for keN and se[sk,sk+1), obtaining finally:

S

n A (s) -l H
J 3

Y e
ds =z J A
k

> 400 .
n->0

k=0
0

By 1.2 we conclude that ¥ is right-complete.m

§5 MAXIMAL GEODESICS IN COMPACT ORIENTABLE LORENTZ SURFACES

We suppose now that M is a compact Lorentz surface which is
time-orientable. Thus M has vanishing Euler characteristic and
is diffeomorphic to the 2-torus or the Klein- bottle depending on
whether it is topologically orientable or not.

We will prove here that escept for some specific cases (that we
do not analize in this paper), the right-limit point set of a
right-incomplete non-null geodesic is either a closed null

geodesic or the whole surface M.

We can take null differentiable vector fields X and Y on M which
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are linearly independent, and defining the same time-cone in each
point of M. We choose the auxiliary Riemannian metric such that
(X,Y) determine a global ortonormal parallelitation. The null
I'-pregeodesics parameterized by the Riemann arc length are exactly
the orbits of #X or %Y. In particular these I'-geodesics have no
auto intersection points. We recall now the following classic
theorem for differentiable fields without critical points in

compact surfaces.

THEOREM 5.1 (See [71])

Let V be a differentiable field without critical points on a
compact surface S, and let « be a orbit of V. then either 1im+a is
periodic or lim+a is the whole S. In this case S is the 2-torus,
and the right (and left) limit point set of each orbit of V is the
whole S.

Using this result, and theorems 2.2 and 4.5 we obtain immediately
the following properties of the null geodesics in compact Lorentz

surfaces:

COROLLARY 5.2 _
I) If there is a null closed geodesic in the direction of X, then:
a) The right-limit point set of each null geodesic in the
direction of X , is a closed null geodesic.
b) If each closed null geodesic on the direction of X is
incomplete, then each null geodesic in the direction of
X is incomplete.
II) If M has no closed null geodesics, then M is a 2-torus, and

each null geodesic is dense in M.m

We are interested now in the study of the right limit point
set of a right incomplete non-null geodesic. We start with the

following auxiliary result:

LEMMA 5.3
Let ¥:[0,b)——M be a right-inextendible and right-incomplete non
null T'-geodesic. Let p be a point belonging to 1im+7, and (si) a

sequence in [0, +w) such that }53 s, =tm, }ig z(si)=p and
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}%& z’(si)=X(p). Then é%& Iy’ (s)-X(y(s))i=0.

In particular, lim+7 is a union of orbits of X.

Proof:

Let (Ej) be a sequence of [0,w) such that }3& Ej=+m, and that
Z(Ej) converges to a point meM. We claim that (z’(&j)) converges
to a null vector uETmM . In fact if there are subsequences (E})
and (E}’) of (Ej) such that }3& z’(§;)=u’¢}3£ z’(E}’)=u”, using
5.5 we conclude that u’ and u’’ are null linearly independent
vectors in TmM which define the same time-cone than (X,Y), and
llu’ I=llu’’ lI=1. Thus, we can suppose that u’=X(m) and u’’=Y(m), and
taking necessary subsequences we also get

’ > ’ ’ ’ 1 ’ ’ = ’ l
€ <€<E I (€)-X(y (§))I< 5 and lly’ (£)-X(y (§))I< 5

By continuity we can take a sequence (Cj) such that:

E}<CJ<E;’ and "Z’(CJ)‘X(Z(CJ)"=—%Z, and there is not a

subsequence (c;) of (Cj) such that (z’(c;)) converges to a null
vector of TmM. This contradicts 2.3 and the claim is proved.
Using the same sort of argument comparing (sj) and (Ej) we can

prove that }%g ' (Ej)=X(m).l

REMARK 5.4

Note that with the hypothesis of 5.3, if (Ej) is a sequence in
[0,+0) such that (z(Ej)) converges to a point meM, then
(z’(&j)) converges to X(m). '

REMARK 5.5

Suppose that there is a dense orbit of X. Then by 5.1 , M is a
2-torus and all the null geodesics are dense. Thus with the
hypothesis of 5.3 we see easily using 2.2 and 2.3 that lim+7 is
the whole M.

The rest of this section is devoted to proving the following main

result:

THEOREM 5.6
Suppose that the Lorentzian surface M is a 2-torus which has all

its null geodesics closed, and let %:[0,b)—M be a right-
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inextendible and right-incomplete non null I'-geodesic. Then either
lim+7 is the image of a smoothly closed null geodesic, or im % is
dense in M. In the last case, the autointersection point set of

¥ is dense in im 7%.

