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Resumen

T́ıtulo

Estructuras geométricas y causalidad en el espacio de rayos de luz de un espacio–tiempo.

Introducción

Inspirado por algunos de los más grandes matemáticos del siglo XIX y principios del XX
como Felix Klein, Julius Plücker, Arthur Cayley and Sophus Lie entre otros, R. Penrose
desarrolló, en las décadas de 1960 y 1970, el programa twistor [56], [58]. Esta teoŕıa
está motivada en la obtención de un formalismo que permita unir la Relatividad general
con la F́ısica cuántica. Los espacios Twistor son estructuras complejas que contienen
información del espacio–tiempo de Minkowski 4–dimensional de modo que las geodésicas
luz pueden verse como elementos básicos (puntos) de esta geometŕıa compleja. Aśı, a
partir de este nuevo punto de vista, surje la siguiente idea: los conjuntos de todas las
geodésicas luz que pasan por diferentes puntos, son distintos, o de forma equivalente, si
dos observadores contemplan exactamente el mismo cielo, entonces están en el mismo
punto del espacio–tiempo. Por tanto, en el espacio–tiempo de Minkowski, el conjunto de
geodésicas luz que pasan por un determinado punto, caracteriza dicho punto.

A finales de la década de 1980, R. Low comenzó a trabajar en esta idea aplicándola
más tarde a espacio–tiempos generales, no necesariamente minkowskianos, y sobre una
variedad diferenciable real. En su trabajo [39], [41], [40], [42], [44], [45] el autor estudia
la topoloǵıa y la geometŕıa del espacio de geodésicas luz (desparametrizadas) y ofrece
condiciones para que éstas tengan buenas propiedades. Además, apunta la existencia de
una estructura de contacto en el espacio de geodésicas luz y observa que la estructura
causal del espacio–tiempo también se halla codificada en dicho espacio N de geodésicas
luz, o rayos de luz como los llamaremos de ahora en adelante. Una structura importante
contenida en N es la familia de cielos: el conjunto de todos los rayos de luz que pasan
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por x se denomina cielo de x y se denota como X . En este trabajo, llamaremos Σ al
conjunto de cielos. De acuerdo con el teorema de Malament-Hawking [26], [46], teniendo
en cuenta los progresos realizados en [36] y [54], la estructura causal está relacionada con
las estructuras topológica, diferenciable y métrica, aśı como con la dimensión: si hay una
biyección causal f entre dos espacio–tiempos de dimensiones n1, n2 > 2 que verifican las
condiciones de distinción de futuro y de pasado, entonces n1 = n2 y los espacio–tiempos
son conformemente isométricos. Aśı, la búsqueda de la estructura causal de M escondida
en el espacio de rayos de luz N podŕıa ser importante para determinar la geometŕıa y la
topoloǵıa de la correspondiente clase conforme de espacio–tiempos. De nuevo, inspirado
por la geometŕıa de twistors, Low en [41], [43], [44] seguido de Chernov–Rudyak en [17],
Chernov–Kinlaw–Sadykov en [14], Chernov–Nemirovski en [15], [16], Natario en [50] y
Natario–Tod en [51], entre otros, han estudiado las relaciones causales mediante un tipo
de enlazamiento entre cielos de la variedad de contacto N .

Otro tema es la reconstrucción de la variedad Lorentz conforme M mediante la infor-
mación contenida en N . En [42], Low describe cómo recuperar M en el caso globalmente
hyperbólico: la intersección entre el cono de luz en x y una superficie de Cauchy puede
identificarse con el cielo X y, por lo tanto, también con el suceso x ∈ M . Pero aparece
un problema cuando existe un par de puntos p, q ∈M verificando que todos los rayos de
luz que pasan por p también pasan por q. En este caso, se dice que M no separa cielos.
Cuando aparece esta propiedad, ésta no permite hacer una identificación adecuada entre
M y Σ, por lo que se supone queM separa cielos. E incluso más, también hay dificultades
cuando existe un entorno abierto V de p tal que para todo abierto U con p ∈ U ⊂ V ,
existe un suceso q /∈ V tal que todos los rayos de luz que pasan por q entran en U . A
esto se le conoce como la propiedad de reenfocamiento en p y que ha sido ampliamente
estudiada por Kinlaw en [31].

Objetivos y resultados

En este punto, los dos objetivos principales de este trabajo son:

• caracterizar la estructura causal de las variedades Lorentz conforme M en términos
de sus espacios de rayos de luz N , y

• establecer si es posible la reconstrucción de la variedad Lorentz conformeM a partir
de sus correspondientes espacios de rayos de luz N .

Para conseguir estos propósitos, buscaremos otros objetivos secundarios tales como:

• determinar si la hipótesis de no–reenfocamiento es necesaria para separar cielos,

• recopilar y ordenar los resultados de la literatura sobre la construcción de los es-
pacios de rayos de luz y sus estructuras geométricas, añadiendo demostraciones
detalladas para hacer que esta memoria sea autocontenida,

• contribuir con algún avance a la construcción de la frontera propuesta por Low, e

• ilustrar los resultados teóricos con ejemplos de espacio–tiempos particulares.
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Para alcanzar esta meta, procedemos de la siguiente manera. En primer lugar, en el
caṕıtulo 1, exponemos los antecedentes necesarios que se utilizarán en el resto de este
trabajo, es decir, definiciones básicas sobre geometŕıa diferencial en la sección 1.1 y una
breve introducción sobre causalidad en la sección 1.2.

Posteriormente, el caṕıtulo 2 se dedica a las estructuras topológica y diferenciable del
espacio de rayos de luz N , además del estudio de su fibrado tangente TN . La mayor
parte de los resultados de las secciones 2.1 y 2.2 ya son conocidos aunque están dispersos
en la literatura. Los formalizamos y ordenamos comenzando con la definición de espacio
de rayos de luz N de una variedad (Lorentz) conforme M hasta la descripción de su
estructura topológica y diferenciable. Además, se construyen sistemas coordenados en N
a partir de la restricción a conjuntos adecuados de coordenadas en TM , y la proposición
2.2.14 aporta condiciones en M para que N sea Hausdorff, de hecho, establece que si
M es fuertemente causal y pseudoconvexo para los rayos de luz, entonces N es Haus-
dorff. De esta manera, supondremos que M verifica tales condiciones. En la sección
2.3, caracterizamos los vectores tangentes de TγN como campos de Jacobi de variaciones
infinitesimales compuestas de rayos de luz para un rayo de luz dado γ ∈ N . Esto per-
mite interpretar v ∈ TγN en términos de elementos de M de manera que nos será útil.
De nuevo, ofrecemos los detalles omitidos en la literatura necesarios para obtener dicha
caracterización, siendo la proposición 2.3.15, el resultado principal de esta sección.

La estructura de contacto H ⊂ TN de N se construye en las secciones 2.4 y 2.5 me-
diante tres formas distintas. Primero, en la sección 2.4.2, construimosH pasando el núcleo
de la 1–forma canónica θ ∈ X∗ (T ∗M) de la variedad simpléctica T ∗M al fibrado tangente
TM mediante la transformación de Legendre. Después, restringimos la distribución de
hiperplanos resultante, como se hizo previamente para obtener las coordenadas en N ,
dando lugar a una estructura de contacto N , como se muestra en la proposición 2.4.13.
En la sección 2.5.1, llevamos a cabo un procedimiento más elegante, pero equivalente al
anterior: la reducción coisotrópica. El teorema 2.5.5 determina el mecanismo de reducción
coisotrópica que se utiliza en los teoremas 2.5.6 y 2.5.7 para obtener H. El tercer proce-
dimiento es la reducción de Marsden–Weinstein. Se puede observar que no es la manera
más sencilla de construir H ya que es necesario utilizar resultados potentes que necesitan
verificar un número mayor de hipótesis, pero se incluye como sección 2.5.3 aportando aśı
los detalles que faltan en [30] sobre este tema.

En el caṕıtulo 3, nos ocupamos del estudiar el espacio de cielos Σ. El cielo X ∈ Σ de
un punto x ∈ M es el conjunto de todos los rayos de luz que pasan por x, dando lugar
a una subvariedad legendriana de N . De hecho, esta propiedad para todo X caracteriza
la estructura de contacto de N , y se demuestra que depende únicamente de la estructura
conforme de M . La aplicación cielo S : M → Σ se puede definir como S (x) = X , y a
lo largo de todo este trabajo supondremos que S es inyectiva, o en otras palabras, M
separa cielos. Esta condición es necesaria a la hora de identificar sin ambigüedades M y
Σ. Después de dar, en la sección 3.1, un tipo espacial de coordenadas no canónicas en
TN , definimos la topoloǵıa de Low en Σ. Con esta topoloǵıa, la aplicación cielo S es
continua (proposición 3.2.4) y, suponiendo que no hay reenfocamiento en M , también es
abierta (proposición 3.2.5). Por lo tanto, como se enuncia en el corolario 3.2.6, S es un
homeomorfismo con la hipótesis adicional de ausencia de reenfocamiento. Un resultado
importante de esta sección 3.2 es el teorema 3.2.8: el subconjunto Σ̂ ⊂ TN de vectores
celestiales, esto es vectores tangentes a cielos de Σ, es localmente una subvariedad regular
de TN . Este teorema será fundamental para demostrar otros resultados posteriores.
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En la sección 3.3 estudiamos dos tipos de curvas: curvas celestiales en N y curvas luz
retorcidas enM . Las curvas celestiales son curvas en N tales que su vector tangente es un
vector celestial. La proposición 3.3.2 muestra que para cualquier curva celestial Γ ⊂ N
existe una curva µ ⊂ M , llamada estela de Γ, tal que Γ′ (s) ∈ TΓ(s)S (µ (s)) y µ′ (s) es
proporcional al vector tangente del rayo de luz Γ (s) en el punto µ (s) siempre que µ sea
regular. El lema 3.3.7 nos dice que la estela µ de una curva celestial Γ es una curva luz
retorcida a trozos, es decir, una curva que no es geodésica en ningún punto y µ′ es luz en
los puntos en los que µ es regular, y rećıprocamente, cualquier curva luz retorcida µ define
una curva celestial Γ tal que µ es su estela. También, como herramienta que utilizaremos
más adelante, en el corolario 3.3.12 de la sección 3.3.2, se demuestra que cualquier par
de puntos relacionados temporalmente en M se pueden conectar mediante una curva luz
retorcida a trozos orientada en el tiempo.

Se caracteriza la estructura causal deM en términos de la geometŕıa deN en la sección
3.4. En una variedad de contacto (Y,H) con estructura de contacto H = kerα donde
α ∈ T ∗Y , una familia diferenciable {Λs}s∈[0,1] de subvariedades legendrianas se denomina
isotoṕıa legendriana. Puede ser descrita mediante una parametrización F : Λ0×[0, 1]→ Y
que verifique F (Λ0 × {s}) = Λs ⊂ Y donde s ∈ [0, 1]. Se dice que una parametrización F
de una isotoṕıa legendriana es no negativa si (F ∗α)

(
∂
∂s

)
≥ 0. El lema 3.4.3 asegura que

la no negatividad de una isotoṕıa legendriana es independiente de su parametrización.
Además, el corolario 3.4.8 nos da una relación entre la estructura causal de M y las
isotoṕıas legendrianas con signo en N : una isotoṕıa legendriana de cielos {S (µ (s))}s∈[0,1]

es no negativa si y sólo si la curva µ : [0, 1]→M es causal dirigida hacia el pasado. Aśı,
obtenemos una descripción de la estructura causal de M en función de la geometŕıa de
N , luego la información causal está codificada en la existencia de isotoṕıas legendrianas
de cielos que unen dos cielos dados.

La estructura diferenciable de Σ se estudia en la sección 3.5. Después de dar la
definición de una nueva topoloǵıa en Σ, llamada la topoloǵıa de los conjuntos regulares,
en el corolario 3.5.5 demostramos que, en este caso, la aplicación cielo S : M → Σ es un
homeomorfismo. La estructura diferenciable de Σ se determina en el corolario 3.5.6: los
conjuntos regulares constituyen una base de la topoloǵıa de Low de Σ, y existe una única
estructura diferenciable en Σ compatible con la topoloǵıa de los abiertos regulares que
hace de S : M → Σ un difeomorfismo. Los resultados anteriores se obtienen sin asumir
la hipótesis de no reenfocamiento en M , y de acuerdo con el teorema 3.5.8 y el corolario
3.5.9, si M es una variedad Lorentz conforme fuertemente causal, pseudoconvexa para
los rayos de luz, que separa cielos y Σ está dotada de la topoloǵıa de Low, entonces la
aplicación cielo S :M → Σ es un homeomorfismo y no hay reenfocamiento en M .

En las secciones 3.6 y 3.7 establecemos condiciones para la reconstrucción de las va-
riedades Lorentz conforme (M, C) a partir de sus espacios de rayos de luz N . Dada una
variedad conforme fuertemente causal (M, C) tal que (N ,Σ) es el correspondiente par
de espacios de rayos de luz y de cielos, decimos que (M, C) es recuperable si para cada
par

(
N ,Σ

)
correspondiente a otra variedad fuertemente causal

(
M, C

)
, con un difeomor-

fismo φ : N → N tal que φ (X) ∈ Σ para cualquier X ∈ Σ, entonces la aplicación

ϕ = S
−1 ◦φ ◦S :M →M es un difeomorfismo conforme sobre su imagen. Demostramos,

en el teorema 3.6.3, que una variedad conforme M fuertemente causal, pseudoconvexa
para rayos de luz y que separa cielos es recuperable. En la sección 3.7 determinamos
condiciones de equivalencia entre dos espacios de rayos de luz N1 y N2 tales que recons-
truyen la misma variedad Lorentz conformeM . Esta equivalencia se da en términos de la
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imagen de curvas celestiales y curvas cielo de N1 mediante el difeomorfismo (que preserva
cielos) φ : N1 → N2. El teorema 3.7.8 establece que N1 y N2 recuperan el mismo M si
y sólo si φ conserva las curvas celestiales causales y también si y sólo si φ conserva las
curvas cielo.

Finalmente, el caṕıtulo 4 está concebido como cajón de sastre de diferentes temas. En
la sección 4.1, afrontamos la frontera de M propuesta por Low en [45]. Estudiamos la
construcción de la frontera de Low en el caso 3–dimensional. Construimos una subvariedad
Ñ con frontera en P (H) tal que está foliada por las hojas de una distribución regular

D̃. La variedad cociente Ñ/D̃ es difeomorfa a M y la frontera ∂Ñ ⊂ P (H) también está
foliada, bajo ciertas condiciones, por las órbitas de campos de direcciones ⊖ y ⊕ definidas
respectivamente por los ĺımites pasado y futuro de las curvas γ̃ (s) = TγS (γ (s)) con

γ ∈ N . Estas órbitas se identifican con puntos de la frontera de Ñ en P (H) y entonces,

esta frontera se propaga a M mediante una extensión del difeomorfismo Ñ /D̃ ≃ M .
Posteriormente, comprobamos si la frontera de Low se puede comparar con la c–frontera
utilizando condiciones muy sencillas y sin generalidad. Se observa que no son la misma
frontera pero tienen caracteŕısticas comunes.

En la sección 4.2, mostramos como pueden describirse los espacios de rayos de luz
de algunos espacio–tiempos de Minkowski y de–Sitter. Se describen coordenadas del
correspondiente N , sus estructuras de contacto H y también la frontera de Low, aśı como
otras de sus estructuras.

Concluimos este trabajo con la sección 4.3, en la que se enumera una lista de cuestiones
pendientes y de ĺıneas de investigación que pueden seguirse en el futuro.

Conclusiones

Se han alcanzado todos los objetivos principales. Hemos caracterizado la estructura
causal de M fuertemente causal, pseudoconvexo para rayos de luz y que separa cielos
en términos de la existencia de isotoṕıas legendrianas con signo en su espacio de rayos de
luz N . También hemos obtenido resultados secundarios sobre la causalidad de M como
el lema 3.4.6 y el corolario 3.3.12. La reconstrucción de M a partir de (N ,Σ) es posible y
hemos encontrado condiciones para determinar cuándo dos diferentes (N1,Σ1) y (N2,Σ2)
reconstruyen la misma variedad conforme (M, C). Hemos probado que la ausencia de
reenfocamiento es equivalente a la separación de cielos en el caso fuertemente causal. En
estos aspectos, y para variedades conformes fuertemente causales, este trabajo resulta
bastante completo y autocontenido, pero todav́ıa quedan muchas preguntas sin respuesta
cuando se debilitan las hipótesis asumidas. Además, el estado en el que queda en este
punto el tema tratado, permite el estudio de las variedades Lorentz conformes desde la
perspectiva de la geometŕıa de contacto, de manera que se puede recorrer este nuevo
camino en paralelo con el de la geometŕıa clásica de espacio–tiempos.
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Title

Geometric structures and causality in the space of light rays of a spacetime.

Introduction

Inspired by some of the greatest mathematicians in 19th century and beginning of 20th
such as Felix Klein, Julius Plücker, Arthur Cayley and Sophus Lie among others, R. Pen-
rose in 1960–70s developed the twistor programme [56], [58]. This theory is motivated to
set a formalism in order to merge general relativity and quantum physics. Twistor spaces
are complex structures containing information of 4–dimensional Minkowski spacetime in
such a way null geodesics can be seen as basic elements (points) in this complex geometry.
Then, an idea emerges from this new point of view: the sets of all null geodesics passing
through different events in the spacetime are different, or equivalently, if two observers
watch exactly the same sky, then they are at the same point of the spacetime. So, in
Minkowski spacetime, all null geodesics passing through a specific point characterizes said
point.

In late 1980s, R. Low started to work out this idea and he applied it later for a general
spacetime, not necessarily Minkowskian, and in a real differential manifold. In his work
[39], [41], [40], [42], [44], [45] the author studies the topology and geometry of the space
of (unparametrized) null geodesics and offers conditions for having good properties. He
points out the existence of a contact structure in the space of null geodesics and observes
that the causal structure of the spacetime is also encoded in said spaceN of null geodesics,
or light rays as we will name them from now on. An important structure contained in
N is the family of skies: the set of all light rays passing through x is called the sky of
x and is denoted by X . In the present work, we will name the set of all skies by Σ.
According to Malament-Hawking theorem [26], [46], taking account of the improvements
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in [36] and [54], the causal structure is related to the topological, differentiable and metric
structures, as well as the dimension: if a causal bijection f exists between two spacetimes
of dimensions n1, n2 > 2 which are both future and past distinguishing, then n1 = n2

and the spacetimes are conformally isometric. So, the quest of the causal structure of
M hidden in the space of light rays N could be important to determine the geometry
and topology of the conformal class of spacetimes. Again, inspired by twistor geometry,
Low in [41], [43], [44] followed by Chernov–Rudyak in [17], Chernov–Kinlaw–Sadykov in
[14], Chernov–Nemirovski in [15], [16], Natario in [50] and Natario–Tod in [51], among
others, have studied causal relations by some kind of linking between skies in the contact
manifold N .

Another topic is the reconstruction of the conformal Lorentz manifold M by the
information contained in N . In [42], Low describes how to recover M in a globally
hyperbolic case: the intersection between the lightcone at x and a Cauchy surface can be
identified with the sky X and therefore also with the event x ∈M . But a problem arises
when there exists a pair of points p, q ∈ M verifying that all light rays passing through
p also pass through q. In this case, it is said that M is not sky–separating. When this
property appears, it does not permit to do an adequate identification between M and Σ,
so M is assumed to be sky–separating. And even more, there are also difficulties when
there exists an open neighbourhood V of p such that for all open U with p ∈ U ⊂ V ,
there exists an event q /∈ V such that all light rays through q enter U . This is known as
the property of refocusing at p and it has been widely studied by Kinlaw in [31].

Objectives and results

At this point, the two main objectives of this work are:

• to characterize the causal structure of conformal Lorentz manifolds M in terms of
their spaces of light rays N , and

• to establish if the reconstruction of conformal Lorentz manifolds M is possible from
their corresponding spaces of light rays N .

In order to achieve these aims, we will find some other secondary objectives such as:

• to determine if non–refocusing hypothesis is needed for sky–separating,

• to collect and order the results in the literature about the construction of the space
of light rays and its geometrical structures, adding detailed proofs to make of this
work a self–contained report,

• to contribute with some breakthrough in the construction of boundary proposed by
Low, and

• to illustrate the theoretical results with examples of specific spacetimes.

To get this goal, we proceed in the following way. Firstly, in chapter 1, we expound
the background needed in the rest of this work, that is, basic definitions on differential
geometry in section 1.1 and a brief introduction on causality in section 1.2.
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Then, chapter 2 is devoted to the topological and differentiable structures of the space
of light rays N , as well as the study of its tangent bundle TN . The most of the results in
sections 2.1 and 2.2 are already known even though they are dispersed in the literature.
We formalize and order them starting with the definition of space of light rays N of a
conformal (Lorentz) manifoldM up to the description of its differentiable and topological
structure. Moreover, coordinate charts are built in N from the restriction of coordinates
in TM to adequate sets, and proposition 2.2.14 gives conditions in M for hausdorffness
in N , in fact, it states that if M is strongly causal and null pseudo–convex, then N is
Hausdorff. So, we will assume M verifies these conditions. In section 2.3, we characterize
tangent vectors in TγN as Jacobi fields of infinitesimal variations by light rays of a given
light ray γ ∈ N . This permits us to interpret v ∈ TγN in a useful way in terms of elements
of M . Again, we offer details omitted in the literature to obtain said characterization,
being proposition 2.3.15, the main result of this section.

The contact structure H ⊂ TN of N is built in sections 2.4 and 2.5 by using three dif-
ferent procedures. First, carried out in section 2.4.2, we construct H passing the kernel of
the canonical 1–form θ ∈ X∗ (T ∗M) of the symplectic manifold T ∗M to the tangent bun-
dle TM by means of the Legendre transform. Then, we restrict the resulting distribution
of hyperplanes, in the same way we previously did to obtain coordinates in N , becoming
a contact structure in N , as proposition 2.4.13 shows. In section 2.5.1, we implement a
more elegant procedure, but equivalent to the previous one: coisotropic reduction. The-
orem 2.5.5 determines the coisotropic reduction mechanism used in theorems 2.5.6 and
2.5.7 to get H. The third procedure is the Marsden–Weinstein reduction. It can be seen
that this is not the easiest way to construct H because it is necessary to use powerful
results needing to verify more hypotheses, but it is included as section 2.5.3 providing the
missing details of [30] about this topic.

In chapter 3, we deal with the space of skies Σ. The sky X ∈ Σ of a point x ∈ M is
the set of all light rays passing through x and it becomes a legendrian submanifold of N .
In fact, this property for all sky X characterizes the contact structure of N , and we show
that it only depends on the conformal structure of M . The sky map S : M → Σ can
be defined by S (x) = X and, throughout this work, we are assuming that S is injective,
or in other words, M is sky–separating. This condition is necessary in order to identify
unambiguously M and Σ. After giving, in section 3.1, a special type of non–canonical
coordinates in TN , we define the Low’s topology in Σ. Equipped with this topology,
the sky map S is continuous (proposition 3.2.4) and, assuming that M is non–refocusing,
it is also open (proposition 3.2.5). Therefore, as enunciated in corollary 3.2.6, S is a
homeomorphism with the further hypothesis of non–refocusing. An important result in
section 3.2 is theorem 3.2.8: the subset Σ̂ ⊂ TN of celestial vectors, that is, vectors
tangent to skies in Σ, is locally embedded in TN . This theorem will be fundamental in
some proofs of subsequent sections.

In section 3.3 we study two kinds of curves: celestial curves in N and twisted null
curves in M . Celestial curves are curves in N such that their tangent vector are celestial.
Proposition 3.3.2 shows that for any celestial curve Γ ⊂ N there exists a curve µ ⊂ M ,
called the dust of Γ, such that Γ′ (s) ∈ TΓ(s)S (µ (s)) and µ′ (s) is proportional to the
tangent vector of the light ray Γ (s) at the point µ (s) wherever µ is regular. Lemma 3.3.7
says that the dust µ of a celestial curve Γ is a piecewise twisted null curve, that is, a curve
non–geodesic at any point and µ′ is null wherever µ is regular, and conversely, any such
twisted null curve µ defines a celestial curve Γ such that µ is its dust. Also, as a tool that
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we will use later, in corollary 3.3.12 of section 3.3.2, we show that any pair of timelike
related points in M can be connected by a time–oriented piecewise twisted null curve.

We characterize the causal structure of M in terms of the geometry of N in section
3.4. In a contact manifold (Y,H) with contact structure H = kerα where α ∈ T ∗Y , a
differentiable family {Λs}s∈[0,1] of legendrian submanifolds is called a legendrian isotopy.
It can be described by a parametrization F : Λ0 × [0, 1] → Y verifying F (Λ0 × {s}) =
Λs ⊂ Y where s ∈ [0, 1]. A parametrization F of a legendrian isotopy is said to be non–
negative if (F ∗α)

(
∂
∂s

)
≥ 0. Lemma 3.4.3 ensures that non–negativity of a legendrian

isotopy is independent of the used parametrization. Moreover corollary 3.4.8 gives us a
relation between causal structure inM and signed legendrian isotopies in N : a legendrian
isotopy of skies {S (µ (s))}s∈[0,1] is non-negative if and only if the curve µ : [0, 1]→M is
causal past–directed. So, we obtain a description of the causal structure of M in terms
of the geometry of N , then the causal information is encoded in the existence of signed
legendrian isotopies of skies connecting two given skies.

The differentiable structure of Σ is studied in section 3.5. After the definition of a
new topology in Σ, called the topology of regular sets, we show in corollary 3.5.5 that, in
this case, the sky map S : M → Σ is a homeomorphism. The differentiable structure of
Σ is determined in corollary 3.5.6: regular sets constitute a basis for the Low’s topology
of Σ, and there exists a unique differentiable structure in Σ compatible with topology
of regular sets that makes of S : M → Σ a diffeomorphism. The previous results have
been obtained without the assumption of non–refocusing in M , and according to theorem
3.5.8 and corollary 3.5.9, if M is a strongly causal, null pseudo–convex, sky–separating
conformal manifold and the Low’s topology is provided in Σ, then the sky map S :M → Σ
is a homeomorphism and M is non–refocusing.

In sections 3.6 and 3.7 we set conditions of reconstruction of the conformal Lorentz
manifold (M, C) from its spaces of light rays N . Given (M, C) a strongly causal manifold
such that (N ,Σ) is the corresponding pair of spaces of light rays and skies, we say that
(M, C) is recoverable if for any pair

(
N ,Σ

)
corresponding to another strongly causal

conformal manifold
(
M, C

)
, with a diffeomorphism φ : N → N such that φ (X) ∈ Σ for

any X ∈ Σ, then the map ϕ = S
−1 ◦φ ◦S :M →M is a conformal diffeomorphism on its

image. We show, in theorem 3.6.3, that a strongly causal, null pseudo–convex and sky–
separating conformal manifold M is recoverable. In section 3.7 we determine conditions
of equivalence between two spaces of light rays N1 and N2 such that they reconstruct the
same conformal Lorentz manifold M . Said equivalence is given in terms of the image of
celestial and sky curves in N1 by the (preserving skies) diffeomorphism φ : N1 → N2.
Theorem 3.7.8 states that N1 and N2 recover the same M if and only if φ maps causal
celestial curves into causal celestial curves, and also if and only if φ maps sky curves into
sky curves.

Finally, chapter 4 is conceived as a mixture of different topics. In section 4.1, we deal
with the boundary of M proposed by Low in [45]. We study the construction of Low’s

boundary in 3–dimensional cases. We construct a submanifold Ñ with boundary in P (H)
such that it is foliated by leaves of a regular distribution D̃. The quotient manifold Ñ/D̃ is

diffeomorphic toM and the boundary ∂Ñ ⊂ P (H) is also foliated, under some conditions,
by orbits of fields of directions ⊖ and ⊕ defined respectively by the past and future limits
of all curves γ̃ (s) = TγS (γ (s)) with γ ∈ N . These orbits are identified to points at the

boundary of Ñ in P (H) and then, this boundary is propagated to M by an extension of
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the diffeomorphism Ñ/D̃ ≃M . Later, we check if Low’s boundary can be compared with
GKP c–boundary using very simple and not general conditions. We observe they are not
the same boundary but both have common features.

In section 4.2, we show how spaces of light rays can be described for some Minkowski
and de Sitter spacetimes. We describe coordinates of corresponding N , their contact
structures H and also Low’s boundary as well as other structures therein.

We conclude this work with section 4.3, in which we list some pending questions and
lines of research that can be followed in the future.

Conclusions

All the proposed main objectives have been reached. We have characterized the causal
structure of strongly causal, null pseudo–convex and sky–separating M in terms of the
existence of signed legendrian isotopies in its space of light rays N . We also have obtained
side results on causality on M as lemma 3.4.6 and corollary 3.3.12. The reconstruction
of M from the pair (N ,Σ) is possible and we have found conditions to determine when
two different (N1,Σ1) and (N2,Σ2) recover the same conformal manifold (M, C). It has
been proven that non–refocusing is equivalent to sky–separating condition in a strongly
causal spacetime. In these aspects, and for strongly causal conformal manifolds, this work
is nearly complete and self–contained, but there are still many questions without answer
when we weaken the assumed hypothesis. Moreover, the state in which the covered matter
is at this point, permits the study of conformal Lorentz manifolds from the view of contact
geometry, so that, this new path can be walked in parallel with the classical spacetime
geometry.





Chapter 1

Background

In this chapter we will compile the basic definitions and results forming the background
for the target of our study and it pretends to be a working basis for a good understanding
of following chapters. Section 1.1 is devoted to introduce some of the notation and basic
concepts in the scope of differential geometry. We will also offer, in section 1.2, some
elementary results on causality theory we will need later.

First, we need to fix the notation of elementary concepts. We will use the word smooth
as well as differentiable to name C∞ objects. IfM is a differentiable manifold and p ∈M
is any of its points, then we will denote by TM the tangent bundle ofM , then TpM will be
the tangent space of M at p and 0p its zero vector. The ring of differentiable real–valued
functions over M will be F (M), by X (M) we will denote the set of differentiable vector
fields in M , the set of 1–form in M will be denoted by X∗ (M). In general, the set of
p–forms in M will be denoted by Λp (M) and Tp

q (M) will be the bundle of differentiable
tensors of type (p, q) over M .

If P is a fibre bundle overM then the canonical projection will be usually denoted by
πP
M : P →M .

Section 1.1

Differential geometry

Now we will do a brief summary of some important topics of differential geometry to
avoid possible confusion because there exists non–equivalent definitions of some geometric
objects in the literature.

Let M and N be two differentiable manifolds and f : M → N a differentiable map,
the push–forward of a vector field X ∈ X (M) can be defined pointwise by

(f∗X)p = (df)pXp ∈ Tf(p)N

where (df)p is the differential of f at p ∈M and Xp := X (p). In general, (f∗X) is not a
vector field in N (see [35, p. 87]).

1



2 Differential geometry

Then the pull–back of a k–covariant tensor field T ∈ T0
k (N) by f is defined by

(f∗T ) (X1, . . . , Xk) = T (f∗X1, . . . , f∗X2)

for Xi ∈ X (M) with i = 1, . . . , k. In this case, according to [35, Prop. 11.9], f∗T ∈
T0
k (M) is a k–covariant tensor in M .
If f : M → N is a diffeomorphism then it is possible to establish the following definition

of push–forward and pull–back of tensor and vector fields. So, given T ∈ Tn
k (M), αi ∈

X∗ (M) with i = 1, . . . , n and Xj ∈ X (M) with j = 1, . . . , k we can define f∗T ∈ Tn
k (N)

by

(f∗T ) (α1, . . . , αn, X1, . . . , Xk) = T
(
f∗α1, . . . , f

∗αn,
(
f−1

)
∗
X1, . . . ,

(
f−1

)
∗
Xk

)

and for T ∈ Tn
k (N) we have that

f∗T =
(
f−1

)
∗
T ∈ Tn

k (M)

For Y ∈ X (N) we have that the pull–back f∗Y of Y by f is

(f∗Y ) (p) =
(
d
(
f−1

))
f(p)

Y (f (p)) ∈ TpM. (1.1.1)

and the push–forward f∗X of X ∈ X (M) by f is

(f∗X) (q) = (df)qX
(
f−1 (q)

)
∈ TqN. (1.1.2)

Given a vector field X ∈ X (M), we will denote by LX the Lie derivative along X .
For a geometric object A, it can be defined by

LXA =
d

dt

∣∣∣∣
t=0

(
ΦX

t

)∗
A (1.1.3)

where ΦX
t :M →M denotes the flow of X .

So, for a differentiable function f ∈ F (M) it is known that

LXf =
d

dt

∣∣∣∣
t=0

(
ΦX

t

)∗
f = X (f) ∈ F (M) .

In case of a vector field Y ∈ X (M) we have that

LXY =
d

dt

∣∣∣∣
t=0

(
ΦX

t

)∗
Y = [X,Y ] ∈ X (M)

For a differentiable p–form ω ∈ Λp (M) we have the Cartan’s formula

LXω =
d

dt

∣∣∣∣
t=0

(
ΦX

t

)∗
ω = iXdω + d (iXω) ∈ Λp (M) (1.1.4)

where iXθ ∈ Λp−1 (M) denotes the inner product of X ∈ X (M) and θ ∈ Λp (M), that it
is defined by

iXθ (Y1, . . . , Yp−1) = θ (X,Y1, . . . , Yp−1) .
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and it is the contraction of θ in the first variable.
By expression 1.1.1, if ΦX

t denotes the flow of X , then

[X,Y ] =
d

dt

∣∣∣∣
t=0

(
ΦX

t

)∗
Y =

d

dt

∣∣∣∣
t=0

(
dΦX

−t

)
Y ◦ ΦX

t (1.1.5)

See, for example, [2] for further details.

Definition 1.1.1. LetM be a differentiable manifold such that dimM ≥ 2 and g ∈T0
2 (M)

a symmetric tensor. Then (M,g) is said to be:

1. a riemannian manifold if g is positive definite at every p ∈M .

2. a semi–riemannian manifold if g is non-degenerated at every p ∈M .

3. a Lorentzian manifold if (M,g) is a semi–riemannian manifold and for every p ∈M
there exists a basis at TpM in which gp = diag (−1,+1, ...,+1).

Equivalently, we will say that M is riemannian, semi–riemannian or Lorentzian when
(M,g) is so and the metric g is not necessary to be specified.

For any given smooth function σ ∈ F (M), let us define a conformal metric in M
equivalent to g by

Cg =
{
g ∈ T2

0 (M) : g = e2σg, σ ∈ F (M)
}

and a conformal manifold equivalent to (M,g) by the pair (M, Cg). We can talk about
conformal Lorentz manifold, conformal semi-riemannian manifold,... when the related
metric is Lorentz, semi-riemannian,... but since the only sort of metric we work with is
Lorentzian one, for brevity, we will call them just conformal manifold.

By ∇, we will denote the Levi–Civita connection of M , that is the unique connection
verifying

[X,Y ] = ∇XY −∇YX

and
X (g (Y, Z)) = g (∇XY, Z) + g (Y,∇XZ)

where X,Y, Z ∈ X (M) and [X,Y ] = XY − Y X is the Lie bracket of X and Y .
Considering a curve λ = λ (t) in M , we will denote by

D

dt
: Xλ → Xλ

the covariant derivative along λ, where Xλ denotes the set of all smooth vector fields on
the curve λ.

The curvature or Riemann tensor is defined by

R (X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

Given a function f ∈ F (M), we will say that grad f is the gradient of f and it describes
the vector field metrically equivalent to the 1–form df , that is, for any X ∈ X (M)

g (grad f,X) = df (X) = X (f) ∈ F (M)

A detailed exposition of the properties of the previous geometrical objects can be
found in, for example, [2], [8], [25] and [53].
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Section 1.2

Causality in spacetimes

From now on, we will consider that (M,g) is a Lorentzian manifold. In such a manifold
we can classify the tangent vectors depending on their causal character , that is, we will
say that a vector v ∈ TpM such that v 6= 0p is:

spacelike if gp (v, v) > 0
null or lightlike if gp (v, v) = 0
timelike if gp (v, v) < 0

It is trivial to notice that any metric g = e2σg with σ ∈ F (M) defines the same causal
character for every v ∈ TpM since e2σ > 0. Therefore, clearly the causality is well defined
in the conformal Lorentz manifold (M, Cg).

We get from [53, p. 145] the following definition. Let τ be a continuous function on
M assigning to every p ∈ M a connected component τp of the set of causal vectors in
TpM . A such function τ will be called time–orientation of M . We will say that (M, g)
is time–orientable if M admits a time–orientation. If a time–orientation τ is provided at
(M, g) then we will say that (M, g) is time–oriented .

Time–orientability is equivalent to the existence of a timelike vector field X (see [53,
Lem. 5.32] for details), that is for all p ∈M the tangent vector Xp ∈ TpM is timelike. In
fact, if X exists, then it is possible to assign to every p ∈ M the connected component
of TpM containing Xp and so we get a time–orientation. On the other hand, if M is
furnished of a time–orientation τ then for every p ∈ M there exists a neighbourhood Up

where a timelike vector field XUp
is defined, and its image for any q ∈ Up is in τq. Using

partitions of unity a global timelike vector field X can be constructed in M , see [53, Lem.
5.32] for more details.

In a time–oriented Lorentzian manifold (M, g) we can distinguish both connected
component of the set of causal vectors calling future causal cone of p to the τ component
and past causal cone of p to the −τ one. So we will say that a causal vector v ∈ TpM is
future (respectively past) if v ∈ τp (respectively −v ∈ τp).

In what follows, we will consider time–oriented Lorentzian manifold.

Definition 1.2.1. A time–oriented Lorentzian manifold (M,g) of dimension m ≥ 3 will
be called a spacetime.

Let us consider the tangent bundle TM . If (ϕM , U) is a coordinate chart in M such
that ϕM =

(
x1, . . . , xm

)
in which a tangent vector v ∈ TU can be written as v = vk ∂

∂xk ,

then (ϕ, TU) such that ϕ =
(
xk, vk

)
is a coordinate chart in TM . We can express the

metric g in this coordinates as g (u, v) = giju
ivj .

Notation 1.2.2. If N is a differentiable manifold, the notation T̂N will be used to make
reference to the bundle resulting of eliminating the zero section of TN , that is

T̂N = {v ∈ TN : v 6= 0} .

Let us consider the restriction N of T̂M defined by

N =
{
v ∈ T̂M : g (v, v) = 0

}
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that is the set of null vectors in M .
Given L : T̂M → R the differentiable function defined by

L (v) =
1

2
g (v, v) (1.2.1)

that can be written as L
(
xk, vk

)
= 1

2gijv
ivj in the local natural bundle coordinates(

xk, vk
)
. By definition of N, it is trivial to see that N = L−1 (0) ⊂ T̂M . The differential

of L in ϕ (v) is

dL =
1

2

∂gij
∂xk

vivjdxk + gikv
idvk. (1.2.2)

Since g is a non–degenerate metric, then for every v ∈ T̂M there exists u ∈ T̂M such
that g (v, u) 6= 0. This implies that some gikv

i with k = 1, . . . , n is not zero, then the
rank of dL(xk,vk) is 1 and therefore 0 ∈ R is a regular value of the function L. By [10,
Cor. II.7.4], since N = L−1 (0) is the inverse image of a regular value, then it is a regular

submanifold of T̂M and, by restriction, it inherits the structure of bundle of T̂M over
M . So N is a bundle over M and we will denote by πN

M : N→M its canonical projection
and by Np its fibre at p ∈M .

The zero section of TM separates both connected components of N denoted by

N+ = {v ∈ N : v future }

N− = {v ∈ N : v past }

We will call the fibres Np, N+
p and N−

p lightcone, future lightcone and past lightcone
at p ∈M respectively.

By the previous classification of tangent vectors, we will say that a curve γ is timelike
(respectively null , spacelike, causal) if its tangent vector is timelike (respectively null,
spacelike, causal) at every of its points. We will say that a causal curve is future–directed
(respectively past–directed) if it is equipped with future tangent vectors (respectively past)
at any of its point.

Definition 1.2.3. Let S be a subset of M .

1. The chronological future of S is the set of all points in M that can be connected to
S by a future–directed timelike curve. It will be denoted by I+ (S). Analogously, it
is possible to define the chronological past of S denoted by I− (S).

2. The causal future of S is the union of S and the set of all points in M that can be
connected to S by a future–directed causal curve. It will be denoted by J+ (S). In
the same way, we can define the causal past of S denoted by J− (S).

3. A subset S ⊂M is achronal if any p ∈ S verifies I+ (p) ∩ S = ∅.

4. Let S be an achronal set, we will name future (past) Cauchy development of S to
the set of points p ∈M such that any causal curve inextensible to the past (future)
passing through p intersects S. We will denote it by D+ (S) (D− (S)). And we will
say that D (S) = D+ (S) ∪D− (S) is the Cauchy development of S.
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In a equivalent way, we will use the notation

p ≺ q

to indicate q ∈ I+(p). Also
p < q

can be used to denote the existence of a future–directed causal curve from p to q. The
notation

p ≤ q

is used to indicate both p < q or p = q, that is q ∈ J+ (p).

Next theorem is a basic result to study the causal structure of spacetimes and it can
be found in [53, Prop. 10.46].

Theorem 1.2.4. Let M be a spacetime. If λ is a causal curve joining the points p, q ∈M
but not a null pregeodesic, then in any neighbourhood of λ there exists a timelike curve µ
connecting the points p and q.

As an immediate consequence of theorem 1.2.4, we get the following corollary.

Corollary 1.2.5. If r ∈ J+ (q) and q ∈ I+ (p), or also r ∈ I+ (q) and q ∈ J+ (p), then
we have that r ∈ I+ (p).

Proof. In former case, if q ∈ I+ (p) then there exists a future–directed timelike curve λ1
joining p and q, and if r ∈ J+ (q) then there exists a future–directed causal curve λ2
connecting q with r (if q = r then λ2 is constant). Then the curve λ = λ1 ∪ λ2 is a
future–directed causal curve joining p and r and it is not a null pregeodesic because λ1
is timelike. By theorem 1.2.4, there exists a timelike curve µ joining p and r that, by
construction conserves the same time–orientation of λ. Therefore r ∈ I+ (p).

The proof for the latter case can be done in an analogous way.

The previous corollary is also true when we consider the chronological and causal past,
and its proof is similar if we interchange the roles of future and past.

Depending on the behaviour of causal curves in M , it is possible to classify the space-
times according to some conditions about the nature of causal curves. The next classifi-
cation list is not exhaustive but it is enough for our purpose. It is possible to find a wide
explanation about the causality conditions in [53], [48], [8], [25] and [55]. In the next
definition we only introduce some conditions, taking into account that if one of them is
verified then all the previous conditions are also verified.

Definition 1.2.6. Let M be a time–oriented spacetime, then

1. It is said that M verifies the chronological condition or that M is chronological if
there does not exist closed timelike curves.

2. It is said that M verifies the causal condition or that M is causal if there does not
exist closed causal curves.
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3. We say that M is strongly causal at p ∈M or verifies the strong causality condition
if for every neighbourhood U of p ∈ M there exists a neighbourhood V ⊂ U of p
such that any segment of causal curve with endpoints at V , is wholly contained in
U . This means that there is not almost closed causal curves at p, that is there exists
a neighbourhood V of p such that any causal curve that leaves V does not return
to said neighbourhood. We will say that M is strongly causal if it is so for every
p ∈M .

4. We say that M is globally hyperbolic or verifies the global hyperbolicity condition
if it causal and J+ (p) ∩ J− (q) is compact for any p, q ∈M .

Definition 1.2.7. We will say that a naked singularity occurs at the future (resp. past)
of a causal curve λ inextensible to the future (resp. past) if there exists a point p ∈ M
such that I− (λ) ⊂ I− (p) (resp. I+ (λ) ⊂ I+ (p)).

In [57], Penrose shows that a strongly causal spacetime M is globally hyperbolic if
naked singularities does not exist in M .

Definition 1.2.8. A future–directed causal curve γ inextensible to the future such that
it enters and remains into a compact set K is said to be totally imprisoned to the future
in K. If γ does not remain in K, but continually re–enters into K, then γ is said to be
partially imprisoned to the future in K.

These phenomena of imprisonment can not exist under some causality conditions, as
it can be observed in the next proposition found at [25, Prop. 6.4.7].

Proposition 1.2.9. If there exists a totally or partially imprisoned future–directed causal
curve inextensible to the future in some compact set K ⊂ M , then the strong causality
condition does not hold on K

Definition 1.2.10. A Cauchy surface is a topological hypersurface S ⊂M such that any
inextensible timelike curve intersects S exactly once.

Proposition 1.2.11. Let M be a spacetime with a Cauchy surface S ⊂ M and let
X ∈ X (M) be a timelike vector field. If p ∈ M , every maximal integral curve of X
passing through p intersects S in a unique point σ (p). Then the map σ :M → S is open,
continuous and surjective leaving fixed any point of S. Moreover S is connected.

Proof. We offer the proof of [53, Prop. 14.31]. It is known that the maximal integral
curves of X are inextensible. Let Ψ̃ : D −→ M be the flow of X where D is open in
M×R. Since S is a topological hypersurface ofM , then DS = (S × R)∩D is a topological
hypersurface in D and since Ψ̃ is differentiable, then its restriction Ψ : DS −→ M is
continuous. Moreover S is a Cauchy surface and then Ψ : DS → M is bijective. Since
the dimensions of DS and M are the same then Ψ is a homeomorphism. The projection
π : S × R→ S is an open, continuous and surjective map, hence since σ = π ◦Ψ−1, then
σ is also open, continuous and surjective and leaves fixed any point of S. Since M is
connected then we conclude that σ (M) = S is connected.

An important consequence of proposition 1.2.11 is the topological equivalence of
Cauchy surfaces. It is described in the next corollary.
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Corollary 1.2.12. All the Cauchy surfaces in a spacetime M are homeomorphic.

Proof. We sketch the idea of the proof in [53, Cor. 14.32]. Let S and T be two Cauchy
surfaces of M and let X be a timelike vector field. If σS and σT are the respective
retractions built in proposition 1.2.11 for S and T by means of the flow of X , then the
restrictions σS : T → S and σT : S → T are mutually inverses.

Theorem [53, Th. 14.38] states a relation between Cauchy developments and global
hyperbolicity. It claims that given a achronal set A, then the interior of the Cauchy
development of A, that is int (D (A)), if it is not empty, then it is globally hyperbolic. This
result can be applied to a Cauchy surface S, and since D (S) =M then int (D (A)) =M ,
therefore M is globally hyperbolic. So, the existence of a Cauchy surface implies the
global hyperbolicity of M .

The next theorem is an important characterization of globally hyperbolic spacetimes.

Theorem 1.2.13. (Geroch-Bernal-Sánchez) Any globally hyperbolic spacetime M
admits a differentiable spacelike Cauchy surface S, and moreover M is diffeomorphic to
S × R.

Proof. See [9, Th. 1] for proof.

Recall that a open neighbourhood Up of p ∈ M is called a normal neighbourhood if
there exists a star–shaped neighbourhood Up

0 of 0p ∈ TpM such that expp : Up
0 → Up is

a diffeomorphism. The existence of these normal neighbourhoods were shown by J.H.C.
Whitehead in [62], and a proof can be seen in [27, p. 133–136]. Moreover, as pointed out
in [25, p. 34], a normal neighbourhood can be chosen as a neighbourhood of any of its
points. This implies that given two points r, q ∈ Up then there is a geodesic segment with
endpoints at r and q fully contained in Up. We will call convex normal neighbourhood to
such normal neighbourhoods.

According to [48], we have the following definitions and results.

Definition 1.2.14. Let U, V be open sets in a spacetime M such that V ⊂ U . Then V
is said to be causally convex in U if any causal curve contained in U with endpoints in
V is totally contained in V .

Theorem 1.2.15. Let M be a spacetime. For any p ∈M and any neighbourhood U of p
there exists a neighbourhood U ′ such that p ∈ U ′ ⊂ U and a sequence of globally hyperbolic
nested neighbourhoods {Vn} such that Vn+1 ⊂ Vn and {p} =

⋂
n Vn all contained in U ′

and verifying that every Vn is causally convex in U ′.

Proof. See [48, Th. 2.14] for proof.

It is important to notice that any Vn in the previous theorem 1.2.15 can assumed to be
contained in a convex normal neighbourhood. Then, for brevity, we will use the following
definition.

Definition 1.2.16. An open set V ⊂ M is said to be a basic open set or a basic
neighbourhood of some point, if V is globally hyperbolic, causally convex and contained
in a convex normal neighbourhood.
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By theorem 1.2.15, it is possible to give a different, but equivalent, definition of
strongly causal spacetimes.

Definition 1.2.17. A spacetime M is said to be strongly causal if for all p ∈ M and
all neighbourhood U ⊂ M of p there exists a causally convex neighbourhood V ⊂ U of p.
This neighbourhood V , according to theorem 1.2.15 can be considered basic.

Finally, we finish the present chapter with the next proposition that will be used later.

Proposition 1.2.18. Let M be a strongly causal spacetime, then for every p ∈ M there
exists a neighbourhood V of p such that if γ is an inextensible causal curve then γ ∩ V
has exactly one connected component.

Proof. It is a direct consequence of strong causality of M . It is known that for all p ∈M
there exist a basic neighbourhood V of p. Let γ be a causal curve intersecting V , if γ ∩V
had more that one connected component, then taking two points q, r ∈ γ contained in
different connected components, since γ is connected, there would exist a point s ∈ γ
between q and r such that s /∈ V , contradicting that V is causally convex.





Chapter 2

The space of light rays

This chapter is intended to be a self–contained text and it presents the construction of the
space of light rays and of some of its structures from a basic starting point. In section 2.1
we define the space of light rays N what will be the space that we will use as framework
and in section 2.2 we study its differentiable structure. The characterization of tangent
vectors in TN as Jacobi fields of geodesic variations is done in section 2.3. Sections 2.4
and 2.5 are dedicated to the construction of the canonical contact structure comprised in
N .

Section 2.1

Definition of the space N of light rays

Given a spacetime (M,g), we define the set of light rays of (M,g) by

Ng = {Im (γ) ⊂M : γ is a maximal null geodesic in (M,g)}

where Im (γ) denotes the image of the curve γ. This definition, a priori, depends on the
metric but we will show that it only depends on the conformal class of spacetimes.

First, we need to know how the Levi–Civita connection varies when a conformal factor
appears in the metric. The following proposition can be found in [32, Lem. 2.1].

Proposition 2.1.1. Let (M,g) and (M,g) be two spacetimes with g ∈ Cg. If ∇ and ∇
denote the Levi–Civita connections of (M,g) and (M,g) respectively, then

∇XY = dσ (X)Y + dσ (Y )X − g (X,Y ) gradσ +∇XY

is verified for all X,Y ∈ X (M).

Proof. Since g = e2σg with σ ∈ F (M), then applying Koszul’s formula [53, Th. 3.11] we

11
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have that

2g
(
∇XY, Z

)
= X (g (Y, Z)) + Y (g (Z,X))− Z (g (X,Y ))−
− g (X, [Y, Z]) + g (Y, [Z,X ]) + g (Z, [X,Y ]) =

= X
(
e2σg (Y, Z)

)
+ Y

(
e2σg (Z,X)

)
− Z

(
e2σg (X,Y )

)
−

− e2σg (X, [Y, Z]) + e2σg (Y, [Z,X ]) + e2σg (Z, [X,Y ]) =

= X
(
e2σ
)
g (Y, Z) + Y

(
e2σ
)
g (Z,X)− Z

(
e2σ
)
g (X,Y ) + 2e2σg (∇XY, Z) =

= 2 [X (σ) g (Y, Z) + Y (σ)g (Z,X)− Z (σ) g (X,Y ) + g (∇XY, Z)] =

= 2 [dσ (X)g (Y, Z) + dσ (Y )g (Z,X)− g (gradσ, Z) g (X,Y ) + g (∇XY, Z)] =

= 2 [dσ (X)g (Y, Z) + dσ (Y )g (Z,X)− g (gradσ, Z) g (X,Y ) + g (∇XY, Z)] =

= 2g (dσ (X)Y + dσ (Y )X − g (X,Y ) gradσ +∇XY, Z)

obtaining then

∇XY = dσ (X)Y + dσ (Y )X − g (X,Y ) gradσ +∇XY

The next lemma is a particular case of the Hilbert’s Nullstellensatz (see [24, Th. 1.3A],
[4, p. 85]), but we offer an autonomous proof.

Lemma 2.1.2. The future lightcone N+
p ⊂ TpM determines the metric in p ∈ M except

by a constant factor.

Proof. If N+
p is known, since v ∈ N−

p if and only if −v ∈ N+
p , then Np is also known and

hence it is possible to determine if a vector v ∈ TpM is timelike, null or spacelike. Then
given u ∈ TpM timelike and v ∈ TpM spacelike, there exists t ∈ R such that u+tv ∈ TpM
is a null vector. Indeed, since g (u, u) < 0 and g (v, v) > 0, then the equation

g (u+ tv, u+ tv) = g (u, u) + 2tg (u, v) + t2g (v, v) = 0 (2.1.1)

has a positive discriminant, hence it has two solutions t1, t2 ∈ R. These values make the
vectors u+ t1v and u+ t2v to be null and they only depends, like the values t1 and t2, on
the lightcone Np. In this way, t1 y t2 are the same for any metric having Np as lightcone.
So, resolving the equation (2.1.1) we have

t1 = −g(u,v)
g(v,v) +

√
g(u,v)2

g(v,v)2
− g(u,u)

g(v,v)

t2 = −g(u,v)
g(v,v) −

√
g(u,v)2

g(v,v)2
− g(u,u)

g(v,v)

then

t1t2 =
g (u, u)

g (v, v)
(2.1.2)

for any metric g with Np as lightcone.
We will use this property to finish the proof. Let us denote by

tv (u) ≡ t1t2 = g (u, u) /g (v, v)
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and let us take any two vectors w, z ∈ TpM . We have that

g (w, z) =
1

2
(g (w + z, w + z)− g (w,w) − g (z, z))

Call y = w, z, w + z. If y is timelike, then we have that g (y, y) /g (v, v) = tv (y), but if y
is spacelike then

g (y, y)

g (v, v)
=

g (y, y)

g (u, u)

g (u, u)

g (v, v)
=
tv (u)

ty (u)

Finally, if y is null, then it is clear that g (y, y) = 0. In any of the previous cases, the
quotient g (w, z) /g (v, v) can be written in terms of tv (y), tv (u) and ty (u) which only
depends on the lightcone Np, therefore it coincides for all metrics with the same lightcone
Np. Therefore, if g and g are two metrics with the same lightcone, then

g (w, z)

g (v, v)
=

g (w, z)

g (v, v)

and so we have

g (w, z) =
g (v, v)

g (v, v)
· g (w, z)

hence g (w, z) is fully determined except by the factor g (v, v) /g (v, v).