In the rest of §5 the hypothesis of

5.3 and 5.6 are implicitly assumed

The main idea to prove the theorem is to show that either y cuts
infinitely many times each orbit of X, or there is an orbit B of X
which is the frontier of the union of all orbits that cut 7.

In the first case, by 5.4 and 2.2 we have that lim+7=M. In the
second case, lim+7=imB.

We introduce now some basics tools.

Preliminaries 5.7

5.7.1

Since M 1s a 2-torus it can be represented by a quotient M=R2/ZZ,
where each element (p,q)eZ2 is 1identified with the integer

translation: twfmza(x,y)———e(x+p,y+q)eR?

Note that Rz is canonically endowed with Lorentzian and Riemannian
structures such that the canonical covering n:R%———eM is a local
isometry. We denote by [' the Levi-Civita Lorentzian connection in
RZ. Let i be the connection on RZ projectively related with [ as r
is related with ' (see 1.1). Thus E—geodesics are [-pregeodesics
parameterized proportionally to the Riemann arc length, and their
n-projections are I'-geodesics.

Let us denote by X (respectively ¥) the unique vector field on
R®such that n, (X)=X (n, (¥)=Y). Observe that X and ¥ are complete
vector fields which are invariant by ZZ. Moreover the orbits of X

and ¥ are null ['-pregeodesics parameterized by Riemann arc length.

5.7.2

By topological reasons we know that two non isotopic knots in the

2-torus have non-empty intersection. Thus the orbits of X are all

knots in the same isotopy class. We can translate this property to

X in the following way
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LEMMA
There is (k,2)eZxZ with k=0, €20 (k,£2)#(0,0) mcd(k,£2)=1 such that
for each a:R——R° orbit of X we have Ikz(a(s))eim o for all seR.

Moreover, if (k’,ﬂ’)elz—{(0,0)} verifies that Tk’ﬂ’(“(S))eim o

for some orbit a of X and some seR, then k’€Zk and &’ Zl.

5.7.3
Using the lemma in 5.7.2, it is easy to prove that if « is an
orbit of ¥ then Rz—im « has just two connected components, D; and
D; which are open, non bounded and invariant by the flow of £,
where D; denotes the component defined by the vector field Y in
the following way

If pe im « and B is the orbit of ¥ through p (i.e B(0)=p) then
B(S)ED; for s>0.

We obtain easily the following technical result

LEMMA

For each orbit o of X, there are infinitely many orbits o of X in
D; which are liftings of ¢. Moreover, if (ak) is a sequence of
liftings of ¢ with im aj#im o for j#k, then if pke im o (pk)

has no accumulation points.

5.7.4
Without lossing generality we can suppose that w(0,0)=y(0). Let

¥: [0, +0) —R” be the lifting of 7 through (0,0), and o the orbit
of ¥ such that a0(0)=(0,0). By 5.3, since 7’(s) belongs to the
time-cone defined by (X(y(s)),Y(y(s))) for all seR, we conclude

that this happens for the respective elevations and we have:

LEMMA:
There is a differentiable function ®:R——(0,n/2) such that for
all sel0, +w): _

Y’ (s)= cos #(s) X(y(s))+sin 9(s) Y(¥(s))

Moreover 1lim 9(s)=0.m
s—00
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5.7.5

Let « be an orbit of X (im a # im ao) intersecting to ¢y in a
point y(€). By 5.7.4 we have <y’ (£),¥(y(£€))>= sin 9(£)>0. Using
the definition of D+ we see that there is €>0 such that for O<s<e
we have: w(€+s)eD; and w(E—s)eD; . Moreover,using this fact it is
straightforward to show that this is the only cut point between «

and ¥..Thus we have prove the following

LEMMA
If « is a orbit of Xand y(£)e im « then Y ( (£, +w])c D; and
w(([0,8))c D;.-

5.7.6
We denote by C, the union of all im « such that « is an orbit of

Y

X which cuts Y and im a#im ao. We have then:

LEMMA

If o« is an orbit of X such that im « ¢ D; and D; n thz then «
0

cuts ¢y (thus im « ¢ Cw ).