Lemma 2.1.2 implies that N+ only depends on the conformal metric Cg. The previous
proof is inspired in [25, p. 60-61] and an alternative proof can be found in [48, Prop. 2.6
and Lem. 2.7]. It is obvious that lemma 2.1.2 is also true for N−

p .

Proposition 2.1.3. Let (M,g) and (M,g) be two spacetimes and let Ng and Ng be their
corresponding spaces of light rays. Then (M,g) and (M,g) are conformally equivalent if
and only if Ng = Ng.

Proof. Assume that (M,g) and (M,g) are conformally equivalent, that is g = e2σg with
σ ∈ F (M). By proposition 2.1.1, we have

∇XY = dσ (X)Y + dσ (Y )X − g (X,Y ) gradσ +∇XY

then, if X ∈ X (M) is a geodesic null vector field related to g then ∇XX = 0 and
g (X,X) = e2σg (X,X) = 0. So, we get

2dσ (X)X +∇XX = 0

it means that ∇XX = −2dσ (X)X is proportional to X . If we consider the vector field

X̃ = e2σX proportional to X , then the integral curves of X̃ are reparametrizations of the
integral curves of X , and since

∇X̃X̃ = e2σX
(
e2σ
)
X + e4σ∇XX =

= e2σX
(
e2σ
)
X + e4σ (−2dσ (X)X) =

= 2e2σe2σX (σ)X − 2e4σX (σ)X = 0
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then the integral curves of X̃ are geodesics related to the metric g and therefore the
integral curves of X are pregeodesics in (M,g). Then they describe the light rays of M
for both metrics and hence we have that Ng = Ng.

Let us prove the converse. Assume that Ng = Ng. Given a vector v ∈ Np there exists
a null geodesic γ related to g such that γ (0) = p and γ′ (0) = v. Since Ng = Ng, then
the geodesic γ related to g such that Im γ = Im γ verifies that γ′ (0) = av with a 6= 0 is
also a null vector related to g. Then the lightcones of (M,g) and (M,g) coincide at any
point p ∈ M , hence any vector v ∈ TM has the same causal character related to both
metrics. Consider an open set B ⊂ M and two vector fields U, V ∈ X (B) such that U is
timelike y V spacelike. Given any vector fields W,Z ∈ X (B), by lemma 2.1.2, we have
that

g (W,Z)

g (V, V )
=

g (W,Z)

g (V, V )

where U is necessary to establish the equation (2.1.2) of lemma 2.1.2. So, we get

g (W,Z) =
g (V, V )

g (V, V )
g (W,Z)

and since the term g (V, V ) /g (V, V ) is positive due to V is spacelike for g as well as for
g, then denoting

σ (p) =
1

2
log

(
g (V, V )

g (V, V )

)

we have that g = e2σg as we wanted to show.

Proposition 2.1.3 permits to state the next definition.

Definition 2.1.4. Let (M, Cg) be a conformal manifold with dimM = m ≥ 3. We will
name light ray to the image γ (I) in M of a maximal null geodesic γ : I → M related
to any metric g ∈ Cg (M). It will be denoted by [γ] or γ when there is not possibility of
confusion, that is [γ] ∈ N , γ ∈ N or also γ ⊂ M . So, every light ray is equivalent to
an unparametrized null geodesic. Then, we will say that the space of light rays N of a
conformal manifold (M, Cg) is the set

N = {γ (I) ⊂M/γ : I →M is a maximal null geodesic for any metric g ∈ Cg}

Section 2.2

Differentiable structure of N

A more geometric construction of N is possible, as Low does in [45], from a quotient space
of the tangent bundle TM . This construction will allow N to inherit the topological and
differentiable structures of TM .

Let us consider the geodesic spray Xg related to the metric g, that is the vector field in
TM such that its integral curves define the geodesics in (M,g) and their tangent vectors.
So, the canonical projection πTM

M : TM → M maps integral curves of Xg into geodesics
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of M . Take a coordinate chart
((
xk, vk

)
, TU

)
in TM such that a vector v ∈ TU can be

written as v = vk ∂
∂xk , where x

k with k = 1, . . . ,m are coordinates in M . The expression
of the geodesic spray Xg in these coordinates is

Xg = vk
∂

∂xk
− Γk

ijv
ivj

∂

∂vk
(2.2.1)

where Γk
ij with i, j, k = 1, . . . ,m denotes the Christoffel symbols of Levi–Civita connection

∇ for g.
We claim that Xg is tangent to the bundle N. Indeed, for any geodesic γ, the curve

γ′ (t) ∈ Tγ(t)M is an integral curve of Xg. Calling f (v) = g (v, v), then we have f (γ′ (t))
constant, hence Xg (f) = 0 and therefore Xg is tangent to any level set of f , in particular
it is tangent to N = f−1 (0).

Observe that the integral curve of Xg passing through v ∈ N+ is projected on the null
geodesic γ ⊂ M such that γ (t0) = πN

M (v) and γ′ (t0) = v, and moreover γ′ (t) for all t.
Then Xg is tangent to N+.

On the other hand, we define the Euler field ∆ in TM as the vector field in TM
dilating the vector fields in M , that is, if u ∈ TpM then

∆ (u) = dc

(
∂

∂t

)
(0)

where c : R → TpM is defined by c (t) = etu. In case of u ∈ N+
p , since for all t ∈ R we

have that etu ∈ N+
p , then c is a curve in N+

p . Moreover, since

c′ (t) = dc

(
∂

∂t

)
(t) = ∆ (c (t))

then c is an integral curve of ∆ contained in N+ if u ∈ N+, then the Euler field ∆ is
tangent to N+. In the previous coordinates

(
xk, vk

)
, the field ∆ can be expressed by

∆ = vk
∂

∂vk
(2.2.2)

By expressions (2.2.1) and (2.2.2), it is clear that both Xg and ∆ are differentiable vector
fields in TM .

Now, we can define the differentiable distribution in N+ given by D = span {Xg,∆}.
Since

[∆, Xg] =

[
vl

∂

∂vl
, vk

∂

∂xk
− Γk

ijv
ivj

∂

∂vk

]
=

=

[
vl

∂

∂vl
, vk

∂

∂xk

]
−
[
vl

∂

∂vl
,Γk

ijv
ivj

∂

∂vk

]
=

= vk
∂

∂xk
− vl

(
∂Γk

ij

∂vl
vivj + Γk

ijv
jδil + Γk

ijv
iδjl

)
∂

∂vk
+ Γk

ijv
ivj

∂

∂vk
=

= vk
∂

∂xk
−
(
viΓk

ijv
j + vjΓk

ijv
i
) ∂

∂vk
+ Γk

ijv
ivj

∂

∂vk
=

= vk
∂

∂xk
− Γk

ijv
ivj

∂

∂vk
= Xg ∈ D
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then D is involutive and, by Fröbenius’ Theorem [61, Thm. 1.60], it is also integrable. This
means that the quotient space N+/D is well defined. Every leaf of D is the equivalence
class consisting of a future–directed null geodesic and all its affine reparametrizations pre-
serving time–orientation, hence the space of light rays N of M that we want to construct
is precisely the quotient space N+/D, that is

N = N+/D

Remark 2.2.1. The construction of N can also be done by the quotient

N = N/D

since the distribution D is still involutive and the null geodesic defined by v ∈ N+ has the
same image than the one defined by −v. Working with N+ assumes that null geodesics
are future–oriented. Along this essay, we will usually work this way.

Lemma 2.2.2. Let (M,g) and (M,g) be two conformally equivalent spacetimes such that
g = e2σg, and let Xg ∈ X (N+) and Xg ∈ X (N+) be their respective geodesics sprays.
Then we have that

Xg = −2dσ ·∆+Xg

Proof. Let us consider the chart ϕ =
(
xk, vk

)
defined in W ⊂ TM as above. Let Γ

k

ij and

Γk
ij be the Christoffel symbols related to the metrics g and g respectively. So, we have

Γ
k

ij =
1

2
gmk

(
∂gim
∂xj

+
∂gjm
∂xi

− ∂gij
∂xm

)
=

=
1

2
e−2σgmk

(
∂
(
e2σgim

)

∂xj
+
∂
(
e2σgjm

)

∂xi
− ∂

(
e2σgij

)

∂xm

)
=

=
∂σ

∂xj
gmkgim +

∂σ

∂xi
gmkgjm −

∂σ

∂xm
gmkgij + Γk

ij =

=
∂σ

∂xj
δki +

∂σ

∂xi
δkj −

∂σ

∂xm
gmkgij + Γk

ij

where δji denotes the Kronecker’s delta. So, the geodesic spray Xg can be written as

Xg = vk
∂

∂xk
− Γ

k

ijv
ivj

∂

∂vk
=

= vk
∂

∂xk
− ∂σ

∂xj
vkvj

∂

∂vk
− ∂σ

∂xi
vivk

∂

∂vk
+

∂σ

∂xm
gmkgijv

ivj
∂

∂vk
− Γk

ijv
ivj

∂

∂vk
=

= vk
∂

∂xk
− ∂σ

∂xj
vkvj

∂

∂vk
− ∂σ

∂xi
vivk

∂

∂vk
− Γk

ijv
ivj

∂

∂vk
=

= −2 ∂σ
∂xj

vkvj
∂

∂vk
+Xg =

= −2dσ ·∆+Xg

as we claimed and where we have used that gijv
ivj = 0 since Xg is restricted to N+.

In order to give differentiable structure to a quotient space, we will need to define
what is a regular distribution and to use the proposition 2.2.4 for this purpose.
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Definition 2.2.3. A k–dimensional integrable distribution D in M is said to be regular
if for every point in M there exists a coordinate chart (ϕ,U) adapted to D, that is a chart
such that for every leaf F of the foliation generated by D there exist ck+1, . . . , cn ∈ R
verifying that xj (F ∩ U) = cj for all j = k + 1, . . . , n.

The next proposition and its proof can be found at [11, Prop. 11.4.2].

Proposition 2.2.4. Let D be a regular distribution in a differentiable manifold M . Then,
a differentiable structure can be provided to the set F of leaves of D in such a way the
canonical projection p :M → F is a submersion.

Lemma 2.2.2 allows to prove the next proposition.

Proposition 2.2.5. The differentiable structure of the space of light rays N of (M, Cg)
does not depend on the representative g of the conformal metric Cg.

Proof. Let (M,g) and (M,g) be two conformally equivalent spacetimes such that g =
e2σg and let Xg, Xg ∈ X (N+) be their corresponding geodesic sprays restricted to N+.
Consider the distributions D = span {Xg,∆} and D = span {Xg,∆}. Then, by lemma
2.2.2 we have

D = span {Xg,∆} = span {−2dσ ·∆+Xg,∆} = span {Xg,∆} = D

and hence the distribution D does not depends on the metric g inside the same conformal
metric Cg. Then N = N+/D only depends on the conformal metric and not on their
representatives.

If we require the space of light rays ofM to be a differentiable manifold, it is necessary
to ensure that the leaves of the distribution that builds N , are regular submanifolds. This
characteristic is not automatically obtained for any spacetimeM , as example 2.2.6 shows,
so it will be necessary to impose further conditions to ensure it.

Example 2.2.6. Light rays are not always leaves of a regular distribution. An analogous
example can be seen in [44, Ex. 1]. Consider the restriction of the two–dimensional
Minkowski spacetime to the rectangle R = [0, α) × [0, 1) with α ∈ R − Q identifying its
borders as (x, 1) ∼ (x, 0) for all x ∈ [0, α) and (α, t) ∼ (0, t) for all t ∈ [0, 1). Then any
null geodesic is dense in R and therefore the distribution can not be regular. Figure 2.1
illustrates how the null geodesic γ moves from the point (0, 0) ∈ R to become dense due
to the irrationality of the value α.

Let us use the proposition 2.2.4 above to show that the space of light rays N has a
differentiable structure. It is possible to find the following result and its proof at [39,
Prop. 2.1].

Proposition 2.2.7. Let M be a strongly causal spacetime, then the distribution above
defined by D = span {Xg,∆} is regular and the space of light rays N inherits from N+

the structure of differentiable manifold such that pN+ : N+ → N defined by pN+ (u) = [γu]
is a submersion.
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Figure 2.1: D is not regular.

Proof. We have that N+ is foliated by the elevation of null geodesics fromM . Let D be the
distribution generated by this foliation and consider the canonical projection πN

+

M : N+ →
M . Given u ∈ N+, there exists an adapted coordinate chart (ψ,U) to D in u. Since πN

+

M

is a submersion, then πN
+

M (U) is open in M containing πN
+

M (u) = p ∈M . By proposition
1.2.18, there exists a neighbourhood V of p such that if γ is a causal curve passing through
V , then γ ∩V have a unique connected component. So, the elevation of any null geodesic

γ to N+ will intersect
(
πN

+

M

)−1

(V ) in exactly one connected component, hence, denoting

W = U ∩
(
πN

+

M

)−1

(V ), then we have that (ψ|W ,W ) is an adapted chart to D verifying

that each leaf of the generated foliation (that is each null geodesic with its null tangent
vector at every point) is regular in W . Now, applying proposition 2.2.4, we conclude
that N inherits from N+ the differentiable structure and, moreover pN+ : N+ → N is a
submersion.

The space N can also be constructed as a quotient of the bundle of null directions PN
defined below.

In order to constructN in this way, we need to build PN as the quotient N+/D∆ where
D∆ = span {∆}. First, we will study if D∆ is a regular distribution in N+. Consider a
local chart

(
V, ϕ =

(
x1, . . . xm

))
in M and let {E1, . . . , Em} be a orthonormal frame in

V such that E1 is a future timelike vector field. A vector ξ ∈ TpV can be written as

ξ =
m∑
j=1

ujEj (p) then (φ, TV ) with

φ : TV → R2m; ξ 7→
(
x1, . . . , xm, u1, . . . , um

)
(2.2.3)

is a coordinate chart in TM . Let us denote by N+ (V ) the restriction of the bundle N+

to the base V . For ξ ∈ N+ (V ) we have that
(
u1
)2

=
m∑
j=2

(
uj
)2

and hence coordinates in

N+ (V ) can be given by the map

φN+ : N+ (V )→ R2m−1; ξ 7→
(
x1, . . . , xm, u2, . . . , um

)
(2.2.4)
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We have seen above that the Euler field ∆ is tangent to N+ and it determines a
differentiable distribution, that being 1–dimensional, is also involutive. Since for all ξ0 ∈
N+ some of the coordinates uk (ξ0) with k = 2, . . . ,m does not vanish, then there exists
a neighbourhood W ⊂ N+ of ξ0 such that uk (ξ) 6= 0 for all ξ ∈ W . Assuming, without
any lack of generality, that u2 6= 0 in W , a coordinate chart φN+ can be defined in W by

φN+ : N+ (W )→ R2m−1; ξ 7→
(
x1, . . . , xm, w2, w3, . . . , wm

)
∈ R2m−1 (2.2.5)

where w2 = u2 and wk = uk

u2 for k = 3, . . . ,m. If c (t) = etξ is the integral curve of ∆
passing through ξ ∈ N+, and

φN+ (ξ) =
(
x10, . . . , x

m
0 , u

2
0, u

3
0, . . . , u

m
0

)

then

φN+ (c (t)) =

(
x10, . . . , x

m
0 , e

tu20,
u30
u20

. . . ,
um0
u20

)
(2.2.6)

hence φN+ is a chart adapted to the integral curves of ∆. Moreover, if η ∈ N+ verifies





xk (η) = xk0 for k = 1, . . . ,m

wk (η) =
uk
0

u2
0

for k = 3, . . . ,m

then, it is clear that η = et0ξ for some t0 ∈ R. This implies that the distribution
D∆ = span {∆} is regular. By proposition 2.2.4, the quotient space N+/D∆ defined by

PN = N+/D∆ =
{
[ξ] : η ∈ [ξ]⇔ η = etξ for some t ∈ R and ξ ∈ N+

}

is a differentiable manifold and, moreover, the canonical projection

πN
+

PN
: N+ → PN

ξ 7→ [ξ]

is a submersion.
The next step is to find a regular distribution that allows us to define N by a quotient.

For each vector u ∈ N+
p there exists a null geodesic γu such that γu (0) = p and γ′u (0) = u,

and given two vectors u, v ∈ N+
p verifying that v = λu with λ > 0, then the geodesics γu

and γv such that γu (0) = γv (0) = p have the property

γv (s) = γλu (s) = γu (λs)

hence they have the same image in M and then γv = γu as unparametrized sets in M .
This fact implies that the elevations to PN of the null geodesics of M define a foliation
DG. Two directions [u] , [v] ∈ PN belong to the same leaf of the foliation DG if for the
vectors v ∈ N+

p and u ∈ N+
q there exist null geodesics γ1 and γ2 and values t1, t2 ∈ R

verifying {
γ1 (t1) = p ∈M
γ′1 (t1) = v ∈ N+

p
and

{
γ2 (t2) = q ∈M
γ′2 (t2) = u ∈ N+

q

such that there is a reparametrization h verifying γ1 = γ2 ◦ h.
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Hence, the space of leaves of DG in PN coincides with N , that is,

N = PN/DG

The map
pPN : PN −→ N

[u] 7−→ [γu]

is well defined, since γλu (s) = γu (λs) as seen above, and it verifies the identity

pPN ([γ′u (s)]) = [γu] ∈ N
for all s.

Remark 2.2.8. Proposition 2.2.7 can be formulated for the bundle PN instead of N+,
because the proof is, mutatis mutandis, the same, where in this case DG is a regular
distribution and a differentiable structure is also inherited from PN such that pPN : PN→
N is a submersion. In fact, there exist an unique differential structure in N such that
pPN : PN→ N , as well as pN+ : N+ → N are submersions. In [45, Thm. 1], this result is
shown for the subbundle N+∗ of the cotangent bundle T ∗M .

Now, we will describe a generic way to construct coordinate charts in N . First, for
any subset W ⊂M , we define

N+ (W ) =
{
ξ ∈ N+ : πN

+

M (ξ) ∈W ⊂M
}

PN (W ) =
{
[ξ] ∈ PN : πPN

M ([ξ]) ∈ W ⊂M
}
.

By theorem 1.2.15, we can take V ⊂ M as a basic open set. Let U be the image of
the projection pN : N+ (V ) 7→ N . Since N+ (V ) is open in N+ and pN is a submersion,
then U ⊂ N is open. Moreover, since V is globally hyperbolic, then we can fix a smooth
spacelike Cauchy surface C ⊂ V . So, each null geodesic passing through V intersects C
in a unique point and since pN+ = pPN ◦ πN

+

PN
, this ensures that

U = pN
(
N+ (V )

)
= pN

(
N+ (C)

)
= pN ◦ πN

+

PN

(
N+ (C)

)
= pPN (PN (C)) = pPN (PN (V )) .

Since C is a regular differentiable submanifold of V , then the bundles N+ (C) and PN (C)
are also regular differentiable submanifolds of N+ (V ) and PN (V ) respectively, and more-
over the map σ = pPN|PN(C) : PN (C) 7→ U is a differentiable bijection. The map pPN is a

submersion verifying that for any [ξ] ∈ PN (V ), the kernel of (dpPN)[ξ] is the 1–dimensional
subspace generated by the tangent vectors to curves defining light rays, that is, curves
λ (s) = [γ′ (s)] ∈ PNγ(s) where γ is a null geodesic and

[γ′ (s)] = {λγ′ (s) : λ ∈ R}.

Being C a spacelike hypersurface, the kernel of
(
dpPN|PN(C)

)
[ξ]

= dσ[ξ] is trivial, hence

dσ[ξ] is a surjective linear map between vector spaces of the same dimension, then it is
also bijective and therefore σ is a diffeomorphism. So, we have the following diagram

PN (V ) U

PN (C)

pPN

σinc

(2.2.7)
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If φ is any coordinate chart for PN (C) then φ ◦ σ−1 is a coordinate chart for U ⊂ N .
Observe that if M is time–orientable, there exists a non–vanishing future timelike

vector field T ∈ X (M). Then we can define the submanifold ΩT (C) ⊂ N+ (C) by

ΩT (C) =
{
ξ ∈ N+ (C) : g (ξ, T ) = −1

}
.

We have that πN
+

PN
: N+ → PN is a submersion such that the kernel of the differential dπN

+

PN

at any point ξ ∈ N+ is generated by ∆ (ξ). If we consider the restriction πN
+

PN

∣∣∣
ΩT (C)

:

ΩT (C)→ PN (C), it is clear that it is a bijection. Moreover, since

ker

((
dπN

+

PN

∣∣∣
ΩT (C)

)

ξ

)
= {0}

at any point ξ, and due to dim
(
ΩT (C)

)
= dim (PN (C)) = 2m− 3, then πN

+

PN

∣∣∣
ΩT (C)

is a

diffeomorphism. So, we have the following diagram

N ⊃ U ↔ PN (C)↔ ΩT (C) →֒ N+ (C) →֒ N+ →֒ TM (2.2.8)

where ↔ and →֒ represent diffeomorphisms and inclusions respectively.
Then, the composition of the diffeomorphism U → ΩT (C) with the restriction of a

coordinate chart in TM to the vectors in ΩT (C), can be used to construct a coordinate
chart in N .

Remark 2.2.9. By construction of the diffeomorphism σ : PN (C) → U ⊂ N , if M is
globally hyperbolic then it is possible to choose V =M and C a global Cauchy surface. In
this case we have that σ : PN (C)→ N is a global diffeomorphism.

If there exists a non-vanishing X ∈ X (C), then PN (C) is a trivial fibre bundle because
it is possible to construct a global section taking X and a non-vanishing timelike vector
field T ∈ X (M). Since X is spacelike then for any p ∈ C there exist αp > 0 such that
Tp + αpXp ∈ TpM is a null vector. Then s : C → PN (C) defined by

s (p) = [Tp + αpXp] ∈ PNp ⊂ PN (C)

is a global section and therefore
N ≃ C × Sm−2.

If we require the space of light rays of M to be a differentiable manifold, it remains to
ensure that N is a Hausdorff topological space. Again, it is not verified for any strongly
causal spacetime M as we can check in example 2.2.10, so we need to state conditions to
ensure it.

Example 2.2.10. N is not Hausdorff. Consider the 2–dimensional Minkowski spacetime
and remove the point (1, 1). Clearly, M is strongly causal. Let {τn} ⊂ R be a sequence
such that lim

n7→∞
τn = 0. Then the sequence of null geodesic given by λn (s) = (s, τn + s) with

s ∈ (−∞,∞) converges to two different null geodesics, µ1 (s) = (s, s) with s ∈ (−∞, 1)
and µ2 (s) = (s, s) with s ∈ (1,∞). Figure 2.2 illustrates this example.

A sufficient condition to ensure that N is Hasudorff is the absence of naked singu-
larities, as next proposition shows. But we will see in example 2.2.12 that it is not a
necessary condition.
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Figure 2.2: N is not Hausdorff.

Proposition 2.2.11. LetM be a strongly causal spacetime and N its corresponding space
of light rays. If N is not Hausdorff then M possesses a naked singularity.

Proof. We will follow the proof of [39, Prop. 2.2]. If N is not Hausdorff, then there exists
two light rays γ1, γ2 ∈ N such that any pair of neighbourhoods U1, U2 ⊂ N of γ1 and γ2
respectively verifies that U1∩U2 6= ∅. Hence, it is possible to build a sequence {µn} ⊂ N
such that γ1 and γ2 are their limits. If we consider the same sequence as curves in M , we
can take points p1 ∈ γ1 ⊂M and p2 ∈ γ2 ⊂M and corresponding neighbourhoods V1 and
V2 such that V1 ∩V2 = ∅. This is possible since M is actually Hausdorff. We can assume
without any lack of generality that µn ∩ Vi 6= ∅ for all n with i = 1, 2. Let us take points
qin ∈ µn ∩ Vi with i = 1, 2 such that pi is a limit point of the sequence

{
qin
}
. Since each

light ray µn is a causal curve, we can consider that q2n ∈ J+
(
q1n
)
for all n. If r ∈ I+ (p2)

then I− (r) is a neighbourhood of p2 and, hence there exists n0 such that q2n ∈ I− (r) for
all n > n0. Moreover, since q2n ∈ J+

(
q1n
)
then q1n ∈ I− (r), therefore p1 ∈ I− (r). Now if

we take w ∈ I− (p1) then I+ (w) is a neighbourhood of p1 and it must intersect I− (r),
hence w ∈ I− (r) but, since it does not depends on the chosen point p1 ∈ γ1, then any
point of z ∈ I− (γ1) verifies that z ∈ I− (r). Consequently I− (γ1) ⊂ I− (r) and since γ1
is an inextensible causal curve then there exists a naked singularity in M .

Example 2.2.12. Let M be the 3–dimensional Minkowski spacetime described by coor-
dinates (t, x, y) and equipped with the metric g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy. The
hypersurface C ≡ {t = 0} is a spacelike Cauchy surface. The corresponding space of light
rays NM is diffeomorphic to the bundle of circumferences on C, that is, NM ≃ C × S1.

Now, consider the restriction B =
{
(t, x, y) ∈M : t2 + x2 + y2 < 1

}
. It is clear that B

is strongly causal.
First, we will see that B is not globally hyperbolic. Consider the inextensible null

geodesics in B given by

γ1 (s) =

(
s,

7

5
− s, 0

)
s ∈

(
3

5
,
4

5

)

γ2 (τ) =

(
τ,

7

5
+ τ, 0

)
τ ∈

(
−4

5
,−3

5

)
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It is easy to see that any point of γ1 is in the chronological future of any point of γ2.
Indeed, the curve µ (u) = γ2 (τ)+u · (γ1 (s)− γ2 (τ)) is a future–directed timelike geodesic
connecting γ2 (τ) to γ1 (s) since

µ′ (u) = (s− τ, s+ τ, 0)

and
g (µ′, µ′) = 4sτ < 0

for all s ∈
(
3
5 ,

4
5

)
and τ ∈

(
− 4

5 ,− 3
5

)
. If a spacelike Cauchy surface Ω ⊂ B exists, then

Ω ∩ γi 6= ∅ for i = 1, 2, and then Ω would have timelike related points, but this is not
possible in a Cauchy surface. Therefore B is not globally hyperbolic.

7/5 

x,y 

t 

g2 

g1 

M 

B m 

g1(s) 

g2(t) 

Figure 2.3: M = B is naked singular and Hausdorff.

We have already shown that B is nakedly singular, because for any s ∈
(
3
5 ,

4
5

)
we have

that
I− (γ2) ⊂ I− (γ1 (s))

Finally, we will show that the space of light rays NB of B is Hausdorff. It is clear that
NB ⊂ NM. Consider γ ∈ NB. As a curve in NM = C × S1 we denote

γ = (x0, y0, θ0)

We can parametrize γ as γ (s) = (s, x0 + s cos θ0, y0 + s sin θ0) and since γ ∈ NB, then
there exists s0 ∈ R such that

s20 + (x0 + s0 cos θ0)
2
+ (y0 + s0 sin θ0)

2
< 1 (2.2.9)

Since inequality (2.2.9) is an open condition, then there exist α, β, δ, ǫ ∈ R verifying

s2 + (x+ s cos θ)
2
+ (y + s sin θ)

2
< 1

for any (t, x, y, θ) with
s ∈ (s0 − α, s0 + α)
x ∈ (x0 − β, x0 + β)
y ∈ (y0 − δ, y0 + δ)
θ ∈ (θ0 − ǫ, θ0 + ǫ)

Then NB is open in NM. Since M is globally hyperbolic, then NM is Hausdorff and
therefore NB is also Hausdorff.
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Example 2.2.12 shows that the absence of naked singularities is a condition too strong
for a strongly causal spacetimeM . Moreover in this case,M becomes globally hyperbolic
as Penrose proved in [57].

A suitable condition to avoid the behavior of light rays in the paradigmatic example
2.2.10 but to permit naked singularities similar to the ones in example 2.2.12 is the
condition of null pseudo–convexity.

Definition 2.2.13. A spacetime M is said to be null pseudo–convex if for any compact
K ⊂ M there exists a compact K ′ ⊂ M such that any null geodesic segment γ with
endpoints in K is totally contained in K ′.

In [40], Low states the equivalence of null pseudo–convexity of M and the Hausdorff-
ness of N for a strongly causal spacetime M .

We offer a different and straightforward proof of the directed result. For the converse,
see [40, Prop. 3.2] and the paragraph below its proof.

Proposition 2.2.14. If M is strongly causal and null pseudo–convex then N is Haus-
dorff.

Proof. Let us suppose that N is not Hausdorff, then there exist γ1 6= γ2 ∈ N such that
any open neighbourhoods Uγi ⊂ N of γi for i = 1, 2 verify Uγ1 ∩ Uγ2 6= ∅. Consider
any p ∈ γ1 and q ∈ γ2 and take neighbourhoods Uγ1 and Uγ2 defined by diffeomorphisms
ΩT (Ci)→ Uγi where

ΩT (Ci) =
{
v ∈ N+ (Ci) : g (v, T ) = −1

}

for a non-vanishing timelike vector field T ∈ X (M) and where Ci are Cauchy surfaces
of relatively compact basic neighbourhoods V i ⊂ M for i = 1, 2 of p and q respectively.
Now, we take nested sequences

{
U i
n

}
of relatively compact neighbourhoods of γi such that

U i
n ⊂ Uγi and U i

n 7→ {γi} for i = 1, 2. Then, for any n, there exists λn ∈ U1
n∩U2

n and hence
a sequence {λn} such that λn 7→ γ1 and λn 7→ γ2. This means that there exist sequences

{un} ⊂ ΩT (C1) and {vn} ⊂ ΩT (C2) such that
(
λ1n
)′
(0) = un and

(
λ2n
)′
(0) = vn

with un 7→ γ′1 (0) and vn 7→ γ′2 (0) and where λ1n and λ2n are the parametrizations of λn
corresponding to ΩT (C1) and ΩT (C2) respectively. Since λ

1
n and λ2n are parametrizations

of the same λn, then there exists αn, βn ∈ R such that λ2n (s) = λ1n (αns+ βn).

We can consider
(
λ1n
)′

and
(
λ1n
)′

as integral curves of the flow Φ of the geodesic spray
Xg in N, so

Φ (t, un) =
(
λ1n
)′
(t)

Φ (s, vn) =
(
λ2n
)′
(s)

and therefore
αnΦ (βn, un) = Φ (0, vn)

Since M is assumed to be null pseudo–convex, then for the compact K = V 1 ∪ V 2

there is a compact K ′ ⊂ M such that any null geodesic segment with endpoints in K
is totally contained in K ′. Due to M is strongly causal, there exists τ ∈ R such that
πTM
M (Φt (γ

′
1 (0))) /∈ K ′ for all t ≥ τ . Observe that for a fixed t ∈ R such that Φt (γ

′
1 (0))

is defined, there is a subsequence of {un} such that Φt (uk) 7→ Φt (γ
′
1 (0)). In particular,

also for t = τ , then there is a subsequence such that πTM
M (Φτ (uk)) /∈ K ′. Since M is null

pseudo–convex and
πTM
M (Φβk

(uk)) = πTM
M (Φ0 (vk)) ∈ K ′
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then we have that there exists a subsequence {βm} such that βm < τ and therefore there
exist a convergent subsequence such that βm 7→ β ∈ [0, τ ]. But we have that

Φ (βm, um) 7→ Φ (β, γ′1 (0)) = γ′1 (β) 6= 0

Φ (0, vm) 7→ γ′2 (0) 6= 0

and since αmΦ (βm, um) = Φ (0, vm) then, due to the convergence of {Φ (βm, um)} and
{Φ (0, vm)} to non–zero vectors, it implies that there exists a convergent subsequence of
{αm} such that αm 7→ α ∈ R. Then αγ′1 (β) = γ′2 (0), whence γ1 = γ2 ∈ N obtaining a
contradiction. Therefore N is Hausdorff.

From now on, we will assume that M is a strongly causal and null pseudo–convex
spacetime unless others conditions are pointed out.

Section 2.3

Tangent bundle of N

To take advantage of the geometry and topology of N it is needed to have a suitable
characterization of the tangent spaces TγN for any γ ∈ N . We will proceed as follows:
first, fix an auxiliary representative metric g ∈ C where C is the conformal metric in
M . We will define geodesic variations (in particular, variations by light rays), initial and
Jacobi fields, explaining the relation between both concepts (in lemmas 2.3.3, 2.3.4, 2.3.5,
2.3.8 and proposition 2.3.7). Then, in proposition 2.3.9, we will characterize tangent
vectors of TM by Jacobi fields. Second, we will keep an eye on how the initial fields
changes when we change the corresponding variation by light rays (see lemma 2.3.10 to
lemma 2.3.14). Finally, in proposition 2.3.15, we will get the main aim of this section
identifying tangent vectors of N with some equivalence classes of Jacobi fields.

Definition 2.3.1. A differentiable map x : (a, b)× (α, β)→M is said to be a variation
of a segment of curve c : (α, β)→ M if c (t) = x (s0, t) for some s0 ∈ (a, b). We will say
that V x

s0 is the initial field of x in s = s0 if

V x

s0 (t) = dx(s0,t)

(
∂

∂s

)

(s0,t)

=
∂x (s, t)

∂s

∣∣∣∣
(s0,t)

∈ Tc(t)M

defining a vector field along c.
We will say that x is a geodesic variation if any longitudinal curve of x, that is

cxs = x (s, ·) for s ∈ (a, b), is a geodesic.
If the longitudinal curves cxs : (α, β) → M are regular curves covering segments of

light rays, then x : (a, b)× (α, β)→M is said to be a variation by light rays.
Moreover, a variation by light rays x is said to be a variation by light rays of γ ∈ N

if γ is a longitudinal curve of x.

Notation 2.3.2. It is possible to identify a given segment of null geodesic γ : (−δ, δ)→
M , with a slight abuse in the notation, to the light ray in N defined by it. So, if x = x (s, t)
is a variation by light rays, we can denote by γxs ⊂M the null pregeodesics of the variation
and also by γxs ∈ N the light rays they define.
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Consider a geodesic curve µ (t) in a spacetime (M,g). Given J ∈ Xµ, we will abbre-

viate the notation J ′ = DJ
dt and J ′′ = D

dt
DJ
dt = D2J

dt2 . We can define the Jacobi equation
by

J ′′ +R (J, µ′)µ′ = 0 (2.3.1)

where R is the Riemann tensor. We will name the solutions of the equation (2.3.1) by
Jacobi field along µ. So, the set of Jacobi fields along µ is then defined by

J (µ) = {J ∈ Xµ : J ′′ +R (J, µ′)µ′ = 0} (2.3.2)

The linearity of D
dt and R provides a vector space structure to J (µ). Indeed, for

α, β ∈ R and J,K ∈ J (γ) we have

D

dt

D

dt
(αJ + βK) +R ((αJ + βK) , µ′)µ′ =

=
D

dt
(αJ ′ + βK ′) + αR (J, µ′)µ′ + βR (K,µ′)µ′ =

= αJ ′′ + βK ′′ + αR (J, µ′)µ′ + βR (K,µ′)µ′ =

= α (J ′′ +R (J, µ′)µ′) + β (K ′′ +R (K,µ′)µ′) =

= α · 0 + β · 0 = 0

then αJ + βK is a Jacobi field and hence J (µ) is a vector subspace of Xµ.

The relation between geodesic variations and Jacobi fields is expounded in next lemma.

Lemma 2.3.3. If x : (−ǫ, ǫ)× (−δ, δ)→M is a geodesic variation of a geodesic γ, then
the initial field V x is a Jacobi field along γ.

Proof. See [53, Lem. 8.3].

A Jacobi field along a geodesic γ is fully defined by its initial values at any point
of γ as lemma 2.3.4 claims, and moreover it also implies that the vector space J (µ) is
isomorphic to TpM × TpM therefore dim (J (γ)) = 2 dim (M) = 2m.

Lemma 2.3.4. Let γ be a geodesic in M such that γ (0) = p and u, v ∈ TpM . Then there
exists a only Jacobi field J along γ such that J (0) = u and DJ

dt (0) = v.

Proof. See [53, Lem. 8.5].

Next lemma characterizes the Jacobi fields of a particular type of variation. This type
will be the general case for the variations by light rays studied below.

Lemma 2.3.5. Let M be a spacetime, γ : (−δ, δ)→M a geodesic segment, λ : (−ǫ, ǫ)→
M a curve verifying λ (0) = γ (0), and W (s) a vector field along λ such that W (0) =
γ′ (0). Then the Jacobi field J along γ defined by the geodesic variation

x (s, t) = expλ(s) (tW (s))

verifies that {
J (0) = λ′ (0)
J ′ (0) = DW

ds (0)
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Proof. First, the vector ∂x
∂s (0, 0) is the tangent vector of the curve x (s, 0) at s = 0, and

since x (s, 0) = expλ(s) (0 ·W (s)) = expλ(s) (0) = λ (s), then we have

J (0) =
∂x

∂s
(0, 0) =

dλ

ds
(0) = λ′ (0) .

On the other hand, D
ds

∂x
∂t (0, 0) is the covariant derivative of the vector field

∂x
∂t (s, 0) =

W (s) for s = 0 along the curve x (s, 0) = λ (s). Then

J ′ (0) =
DJ

dt
(0) =

D

dt

∂x

∂s
(0, 0) =

D

ds

∂x

∂t
(0, 0) =

DW

ds
(0) .

as required.

Remark 2.3.6. It can be observed that given a geodesic variation x = x (s, t) such that
J is the corresponding Jacobi field at s = 0, if we change the geodesic parameters such
that x (s, τ) = x (s, aτ + b) for a > 0 and b ∈ R, then the initial values of the Jacobi field
J of x at s = −b

a verify

J (−b/a) = ∂x

∂s
(0,−b/a) = ∂x

∂s
(0, 0) = J (0)

and also

J
′
(−b/a) = D

dτ

∣∣∣∣
(0,−b/a)

∂x

∂s
(s, τ) =

D

ds

∣∣∣∣
(0,−b/a)

∂x

∂τ
(s, τ) =

=
D

ds

∣∣∣∣
(0,−b/a)

∂x

∂τ
(s, aτ + b) =

D

ds

∣∣∣∣
(0,0)

a
∂x

∂t
(s, aτ + b) =

= a
D

ds

∣∣∣∣
(0,0)

∂x

∂t
(s, aτ + b) = a

D

dt

∣∣∣∣
(0,0)

∂x

∂s
(s, aτ + b) =

= aJ ′ (0)

If we denote by Y (τ) = J (aτ + b), then it is trivial to see that Y (−b/a) = J (0)
and Y ′ (−b/a) = aJ ′ (0), therefore Y = J and this implies that changing the geodesic
parameter does not modify the Jacobi field as a geometric object.

Although the following proposition is proven in [8, Lem. 10.9] for timelike geodesic,
the same proof is valid for any geodesic.

Proposition 2.3.7. Given a geodesic γ in (M,g) and a Jacobi field J ∈ J (γ) along γ,
then g (J (t) , γ′ (t)) = a+ bt is verified.

Proof. Deriving g (J (t) , γ′ (t)), we obtain

d

dt

∣∣∣∣
t

g (J, γ′) = g

(
D

dt

∣∣∣∣
t

J, γ′
)
+ g

(
J,
D

dt

∣∣∣∣
t

γ′
)

= g

(
D

dt

∣∣∣∣
t

J, γ′
)



28 Tangent bundle of N

and so

d2

dt2

∣∣∣∣
t

g (J, γ′) = g

(
D2

dt2

∣∣∣∣
t

J, γ′
)
+ g

(
D

dt

∣∣∣∣
t

J,
D

dt

∣∣∣∣
t

γ′
)

=

= g

(
D2

dt2

∣∣∣∣
t

J, γ′
)

= g (−R (J, γ′) γ′, γ′) = 0.

where the anti–symmetric property, [53, Prop. 3.36 (3)], of the curvature tensor R has
been used. Then, d

dt

∣∣
t
g (J, γ′) = b constant and therefore g (J (t) , γ′ (t)) = a+ bt.

We will need the following technical lemma. It shows that the information contained
in the tangent vector of a curve v ⊂ TM coincides with the one in the covariant derivative
of v as vector field along its base curve in M .

Lemma 2.3.8. If u0 ∈ TpM , then the map

A : Tu0TM → TpM × TpM
ξ 7→

((
πTM
M ◦ u

)′
(0) , Du

ds (0)
)

is a linear isomorphism, where u ⊂ TM is a differentiable curve verifying u′ (0) = ξ.

Proof. Let us consider coordinates
(
x1, . . . , xm

)
in a neighbourhood of p ∈ M to build

the coordinates
(
x1, . . . , xm, v1, . . . , vm

)
in a neighbourhood W ⊂ TM containing u0 in

such way that w ∈ W can be written as w =
∑m

k=1 v
k
(

∂
∂xk

)
q
. Consider a differentiable

curve u : (−δ, δ)→W ⊂ TM such that u′ (0) = ξ and so u (0) = u0.
We denote α = πTM

M ◦ u and ak = xk ◦ α for k = 1, . . . ,m. So, u can be expressed by
u (s) =

∑m
k=1 u

k (s)
(

∂
∂xk

)
α(s)

. Then, ξ ∈ Tu0TM can be written as

ξ = u′ (0) =

m∑

k=1

dak

ds
(0)

(
∂

∂xk

)

u0

+

m∑

k=1

duk

ds
(0)

(
∂

∂vk

)

u0

If u1 and u2 are two differentiable curves verifying ξ = u′1 (0) = u′2 (0) then, it is trivial

to see that u1 (0) = u2 (0),
dak

1

ds (0) =
dak

2

ds (0) and
duk

1

ds (0) =
duk

2

ds (0). Thus, denoting by
Γk
ij the Christoffel symbols, we get

duk1
ds

(0) + Γk
ij (p)u

i
1 (0)

dak1
ds

(0) =
duk2
ds

(0) + Γk
ij (p)u

i
2 (0)

dak2
ds

(0)

and hence
((
πTM
M ◦ u1

)′
(0) ,

Du1
ds

(0)

)
=

((
πTM
M ◦ u2

)′
(0) ,

Du2
ds

(0)

)

Therefore the map A is well–defined.
Since A can be written in coordinates by

(
dak

ds
(0) ,

duk

ds
(0)

)
7→
(
dak

ds
(0) ,

duk

ds
(0) + Γk

ij (p)u
i (0)

dak

ds
(0)

)
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then A is clearly linear and its matrix relative to the previous coordinates is

A =

(
Im 0
G Im

)

where G = (Gik) =
(
Γk
ij (p)u

j (0)
)
∈ Rm×m and Im ∈ Rm×m is the m–dimensional

identity matrix. Trivially, because A is not singular, then A is an isomorphism.

It is possible to identify any tangent vector ξ ∈ TTM with a Jacobi field along the
geodesic γ defined by the exponential of the vector u = πTTM

TM (ξ) ∈ TM . As an immediate
consequence of the previous lemmas, we have the following result.

Proposition 2.3.9. Given a vector u0 ∈ TpM and consider the geodesic γu0 defined by
γu0 (t) = expp (tu0). Let u : (−δ, δ)→ TM be a differentiable curve such that u (0) = u0
and u′ (0) = ξ. If J ∈ J (γu0) is the Jacobi field of the geodesic variation given by
x (s, t) = expα(s) (tu (s)) where α = πTM

M ◦ u, then the map

ζ : Tu0TM → J (γu0)
ξ 7→ J

is a well–defined linear isomorphism.

Proof. By lemmas 2.3.8, 2.3.5 and 2.3.4, we have that ζ can be obtained by composition
of isomorphisms given by

Tu0TM → TpM × TpM → J (γu0)

ξ 7→
((
πTM
M ◦ u

)′
(0) , Du

ds (0)
)
7→ J

Now, we will focus on the variations by light rays and the initial fields they define.
Next lemma claims that there exist a change of parameter such that any variation by

light rays can be transformed in a geodesic variation by light rays. So, lemma 2.3.3 can
be used.

Lemma 2.3.10. Let x = x (s, t) be a variation by light rays in (M, C) such that γs (t) =
x (s, t) defines its light rays. Fixed any metric g ∈ C then there exists a differentiable
function h = h (s, τ) such that the light rays parametrized as γs = γs (h (s, τ)) are null
geodesics related to g.

Proof. Since each γs is a segment of light ray then γs = γs (t) is a pregeodesic related to
g. Hence

Dγ′s (t)

dt
=
D

dt

∂x

∂t
(s, t) = f (s, t) γ′s (t)

where f is differentiable and D
dt denotes the covariant derivative related to g along γs (t).

We look for the function h = h (s, τ) such that γs = γs ◦ h is geodesic. For any s, for

convenience, we will call hs (τ) = h (s, τ), h′s (τ) =
∂h(s,τ)

∂τ and h′′s (τ) =
∂2h(s,τ)

∂τ2 . Since h

is a change of parameter for every s, we can assume that ∂h(s,t)
∂τ 6= 0 for every (s, t). So,

0 =
Dγ′s (τ)

dτ
=
Dh′s (τ) γ

′ (hs (τ))

dτ
= h′′s (τ) γ

′
s (hs (τ)) + h′s (τ)

Dγ′s (hs (τ))

dτ
=



30 Tangent bundle of N

= h′′s (τ) γ
′
s (hs (τ)) + (h′s (τ))

2 Dγ′s (hs (τ))

dt
=

= h′′s (τ) γ
′
s (hs (τ)) + (h′s (τ))

2
f (s, hs (τ)) γ

′
s (hs (τ))

hence

h′′s (τ) + (h′s (τ))
2
f (s, hs (τ)) = 0

and therefore
h′′s (τ)

h′s (τ)
= −h′s (τ) f (s, h (s, τ))

With no lack of generality, we assume that hs (0) = 0 and h′s (0) = 1 for any s, and then
integrating

log h′s (τ) = −
∫ hs(τ)

0

f (s, y)dy

h′s (τ) = e−
∫ hs(τ)
0 f(s,y)dy

and calling t = hs (τ) then

h′s
(
h−1
s (t)

)
= e−

∫
t

0
f(s,y)dy

It is known that
(
h−1
s

)′
(t) = 1

h′
s(h

−1
s (t))

, then we have

(
h−1
s

)′
(t) = e

∫
t

0
f(s,y)dy

and we conclude that

h−1
s (t) =

∫ t

0

e
∫

x

0
f(s,y)dydx (2.3.3)

is the inverse of the change of parameter hs for each γs. Define k (s, t) = h−1
s (t) and the

map T (s, t) = (s, k (s, t)). By the expression (2.3.3), T is clearly differentiable, and since
the jacobian matrix of T verifies

|JT | =
∣∣∣∣

1 0
∂k
∂s

∂k
∂t

∣∣∣∣ =
∂k

∂t
= e

∫
t

0
f(s,y)dy > 0

then T is invertible with T−1 differentiable. A trivial computation shows that

T−1 (s, τ) = (s, h (s, t))

therefore, since T−1 is differentiable, then h is also so.

Lemma 2.3.11 shows that any differentiable curve Γ ⊂ N defines a variation by light
rays x such that the longitudinal curves of x corresponds to points in Γ. This variation
is not unique by construction.
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Lemma 2.3.11. Given a differentiable curve Γ : (−ǫ, ǫ)→ N such that Γ (s) = γs ⊂M ,
then there exists a variation by light rays x : (−ǫ, ǫ)× (−δ, δ)→M verifying

x (s, t) = γs (t)

for all (s, t) ∈ (−ǫ, ǫ)× (−δ, δ). Moreover, the variation x can be written as

x (s, t) = exp
πN+
M (v(s))

(tv (s))

where v : (−ǫ, ǫ)→ N+ (C) is a differentiable curve.

Proof. Consider the restriction π = πN
+

PN

∣∣∣
N+(C)

: N+ (C) → PN (C) and the diffeomor-

phism σ : PN (C) → U in the diagram (2.2.7), where U ⊂ N is an open neighbourhood
of γ0 ∈ N and V ⊂ M is a basic open with Cauchy surface C ⊂ V , in such a way the
following diagram arise

PN (C) U

N+ (C)

σ

σ ◦ ππ

(2.3.4)

Also consider the canonical projection πN
+

M : N+ → M as well as the exponential map
exp : (−δ, δ) × N+ → M defined by exp (t, v) = exp

πN+

M
(v)

(tv). Fix ǫ > 0 such that

Γ (s) ∈ U for all s ∈ (−ǫ, ǫ) and let z : PN (C) → N+ (C) be a section of π that, without
restriction of generality, can be considered a global section due to the locality of π. Naming
v (s) = z◦σ−1◦Γ (s) for s ∈ (−ǫ, ǫ), then we can define a variation x : (−ǫ, ǫ)×(−δ, δ)→M
by x (s, t) = exp (t, v (s)) = exp

πN+

M
(v(s))

(tv (s)). By construction as a composition of

differentiable maps, x is differentiable. Moreover, since v (s) is the initial vector of the
geodesic γxs defined by x (s, t) = γxs (t), then

γxs = σ ◦ π (v (s)) = σ ◦ π ◦ z ◦ σ−1 ◦ Γ (s) = σ ◦ σ−1 ◦ Γ (s) = Γ (s) (2.3.5)

for all s ∈ (−ǫ, ǫ), and the lemma follows.

Lemma 2.3.12. Given a variation x : (−ǫ, ǫ) × (−δ, δ) → M by light rays such that
x (s, t) = γxs (t), then the curve Γx : I → N verifying Γx (s) = γxs is differentiable.

Proof. Let x : (−ǫ, ǫ)×(−δ, δ)→M be a variation by light rays such that γxs (t) = x (s, t).
Then the curve

λ (s) = dx(s,0)

(
∂

∂t

)

(s,0)

∈ N+

is clearly differentiable. If pN+ : N+ → N is the submersion of proposition 2.2.7, then
pN+ ◦ λ : I → N is differentiable in N by composition of differentiable maps. Since

pN+ ◦ λ (s) = pN+

(
(γxs )

′
(0)
)
= γxs = Γx (s) .

then Γx is also differentiable.
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Let us adopt the notation used in lemma 2.3.12 and call Γx the curve in N defined
by the variation x by light rays such that if x (s, t) = γxs (t) then Γx (s) = γxs ∈ N .

Although the variations defined in lemma 2.3.11 are not unique, lemma 2.3.13 shows
that all they define the same initial field except by a term in the direction of γ′.

Lemma 2.3.13. Let x : I × H → M and x : I × H → M be variations by light rays
such that Γx (s) = γxs and Γx (s) = γxs with γx0 = γx0 = γ ∈ N and providing the same
parameter for γ. Let us denote by J and J the initial fields over γ of x and x respectively.
If Γx = Γx then J = J (modγ′).

Proof. We have that x (s, t) = γxs (t) and x (s, τ) = γxs (τ). By lemma 2.3.10, we can
assume without any lack of generality, that γxs are null geodesics for the metric g ∈ C
giving new parameters if necessary. If Γx = Γx then γxs = γxs for all s ∈ I. Then there
exist a differentiable function hs (t) = h (s, t) such that x (s, t) = x (s, h (s, t)). Hence we
have that

∂x (s, t)

∂s
=
∂x (s, h (s, t))

∂s
+
∂h (s, t)

∂s
· ∂x (s, h (s, t))

∂τ
then if s = 0

J (t) = J (h (0, t)) +
∂h

∂s
(0, t) · γ′ (t)

Since γx0 = γx0 are parametrized as the same geodesic, then h (0, t) = t and therefore
J = J (modγ′).

For a fixed auxiliary metric g ∈ C, lemma 2.3.10 permit us to work with geodesic
variations of null geodesics. The difference between using variations of light rays or
geodesic variations is an extra term in their initial fields in the direction of γ′ as lemma
2.3.13 shows.

We will need the following lemma at the proof of proposition 2.3.15, that is the main
result of the current section.

Lemma 2.3.14. Given two null geodesic variations x : I ×H →M and x : I ×H →M
such that Γx (0) = Γx (0) = γ. Let us denote by J and J their corresponding Jacobi fields

at 0 ∈ I and 0 ∈ I of x and x respectively. If (Γx)′ (0) =
(
Γx
)′
(0) then J = J (modγ′).

Proof. Due to we want to compare the Jacobi fields J and J on γ, we can assume without
any lack of generality that x and x provide the same geodesic parameter for γ, then by
lemmas 2.3.11 and 2.3.13, we can consider that x (s, t) = expα(s) (tu (s)) and x (r, t) =
expα(r) (tu (r)) where u = u (0) = u (0) and also p = α (0) = α (0).

Moreover, we can assume the diagram (2.3.4) holds.

PN (C) U

N+ (C)

σ

σ ◦ ππ

Since (Γx)
′
(0) =

(
Γx
)′
(0) then, by expression (2.3.5) in the proof of lemma 2.3.11,

we have

dσ[u(0)] ◦ dπu(0) (u′ (0)) = dσ[u(0)] ◦ dπu(0) (u′ (0))⇔ dπu(0) (u
′ (0)) = dπu(0) (u

′ (0))
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Observe that [u (0)] = [u (0)] and thus, dπu(0) = dπu(0), and its kernel is the subspace
generated by the tangent vector at s = 0 of the curve c (s) = esu (0), hence

u′ (0) = u′ (0) + µc′ (0) (2.3.6)

with µ ∈ R. By lemma 2.3.8, we have that

{
α′ (0) = α′ (0)
Du
ds (0) = Du

dr (0) + µDc
ds (0)

⇒
{

α′ (0) = α′ (0)
Du
ds (0) = Du

dr (0) + µγ′ (0)

therefore we conclude that J = J (modγ′).