Proof':

Let p be a point belonging to D; la) Cw and let B be the orbit of X

through p. Thus im B ¢ D; ) Cw and there is s>0 such that

Y(s)eimB. In particular, ¥ connects !/1(0)=(0,0)ED; with w(g)eD; )

Therefore Y must cut «, and im a < Cw .u

We conclude the preliminaries to the proof of our main theorem

with the following technical result. The hypothesis remarks and

lemmas of 5.7 are implicitly assumed:

PROPOSITION 5.8

C, is a non empty open set contained in Da+' Moreover, if CwatDa+

Y 0 0
then the topological frontier 6C¢ of Cw is the union of im o, and
im B where B is orbit of X contained into Da+’ and if d denote the

0

Riemannian distance in R°we have: %%mwd(w(s),im B)=0
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Proof':

v is open, take peCw and let a be the
orbit of X through p . This orbit intersects y in a point
Y(€)eim Y N im «.Let ?s be the flow of X. Using the

transversality property of 5.7.4 we see that for €>0 sufficiently

In order to prove that C

small and K>0 sufficiently large, the set
€
E =

3

im y <C, and C, is invariant by ?s, we conclude that Ez is

Y U

contained in C

{?s(w(6+§):|§|<e, Is|<K} is an open neighbourhood of p. Since

v and p is an interior point of Cw.
We prove now the second statement:

and by 5.7.5 C, ¢ D; . If8C, n D;=z then

v v < e 0 " T

Cw is open and closed in D; . Since D; is connected, we get
0 0

+
C,=D .
] .

Obviously im @« ¢ 8 C

N D; is non empty. Thus there is a point p

VJ [¢]

N D; . Let (pk) be a sequence into C, such that

v " o v
lim pk= p- Let Bk and B be the orbits of X through P, and p

Suppose now that &8 C

belonging to 8 C

respectively. Using the flow ?s of X we see that for all s>0 ,

F_(p,)=B,(s)C, and lin F (p)=F (p)=B(s). Thus im Bcacwr\D;O.

In order to prove that 3CwnD; =im B, pick now other ﬁeacwnD;,
0 0

and let (Ek) c cw be such that lim p = p,.Let Ek and B be the orbits

of X through Bk and 5 respectively. We prove that im B =im B,
showing that it is not possible that im B c D; or im B <Dy .

In fact if im ECD;, since D; is open and EEDE there is k such that
+ - +

, and im c D NnC, .We conclude by 5.7.6 that im BcC, .
B B, < DgnCy, y BCy
Since CW is open, this contradicts im B8 ¢ &8 Cw .
If in B cDé then im B Dé

pke D

and by symmetry this is also contradic-
tory.
Finally to prove that %%mmd(w(s),im B)=0, it is sufficient to show
that if (sk) is a sequence in [0, +0) such that %%3 5 = tw and
8,501 then there is a subsequence (sk) with %5& d(w(sk),1m3)=0
Let (sk) be such a sequence. If Bk is the orbit of X through w(sk),
then for all « orbit of X with im a ¢ Cw there is N such that

imBkc D; for k=N (by 5.7.5 and 5.7.3 it is is sufficient to take

N such that 5,78 where Y(s) is the cut point of ¥ and «). Using
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this fact we see easily that if 20 is the straight line in R
orthogonal to B through p=f(0), the orbits Bk cut 20 transversally
for k sufficiently large. Also if P is such intersection then

lim p, =P We can suppose (taking a suitable reparameterization of

orbits Bk), that Bk(0)=pk and Bk(ck)=w(sk)for some §k>0.

Let # and ¢ be the integers obtained in 5.7.2, rn the
translation in R° defined by the vector (nk,nf) for neZ and 21=11(20L
Since t&(pk)=rl(3k(0))eim Bk and rl(p)eim B there are Lk >0 and
L>0 such that rl(pk)=Bk(Lk)and 'rl(p)=B(L). It is straightforward
to see that lim L =L. Using again 5.7.2 we can take £ €[0,L ] such

k>0 Tk Kk k
that rn(Bk(Ek))=Bk(§k) for some integer n, and we have that
d(Bk(Ek),im B)=d(Bk(€k),im B)=d(¢(sk), im B). Finally since

%$£ Lk=L<+m, there is a subsequence (Ek; of (Ek) such that

=< . . =13 7 -
€, €<+ . Hence we have }53 B, (Ekj) }ig exp (Ekj Bkj(O))

exp (£B’(0))=R(£), and }3£ d(w(sk ), im B)=d(B(£),im B)=0. =
]