Let us fix an auxiliary metric g ∈ C and a light ray γ ∈ N parametrized as null geodesic
related to g. Again, by lemma 2.3.10, we can assume that x (s, t) is geodesic variation of
γ = γx0 ∈ N in such a way that J (t) = V x

0 (t) is the Jacobi field over γ corresponding to
the initial field of x and ∂x

dt (s, t) = (γxs )
′
(t). So, it provides that g

(
(γxs )

′
(t) , (γxs )

′
(t)
)
= 0

for all (s, t) in the domain of x, hence

0 =
∂

∂s

∣∣∣∣
(0,t)

g
(
(γxs )

′ (t) , (γxs )
′ (t)

)
= 2g

(
D

ds

∣∣∣∣
(0,t)

∂x

dt
(s, t) ,

∂x

dt
(0, t)

)
=

= 2g

(
D

dt

∣∣∣∣
(0,t)

∂x

ds
(s, t) ,

∂x

dt
(0, t)

)
=

∂

∂t

∣∣∣∣
(0,t)

g
(
V x

s (t) , (γxs )
′
(t)
)
=

=
d

dt

∣∣∣∣
t

g (V x

0 (t) , γ′ (t)) =
d

dt

∣∣∣∣
t

g (J (t) , γ′ (t))

then the geodesic variations by light rays of γ verify that their Jacobi fields J fulfil

g (J (t) , γ′ (t)) = c (2.3.7)

with c ∈ R constant. By lemma 2.3.13, the expression (2.3.7) is also true for any variation
by light rays of γ, not necessarily geodesic.

Then, we define the set of Jacobi fields of variations by light rays by

JL (γ) = {J ∈ J (γ) : g (J, γ′) = c constant}

Since g (αJ + βK, γ′) = αg (J, γ′) + βg (K, γ′) for all α, β ∈ R and every J,K ∈ JL (γ)
then JL (γ) is a vector subspace of J (γ), and by proposition 2.3.7, it verifies that
dim (JL (γ)) = 2dim (M)− 1 = 2m− 1.

Observe that since

d

dt

∣∣∣∣
t

g (J (t) , γ′ (t)) = g

(
DJ

dt
(t) , γ′ (t)

)
+ g

(
J (t) ,

Dγ′

dt
(t)

)
= g (J ′ (t) , γ′ (t))

then we have

g (J ′ (t) , γ′ (t)) = 0 (2.3.8)

for all t and J ∈ JL (γ).
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Now, we define subsets of J (γ) given by

Ĵ0 (γ) = {J (t) = btγ′ (t) : b ∈ R}
Ĵ ′
0 (γ) = {J (t) = aγ′ (t) : a ∈ R}

It is trivial to see that Ĵ0 (γ) ⊂ JL (γ) and Ĵ ′
0 (γ) ⊂ JL (γ).

Moreover, observe that for any β1, β2 ∈ R and any J1, J2 ∈ Ĵ0 (γ), if J1 (t) = b1tγ
′ (t)

and J2 (t) = b2tγ
′ (t) then

β1J1 (t) + β2J2 (t) = (β1b1 + β2b2) tγ
′ (t) ∈ Ĵ0 (γ)

hence Ĵ0 (γ) is a vector subspace of JL (γ) such that dim
(
Ĵ0 (γ)

)
= 1. Analogously, for

any β1, β2 ∈ R and any J1, J2 ∈ Ĵ ′
0 (γ), verifying J1 (t) = a1γ

′ (t) and J2 (t) = a2γ
′ (t)

then
β1J1 (t) + β2J2 (t) = (β1a1 + β2a2) γ

′ (t) ∈ Ĵ ′
0 (γ)

hence Ĵ ′
0 (γ) is also a 1–dimensional vector subspace of JL (γ).

If J ∈ Ĵ0 (γ) ∩ Ĵ ′
0 (γ), then its initial values must verify

{
J (0) = 0
J ′ (0) = bγ′ (0)

and

{
J (0) = aγ′ (0)
J ′ (0) = 0

then a = b = 0 and therefore Ĵ0 (γ) ∩ Ĵ ′
0 (γ) = {0}. So, we can define the direct sum

J0 (γ) = Ĵ0 (γ)⊕ Ĵ ′
0 (γ) = {J (t) = (a+ bt) γ′ (t) : a, b ∈ R}

being the vector subspace of Jacobi fields proportional to γ′ verifying dim (J0 (γ)) = 2.
Now, we can define the quotient vector space

L (γ) = JL (γ) /J0 (γ) = {[J ] : K ∈ [J ]⇔ K = J + J0 such that J0 ∈ J0 (γ)}

whose dimension is dim (L (γ)) = dim (JL (γ)) − dim (J0 (γ)) = 2dim (M) − 3. The
elements of L (γ) will be denoted by [J ] ≡ J (modγ′) and we will say that K = J (modγ′)
when [K] = [J ].

The differentiable structure of N has been built in section 2.2 from the one in PN (C)
where C is a local spacelike Cauchy surface. So, we will identify the tangent space TγN
with some quotient space of JL (γ) via a tangent space of PN (C).

Proposition 2.3.15. Given ξ ∈ Tγu0
N such that Γ′ (0) = ξ for some curve Γ ⊂ N . Let

x = x (s, t) be a variation by light rays of γu0 verifying that Γx = Γ such that J ∈ L (γu0)
is the Jacobi field over γu0 of x. If ζ : Tγu0

N → L (γu0) is the map defined by

ζ (ξ) = J
(
modγ′u0

)

then ζ is well–defined and a linear isomorphism.

Proof. By lemma 2.3.14, ζ is well–defined.
We have seen in section 2.2 that for a basic open set V ⊂ M such that C ⊂ V is a

smooth local spacelike Cauchy surface, the diagram (2.2.8) given by

N ⊃ U ≃ PN (C) ≃ ΩX (C) →֒ N+ (C) →֒ N+ →֒ TM
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holds. Proposition 2.3.9 shows that ζ : TuTM → J (γu) is a linear isomorphism for any
u ∈ TM . In order to complete the proof, we will restrict ζ from TuTM up to T[u]PN (C)
step by step, identifying the corresponding subspace of J (γu) image of the map. By
definition of JL (γ), it is clear that ζ|

N+ : TuN+ → JL (γu) is a linear isomorphism. Since
N+ (C) is a local submanifold of N+ of codimension 1 such that for any future–directed
null geodesic γ, the curve c (s) = γ′ (s) ∈ N+ intersects transversally to N+ (C), then
the image of the restriction of the isomorphism ζ of proposition 2.3.9 to Tu0N

+ (C) is a
vector subspace S ⊂ JL (γu0) of the same codimension and transverse (that is, linearly

independent) to the vector subspace Ĵ ′
0 (γu0), which is generated by the Jacobi field J of

the variation
x (s, t) = expγu0(s)

(
tγ′u0

(s)
)

By lemma 2.3.5, we have that J (0) = γ′u0
(0) and J ′ (0) = 0, hence J (t) = γ′u0

(t).
Observe that it is clear that the linear map

S → JL (γu0) /Ĵ ′
0 (γu0)

J 7→ [J ]

is an isomorphism.
On the other hand, let v : (−ǫ, ǫ) → N+ (C) be a differentiable curve such that

v (0) = u0 and let us denote by α = πN
+

M ◦ v its projection on C ⊂ M . Consider the
variation by light rays defined by x (s, t) = expα(s) (tv (s)) where J is the Jacobi field

of x along γu0 . By lemma 2.3.5, we have that J (0) = α′ (0) and J ′ (0) = Dv
ds (0). If

λ : (−ǫ, ǫ) → R is a non–vanishing differentiable function where λ (0) = 1, again by
lemma 2.3.5, the Jacobi field J corresponding to the variation

x (s, t) = expα(s) (tλ (s) v (s)) .

verifies {
J (0) = α′ (0)

J
′
(0) = Dλ(s)v(s)

ds

∣∣∣
s=0

= λ (0) Dv(0)
ds + λ′ (0) v (0)

then we have {
J (0) = J (0)

J
′
(0) = J ′ (0) + λ′ (0) γ′ (0)

This shows that for all the curves c ⊂ N+ (C) such that c (s) is proportional to v (s) ∈
N+ (C), their tangent vectors are in correspondence with the same equivalence class in

S/
(
S ∩ Ĵ0 (γu0)

)
, but this implies that

T[u0]PN (C) → S/
(
S ∩ Ĵ0 (γu0)

)

[v (0)]′ 7→ [J ]

is an isomorphism, where we have denoted [v (0)]
′
= d

ds

∣∣
s=0

[v (s)] and [v (s)] ∈ PN (C).
Since there is a diffeomorphism σ : PN (C) → U ⊂ N , then T[u0]PN (C) is isomorphic to
Tγu0
N therefore, since x (s, t) = γv(s) (t) = expα(s) (tv (s)) with γv(0) = γu0 , and moreover

(Γx)
′
(0) = (Γx)

′
(0) = ξ then the map

Tγu0
N → S/

(
S ∩ Ĵ0 (γu0)

)

ξ 7→ [J ]
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is a linear isomorphism.
Recall that we have denoted J0 (γu0) = Ĵ0 (γu0) ⊕ Ĵ ′

0 (γu0). Observe that the linear
map q : S → JL (γu0) /J0 (γu0) defined by q (J) = [J ] verifies that

q (J) = [0]⇔ J (t) = (a+ bt) γ′u0
(t)⇔ J ∈ S ∩ Ĵ0 (γu0)

then S/
(
S ∩ Ĵ0 (γu0)

)
is isomorphic to L (γu0) = JL (γu0) /J0 (γu0). This shows that

ζ : Tγu0
N → L (γu0) = JL (γu0) /J0 (γu0)
ξ 7→ [J ]

is a linear isomorphism. The proof is complete.

Proposition 2.3.15 allows to see the vectors of the tangent space TγN as Jacobi fields
of variations by light rays. We will use, from now on, this characterization when working
with tangent vectors of N .

Observe that the construction of L (γ) depends on the parametrization of γ as well as
the used metric g but, by proposition 2.3.15, it is clear that all of the characterizations
of TγN as some L (γ) are isomorphic in the class of the conformal metric C, in fact, they
are realizations of TγN .

Section 2.4

The canonical contact structure in N

In this section, we will show the existence of a canonical contact structure in N inherited
from the kernel of the canonical 1–form of T ∗M .

There exists a canonical distribution of hyperplanes in TN . Indeed, let us consider
the diffeomorphism σ : PN (C)→ U ⊂ N of diagram (2.2.7) given by σ ([u]) = γ[u]. Given
x ∈ C ⊂M , the image by σ of the fibre PNx is written by

X = σ (PNx) ⊂ U

and it is clearly diffeomorphic to Sm−2. This image will be studied in deep in chapter 3
under the name of sky of x.

Consider any γ ∈ X , then J ∈ TγX can be defined by a tangent vector of a curve
Γ ⊂ X . Then, if Γ : (−ǫ, ǫ)→ X ⊂ N is a differentiable curve such that Γ (0) = γ, then
by lemma 2.3.11 it is possible to construct a geodesic variation of γ given by

f (s, t) = expx (tv (s))

where v (s) ∈ N+
x for all s ∈ (−ǫ, ǫ). By lemma 2.3.5, J = Γ′ (0) ∈ TγX verifies J (0) = 0

and J ′ (0) = Dv
ds (0). Then,

TγX = {J ∈ TγN : J (s0) = 0 (modγ′ (s0)) with γ (s0) = x} (2.4.1)

If we define
Hγ = {J ∈ L (γ) : g (J, γ′) = 0} (2.4.2)
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then it is trivial to see that
TγX ⊂ Hγ

for any x ∈ γ where, with a slight abuse on the notation identifying TγX ≃ ζ (TγX), we
have used the characterization of TγN at proposition 2.3.15.

Choosing another point y ∈ γ close enough to avoid being conjugate to x, then if
Y = σ (PNy) we have

TγX ∩ TγY = {0γ}
Then

TγX ⊕ TγY ⊂ Hγ

for any pair of non–conjugate points x, y ∈ γ and since dim (TγX ⊕ TγY ) = dimHγ =
2m− 4, therefore

Hγ = TγX ⊕ TγY (2.4.3)

for any pair of non–conjugate points x, y ∈ γ. Hence Hγ is a hyperplane that, trivially,
does not depend on the representative g of the conformal metric C because TγX ⊕ TγY
neither do. Then, the distribution of hyperplanes

H =
⋃

γ∈N

Hγ

is conformal.
In the following sections, we will show that H ⊂ TN is a contact structure. We will

do it in two different ways. First, in section 2.4.2, passing the distribution of hyperplanes
to TM before pushing it down to N through the chain of inclusions (2.2.8). This way is
pointed out by Low but done from T ∗M in [44].

In section 2.5, we will build the contact structure using symplectic reduction in two
different ways.

In order to carry out this task in a self–contained way, we will introduce some basic
elements of symplectic and contact geometry (see references [1], [3] and [37]) and observe
how the construction of N can be done from T ∗M .

2.4.1

Elements of symplectic geometry in T ∗M

Definition 2.4.1. Let E be a k–dimensional vector space over R and ω : E × E → R
a skew–symmetric and non–degenerated bilinear map, then the pair (E,ω) is called a
symplectic vector space.

Given any vector subspace W ⊂ E, we define the symplectic orthogonal of W by

W⊥ = {v ∈ E : ω (v, u) = 0 for all u ∈W}

W is said to be symplectic if ω|W×W is non–degenerated, or equivalentlyW ∩W⊥ = {0}.
Whenever ω|W×W ≡ 0 or equivalently W ⊂W⊥, we will say that W is isotropic.

We will say that W is coisotropic if W⊥ ⊂W .
Any isotropic and coisotropic subspace W ⊂ E is called lagrangian.
This previous definitions pass directly to the scope of manifolds.
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Definition 2.4.2. A pair (P, ω) is called a symplectic manifold whenever P is a differ-
enciable manifold equipped with a non–degenerated and closed 2–form ω ∈ Λ2 (P ). We
will say that ω is the symplectic 2–form of P .

We also can talk about symplectic, isotropic, coisotropic and lagrangian submanifolds ,
S ⊂ P when W = TpS ⊂ TpP = E can be classified in the corresponding vector subspace
for all p ∈ S.

Remark 2.4.3. It is known, see for example [1, Prop. 3.1.3 and 3.1.5], that ω is non–
degenerated if and only if dim (P ) = 2k and ωk = ω∧· · · ∧ω ∈ Λ2k (P ) is a volume form,
that is ωk does not vanish at any point q ∈ P . Then ω is degenerated when restricted to
an odd–dimensional submanifold (or vector subspace).

Consider a differentiable manifold M and take a coordinate chart (U, φ) in M such
that if q ∈ U ⊂M then φ (q) =

(
x1, . . . , xm

)
, hence for α ∈ T ∗M we can write

αq =

m∑

k=1

pkdx
k

and therefore
(
xk, pk

)
are coordinates in T ∗U ⊂ T ∗M .

If π = πT∗M
M : T ∗M →M denotes the canonical projection, we can define the 1–form

θ ∈ X∗ (T ∗M) pointwise at every α ∈ T ∗M by

θα = (dπα)
∗
α

Consequently we have

θα (ξ) =
(
(dπα)

∗
α
)
(ξ) = α ((dπα) ξ) (2.4.4)

for ξ ∈ Tα (T ∗M). In the previous coordinates, we can write

θ =

m∑

k=1

pkdx
k (2.4.5)

This 1–form θ is called the canonical or tautological 1–form.

Now, the 2–form ω given by

ω = −dθ

defines a symplectic 2–form in T ∗M , that can be expressed by

ω =

m∑

k=1

dxk ∧ dpk

Definition 2.4.4. A vector field X ∈ X (P ) of a symplectic manifold (P, ω) is said to be
a Liouville vector field if it verifies

LXω = ω
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Definition 2.4.5. Given a symplectic manifold (P, ω) and a smooth function H : P → R,
then the only vector field XH ∈ X (P ) verifying

iXH
(ω) = dH

is called the hamiltonian vector field associated to H. This function H will be called the
hamiltonian function.

In case of P = T ∗M , for a hamiltonian function H : T ∗M → R, using the equality
iXH

(ω) = dH , it is possible to express the corresponding hamiltonian vector field XH ∈
X (T ∗M) as

XH =
∂H

∂pi

∂

∂xi
− ∂H

∂xi
∂

∂pi

Now, we want to construct N again, but this time from T ∗M . First, consider the
diffeomorphism

ĝ : TM → T ∗M
ξ 7→ g (ξ, ·) (2.4.6)

and denote by N+∗ the image of the restriction of ĝ to N+, that is

N+∗ = ĝ
(
N+
)
=
{
α = ĝ (ξ) ∈ T ∗M : ξ ∈ N+

}

In an analogous manner as done in section 2.2 to define the Euler field ∆ in TM , we
can define the Euler field E ∈ X (T ∗M) by

E (α) = dc

(
∂

∂t

)
(0)

where α ∈ T ∗
pM and c : R → T ∗

pM verifies that c (t) = etα. The curve c is an integral
curve of E because

c′ (t) = dc

(
∂

∂t

)
(t) = E (c (t))

In the previous coordinates, E can be written as

E = pk
∂

∂pk

So, for every α ∈ N+∗ the integral curve c (t) = etα is contained in N+∗, therefore E
is tangent to N+∗.

Moreover, if ω is the symplectic 2–form of T ∗M it is trivial to see that

−iEω = θ (2.4.7)

where θ is the tautological 1–form in T ∗M and hence

LEω = iEdω + d (iEω) = d (−θ) = −dθ = ω (2.4.8)

therefore E is a Liouville vector field. In fact, E sometimes is called the Liouville or
Euler–Liouville vector field .



40 Contact structure

Consider now the hamiltonian function defined by

H : T ∗M → R
α 7→ 1

2g
(
ĝ−1 (α) , ĝ−1 (α)

) (2.4.9)

defining the hamiltonian vector field given by

XH = gkipi
∂

∂xk
− 1

2

∂gij

∂xk
pipj

∂

∂pi

Lemma 2.4.6. Let Xg,∆ ∈ X (TM) be the the geodesic spray and Euler field of TM and
XH , E ∈ X (T ∗M) the hamiltonian vector field and Euler field of T ∗M . Then we have
that ĝ∗ (∆) = E and ĝ∗ (Xg) = XH .

Proof. If we take any ξ ∈ T ∗M and α = ĝ (ξ), then the integral curve c (t) = etξ of Euler
field ∆ in TM is transformed by ĝ as

ĝ (c (t)) = g (c (t) , ·) = g
(
etξ, ·

)
= etg (ξ, ·) = etĝ (ξ) = etα ∈ T ∗M

being an integral curve of Euler field E in T ∗M . Then, for any ξ ∈ T ∗M we have that

ĝ∗ (∆ (ξ)) = E (ĝ (ξ))

is verified, therefore this implies ĝ∗ (∆) = E .
On the other hand, the equations of the integral curves of XH are





dxk

ds
= gkipi

dpk
ds

= −1

2

∂gij

∂xk
pipj

(2.4.10)

From the first equation of (2.4.10) we have that pi = gik
dxk

ds . Since δjm = gmig
ij where

δjm is the Kronecker’s delta, then deriving we obtain

0 =
∂
(
gmig

ij
)

∂xk
=
∂gmi

∂xk
gij + gmi

∂gij

∂xk

then
∂gij

∂xk
= −gim ∂gml

∂xk
glj

and substituting it in the second equation of (2.4.10) we get




pk = gkj
dxj

ds

dpk
ds

=
1

2
gim

∂gml

∂xk
gljpipj =

1

2

∂gml

∂xk
gimpig

ljpj

(2.4.11)

Now, deriving the first equation of (2.4.11) with respect to s and equalling the result to
the second equation we have that

∂gkj
∂xi

dxi

ds

dxj

ds
+ gkj

d2xj

ds2
=

1

2

∂gml

∂xk
gimpig

ljpj
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then

gkj
d2xj

ds2
=

1

2

∂gml

∂xk
gimpig

ljpj −
∂gkj
∂xi

dxi

ds

dxj

ds
=

=
1

2

∂gml

∂xk
dxm

ds

dxl

ds
− 1

2

∂gkj
∂xi

dxi

ds

dxj

ds
− 1

2

∂gik
∂xj

dxi

ds

dxj

ds
=

=
1

2

(
∂gij
∂xk

− ∂gkj
∂xi

− ∂gik
∂xj

)
dxi

ds

dxj

ds
=

= −gkaΓa
ij

dxi

ds

dxj

ds

hence we can conclude that
d2xk

ds2
= −Γk

ij

dxi

ds

dxj

ds

for k = 1, . . . ,m being the geodesic’s equations. Therefore, system (2.4.10) can be written
as 




dxk

ds
= gkipi

d2xk

ds2
= −Γk

ij

dxi

ds

dxj

ds

(2.4.12)

Since the integral curves of the hamiltonian vector field XH coincide with the ones of the
geodesic spray Xg, then it is immediate to deduce that

ĝ∗ (Xg) = XH

It is possible to show that ĝ∗ (Xg) = XH introducing the fiber derivative as done in
[1, Th. 3.6.2]. For brevity, we have used coordinates.

The next corollary is an immediate consequence of lemma 2.4.6 and the construction
of N done in section 2.2.

Corollary 2.4.7. The space of light rays N of M can be built by the quotient

N = N+∗/D∗

where D∗ is the distribution generated by the vector fields E and XH , that is D∗ =
span {E , XH}.

This corollary 2.4.7 is also true for N = N∗/D∗ since α ∈ N+∗ and −α ∈ N−∗ define
the same light ray, in the same way v ∈ N+ and −v ∈ N− also do it.

The expression (2.4.12) in proof of lemma 2.4.6 also shows that the null geodesic
defined by α ∈ N∗ coincides to the null geodesic defined by v ∈ N if and only if ĝ (v) = α,
because the first equation has to be verified. Then we have the following commutative
diagram.

N∗ N

N

pN∗

pN
ĝ

(2.4.13)
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Next, we will introduce some basic definitions and results in contact geometry that
we will need later. [3, Appx. 4] and [37, Ch. 5] can be consulted for more details.

Definition 2.4.8. Given a n–dimensional differentiable manifold P , a contact element
in P is a (n− 1)–dimensional subspace Hq ⊂ TqP . The point q ∈ P is called the contact
point of Hq.

We will say that a distribution of hyperplanes H in a differentiable manifold M is a
map H defined in M such that for every q ∈ M we have that H (q) = Hq is a contact
element at q.

Lemma 2.4.9. Every differentiable distribution of hyperplanes H can be written locally
as the kernel of 1–form.

Proof. We will follow the proof in [20, Lem. 1.1.1]. Consider the quotient bundles π :
TP → TP/H and π : T ∗P → (TP/H)∗ and observe that π∗ (π (β)) = β for any β ∈ T ∗P .
Recall that every bundle is locally trivial, this means there exists local sections. Take a
non–zero local section α : U ⊂ (TP/H)∗ → T ∗P of π. For any η ∈ (TP/H)∗ we have
that α (η) is a 1–form in TP such that π ◦ α (η) = η. Thus, for X ∈ T (TP ) we have

π∗η (X) = η (π∗X) = π ◦ α (η) (π∗X) = π∗ (π ◦ α (η)) (X) = α (η) (X)

Then,
X ∈ H ⇔ η (π∗X) = 0⇔ α (η) (X) = 0

for all η ∈ (TP/H)∗, therefore ker (α|U ) = H.

It is clear that if a differentiable distribution of hyperplanes H is defined locally by
the 1–form α ∈ X∗ (P ) then, for every non–vanishing function f ∈ F (P ) the 1–form fα
also defines H since α and fα have the same kernel.

Definition 2.4.10. A contact structure H in a (2n+ 1)–dimensional differentiable man-
ifold P is a maximally non–integrable smooth field of contact elements. If H = ker (η) ⊂
TP with η ∈ X∗ (P ), the condition of maximal non–integrability can be written as

η ∧ (dη)n 6= 0

Such 1–form η which locally defines H is named a contact form and we will say that (P, η)
is a contact manifold.

If H is defined by a global contact form, we will say that H is a cooriented contact
structure.

An equivalent way to determine if a distribution of hyperplanes H = ker (η) is a
contact structure is the following result. See [3] and [12] for more details.

Lemma 2.4.11. If H is a distribution of hyperplanes in P such that it is locally defined
by H = ker (η), then dη|H is non–degenerated if and only if η ∧ (dη)

n 6= 0.

Proof. Since dim (Hq) = 2n, then we can take v ∈ TqP such that TqP = span {v} ⊕ Hq.
Take a basis {e0, e1, . . . , e2n} in TqP such that e0 ∈ span {v} and ej ∈ Hq for j =
1, . . . , 2n. Due to η (ej) = 0 for j = 1, . . . , 2n, then we have

η ∧ (dη)
n
(e0, e1, . . . , e2n) = η (e0) (dη)

n
(e1, . . . , e2n)
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and since η (e0) 6= 0, then

η ∧ (dη)
n 6= 0⇔ (dη)

n|H 6= 0

being equivalent to dη|H is non–degenerated.

Lemma 2.4.12. If α is a contact form in P , then fα is also a contact form for every
non–vanishing differentiable function f ∈ F (P ).

Proof. Observe that α and fα have the same kernel. In order to show that fα is maximally
non–integrable, we will proceed by induction. First, observe that

fα ∧ d (fα) = fα ∧ (df ∧ α+ fdα) = fα ∧ df ∧ α+ fα ∧ fdα =

= −fα ∧ α ∧ df + f2α ∧ dα = f2α ∧ dα
Assume that

fα ∧ (d (fα))
k−1

= fkα ∧ (dα)
k−1

Then we have

fα ∧ (d (fα))k = fα ∧ (d (fα))k−1 ∧ d (fα) =
= fkα ∧ (dα)

k−1 ∧ d (fα) =
= fkα ∧ (dα)

k−1 ∧ (df ∧ α+ fdα) =

= fkα ∧ (dα)
k−1 ∧ df ∧ α+ fkα ∧ (dα)

k−1 ∧ fdα =

= fk (dα)
k−1 ∧ α ∧ α ∧ df + fk+1α ∧ (dα)

k
=

= fk+1α ∧ (dα)k

whence we have proven for all n

fα ∧ (d (fα))
n
= fn+1α ∧ (dα)

n

Therefore, for non–vanishing f , if α ∧ (dα)n 6= 0 then fα ∧ (d (fα))n 6= 0.

2.4.2

Constructing the contact structure of N

Consider the tautological 1–form θ ∈ X∗ (T ∗M). The diffeomorphism ĝ : TM → T ∗M
allows to carry away θ to TM by pull–back. Let πTM

M : TM →M and πT∗M
M : T ∗M →M

be the canonical projections, since πTM
M = πT∗M

M ◦ ĝ, then it is verified

(
dπTM

M

)
v
(ξ) =

(
dπT∗M

M

)
ĝ(v)

(ĝ∗ (ξ))
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for all ξ ∈ TvTM . If we define θg = ĝ∗θ ∈ X∗ (TM) then, using the expression (2.4.4), if
ξ ∈ TvTM we have

(θg)v (ξ) = (ĝ∗θ)v (ξ) = θĝ(v) (ĝ∗ (ξ)) =

= ĝ (v)

((
dπT∗M

M

)
ĝ(v)

(ĝ∗ (ξ))

)
= ĝ (v)

((
dπTM

M

)
v
(ξ)
)
=

= g
(
v,
(
dπTM

M

)
v
(ξ)
)

(2.4.14)

For a given basic open set V ⊂ M equipped with coordinates
(
x1, . . . , xm

)
such that

v ∈ TV is written as v = vi ∂
∂xi , then

(
xi, vi

)
are coordinates in TV . By expression

(2.4.5), we can write
θg = gijv

idxj

Let us denote by HTV = ker (θg), that is a distribution of hyperplanes in TV ⊂ TM .
This implies that dim

(
HTV

v

)
= 2m− 1 for every v ∈ TV .

As we seen in section 2.2, we have the chain of inclusions (2.2.8):

Ω →֒ N+ (C) →֒ N+ (V ) →֒ TV (2.4.15)

where Ω = ΩX(C) = {v ∈ N+ | g(v,X) = −1} for a non-vanishing timelike vector
field X ∈ X (M). Observe that if v ∈ Ω is the representative of the class of equivalence
[v] ∈ PN(C), then clearly the following maps

Ω −→ PN(C) −→ U ⊂ N
v 7→ [v] 7→ γv

(2.4.16)

are diffeomorphisms.
Then, we will see that the pullback of θg by the inclusion Ω →֒ TV defines a 1–form

θg|Ω, and therefore a distribution of hyperplanes, in Ω. This 1–form and its kernel can
be passed on U ⊂ N obtaining the 1–form θ0 looked for.

To obtain a suitable formula of θ0 we will proceed projecting the distribution of hy-
perplanes in TM up to Ω step by step.

First, observe that the restriction of HTV to TN+ (V ), denoted by HN
+(V ), is again a

distribution of hyperplanes. Indeed, if c : (−ǫ, ǫ)→ N+ (V ) is a differentiable curve such
that 




α (s) = πN
+

M (c (s)) is a timelike curve
v = c (0) ∈ N+ (V )
ξ = c′ (0) ∈ TvN+ (V )

then, by using expression (2.4.14)

θg (ξ) = g (v, α′ (0)) 6= 0

since v is null and α′ (0) timelike. This implies that ξ /∈ HTV
v . So, we have that TvTV =

span {ξ}⊕HTV
v and since span {ξ} ⊂ TvN+ (V ) and HN

+(V )
v = HTV

v ∩TvN+ (V ) then we
have that

dim
(
HN

+(V )
v

)
= 2m− 2

therefore HN
+(V ) is a distribution of hyperplanes in N+ (V ).
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The next step is to restrict HN
+(V ) to TN+ (C), where C is a Cauchy surface of

V . Again, as done above, if γ : I → M is a null geodesic verifying γ (0) ∈ C and
γ′ (0) = v ∈ N+ (C), since the vector subspace

{v}⊥ =
{
u ∈ Tγ(0)M : g (v, u) = 0

}

is (m− 1)–dimensional and v = γ′ (0) ∈ {v}⊥, then dim
(
{v}⊥ ∩ Tγ(0)C

)
= m−2. Hence,

we can pick up a vector η ∈ Tγ(0)C such that Tγ(0)C = span {η}⊕
(
{v}⊥ ∩ Tγ(0)C

)
. Now,

we can choose a differentiable curve c : (−ǫ, ǫ)→ N+ (C) verifying





c (0) = v ∈ N+ (C)
c′ (0) = κ ∈ TvN+ (C)(
dπN

+

M

)
v
(κ) = λη for λ 6= 0

then
θg (κ) = g

(
v,
(
dπN

+

M

)
v
(κ)
)
= g (v, λη) 6= 0

because η /∈ {v}⊥, and this shows that κ /∈ HN
+(V )

v . Then TvN+ (V ) = span {κ}⊕HN
+(V )

v

and since span {κ} ⊂ TvN+ (C) and HN
+(C)

v = HN
+(V )

v ∩ TvN+ (C), then it follows

dim
(
HN

+(C)
v

)
= dim

(
TvN+ (C)

)
− 1 = 2m− 3

thus HN
+(C) is a distribution of hyperplanes in N+ (C).

It is possible to repeat the previous argument to show that the restriction of HN
+(C)

to TΩ defines a distribution of hyperplanes. In fact, consider some η ∈ Tγ(0)C in the
same condition as before and take a differentiable curve c : (−ǫ, ǫ)→ Ω verifying





c (0) = v ∈ Ω
c′ (0) = κ ∈ TvΩ(
dπN

+

M

)
v
(κ) = λη for λ 6= 0

then again
θg (κ) = g (v, λη) 6= 0

showing that κ /∈ HN
+(C)

v . Then TvN+ (C) = span {κ}⊕HN
+(C)

v and since span {κ} ⊂ TvΩ
then we have that

dim
(
HΩ

v

)
= dim (TvΩ)− 1 = 2m− 4

thus HΩ is a distribution of hyperplanes in Ω ⊂ N+ (C).
By this process of restriction from TV to Ω we have passed HTV ⊂ TTV as a

distribution of hyperplanes HΩ ⊂ TΩ ⊂ TTV . Moreover since HTV = ker (θg) and
HΩ = TΩ ∩HTV then

HΩ = ker
(
θg|Ω

)

where θg|Ω denotes the restriction of θg to Ω. This fact is important in order to show
that HΩ is a contact structure.

Then, using the diffeomorphisms in (2.4.16), HΩ passes to U ⊂ N as a distribution of
hyperplanes of dimension 2m− 4. Let us denote by H ⊂ TN such distribution.
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Proposition 2.4.13. Assuming the previous notation, if X ∈ X (M) is a given global
non–vanishing timelike vector field and U ⊂ N is open as above, then the distribution of
hyperplanes

H (U) = {[J ] ∈ TγU : g (γ′ (0) , J (0)) = 0 with g (γ′ (0) , X) = −1} (2.4.17)

is a contact structure.

Proof. Since ω = −dθ, then taking the exterior derivative on θg we obtain

ωg = −dθg
therefore we have

ωg = −d
(
gijv

idxj
)
= −gijdvi ∧ dxj −

∂gij
∂xk

vidxk ∧ dxj

then it can be written by

ωg = gijdx
j ∧ dvi + ∂gij

∂xk
vidxj ∧ dxk (2.4.18)

It can be shown, see [1, Th. 3.2.13], that ωg is a symplectic 2–form in TM .
Consider two curves un (s) = uin (s)

(
∂

∂xi

)
αn(s)

∈ TM where n = 1, 2 such that

α′
n (s) = ain (s)

(
∂

∂xi

)
αn(s)

u′n (s) = ain (s)
(

∂
∂xi

)
un(s)

+
dui

n

ds (s)
(

∂
∂vi

)
un(s)

and recall that
Dun
ds

=

(
dukn
ds

+ Γk
ija

i
nu

j
n

)(
∂

∂xk

)

αn

calling Dkun

ds =
duk

n

ds + Γk
ija

i
nu

j
n to the k–th component of Dun

ds . If u = u1 (0) = u2 (0) and
ξn = u′n (0) for n = 1, 2, then we have that

ωg (ξ1, ξ2) = gija
i
1
duj

2

ds − gija
j
2
dui

1

ds +
∂gij
∂xk u

iaj1a
k
2 − ∂gij

∂xk u
iak1a

j
2 =

= gija
i
1

(
Dju2

ds − Γj
lra

l
2u

r
)
− gijaj2

(
Diu1

ds − Γi
lra

l
1u

r
)
+
(

∂gij
∂xk − ∂gik

∂xj

)
uiaj1a

k
2 =

= gija
i
1
Dju2

ds − gija
j
2
Diu1

ds +
(
gklΓ

l
ji − gjlΓl

ki +
∂gij
∂xk − ∂gik

∂xj

)
uiaj1a

k
2 =

= gija
i
1
Dju2

ds − gija
j
2
Diu1

ds =

= g
(
α′
1 (0) ,

Du2

ds (0)
)
− g

(
α′
2 (0) ,

Du1

ds (0)
)

(2.4.19)

where we have used that gklΓ
l
ji =

1
2

(
∂gkj

∂xi + ∂gki

∂xj − ∂gji
∂xk

)
.

Since the exterior derivative commutes with the restriction to submanifolds, then

ωg|Ω = − (dθg)|Ω = − d (θg|Ω
)

Proposition 2.3.9 permits to transmit θg|Ω , ωg|Ω to L (γu) pointwise. Calling θ0 and ω0

the resultant forms, then for [J ] , [J1] , [J2] ∈ L (γu) we have

θ0 ([J ]) = g (γ′u (0) , J (0)) (2.4.20)
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where γu is parametrized such that γ′u (0) ∈ Ω, and

ω0 ([J1] , [J2]) = g (J1 (0) , J
′
2 (0))− g (J2 (0) , J

′
1 (0)) (2.4.21)

In order to prove that H is a contact structure, we will show that ω0|H×H is non–
degenerated. Consider [J1] , [J2] ∈ H, then the initial values of J1 and J2 in expression
(2.4.21) verify {

g (Ji (0) , γ
′
u (0)) = 0

g (J ′
i (0) , γ

′
u (0)) = 0

(2.4.22)

for i = 1, 2, that is Ji (0) , J
′
i (0) ∈ {γ′u (0)}⊥ =

{
v ∈ Tγu(0)M : g (v, γ′u (0)) = 0

}
.

Assume that ω0 ([J1] , [J2]) = 0 for a given [J1] ∈ H and all [J2] ∈ H, then in particular,
it is also so for [J2] verifying J

′
2 (0) = 0, then

ω0 ([J1] , [J2]) = 0⇒ g (J2 (0) , J
′
1 (0)) = 0

Since J ′
1 (0) ∈ {γ′u (0)}⊥, the only vector J ′

1 (0) such that g (J2 (0) , J
′
1 (0)) = 0 for all

J2 (0) ∈ {γ′u (0)}⊥ is, by definition of {γ′u (0)}⊥, the vector J ′
1 (0) = 0 (modγ′u (0)).

On the other hand, for [J2] verifying J2 (0) = 0 we have

ω0 ([J1] , [J2]) = 0⇒ g (J1 (0) , J
′
2 (0)) = 0

and again, since J1 (0) ∈ {γ′u (0)}⊥ then the only vector J1 (0) such that g (J1 (0) , J
′
2 (0)) =

0 for all J ′
2 (0) ∈ {γ′u (0)}⊥ is J1 (0) = 0 (modγ′u (0)).

Thus, the only [J1] ∈ H such that ω0 ([J1] , [J2]) = 0 for all [J2] ∈ H is J1 = 0 (modγ′u),
therefore ω0|H×H is non–degenerated. This shows that H is a contact structure in N .

Let us take γ ∈ U ∩ V , since in general d
dtg (γ′ (t) , X (γ (t))) 6= 0, then there are

different parameter for γ in order to write H (U) and H (V) as in expression (2.4.17). If
we consider that γ = γ (t) and γ = γ (τ) are the parametrizations of γ ∈ U ∩ V such that
γ (τ) = γ (aτ + b) verifying {

g (γ′ (0) , X) = −1
g (γ′ (0) , X) = −1

By definition of JL (γ), we have that g
(
J (τ) , γ′ (τ)

)
is constant, therefore

g
(
J (0) , γ′ (0)

)
= g

(
J (−b/a) , γ′ (−b/a)

)
= g (J (0) , γ′ (0))

as seen in remark 2.3.6, whence since γ (−b/a) = γ (0) we have

g
(
J (0) , γ′ (0)

)
= 0⇔ g

(
J (−b/a) , γ′ (−b/a)

)
= 0⇔ g (J (0) , γ′ (0)) = 0

The same argument above is valid to prove that Hγ does not depends on the timelike
vector field used to define Ω, because it only affects to the parametrization of γ. This
shows that Hγ is well defined and does not depends on the neighbourhood used in its
construction.

At this point, we have a covering {Uδ}δ∈I ⊂ N and, for any δ ∈ I, also a local 1–form

θδ0 defining the contact structure H. If we take a partition of unity {χδ}δ∈I subordinated
to the covering {Uδ}δ∈I then we can define a global 1–form by

θ0 ([J ]) =
∑

δ∈I

χδ ([J ]) · θδ0 ([J ]) (2.4.23)
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then the contact structureH is cooriented since θ0 is global and, by lemma 2.4.11, remains
maximally non-integrable.

Moreover, although the expression ofHγ in proposition 2.4.13 depends on the represen-
tative g of the conformal metric, it coincides with the definition of hyperplane distribution
of (2.4.2) that is conformal, then H does not depends on the specific metric itself, but
only on the conformal manifold (M, C).

Section 2.5

The contact structure of N and symplectic reduction

The celebrated Theorem of Marsden–Weinstein [47] claims that a 2m–dimensional sym-
plectic manifold P , in which a Lie group G acts preserving the symplectic form ω and
possessing an equivariant momentum map, can be reduced into another (2m− 2r)–
dimensional symplectic manifold Pµ, called the Marsden–Weinstein reduction of P with
respect to µ, where µ is an element of the dual of the Lie algebra of G and r is the di-
mension of the coadjoint orbit passing through µ. Moreover, the Hamiltonian H in P is
also reduced to a hamiltonian Hµ of Pµ such that the integral curves of the hamiltonian
vector field XHµ

∈ X (Pµ) carry the relevant information to describe the integral curves
of XH ∈ X (P ).

Although it is possible to derive the contact structure of N using Marsden–Weinstein
reduction, as indicated by Low in [44] and [45] as well as Keshin and Tabachnikov in [30],
we can also choose a different path to achieve it. This new way is simpler because we do
not need the full extent of Marsden–Weinstein reduction theorem but just a simplified
version of it, and also it is more general because it is not necessary to assume of the
existence of a group action. In fact, it is an equivalent but more elegant manner to obtain
H to the way used in section 2.4.2. Actually, the setting we will use is a particular instance
of the scheme called generalized symplectic reduction (see [13] and references therein). We
will carry it out in next section 2.5.1.

Finally, as illustration of the construction by Marsden–Weinstein reduction of the
contact structure of N done in the literature (see for example [30], [44] and [45]), we offer
the missing details in section 2.5.3.

2.5.1

Coisotropic reduction of N+

The main result of the present section, theorem 2.5.7, that is, the construction of the
contact structure H by reduction of N+, is based on some elementary algebraic facts that
we will develop below.

Lemma 2.5.1. Let π :M → N be a submersion, then π∗ : Λp (N)→ Λp (M) is injective.

Proof. It is known that π∗ is linear (see [49, Prop. 2.10]). Consider θ ∈ Λp (N) such that
θy = fi1,...,ipe

i1 ∧ · · · ∧ eip for y = π (x) ∈ N , and
{
e1, . . . , en

}
⊂ T ∗

yN the dual basis of
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{e1, . . . , en} ⊂ TyN . Since π is a submersion, then dπx : TxM → TyN is surjective, then
for every choice of {i1, . . . , ip} we can choose αk ∈ TxM such that

dπx (αk) = eik ∈ TyN

with k = 1, . . . , p.
So, if π∗θ = 0 then

0 = (π∗θ)x (α1, . . . , αp) = θy (dπx (α1) , . . . , dπx (αp)) = θy
(
ei1 , . . . , eip

)
= fi1,...,ip

hence fi1,...,ip = 0 for all y ∈ N and every choice of {i1, . . . , ip}. Then we have that θ = 0

and thus ker (π∗) = {0} and therefore π∗ is injective.

Lemma 2.5.2. Let (E,ω) be a symplectic vector space and W ⊂ E a subspace. Then
dimE = dimW⊥ + dimW .

Proof. Consider the linear map l : E →W ∗ given by l (v) = ω (v, ·)|W where W ∗ denotes
the dual of W . Then observe

ker (l) = {v ∈ E : ω (v, ·)|W = 0} = {v ∈ E : ω (v, u) = 0 for all u ∈W} =W⊥

and since ω is non–degenerated also

Im (l) = {ω (v, ·)|W : v ∈ E} =W ∗

Hence

dimE = dimker (l) + dim Im (l) = dimW⊥ + dimW ∗ = dimW⊥ + dimW.

Corollary 2.5.3. Let E be a symplectic vector space and W ⊂ E any hyperplane. Then
W is coisotropic.

Proof. Since the codimension of W is 1, then W is odd–dimensional, hence ω|W×W is

degenerated (see remark 2.4.3). Then we have that W ∩W⊥ 6= {0}, and by lemma 2.5.2,
dimW⊥ = 1 therefore W⊥ ⊂W .

Corollary 2.5.4. Let E be a symplectic vector space and W ⊂ E any hyperplane. Then
the quotient spaceW/W⊥ inherits a canonical symplectic form ω defined by the expression:

ω(u1 +W⊥, u2 +W⊥) = ω(u1, u2) , for all u1, u2 ∈W. (2.5.1)

Proof. By corollary 2.5.3, W is coisotropic and dimW⊥ = 1, then W/W⊥ is a even–
dimensional quotient vector space. Moreover, by definition of ω, it is trivial to see that ω
is non–degenerated.
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The following theorem 2.5.5 states that any hypersurface on a symplectic manifold is
coisotropic and that, provided that the quotient space is a manifold, the space of leaves
of its characteristic foliation, inherits a symplectic structure. Such space of leaves is thus
the reduced symplectic manifold we are seeking for and it will be called the coisotropic
reduction of the hypersurface S.

Theorem 2.5.5. Let (P, ω) be a symplectic manifold and i : S → P be a hypersurface,
i.e., an immersed manifold with codimension 1. Then:

1. The symplectic form ω induces a 1–dimensional distribution K on S, called the
characteristic distribution of ω, defined by Kx = ker i∗ωx = (TxS)

⊥ ⊂ TxS.

2. If we denote by K the 1–dimensional foliation defined by the distribution K and
S = S/K has the structure of a quotient manifold, i.e., the canonical projection
map ρ : S → S/K is a submersion, then there exists a unique symplectic 2–form ω
on S such that ρ∗ω = i∗ω.

3. If ω = −dθ and there exists θ a 1–form on S such that ρ∗θ = i∗θ, then ω = −dθ.

Proof. The proof of (1) is just the restriction of the algebraic statements above to W =
TxS ⊂ E = TxP .

The statement (2) is consequence of corollary 2.5.4 taking againW = TxS ⊂ E = TxP .
If ωρ(x) is the symplectic 2–form in Tρ(x)S defined by expression (2.5.1), then for any
U1, U2 ∈ TxS we have

(ρ∗ω)x (U1, U2) = ωρ(x) (ρ∗ (U1) , ρ∗ (U2)) = ωρ(x) (U1 +K,U2 +K) = ωx (U1, U2)

for every x ∈ S, then we have

ρ∗ω = ω|S×S = i∗ω

By lemma 2.5.1, ρ∗ is injective, therefore ω is unique. Since ω is closed and d (i∗ω) =
i∗ (dω) then i∗ω is also closed. Then

0 = d (i∗ω) = d (ρ∗ω) = ρ∗ (dω)

and since ρ∗ is injective because of lemma 2.5.1, then dω = 0 and therefore ω is closed.

The proof of (3) is trivial because ρ∗ω = i∗ω = i∗(−dθ) = −di∗θ = −dρ∗θ = ρ∗(−dθ)
and since ρ is a submersion, then lemma 2.5.1 implies that ω = −dθ.

In addition to the previous reduction mechanism, we will use the following one to use
it for hyperplane distributions in order to define the sought contact structure.

Theorem 2.5.6. Let (P, ω = −dθ) be an exact symplectic manifold and π : P → N be a
submersion on a manifold N such that dimN = dimP − 1 and verifying that it projects
the hyperplane distribution H = ker θ, that is there exists a hyperplane distribution HN

in N such that for any x ∈ P , dπx (Hx) = HN
π(x). Then HN defines a contact structure

on N .
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Proof. Notice that due to theorem 2.5.5, we have that ker dπx = H⊥
x and ω induces a

symplectic form ωx in Hx/H
⊥
x . Moreover since Hx/H

⊥
x ≃ HN

π(x), then it inherits the
symplectic form ωx. Consider a local section σ of the submersion π and the 1–form σ∗θ
in N . For any v ∈ HN

y with y ∈ N we have that σ∗v ∈ Hσ(y), then

σ∗θ (v) = θ (σ∗v) = 0

thus kerσ∗θ = HN . Moreover, given u, v ∈ HN
y for y ∈ N , then

−d (σ∗θ)y (u, v) = (σ∗ (−dθ))y (u, v) = (σ∗ω)y (u, v) =

= ωσ(y) (dσy (u) , dσy (v)) = ωy (u, v)

because of corollary 2.5.4 and where dσy (u) , dσy (v) ∈ Hσ(y). Therefore −d(σ∗θ) coin-
cides with the symplectic 2–form ω when restricted toHN , and since ω is non–degenerated,
then applying lemma 2.4.11 we conclude that HN is a contact structure.

The two previous results, theorems 2.5.5 and 2.5.6, hold the key to understand how
the quotient space N inherits a canonical contact structure. Consider again a spacetime
(M,g) and the canonical identification provided by the metric ĝ : T̂M → T̂ ∗M defined in
equation (2.4.6), which is just the Legendre transform corresponding to the Lagrangian
function

L : TM → R
v 7→ L (v) = 1

2g (v, v).
(2.5.2)

Observe that if H is the hamiltonian function defined in (2.4.9) then

H ◦ ĝ (v) =
1

2
g
(
ĝ−1 (ĝ (v)) , ĝ−1 (ĝ (v))

)
=

1

2
g (v, v) = L (v)

for any v ∈ T̂M .

As we discussed at section 2.4.2 we can propagate to TM the canonical 1–form θ as
well as the symplectic 2–form ω defined on T ∗M by pull–back through the diffeomorphism
ĝ, then we obtain {

θg = ĝ∗θ
ωg = ĝ∗ω = −dθg

in such a way that
(
T̂M, ωg

)
becomes a symplectic manifold. Moreover N+ ⊂ T̂M

defines a hypersurface, hence by theorem 2.5.5 we can construct its coisotropic reduction.

We will denote by N+
s the space of equivalence classes of future–oriented null geodesics

that differ by a translation of the parameter. Thus two parametrized null geodesics γ1 (t),
γ2 (τ) are equivalent if there exists a real number s such that γ2 (τ) = γ1 (t+ s). The
equivalence class of future–directed null geodesics containing the parametrized geodesic
γ(t) such that γ′(0) = v will be denoted by γv. The spaceN+

s is sometimes called the space
of future–directed scaled null geodesic and describes equivalence classes of null geodesics
distinguishing different scale parametrizations. Clearly there is a natural projection π :
N+

s → N defined by π(γv) = [γv] = γ[v].
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Theorem 2.5.7. Let (M,g) be a spacetime, then:

1. The characteristic distribution K = kerωg |N+ is generated by the restriction of the
geodesic spray Xg to N+ and N+/K can be identified naturally with the space of
scaled null geodesics N+

s .

2. If M is strongly causal, N+
s is a quotient manifold of N+, and it becomes a symplec-

tic manifold with the canonical reduced symplectic structure obtained by coisotropic
reduction of ωg.

Proof. In order to prove (1), we just check that ωg(Xg, Y ) = 0. Indeed, we have that

ωg (Xg, Y ) = ĝ∗ω (Xg, Y ) = ω (ĝ∗ (Xg) , ĝ∗ (Y )) =

= ω (XH , ĝ∗ (Y )) = iXH
ω (ĝ∗ (Y )) =

= dH (ĝ∗ (Y )) = Y (H ◦ ĝ) =
= Y (L) = 0

for all Y ∈ TN+ because N+ ⊂ N = L−1(0) (see equation (1.2.1)).
Notice that the flow Φt of the geodesic spray Xg is such that Φs(γ(t)) = γ(t + s)

where γ(t) is a parametrized geodesic. Then the quotient N+/K corresponds exactly to
the notion of scaled null geodesic before. We will denote, as before, by ρ : N+ → N+

s the
canonical projection and, with the notations above, we get simply that ρ(v) = γv.

Since M is strongly causal, the proof of (2) mimics the proof of proposition 2.2.7 (see
also remark 2.2.8). Hence due to (2) in theorem 2.5.5, we conclude that the quotient
manifold inherits a canonical symplectic structure by coisotropic reduction of ωg.

2.5.2

Symplectic reduction

We will introduce the Theorem of Marsden-Weinstein in order to apply it to construct N
by symplectic reduction from T ∗Mas it is mentioned in [30], [44] and [45].

Definition 2.5.8. Let (P, ω) be a connected symplectic manifold and G a Lie group with
Lie algebra g. An action Φ : G × P → P is said to be a symplectic action if for each
g ∈ G the map Φg : P → P defined by Φg (p) = Φ (g, p) verifies Φ∗

gω = ω.
A map J : P → g∗ will be called a momentum map for the action Φ if for every η ∈ g

dĴ (η) = iηP
(ω)

where Ĵ (η) : P → R is defined by Ĵ (η) (p) = J (p) (η) and ηP is the infinitesimal gener-
ator of the action corresponding to η.

Definition 2.5.9. A momentum map J of an action Φ : G × P → P is said to be
Ad∗–equivariant if Φ is compatible with J , that is

J (Φg (p)) = Ad∗g−1J (p)

for all p ∈ P and g ∈ G, where Ad∗g−1 denotes de co–adjoint action associated to G.
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Example 2.5.10. Consider a hamiltonian function H : T ∗M → R and its corresponding
hamiltonian vector field XH . The flow Φ : R × T ∗M → T ∗M of XH is an action of
the Lie group R (with the usual addition) since it trivially verifies for all t, s ∈ R and
α ∈ T ∗M

Φ (0, α) = α

Φ (t+ s, α) = Φ (t,Φ (s, α))

for being a flow. Moreover, we have that

d

dt

∣∣∣∣
t=0

Φ∗
tω = LXH

ω = iXH
(dω) + d (iXH

(ω)) = 0

since both ω and iXH
ω are exact, hence closed. This implies that Φ∗

tω is constant, then
Φ∗

tω = Φ∗
0ω = ω and therefore Φ is a symplectic action.