J8 &

PROOF OF THEOREM 5.6

Following the argument of 5.8, there are two possibilities:

a) If Cw¢D; ,let B be the orbit of & obtained in 5.8, such that
o}

%%de(W(s),im B)=0. Denote o= m.B. To prove that 1im+7=im c it is
sufficient (by 2.2) to show that 1im+7 ¢ im o

Suppose pelim+7, and let (sk) be a sequence in [0, +o) such that
lim z(sk)=p. By the construction of 5.7.1, we see that

there 1is a positive constant eo>0, such that = induces
isometry from Riemannian ball B(x,e) in R® onto the Riemannian
ball B(m(x),€) in M, for all xeR" and all & such that O<e<e_.
Since %3& d(W(sk),im B)=0 , there is N a positive integer such
that d(W(sk),im B)<e0 for k>N. Hence for k>N we have
d(W(sk),im.B)=d(z(sk),im c) <eo, and taking limits we get

0=1im d(z(sk),im o)=1lim d(p,im ¢). Since im ¢ is compact we

conclude that peim o.

b) If Cw=D; then (by Lemma of 5.7.5) y intersects each orbit of X
()
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which is contained into D; only once. Moreover, by 5.7.3 if ¢ is a
o
orbit of X there are infinitely many liftings § of ¢ such that

ine cD , and we can find a sequence (s )cl[0,+w) with s <s
ht o« Kk k  k+l
and w(sk) belongs to a lifting akof o where im akiim aj if k#j.

We claim that 1lim sk=+w. In fact,if the opposite happened, there
would be s=lim s, and points pk=¢(sk)eim o« giving a sequence (pk)
having y(s) as accumulation point. This would contradicts 5.7.3.
Projecting through m we see that z(sk)=n.¢(sk)en(im ak)=im c.
Since im o is closed, taking if necessary a subsequence, we

can suppose that there is %5& Z(sk)=p61m o and %53 z(sk)=ueTpM.

By the claim pelim+z, and by 5.3 u=X(p) is tangent to o.

Using now 2.2 we have that im ¢ is contained in lim+z. Since
this occurs for each orbit ¢ of X we conclude that lim+z=M.
Moreover the auto intersection points set of ¥ is dense in im ¥%.
In fact for £>0 the orbit ¢ of X through ¥(£) is transversal to 7,
using now the above argument we see that there is (sk)———++w with

3 oy 3 7 —_—t .
%53 z(sk) 7 (§) and %&g 7 (sk)—g (0).Thus we can find %>0 such that

Z((sk—n,sk+n)) cuts y transversally for k sufficiently large, and

such intersection points converge to y(£).mw

§ 6 GRADED COMPLETENESS

We end this paper explaining some thinking on a possible

"graduation" of the completeness concept, which put our

results into a new perspective.

The p~-completeness concept has been partially motivated in order to
give an adequate formulation of a completeness result (see 6.3 below).
This result arises from the analysis of a natural reformulation of
the following solved question:

Are there some logical relation between null completeness and

timelike or spacelike completeness in a Lorentzian manifold ?

The negative answer to this question comes from counter—-examples
given by Kundt [3],Geroch [2] and Beem [1]. However, in [4] the
author has proved that for locally symmetric Lorentz manifolds,
they are logically equivalent. This suggests the following
alternative vague question:

Which sort of geometrical conditions must be imposed to the class
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of Lorentzian manifolds, inducing some logical relations

between the three sorts of geodesics completeness 7?

The main theorem 4.5 shows that under certain geometrical
conditions there are some logical relations between the
completeness of two given geodesics. We exploit next the argument
to give a geodesic completeness theorem (which relates null and
non-null completeness) for a certain class of Lorentzian
manifolds. The hypothesis and general notations of §1 and §2 are

implicitly assumed.

PROPOSITION 6.1

Let ¥:[0,b)——M be a right-inextendible I'-geodesic, and let (si)
be a sequence into [0, +w) such that }ig Si=+m, }ig Z(Si)=p and

lim 7’(5 )=u. We write o=y ,u =7’(s ) 7, (€)=7(s +£) (for £>0)
leen L>0 we define for £e€[0, L] by (E)—A(o (€)) A (€)—A(7 (8)) and

A (&)= J A (s)ds (A and A are as in 1.2). Then we have that

(Ai) converges uniformly to Ao in [0,L] .In particular (Ai)
L L

A1(S)ds = J e Ao(S)ds

converges uniformly to A_ and lim J e
c 150

(o} (o}

Proof':