Since G = R is the Lie group of the action Φ, then we have that g ≃ R ≃ g∗.
Next, we will see that a hamiltonian function H is a moment map. Indeed, we define

the maps Ĵ (k) : T ∗M → R by Ĵ (k) = kH and then we have

J (α) (k) = Ĵ (k) (α) = (kH) (α)

Now, consider k ∈ R ≃ g, then its infinitesimal generator at α ∈ T ∗M is

kT∗M (α) =
d

dt

∣∣∣∣
t=0

Φ (exp (t · k) , α) = d

dt

∣∣∣∣
t=0

Φ (tk, α) = kXH (α)

Then
ikXH

(ω) = k · iXH
(ω) = k · dH = d (kH) = dĴ (k)

hence J is a momentum map. For any H (α) ∈ R ≃ g∗ we have that H (α) (k) = kH (α) =
J (α) (k) for all k ∈ R ≃ g then

H (α) = J (α)

for all α ∈ T ∗M , then J = H and therefore H is a momentum map.
Recall that, in this case, the exponential in G, the adjoint and the co–adjoint actions,

that is exp, Adt and Ad∗t respectively, are the corresponding identity maps. Since

Ad∗−t (k) (Xn) = k (Ad−t (Xn)) = k (Xn)

for k ∈ R ≃ g∗, then the co–adjoint action Φt = Ad∗−t verifies

Φt (k) = k ∈ g∗

for every t ∈ R. This implies that the stabilizer of k is

Gk =
{
t ∈ R : Φt (k) = k

}
= R

It is trivial to see that H is Ad∗–equivariant because

H (Φt (α)) = H (α) = Ad∗−tH (α)

is verified automatically since H is invariant by the flow Φt of XH .
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Theorem 2.5.11. (Marsden-Weinstein-Meyer Reduction Theorem) Let (P, ω) be
a symplectic manifold on which the Lie group G acts symplectically and let J : P → g∗ be
an Ad∗–equivariant momentum map for this action. Assume µ ∈ g∗ is a regular value of
J and that the isotropy group Gµ under the Ad∗ action on g∗ acts freely and properly on
J−1 (µ). Then Pµ = J−1 (µ) /Gµ has a unique symplectic form ωµ with the property

π∗
µωµ = i∗µω

where πµ : J−1 (µ)→ Pµ is the canonical projection and iµ : J−1 (µ)→ P the inclusion.

Proof. See [1, Th. 4.3.1].

Consider the restriction of the hamiltonian function H : T ∗M → R defined in (2.4.9)

by H (α) = 1
2g
(
ĝ−1 (α) , ĝ−1 (α)

)
to the subbundle T̂ ∗M = {α ∈ T ∗M : α 6= 0}. Let

Φ : R × T̂ ∗M → T̂ ∗M be the action defined by the flow of XH . In example 2.5.10 we
have seen that Φ is a symplectic action with Ad∗–equivariant momentum map H .

Recall that

H ◦ ĝ (v) = 1

2
g (v, v) = L (v)

for any v ∈ T̂M . We saw by means of the expression (1.2.2) that 0 ∈ R is a regular value
of L (v) = 1

2g (v, v) therefore, since ĝ−1 is a diffeomorphism, 0 ∈ R is also a regular value
of H . Moreover, if α ∈ H−1 (0) with ĝ (v) = α 6= 0 then

α ∈ H−1 (0)⇔ H (α) = 0⇔ H ◦ ĝ (v) = 0⇔ g (v, v) = 0⇔ v ∈ N

therefore we have that
H−1 (0) = N∗

Given ξ ∈ T̂M , let us denote by αξ ∈ T̂ ∗M the element such that αξ = ĝ (ξ). So,
denote by cξ the integral curve of Xg passing through ξ and cαξ

the corresponding integral
curves of XH . We have seen in lemma 2.4.6 above that ĝ (cξ (t)) = cαξ

(t) and moreover

πT∗M
M

(
cαξ

(t)
)
= πTM

M (cξ (t)) = µ (t). If ξ ∈ N then αξ ∈ N∗ ⊂ T̂ ∗M . Since µ is a light
ray and M is strongly causal, then µ can not have any loop and hence it is injective,
therefore cαξ

is also injective. So, if s 6= t then

cαξ
(s) 6= cαξ

(t)⇒ Φ (s, αξ) 6= Φ(t, αξ)⇒ Φs (αξ) 6= Φt (αξ)

and hence the restriction of the action Φ is free for every α ∈ N∗.
Now, we will show that Φ is proper. Consider the sequences {tn} ⊂ R and {αn} ⊂ N∗

such that
αn 7→ α ∈ N∗ and Φtn (αn) 7→ β ∈ N∗

and take two relatively compact neighbourhoods Uα, Uβ ⊂ N∗ of α and β respectively.

SinceM is assumed to be null pseudo–convex, then for the compactK = πT∗M
M

(
Uα ∪ Uβ

)

there is a compact K ′ ⊂ M such that any null geodesic segment with endpoints in K
is totally contained in K ′. Due to M is strongly causal, there exists τ ∈ R such that
πT∗M
M (Φt (α)) /∈ K ′ for all t ≥ τ . Observe that for a fixed t ∈ R such that Φt (α) is

defined, there is a subsequence of {αn} such that Φt (αk) 7→ Φt (α). In particular, also



The space of light rays 55

for t = τ , then there is a subsequence such that πT∗M
M (Φτ (αm)) /∈ K ′. Since M is null

pseudo–convex and πT∗M
M (Φtm (αm)) ∈ K ′ then we have that tm < τ and therefore there

exist a convergent subsequence of {tm}. Hence Φ is proper.
Now, we can apply theorem 2.5.11 on the action defined by the flow of the hamiltonian

vector field XH with momentum map H . In this way, we can ensure that

Ns = N∗/D

is a symplectic manifold equipped with the 2–form ω verifying π∗ω = j∗ω where π :
N∗ → Ns is the canonical projection and j : N∗ → T ∗M the inclusion and where D is the
distribution generated by the integral curves of XH restricted to N∗.
Ns is sometimes named the space of scaled null geodesic and describes null geodesics

distinguishing different parametrizations. Since N+∗ = ĝ (N+) and N−∗ = ĝ (N−) are
disjoint, then we can define

N+
s = N+∗/D and N−

s = N−∗/D

where N+
s is called the space of future–directed scaled null geodesic. The definitions of N+

s

done in the present section and in section 2.5.1 are equivalent in virtue of ĝ (N+) = N+∗

and ĝ∗ (Xg) = XH , so we will abuse of the notation and denote both constructions by
N+

s . Moreover, we will keep the notation and we will denote by ω, H ,π, ... the restrictions
to N+

s and N+∗ of the same objects in Ns and N∗.
Consider π̂ : N+ → N+

s defined by π̂ = π ◦ ĝ and given v ∈ N+, denote by π̂ (v) =

γv ∈ N+
s the null geodesic defined by

{
γv (0) = p ∈M
γ′v (0) = v ∈ N+

p
. It is clear that π̂ (γ′v (s)) =

π̂ (γ′v (0)) for all s in the domain of γv.
So, given v, w ∈ N+ such that π̂ (v) = π̂ (w) then

γv (s) = γw (s+ a)

for some a ∈ R. If ∆ is the Euler vector field in N+ and cv (t) = etv and cw (t) = etw the
corresponding integral curves of ∆ passing by v and w respectively, then

(dπ̂)w (∆ (w)) = (dπ̂)w (c′w (0)) =
d

dt

∣∣∣∣
t=0

(
π̂
(
etw
))

=

=
d

dt

∣∣∣∣
t=0

(
π̂
(
etγ′w (0)

))
=

d

dt

∣∣∣∣
t=0

(
π̂
(
etγ′v (a)

))
=

d

dt

∣∣∣∣
t=0

(
π̂
(
etγ′v (0)

))
=

=
d

dt

∣∣∣∣
t=0

(
π̂
(
etv
))

= (dπ̂)v (c
′
v (0)) = (dπ̂)v (∆ (v))

therefore (dπ̂)w (∆ (w)) = (dπ̂)v (∆ (v)) for all v, w ∈ π̂−1 (γv) = π̂−1 (γw). This implies
that the push–forward ∆ = π̂∗ (∆) ∈ X (N+

s ) is well defined, thus since ĝ∗ (∆) = E , we
have that

E = π∗ (E) = π∗ ◦ ĝ∗ (∆) = π̂∗ (∆) = ∆ ∈ X
(
N+

s

)

is also well defined.
In next two lemmas, we identify the tautological 1–form and the Liouville vector field

of N+
s . We check that both result from the ones in T ∗M .
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Lemma 2.5.12. Let π : N+∗ → N+
s be the canonical projection, j : N+∗ → T̂ ∗M the

inclusion and E ∈ X
(
T̂ ∗M

)
the Euler field. Given E = π∗ (E), if we define θ = −iEω

then we have that π∗θ = j∗θ.

Proof. Given X ∈ X (N+∗) and α ∈ N+∗, then

π∗θ (Xα) = θ ((dπ)α (Xα)) = −iEω ((dπ)α (Xα)) = −ω ((dπ)α (Eα) , (dπ)α (Xα)) =

= − (π∗ω)α (Eα, Xα) = − (j∗ω)α (Eα, Xα) = − ω|
N∗ (Eα, Xα) = θ|

N+∗ (Xα) =

= (j∗θ) (Xα)

therefore π∗θ = j∗θ concluding the proof.

Lemma 2.5.13. With the same notation of lemma 2.5.12 it is verified that LEω = ω,
dθ = −ω and LEθ = θ.

Proof. First, by the Cartan’s formula we have that

LEω = iEdω + d (iEω) = d (iEω) = −dθ

Let α ∈ N+∗ such that γ = π (α). Given X,Y ∈ X (N+
s ) and Xα, Yα ∈ TαN+∗ such

that Xγ = (dπ)α (Xα) and Y γ = (dπ)α (Yα), then

LEω
(
Xγ , Y γ

)
= −dθ

(
Xγ , Y γ

)
= −dθ ((dπ)α (Xα) , (dπ)α (Yα)) = −π∗

(
dθ
)
(Xα, Yα) =

= −d
(
π∗θ
)
(Xα, Yα) = −d (j∗θ) (Xα, Yα) = j∗ (−dθ) (Xα, Yα) =

= j∗ω (Xα, Yα) = π∗ω (Xα, Yα) = ω
(
Xγ , Y γ

)

hence LEω = −dθ = ω.
Finally, observe that

θ
(
E
)
= θ (π∗ (E)) =

(
π∗θ
)
(E) = (j∗θ) (E) = θ|

N+∗ (E) = 0.

Now, we have

LEθ
(
Xγ

)
= iEdθ

(
Xγ

)
+ d

(
iEθ
) (
Xγ

)
= −iEω

(
Xγ

)
+ d

(
θ
(
E
)) (

Xγ

)
= θ

(
Xγ

)

therefore LEθ = θ.

2.5.3

Contact structure of N by symplectic reduction

It is possible to state N as the base manifold of a principal bundle of the space N+
s . Next

lemma give us the result.

Lemma 2.5.14. π : N+
s → N is a principal bundle with structural group the multiplica-

tive group R+ = ((0,∞) , ·).
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Proof. We will show that the flow Φ : R+×Ns → Ns defined by the vector field E ∈ X (N )
defined in lemma 2.5.12 is a right action acting freely and properly.

It is clear that Φ is a right action and it can be written by

Φ (t, γv) = γtv

where γu denotes the future–directed null geodesic defined by the null vector u ∈ N+. It
is well known that for any λ ∈ R+ it is verified that γλu (s) = γu (λs). Then, the equality
Φ (t, γv) = γv, that is γtv = γv, implies that tv = v whence t = 1 is the only solution.
Therefore the action is free.

Now, consider two sequences {γvn} and {Φtn (γvn)} converging to γv and γu respec-
tively. Since Φtn (γvn) = γtnvn and again γtnvn (s) = γvn (tns) then γu and γv have the
same image as parametrized curve inM , then for every s we have γu (s) = γv

(
ts
)
for some

t ∈ R+. So we have that u = tv and hence tnvn 7→ tv. Since v 6= 0 and

{
vn 7→ v
tnvn 7→ tv

then we have that tn 7→ t. This shows that the action Φ is proper. Then we have shown
that π : N+

s → N is a principal bundle with structural group R+.

Next proposition 2.5.15 shows that the distribution of hyperplanes in N+
s defined by

the kernel of θ descends to a distribution of hyperplanes in N defined by the kernel of
a 1–form θ0. In the literature, for a fibre bundle π : P → M and a 1–form β in P , the
existence of a 1–form β0 in M such that π∗β0 = λ is said that β is projectable to β0 by
π. So, we will show that θ is projectable to θ0.

Proposition 2.5.15. Let π : N+
s → N be the principal bundle of lemma 2.5.14, then

there exists a 1–form θ0 in N such that π∗θ0 = θ.

Proof. First, observe that since LEω = ω then E is a Liouville vector field. Denote by Φt

the flow of E and recall that N is the space of orbits of the flow Φ. Consider the 1–form
θ in N+

s . Since θ = −iEω and ω is the symplectic form of N+
s , then θ is not zero. Let us

call H = ker
(
θ
)
, then H is a distribution of hyperplanes, that means dim

(
H
)
= 2m− 3

at every point since dim (N+
s ) = 2m− 2. Observe that the fibres of π : N+

s → N are the
integral curves of E and moreover the differential dπγ has rank 2m− 3 for any γ ∈ N+

s .
Since

θ
(
E
)
= −iEω

(
E
)
= −ω

(
E , E

)
= 0

then E ∈ H, and thus dim
(
dπγ

(
ker
(
θ
)))

= 2m− 2. This implies that H = π∗
(
H
)
is a

distribution of hyperplanes at every γ ∈ N and, by remark 2.4.3, there exists a 1–form
θ0 ∈ X∗ (N ) such that ker (θ0) = H. Since

π∗θ0 (v) = 0⇔ θ0 (π∗ (v)) = 0⇔ π∗ (v) ∈ H ⇔ v ∈ H ⇔ θ (v) = 0

then we conclude that θ = π∗θ0.

The distribution of hyperplanes in N defined in proposition 2.5.15 is, in fact, a contact
structure. This result can be found, for example in [44], [45] and [30].

Theorem 2.5.16. N is equipped with a canonical contact structure.
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Proof. By proposition 2.5.15, we have that there exists θ0 ∈ X∗ (N ) such thatH = ker (θ0)
is a distribution of hyperplanes. Now, we have that

π∗
(
θ0 ∧ (dθ0)

m−2
)
= π∗ (θ0) ∧ π∗

(
(dθ0)

m−2
)
= θ ∧ (dπ∗ (θ0))

m−2 =

= θ ∧
(
dθ
)m−2

= −iEω ∧ (−1)m−2
ωm−2 =

= (−1)m−1
iEω ∧ ωm−2 =

(−1)m−1

m− 1
iEω

m−1 6= 0

since, by remark 2.4.3, ωm−1 is a volume form in Ns. This implies that H is a contact
structure in N .

Next, we will look for an expression for the local contact forms defining the contact
structure H ⊂ TN . Recall that a coordinate chart ψ : U ⊂ N → R2m−3 can be defined
via the diffeomorphism U → ΩT (C) of diagram (2.2.8), where ΩT (C) is an embedded
submanifold of TV ⊂ TM with V ⊂ M a basic open set with Cauchy surface C. Then
we have the following diagram

N ⊃ U TV

R2m−3 ⊃ B0 B ⊂ R2m

z

z

ψ φ

(2.5.3)

where z = φ−1◦z◦ψ. The image of the embedding z is contained in N+ (C), and moreover
if pN : N+ → N is the canonical projection, then pN ◦ z ([γ]) = [γ] for all [γ] ∈ U ⊂ N .
Then z is a local section of pN.

By lemma 2.5.12, proposition 2.5.15 and theorem 2.5.16, we have that for ξ ∈ TN+

θα (ξ) = (θ0)pN∗ (α)
((dpN∗)α (ξ))

then, by diagram in (2.4.13), pN = pN∗ ◦ ĝ, and hence we can write for J ∈ T[γ]N ⊂ TU

θĝ◦z([γ])

(
d (ĝ ◦ z)[γ] (J)

)
= (θ0)[γ] (J)

On the other hand, by definition of the tautological 1–form θ and since πTM
M = πT∗M

M ◦ ĝ,
we have

θĝ◦z([γ])

(
d (ĝ ◦ z)[γ] (J)

)
= ĝ ◦ z ([γ])

(
d (ĝ ◦ z)[γ] (J)

)
=

= g

((
dπT∗M

M

)
ĝ◦z([γ])

(
d (ĝ ◦ z)[γ] (J)

)
, z ([γ])

)
=

= g
((
dπTM

M

)
z([γ])

(
dz[γ] (J)

)
, z ([γ])

)
=

= g (J (0) , γ′ (0))
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where z ([γ]) ∈ N+ (C) is a vector defining the light ray [γ] ∈ U , so we have considered
the null geodesic γ such that γ′ (0) = z ([γ]). On the other hand, observe that if J =
Γ′ (0) ∈ T[γ]N where Γ is a smooth curve in N with Γ (0) = [γ], then

(
dπTM

M

)
z([γ])

(
dz[γ] (J)

)
=
(
dπTM

M

)
z([γ])

(
dz[γ] (Γ

′ (0))
)
=
(
πTM
M ◦ z ◦ Γ

)′
(0)

where πTM
M ◦ z ◦Γ is the curve in M where z ◦Γ ⊂ N+ (C) rest. By lemma 2.3.5, we have

that
(
πTM
M ◦ z ◦ Γ

)′
(0) = J (0) and therefore we claim that

(θ0)[γ] (J) = g (J (0) , γ′ (0))

and then
J ∈ H ⇐⇒ g (J (0) , γ′ (0)) = 0.

It is clear that this characterization does not depends neither on the representative of the
conformal metric C nor on the parametrization of γ in virtue of lemma 2.3.13.

Again, since the expression of the local 1–form θ0 defining the contact structure H
coincides with the one constructed in section 2.4.2, then the same used arguments to show
that H is cooriented and conformal remain valid.





Chapter 3

The space of skies

In this chapter we will deal with a structure associated to the space of light rays N of M
consisting of a family of compact submanifolds of N in correspondence with points ofM .

Given a point x ∈M , the set of light rays passing through x will be called the sky of
x and will be denoted by S (x) or X , i.e.

X = S (x) = {γ ∈ N : x ∈ γ ⊂M}. (3.0.1)

Fixed x ∈M , notice that the light rays γ ∈ S(x) are in one–to–one correspondence with

the elements in the fibre PNx =
(
πPN

M

)−1
(x) ⊂ PN, hence the sky S (x) of any point

x ∈M is diffeomorphic to the standard sphere Sm−2 ≃ PNx. Now, it is possible to define
the space of skies by

Σ = {S (x) ⊂ N : x ∈M} (3.0.2)

and the sky map by
S : M → Σ

x 7→ S (x)

The map S is, by definition of Σ, surjective. When S is a bijection, its inverse map is
called the parachute map and it will be denoted by P = S−1 : Σ→M . An important part
of this chapter will be devoted to the study of the natural topological and differentiable
structures induced in the space of skies Σ considered as a collection of subsets of N . In
order to understand better the structures inherited by Σ we need to analyse the structure
of TN .

Consider X = S (x) ∈ Σ, then for any γ ∈ X , the tangent space TγX can be charac-
terized by

TγX =
{
J ∈ TγN : J (s0) = 0 (modγ′ (s0)) with γ (s0) = x = S−1 (X)

}
(3.0.3)

as done in (2.4.1).
Recall that in a (2n+ 1)–dimensional contact manifold P with contact structure H,

a n–dimensional submanifold N ⊂ P is said to be legendrian if TN ⊂ H. Then observe
that for every J ∈ TγN we have g (J, γ′) is constant, and if moreover J ∈ TγX , since
J (s0) = 0 (modγ′ (s0)) for some s0, then g (J, γ′) = 0. This implies that TγX ⊂ Hγ ,
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that is, the Jacobi fields tangent to some sky X ∈ Σ are in the contact structure H of N
and therefore any sky is a legendrian submanifold of N . Moreover, again as in (2.4.3),
the contact hyperplanes are generated by tangent vectors of two non–conjugated points
x, y ∈ γ along the same γ ∈ N , that is

Hγ = TγX ⊕ TγY. (3.0.4)

Definition 3.0.17. A spacetime M is said to separate skies or to be sky separating if
the sky map is injective, that is if S (x) = S (y) then x = y.

Given a spacetime M , theorem 1.2.15 implies the existence of a basic neighbourhood
V at any point p ∈ M , so by the causal convexity and normality of V there is not
two different null geodesics connecting two different points q1, q2 ∈ V . Then, skies of
points of V can not coincide and therefore M locally separates skies. So, this property is
clearly natural but it is easy to find an example of a spacetime which is not globally sky
separating.

Example 3.0.18. Consider the 3–dimensional Einstein’s cylinder given by M = R× S2

equipped with the metric defined by

ds2 = −dt2 + sin2 φ dθ2 + dφ2

where θ ∈ [0, 2π) and φ ∈ [0, π] represent the longitude and colatitude respectively of the
sphere S2. If we rename the coordinates as x0 = t , x1 = θ and x2 = φ, the non–vanishing
Christoffel symbols in M can be written by

Γ2
11 = − cosφ sinφ

Γ1
21 = Γ1

12 =
cosφ

sinφ

therefore the null geodesics in M are given by γ (s) = (γ1 (s) , γ2 (s)) where γ1 is a geodesic
in R and γ2 a geodesic in S2 such that their parameters match to make a null geodesic of
γ.

Since γ2 describes a maximal circumference in S2, then it is periodic and all geodesics
passing through a point p = (t0, θ0, φ0) also pass through the point q = (t0 + L, θ0, φ0)
where L is the period of γ2. Then S (p) = S (q) but p 6= q and therefore M does not
separate skies.

If x 6= y ∈ M are points such that S (x) = S (y), then every outgoing (or incoming
because we do not distinguish future and past in this context) light ray from y refocuses to
the point x. In [31], Kinlaw names the lack of skies separation strong refocusing property.
Related to this, Low introduces in [38], [44] and [45], the concept of weak refocusing that
Kinlaw studies widely in [31].

Definition 3.0.19. Let M be a strongly causal spacetime. We will say that refocusing
or weak refocusing at x ∈ M occurs if there exists an open neighborhood V of x such
that for all open U with x ∈ U ⊂ V , there exists y /∈ V such that all light rays through
y enter U . In case there is not refocusing at any x ∈ M , then we shall say that M is
non–refocusing.
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In order to establish the topological equivalence betweenM and Σ in [31], the required
hypotheses are M is strongly causal, null pseudo–convex and non–refocusing, but we will
show in section 3.5 that we can replace the property of non–refocusing by the skies
separating one. Trivially, the former hypothesis implies the latter one. Figure 3.1 shows
the difference between both concepts.

Figure 3.1: Skies of p and q are not separated (strong refocusing). Weak refocusing at x.

Unless otherwise stated, throughout this chapter 3 we will assume thatM is a strongly
causal, null pseudo–convex and sky separating spacetime.

Section 3.1

Coordinates in TN

In this section we will construct a smooth atlas suitable to describe the vectors in TN
by the initial values of the Jacobi field they represent. We will show that this atlas is
compatible with the one defined by the canonical coordinates in TN , and it will be a very
helpful tool used in the study of the differentiable structure of Σ.

First, consider an atlas for M with local charts
(
V, ϕ =

(
x1, . . . xm

))
such that V is

basic open set and, without lack of generality, the local hypersurface C ⊂ V defined
by x1 = 0 is a smooth spacelike Cauchy surface in V , then each null geodesic passing
through V intersects C at exactly one point. Motivated by the diagram (2.2.8) we have
the following one

PN (C) U ⊂ N

ΩT (C)

σ

σ ◦ ρρ

(3.1.1)

where, recall that we denote ΩT (W ) = {v ∈ N+ (W ) : g (v, T ) = −1} for W ⊂ M and
T ∈ X (M) a non–vanishing future timelike vector field, and where the maps σ and ρ are
diffeomorphisms.
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Then, in order to construct said coordinate chart in N , we will build a chart in ΩT (C)
by restriction of a chart in TM and we will use it as a chart in N via the diffeomorphism
(σ ◦ ρ)−1

.
Let {E1, . . . , Em} ⊂ X (V ) be an orthonormal frame such that E1 = T is a non–

vanishing future timelike vector field in V . If ξ ∈ TpV is written by ξ =
m∑
j=1

ujEj (p) then

(TV, φ) with:
φ : TV → R2m

ξ 7→
(
x1, . . . , xm, u1, . . . , um

)

is a local coordinate chart in TM .

For ξ ∈ N+ (V ) we have
(
u1
)2

=
m∑
j=2

(
uj
)2

so, a coordinate chart in N+ (V ) is given

by the map
ξ 7→

(
x1, . . . , xm, u2, . . . , um

)
∈ R2m−1

If we consider ξ ∈ ΩT (V ) then

g (ξ, T ) = −1⇒ g
(
ujEj , E1

)
= −1⇒ u1 = 1

then
(
u2, . . . , um

)
lies in Sm−2 and describes a null direction. So, for example, we can

take u2 =

√
1− (u3)

2 − · · · − (um)
2
to obtain the coordinate chart

ΩT (V ) → R2m−2

ξ 7→
(
x1, . . . , xm, u3, . . . , um

) (3.1.2)

and the restriction to ΩT (C) verifies x1 = 0 and therefore give us the following chart

φ : ΩT (C) → R2m−3

ξ 7→
(
x2, . . . , xm, u3, . . . , um

) (3.1.3)

thus a coordinate chart (ψ,U) in N can be defined by

ψ = (σ ◦ ρ)−1 ◦ φ : U → R2m−3

γ 7→
(
x2, . . . , xm, u3, . . . , um

)
= (x,u)

(3.1.4)

where γ ∈ U is represented by the null geodesic verifying γ (0) = p ∈ C ⊂ V and
γ′ (0) = E1 (p) + u2E2 (p) + · · ·+ umEm (p) ∈ ΩT (C).

Now, we will define an atlas on TN by using the open sets TU . Thus, in order to
complete a chart in TU , we will add the coordinates for the tangent vectors at every light
ray γ ∈ N with coordinates x,u. This can be done by using the initial values at t = 0 for
Jacobi’s equation (2.3.1) whose solutions are the Jacobi fields along γ. Thus if J ∈ TγN
then 




J (0) =
m∑
j=1

wjEj (p)

J ′ (0) =
m∑
j=1

vjEj (p)

define J , so a chart in TU is given by the map ψ : TU → R4m−6:

ψ(J) =
(
x,u;

〈
w1, . . . , wm

〉
,
〈
v1, . . . , vm

〉)
= (x,u;w,v) ∈ R4m−6 , (3.1.5)
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with w =
〈
w1, . . . , wm

〉
and v =

〈
v1, . . . , vm

〉
denoting respectively,

{
w =

(
w1, . . . , wm

)
(modγ′)

v =
(
v1, . . . , vm

)
(modγ′)

where
(
a1, . . . , am

)
(modγ′) =

m∑
j=1

ajEj (p) (modγ′ (0)).

We may define m − 2 independent coordinates from (v1, . . . , vm) and m − 1 from
(w1, . . . , wm) as follows. Notice that because of equation (2.3.8), J ′ (0) is orthogonal to
γ′ (0), so v1 = v2u2+ · · ·+vmum. Then, we may consider the Jacobi field J representative
of J ∈ TN as the one verifying

J (0) = J (0)− w1γ′ (0) =
(
w2 − w1u2

)
E2 + · · ·+

(
wm − w1um

)
Em (3.1.6)

J
′
(0) = J ′ (0)− v1γ′ (0) =

(
v2 − v1u2

)
E2 + · · ·+

(
vm − v1um

)
Em (3.1.7)

therefore the coordinates w and v can be written as
{

w =
(
w2, . . . , wm

)

v =
(
v3, . . . , vm

) (3.1.8)

where wk = wk − w1uk and vk = vk − v1uk for k = 1, . . . ,m. Finally notice that
since

(
u2, . . . , um

)
6= (0, . . . , 0) then there exist j = 2, . . . ,m such that uj 6= 0. If, for

instance u2 6= 0, then we have v2 = − 1
u2

∑m
j=3 v

juj since v1 = v2u2 + · · · + vmum. So,
we will denote, with an slight abuse of notation, by (x,u;w,v) the 4m− 6 independent
coordinates thus constructed on TU .