Note first that for each £e[0,L] we have zi(E)=§§g(§ui) and

7 (€)—ds|S =& gzg(suil

In order to prove the uniform convergence of (Ai) we denote by
K,=sup {|A0(§)—Ai(€)|:€e[0,l]}. Let €1E[O,L] be such that
|AG(§)—A1(E)| =K,. By simplicity we suppose that (Ei) is a
convergent sequence, and let £ be the limit of (Ei) (otherwise

we can take a suitable subsequence). Thus 1%3 §1u1=§u and we have
1

lim 7 (€ )=lim m(i.u )=exp (Eu)=<r(€)
}%& 7 (€ )= 11m is | E __g(su )= | ¢ exp(su)=c’ (§)

Since A is contlnuous we get 1lim Ai(gi)=ho(€), and we conclude

Ki=|ho(€i)-hi(€1)|5 ]Rv(ii)—ho(i)l + |R0(€)—Ai(€i)| — 0

Using a slight modification of preceding argument, we can prove

that for each subsequence (K;) of (Ki) there is a subsequence of
(K;) which converges to zero. Thus }%g K1=0’ and (Ai) converges

uniformly to A@ in [0,L].The other statements are now obvious.m
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COROLLARY 6.2

With the same conditions as in 6.1, assuming b<+w if ¢ is
right-complete then we have 1lim (b—ti) Hy’(tl)ﬂ=0, where t1=
=t7(sl) (See 1.2).

Proof':

Let us consider 71=[0,b—tl)———+M such that 71(t)=7(t+t1). Thus v

£
is a right-incomplete I'-geodesic, and we have A7 (£) =J Ai(s)ds.
1 0

Sas)
Taking b1(€)= e ds and using 1.2, since 7;(0)=7'(t1) we have

0

£ (£) !

7, = H§TT€:TW bi(g), and lim t_ (£)= b—ti. Thus if

£+ 1
b= (b=t )y’ (t ), we get 1lim b (£)=b .

1 | 1 i |

£+
To end the proof it is sufficient to prove that there is no a
bounded subsequence of (bi). Suppose that there where (bi ) and H>0
k
such that bl =H for all k. Since ¢ is right-complete, by 1.2 we
k

+00 L
Ao(s) A@(S)
would have e ds =+o and L>0 would exist such that e ds >H

) )
Using now 6.1 we get for k sufficiently large b1 >bl(LJ>H, and
kK 'k

this is a contradiction.m

COROLLARY 6.3

Suppose that M is a Lorentzian compact manifold which has all
their null geodesics completes (i.e M is null-complete).

If :[0,b)——M is a non null right-inextendible and right-

incomplete geodesic then %%E (b-t)lly’ (L) 1=+

Proof

Let (ti) be a sequence in [0,b) such that }%g t1=b, and let s,
be equal to Sy(ti). Using 2.2 and 2.3 we obtain a subsequence (Sik)
such that u=%%£ z’(slk) is a null vector and o=y is a null
geodesic. Since ¢ is complete by hypothesis, using 6.2 we conclude
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that %3& (b—ti )Ila"(ti JlI=+w. Since this happens for each sequence
k k
(t ) into [0,b) such that 1lim t =b, we have lim (b-t)ly’ (t)l=+o m
1 130 1 t>b

The property %%@ (b-t)lly’ (t)lI=+o used in the hypothesis of the
preceding corollary depends initially on the auxiliary Riemannian
metric. Next we establish a topological reformulation of this
property in order to find the graded completeness concept, and
give consistency to the result above.

We recall previously the following general definition

DEFINITION 6.4
Given X and Y topological spaces, we consider D a subset of X, and
aeX an accumulation point of D. If yYy:D——>Y 1is a continuous

function, we say that %3@ Y(x)=w, if for every compact set K of

Y, there is a neighborhood V of a, such that y(x)eK for all xeVnD.

Otherwise we say that lim (x)#o,
x-Ya

Since TM has a standard topological structure, the following

definition is independent of the auxiliary Riemannian metric:

DEFINITION 6.5 : Graded Completeness
Let p be a real number such that O=u=<1, and let ¥ be a I'-geodesic.

a) The geodesic y is called right p-complete provided that for
every bounded interval (a,b) where y is defined, we have either,
. _ -logu _, s . . —
%g@ (b-t) 7' (t)#0 if u#0, or %3% y(t)#o if u=0.
Analogously we can define the left p-completeness property for
7.
b) The geodesic ¥y is called u-complete if it is right and left

pu—complete.

c) Finally we say that the connection I' is p-complete if all their

geodesics are p-completes.

REMARKS 6.6

1.~ Completeness is equivalent to 1-completeness. In fact if
7:[0,b) ——M is a right inextensible and incomplete I'-geodesic,
then by 1.3 1lim Iy’ (t)lI=+» and ¥ is not right 1-complete. The

other implication is trivial.
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2.- Ovbiously, p’-completeness implies p-completeness, if O=u<p’=1
This occurs in particular when p=0, and suggests that the

definition of O-completeness is natural.

3.-In Riemannian manifolds O-completeness and global completeness

are equivalent.

4.- Note that if M is compact, every connection ' in M is
O-complete. In fact the compact property for M could be replaced
through the paper, by the O-completeness property.

5.- If %:[0,b)—M is a right inextendible TI'-geodesic, and
p €(0,1], the following statements are equivalents:

a) ¥ is right p-complete.

b) 7 is right O-complete and lim (b-t) TOBH iy () lakeo,

Using the last two remarks and corollary 6.3 we have the following

completeness theorem

THEOREM 6.7
Suppose that M is a Lorentzian e_1—comp1ete manifold. Then, null

completeness implies global geodesic completeness.m

The next result shows that the e_i—completeness is not a very
strange property for incomplete geodesics of a O-complete

connection

PROPOSITION 6.8
Let 7:[0,b)——M be a right-inextendible [I-geodesic with b<+w.

Then ¥y is right e_i—complete iff a sequence (si) exists into [0, +w)

oA (s)
J e L4 ds
S
such that lim s =+» and there is lim 1 <+oo .
i 1300 Ay(sl)
e

In particular. y is e '-complete, if lim Ay(s)#O exists.

Moreover, if ¥y is smoothly closed then ¥ is right 1-complete, but

it is not p-complete for pe(e ', 1].
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Proof
The geodesic 7y is right e_l—complete iff a sequence (ti) into

[0,b) exists, such that lim t1=b, and lim (b-ti)Hy’(ti)H¢m.

+00

A _(s)
J e L4 ds
s (t)
7

Ay(sy(t))

Using 1.2 we get for te[0,b), (b-t)ly’ ()=
e
We can be prove the first statement taking si=sq(tiL
Moreover if there is lim Ay(s)=xm¢0, then by 1/Hopital rule we
TOA(8)
e 7 d& A_(s)
s Y

- e
Fowo .

have

lim = lim =21
530 A_(s) 530 A _(s) A
e 7 A (s) e
Y
Finally, if the geodesic ¥ is smoothly closed, let L be the

Riemannian length of . We consider

LOA(s) -A_(L)
5= i.L, J= e ¥ dsandc=e 7 >1 (see proposition 4.10).
0
Since Ay is periodic with periode L we get A7(si)= i A7(L), and if
se€ls ,s ] then A (s)=kA (L)+A (s-s ), therefore
kK’ kel 7 7 7 Kk

s s
La(s) xa W) | U A(skL) kA (L) [ A (s)
e ds=e L4 e L4 - ds =e L4 e L4 ds=——;
s s c
k k o
oo a (s)
e L4 ds ® sk 1
s, , [ 1A (s)
and lim = lim ¢’ e 4 ds =
150 A (s ) 150 . J
e v i k=1 Sk

[s4]
=}im Jci E: 1 =] L. This proves that ¥ is right e_l—complete

00 k c-1
C
k=1
v
[+1]
Since lim Jc Z-}— = Sl i OV e b<t, a slight
i->0 Ck CV i
k=1

modification the argument before proves that the smoothly closed
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geodesic y is not p-complete for é4<p51. |

FINAL REMARKS AND OPEN CUESTIONS

Theorem 6.7 gives a criteria for non null completeness in a
Lorentz manifold in the following way

A Lorentz manifold is non-null complete if there is a non-null
geodesic which is not e_i—complete. This sugest the following open

question

QUESTION 1
Could e_i—complete condition be replaced by the O-complete

condition in Theorem 6.7 7.

An affirmative answer to this question mean that null-completeness
implies global completeness in compact Lorentzian manifolds.
On the other hand it is natural to ask if the p-completeness

concept, uel0,1] 1is available for every u.

QUESTION 2
Pick up a number p such that 0O=u<l, are there some Lorentzian
manifolds which are p-complete, but which are not p’-complete for

p<u’<1 ?
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