It is possible to show the compatibility between the local charts (x,u,w,v) and the
canonical atlas defined on the tangent bundle TN over the open sets TU with canonical
coordinates (x,u, ẋ, u̇). This would imply that the local charts (x,u,w,v) and (x,u, ẋ, u̇)
are in the same maximal atlas.

In order to show it, let us describe how the coordinates (w,v) depends on the canonical
ones. Let us consider the coordinate chart (ψ,U) in N given by (3.1.4) where γ (0) ∈ C
for each γ ∈ U . So, let Γ1(s) ∈ U ⊂ N , s ∈ (−ǫ, ǫ), be a curve such that its coordinates
are

ψ (Γ1 (s)) =
(
x20, . . . , x

m
0 , α

3 (s) , . . . , αm (s)
)

This curve corresponds to a geodesic variation f (s, t) such that

λ (s) = f (s, 0) = p ∈M

for every s because the coordinates x =
(
x20, . . . , x

m
0

)
remain constant, and moreover the

curve β (s) = ∂f (s, t) /∂t ∈ TpM is given by

β (s) = E1 (p) + α2 (s)E2 (p) + α3 (s)E3 (p) + . . .+ αm (s)Em (p) .

Hence f can be written by the expression similar to the one in lemma 2.3.5

f (s, t) = expp (tβ (s)) .

Calling J the Jacobi field of f , then by lemma 2.3.5 we have that
{

J (0) = 0
J ′ (0) = β′ (0)

(3.1.9)
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Now, if we consider a curve Γ2 ⊂ N such that its coordinates are

ψ (Γ2 (s)) =
(
x2 (s) , . . . , xm (s) , u30, . . . , u

m
0

)

This curve corresponds to a geodesic variation f (s, t) verifying

λ (s) = f (s, 0) ∈ C ⊂M

The fact of the coordinates uk = uk0 remain constant implies that

W (s) =
∂f

∂t
(s, 0) = E1 (λ (s)) + u20E2 (λ (s)) + . . .+ um0 Em (λ (s)) (3.1.10)

and W (s) belongs to Tλ(s)M . So, the geodesic variation f corresponding to Γ2 can be
written by

f (s, t) = expλ(s) (tW (s))

Again, if J is the Jacobi field of f , then by lemma 2.3.5

{
J (0) = λ′ (0)

J ′ (0) = DW
ds (0) .

(3.1.11)

Choosing curves Γ1 and Γ2 such that Γ′
1 (0) =

(
∂

∂ui

)
Γ1(0)

and Γ′
2 (0) =

(
∂

∂xj

)
Γ2(0)

respectively with i = 3, . . . ,m and j = 2, . . . ,m, then we have that the change from
canonical coordinates (x,u, ẋ, u̇) to the coordinates (x,u,w,v) verifies

(
w

v

)
=

(
wi

vj

)
=

(
A 0
B Im−2

)(
ẋ

u̇

)
(3.1.12)

with i = 3, . . . ,m and j = 2, . . . ,m. The matrix Im−2 ∈ R(m−2)×(m−2) is the identity
matrix and B ∈ R(m−2)×(m−1) is the matrix whose (k − 1)–th column is the vector
containing the v–coordinates of DWk

ds (0) with k = 2, . . . ,m with

Wk (s) = E1 (λk (s)) + u20E2 (λk (s)) + . . .+ um0 Em (λk (s)) (3.1.13)

and λk (s) a curve such that xj (λk (s)) = xj0 are constant for j 6= k and xk (λk (s)) =
xk0 + s.

Since J (0) = λ′k (0) =
(
∂/∂xk

)
λk(0)

=
∑m

j=1 w
j
kEj then we have that wj = wj

k−w1
ku

j

for j = 2, . . . ,m. This implies that the matrix A is given by

A =
(
wj

k − w1
ku

j
)
; j, k = 2, . . . ,m . (3.1.14)

Calling V = span {Ej (λk (0))}j=2,...,m, the projection πu : Tλk(0)M → V is given by

πu (η) = η − g (η,E1) γ
′ (0) ,

where we have taken γ′ (0) = E1 + u2E2 + · · · + umEm. The matrix Ã of πu relative to

the basis
{
(∂/∂xk)λk(0)

}
k=1,...,m

in Tλk(0)M and {Ej (λk (0))}j=2,...,m in V is

Ã =
(
wj

k − w1
ku

j
)
; j = 2, . . . ,m, k = 1, . . . ,m .
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We have that V and Vc = span

{(
∂

∂xk

)
λk(0)

}

k=2,...,m

are spacelike by construction,

kerπu = span {γ′ (0)} and the matrix of the restriction πu|Vc
is A, then πu|Vc

is an iso-
morphism and therefore A is regular. Hence, the matrix in (3.1.12) describing the change
of coordinates along the fibers of the tangent bundle TN is regular and differentiable,
then the change of coordinates

(x,u, ẋ, u̇)←→ (x,u,w,v)

is also differentiable. This also shows that (x,u,w,v) is a coordinate chart of the canonical
differentiable structure of TN .

Section 3.2

Topology on Σ

We will start this section defining a natural topology on the space of skies Σ induced by
the topology of N .

Notation 3.2.1. Let U ⊂ N be an open set, then we denote by Σ(U) ⊂ Σ, the set of all
skies X ∈ Σ such that X ⊂ U .

Lemma 3.2.2. The collection of sets

B (X) = {Σ (U) ⊂ Σ : U ⊂ N is open with X ⊂ U}

is a topological basis of Σ at X.

Proof. First, givenX ∈ Σ, there exists x ∈M such that S (x) = X . If σ : P (C)→ U ⊂ N
is the diffeomorphism of diagram (3.1.1) used to define a coordinate chart, where C is a
local Cauchy surface of a basic open set V ⊂ M such that x ∈ C, then trivially we have
that X ∈ U .

On the other hand, if Σ (U) ,Σ (V) ∈ B (X) since clearly we have Σ (U) ∩ Σ (V) =
Σ (U ∩ V) and due to U ∩ V is open in N , then Σ (U ∩ V) ∈ B (X). This implies that
given X ∈ Σ (U) ∩ Σ (V) then taking W = U ∩ V , there exists Σ (W) ∈ B (X) such that
Σ (W) ⊂ Σ (U) ∩ Σ (V). Therefore B (X) is a topological basis for Σ at X .

The previous lemma justifies the following definition.

Definition 3.2.3. The topology T in Σ generated by the bases

B (X) = {Σ(U) ⊂ Σ : U ⊂ N is open with X ⊂ U}

will be called the reconstructive or Low’s topology of Σ.

The reconstructive topology provides good properties to the sky map S.

Proposition 3.2.4. Given a spacetime M with space of skies Σ equipped with the recon-
structive topology, then the sky map S : M → Σ is continuous.
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Proof. We will see that if U ⊂ N is an open subset, then V = S−1(Σ (U)) ⊂ M is also
open. Thus if S(x) ⊂ U we must show that there exists an open subset V x ⊂ M such
that S(y) ⊂ U for all y ∈ V x. Let us suppose that this is not the case. Then, in virtue
of theorem 1.2.15, we can choose a family of compact basic neighbourhoods {V x

n } such
that V x

n+1 ⊂ V x
n with local Cauchy surfaces Cn, Cn+1 ⊂ Cn, such that {x} = ⋂n Cn, and

points yn ∈ V x
n with S(yn) * U . Hence, there exist γn ∈ N with yn ∈ γn, but γn /∈ U . If

γn ∩ Cn = {xn} and xn = γn(0), then limxn = x and, since the space of directions PN
over a compact set is compact, then there exists a convergent subsequence {[γ′k(0)]} ⊂ PN
to some [u] ∈ PNx. Denoting σ : PN (C1)→ U1 ⊂ U the restriction of the diffeomorphism
of diagram (3.1.1) and γ = σ ([u]) ∈ N , we have shown that lim γk = γ = σ ([u]), but
then γ ∈ S(x) ⊂ U , and because U is open, there exists k such that γk ∈ U obtaining a
contradiction.

Now, in order to show that S is open, we will choose a slightly more restrictive
hypothesis: being non–refocusing instead of being sky separating.

Proposition 3.2.5. If M is a non–refocusing spacetime with space of skies Σ equipped
with the reconstructive topology, then the sky map S : M → Σ is open.

Proof. In case of S open, for any open V ⊂ M and all x ∈ V , there exists an open set
U ⊂ N such that S(x) ⊂ U , and Σ (U) ⊂ S (V ). Let us suppose this does not occur.
Taking a family of globally hyperbolic open sets {V x

n } such that V x
n+1 ⊂ V x

n ⊂ V with
local Cauchy surfaces Cn, Cn+1 ⊂ Cn, such that {x} = ⋂n Cn for all n. The sets

Un = {γ ∈ N : γ ∩ V x
n 6= ∅}

are such that Σ(Un) * S(V ), hence there exists xn ∈ M with S(xn) ⊂ Un and xn /∈ V .
Then for all V x

n there exists xn /∈ V x
n such that for all γ ∈ N with xn ∈ γ, then γ∩V x

n 6= ∅
and M is refocusing at x. This contradicts the hypotheses, therefore S is open.

Since the property of being non–refocusing implies being sky separating, due to propo-
sitions 3.2.4 and 3.2.5, we have the topological equivalence between M and Σ by the
following corollary.

Corollary 3.2.6. If M is a non–refocusing spacetime and its space of skies Σ is equipped
with the reconstructive topology, then the sky map S : M → Σ is a homeomorphism.

For any basic neighbourhood V ⊂ M (see theorem 1.2.15) and any x, y ∈ V , then
there exists a unique geodesic segment joining x and y. Let us consider the open U =
S (V ) = {S (x) : x ∈ V }, then for every S(x) = X 6= Y = S(y) ∈ U and γ ∈ X ∩ Y
verifying TγX ∩ TγY 6= {0}, by expression (3.0.3), there exist a Jacobi field J such that
J (s0) = J (s1) = 0 where x = γ (s0) and y = γ (s1), but that is not possible since V is
convex normal (see [53, Prop. 10.10]). So, in this case we have that X = Y and the next
definition is justified.

Definition 3.2.7. A set U ⊂ Σ is called null conjugated if there exist X 6= Y ∈ U and
γ ∈ X ∩ Y such that TγX ∩ TγY 6= {0}. We will say that U ⊂ Σ is null non–conjugated
in other case.

Since S is bijective, we can extend the null conjugation property to M , then we will
say that V ⊂M is null conjugated if and only if U = S (V ) ⊂ Σ also is so.
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If M is a non–refocusing spacetime, observe that basic neighbourhood of x ∈ M
set up a basis for the topology of M at x, then by corollary 3.2.6, null non–conjugated
neighbourhoods of Σ also constitute a basis for the topology of Σ.

It gives us a further condition for null non–conjugated sets to constitute a basis for
the reconstructive topology. Recall that if N is manifold, we denote by T̂N its reduced
tangent bundle, this is, T̂N = ∪x∈N T̂xN where T̂xN = TxN − {0x}. It will also help in
the construction of a differentiable structure in Σ.

Theorem 3.2.8. Let V ⊂M be a relatively compact basic open set. Then U = S (V ) ⊂ Σ

is null non–conjugated and Û =
⋃

X∈U

T̂X ⊂ TN is a regular submanifold of T̂N , where

U =
⋃

X∈U

X.

Proof. Let V ⊂ M be a relatively compact basic open set such that U = S (V ) ⊂ Σ.
Since V is basic, then it is contained in a convex normal neighbourhood, therefore it is
clear that U is null non–conjugated.

We will use the local coordinate chart ψ : U → R2m−3 described by equation (3.1.4)
on U , with U =

⋃
X∈U X =

⋃
x∈V S(x). Without any lack of generality, because of

the properties of V , we can also consider the coordinates ϕ =
(
x1, . . . , xm

)
and the

orthonormal frame {E1, . . . , Em} in V used to construct the coordinates ψ = (x,u,w,v)

of TN in equation (3.1.5) in order to construct a coordinate chart ϕ : Û → R3m−4 such
that

ϕ(J) = (x, u, v) =
(
x1, x2, . . . , xm, u3, . . . , um,

〈
v1 . . . , vm

〉)
∈ R3m−4 (3.2.1)

is analogous to the chart ψ in (3.1.5), and where Û =
⋃

X∈U

T̂X , with J ′
0 =

m∑
j=1

vjEj (x) and

again v =
〈
v1 . . . , vm

〉
=
(
v1, . . . , vm

)
(modγ′). Notice that because of equation (3.0.3)

if J is tangent to a sky S(q), γ(0) = q, then J(0) = 0 (modγ′ (0)), hence the local chart
ϕ is analogous to the chart ψ setting w = 0 but the coordinate x describes the point
q ∈ V where J vanishes. Observe that if J(0) = 0 (modγ′ (0)), trivially we can choose a
representative J such that J(0) = 0.

Now, we will show that the map ϕ gives a differentiable structure to Û which does
not depend on the chart ϕ nor the orthonormal frame chosen in V .

1. First, we will prove that the inclusion i : Û →֒ TU ⊂ TN is differentiable. Recall
the diagram (2.2.7)

PN (V ) U ⊂ N

PN (C)

pPN

σinc

where pPN is a submersion and σ a diffeomorphism. Observe the construction of the
coordinates (x, u) of Û and (x,u) of TN from the coordinates of PN+ (V ) ≃ ΩT (V )
and PN+ (C) ≃ ΩT (C) in equations (3.1.2) and (3.1.3) respectively. Since

σV C = σ−1 ◦ pPN : PN+ (V ) 7→ PN+ (C) (3.2.2)
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then σV C is a submersion. The expression in coordinates of σV C is given by
(x (x, u) ,u (x, u)), hence x (x, u) and u (x, u) are differentiable functions. If x =(
x2, . . . , xm

)
, we will denote (0,x) =

(
0, x2, . . . , xm

)
. Consider then

p (x, u) = ϕ−1 (0,x (x, u)) ∈ C ⊂ V
and

W (x, u) = E1 (p (x, u)) + u2 (x, u)E2 (p (x, u)) + · · ·+ um (x, u)Em (p (x, u))

where u (x, u) =
(
u3 (x, u) , . . . , um (x, u)

)
and u2 =

√
1− (u3)

2 − · · · − (um)
2
. For

any (x, u) we define the following map

h (t, x, u) = expp(x,u) (tW (x, u))

It is clear that h is differentiable by composition of differentiable maps, and for fixed
(x0, u0) the curve γ(x0,u0) (t) = h (t, x0, u0) is a null geodesic such that γ(x0,u0) (0) ∈
C. For any of these geodesics, we have the initial value problem of Jacobi fields
given by the Jacobi equation (2.3.1) with initial data

J (τ) = 0, J ′ (τ) = ξ , (3.2.3)

with τ in the domain of γ(x,u) and ξ ∈ Tγ(x,u)(τ)M . See sketched scheme in figure
3.2.

Figure 3.2: Coordinates in TU and Û .

If we express the Jacobi field J as J = αk∂/∂xk, then Jacobi equation (2.3.1) can
be written by a system of differential equations

d2αk

dt2
+

dαi

dt

(
Γk
ij

∂hj

∂t

)
+ αi d

dt

(
Γk
ij

∂hj

∂t

)
+

+ Γk
ln

(
dαl

dt
+ Γl

ijα
i ∂h

j

∂t

)
∂hn

∂t
− αn ∂h

i

∂t

∂hj

∂t
Rk

jni = 0
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for k = 1, . . . ,m where, for brevity, we write hj = xj ◦ h, Γk
ij = Γk

ij (h (t, x, u)) and

Rk
jni = Rk

jni (h (t, x, u)).

If we transform this second order system into a first order one by using the standard
transformation yk = αk and ym+k = dαk/dt for k = 1, . . . ,m then, the initial value
problem (2.3.1)-(3.2.3) has the form:

dy

dt
= f(t, y, x, u), y(τ) = ξ . (3.2.4)

Let us denote by y
(
t, x, u, τ, ξ

)
the solution of (3.2.4), corresponding to a Jacobi

field Jτ,ξ ∈ Û along the null geodesic γ(x,u) with Jτ,ξ (τ) = 0 and J ′

τ,ξ
(τ) = ξ. By

construction, for each (x, u) there exists a unique τ such that

ϕ (h (τ, x, u)) = x.

We will write this function as τ (x, u) and it is possible to show easily that this
τ is differentiable applying the implicit function theorem to the map F (t, x, u) =
ϕ(h (t, x, u)) − x. The solution y

(
0, x, u, τ (x, u) , ξ

)
gives us the values of Jτ,ξ (0)

and J ′

τ,ξ
(0), and therefore it provides the coordinates w (x, u, v) and v (x, u, v).

The theorem on the regular dependence of solutions of initial value problems with
parameter (see for instance [23, ch. 5]), claims that y

(
0, x, u, τ (x, u) , ξ

)
is a dif-

ferentiable function depending smoothly on the data
(
x, u, ξ

)
, therefore w (x, u, v)

and v (x, u, v) are differentiable functions of (x, u, v). This proves that i : Û →֒ TU
is differentiable.

2. The second step in this proof is to show that i : Û →֒ TU is an immersion. For
this purpose we will show that any regular curve in Û is transformed by i into a
regular curve in TU . Let us consider a regular curve c (s) ∈ Û with s ∈ (−ε, ε).
This means that c (s) = Js is a Jacobi field along a light ray γs (parametrized as a
null geodesic) verifying Js (ts) = 0, and J ′

s (ts) = ξ (s) is not proportional to γ′s (ts).
We will prove that i∗ (c

′ (0)) 6= 0 if c′ (0) 6= 0, that is

c′ (0) 6= 0⇒ (i ◦ c)′ (0) 6= 0

This curve c can be written in coordinates as ϕ (c (s)) = (x (s) , u (s) , v (s)) with
ϕ (c (0)) = (x0, u0, v0) and it has a differentiable image in TU . The inclusion i
transforms the coordinates of c as

ψ ◦ i ◦ (ϕ)−1
(x (s) , u (s) , v (s)) =

= (x (x (s) , u (s)) ,u (x (s) , u (s)) ,w (x (s) , u (s) , v (s)) ,v (x (s) , u (s) , v (s)))

The map (x (x, u) ,u (x, u)) coincides with the expression in coordinates of map
σV C = σ−1 ◦ pPN : PN+ (V ) 7→ PN+ (C) of equation (3.2.2), which is a submersion,
then its differential has maximal rank 2m− 3 and codimension 1. If the curve with
coordinates (x (s) , u (s)) is transversal to the fibre of σV C at s = 0, then obviously
(i ◦ c)′ (0) 6= 0. In other case, we can take c (defining c′ (0)) as a regular curve
verifying that c (s) = Js lies on a fixed null geodesic γ, then

ψ ◦ i ◦ (ϕ)−1
(x (s) , u (s) , v (s)) =
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= (x (x0, u0) ,u (x0, u0) ,w (x0, u0, v (s)) ,v (x0, u0, v (s)))

where (x,u) remains constant for every s. Then the differential

(
dxc(0) (c

′ (0)) , duc(0) (c
′ (0))

)
= (0, 0) .

This regular curve c is a curve of Jacobi fields Js ∈ Û along the null geodesic γ such
that Js (t0 + s) = 0 and J ′

s (t0 + s) = ξ (s) for s ∈ (−ǫ, ǫ) and hence ξ (s) is a vector
field along γ non-proportional to γ′ at s = 0. We can assume, without any lack of
generality that t0 = 0 and the local Cauchy surface C associated with the chart ψ
contains γ (0). We have that J0 (0) = 0. So,

d

ds

∣∣∣∣
s=0

Js (0) = lim
s7→0

Js (0)− J0 (0)
s

= lim
s7→0

Js (0)

s

By [8, Prop. 10.16], we have that Js (t) =
(
expγ(s)

)
∗

(
(t− s) τ(t−s)γ′(s)J

′
s (s)

)
where

for v ∈ Tγ(s)M , the map τv : Tγ(s)M → TvTγ(s)M is the canonical isomorphism.
Then

d

ds

∣∣∣∣
s=0

Js (0) = lim
s7→0

1

s

(
expγ(s)

)
∗

(
(−s) τ(−s)γ′(s)ξ (s)

)
=

= lim
s7→0

(
expγ(s)

)
∗

((−s
s

)
τ(−s)γ′(s)ξ (s)

)
= lim

s7→0

(
expγ(s)

)
∗

(
−τ(−s)γ′(s)ξ (s)

)
=

=
(
expγ(0)

)
∗
(−τ0ξ (0)) = −ξ (0)

Hence, we state that
d

ds

∣∣∣∣
s=0

Js (0) = −ξ (0)

Since ξ (0) is not proportional to γ′ (0) , then dwc(0) (c
′ (0)) 6= 0, and this implies

that i ◦ c is a regular curve for s = 0. Therefore i is an immersion.

3. In the last step of this proof, we will show that Û ⊂ TU is a regular submanifold.
Let us consider the system of ordinary differential equations (3.2.4) for Jacobi fields

in Û . We will denote its solution by y
(
t, x, u, τ, ξ

)
. If the origin of the parameter t

of equation (3.2.4) is lying in the local Cauchy surface C, we can write the Jacobi
field J such that J (τ) = 0 and J ′ (τ) = ξ as the solution y

(
t,x,u, τ, ξ

)
, where

x =
(
0, x2, . . . , xm

)
which can be identified with the adapted coordinates x to C in

equation (3.1.3). Then, the pair (x,u) are the coordinates of a point in PN+ (C)
and therefore, they determine the null geodesic γ(x,u). In fact, y

(
τ,x,u, τ, ξ

)
corre-

sponds to the values J (τ) = 0 and J ′ (τ) = ξ. Moreover, y
(
0,x,u, τ, ξ

)
represents

the values J (0) and J ′ (0) which are lying in C, therefore y
(
0,x,u, τ, ξ

)
is equiva-

lent to give the coordinates ψ (J) = (x,u,w,v) of J in TN . Since V is relatively
compact and due to the existence of flow boxes of non-vanishing differentiable vector
fields, we can assume, without any lack of generality, that there exist a compact in-
terval I neighbourhood of 0 such that the parameter of any null geodesic defined by
η = E1 (p) + u2E2 (p) + · · ·+ umEm (p) ∈ N+

p (C) with p ∈ C ⊂ V running through

V is defined for t ∈ I. Now, let us consider an arbitrary sequence {Jn} ⊂ Û ⊂ TN
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converging to J∞ ∈ Û ⊂ TN in TN . Proving that {Jn} converges to J∞ in Û is

sufficient in order to show that Û ⊂ TU is a regular submanifold.

The Jacobi fields Jn and J∞ are fields along the null geodesics γ(xn,un) and γ(x∞,u∞)

respectively and moreover there exist tn, t∞ ∈ I such that Jn (tn) and J∞ (t∞)
are proportional to γ′(xn,un)

(tn) and γ′(x∞,u∞) (t∞) respectively for every positive

integer n. If their coordinates in TN are ψ (Jn) = (xn,un,wn,vn) and ψ (J∞) =
(x∞,u∞,w∞,v∞) respectively, then we have that

lim
n7→∞

ψ (Jn) = ψ (J∞)

or equivalently

lim
n7→∞

y
(
0,xn,un, tn, ξn

)
= y

(
0,x∞,u∞, t∞, ξ∞

)

Again because of the theorem on the regular dependence of solutions of initial value
problems with parameters, the solution y

(
t,x,u, τ, ξ

)
differentiably depends on the

variables
(
t, x, u, τ, ξ

)
, therefore

lim
n7→∞

y
(
t,xn,un, tn, ξn

)
= y

(
t,x∞,u∞, t∞, ξ∞

)

This implies that
lim
n7→∞

Jn (t) = J∞ (t)

Since I is compact, the sequence {tn} ⊂ I has a convergent subsequence, so we can
assume that {tn} itself verifies that limn7→∞ tn = t ∈ I. Then we have that

lim
n7→∞

y
(
tn,xn,un, tn, ξn

)
= y

(
t,x∞,u∞, t∞, ξ∞

)

hence
limn7→∞ Jn (tn) = J∞

(
t
)

limn7→∞ J ′
n (tn) = J ′

∞

(
t
)

Since Jn (tn) is proportional to γ
′
(xn,un)

(tn) for every positive integer n, then J∞
(
t
)

is also proportional to γ′(x∞,u∞) (t∞), but γ′(x∞,u∞) is a null geodesic without con-

jugate points, therefore t = t∞. This gives us

lim
n7→∞

J ′
n (tn) = J ′

∞ (t∞)

Recall that the coordinates of Û are given by ϕ = (x, u, v) where ϕ =
(
x1, . . . , xm

)

is the chart in V . Then

lim
n7→∞

ϕ (Jn) = lim
n7→∞

(
ϕ
(
γ(xn,un) (tn)

)
,
[
γ′(xn,un)

(tn)
]
, 〈J ′

n (tn)〉
)
=

=
(
ϕ
(
γ(x∞,u∞) (t∞)

)
,
[
γ′(x∞,u∞) (t∞)

]
, 〈J ′

∞ (t∞)〉
)
= ϕ (J∞)

So, the sequence {Jn} converges to J∞ in Û .

This completes the proof.
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Denote U =
⋃

X∈U

X for an open set U ⊂ Σ, then we can define the family

R = {U ⊂ Σ null non–conjugated : Û =
⋃

X∈U

T̂X is a regular submanifold of T̂N}

(3.2.5)

Corollary 3.2.9. If M is a non–refocusing spacetime, then the family of open sets in R

constitutes a basis for the reconstructive topology of Σ.

Proof. Given X ∈ Σ such that x = S−1 (X) ∈ M there exist V ⊂ M relatively compact
basic neighbourhood of x. Since M is non–refocusing, by corollary 3.2.6, U = S (V ) ⊂ Σ
is open and since V is basic, then U is null non–conjugate. By theorem 3.2.8, U ∈ R.
Recall that sets like V form a basis for the topology of M , then corollary 3.2.6, since
S is a homeomorphism, then open sets in R constitute a basis for the reconstructive
topology.

Observe that in the definition of R there are not implicit or explicit references to
M . So, it is appropriate to recover the strongly causal conformal manifold M from N
and Σ, because we will have to use structures in N and Σ defined independently from
M . Anyway, in section 3.5, we will refine this basis without using the non–refocusing
hypothesis.

Section 3.3

Some types of special curves

This section is devoted to introduce a class of curves in N and its counterpart class in
M . Both will be useful tools in next sections. After the description of such curves in
section 3.3.1, we will give some results in section 3.3.2 in relation to causality properties
in M in which those special curves arise.

3.3.1

Celestial and dust curves

We will introduce a class of curves that are going to play a fundamental role in order to
establish some results such as weakening the hypotheses of corollary 3.2.6 or characterizing
the causality of M in terms of N among others.

Definition 3.3.1. A tangent vector J 6= 0γ at TγN will be called a celestial vector if
there exists a sky X ∈ Σ such that J ∈ TγX ⊂ TN . We will denote the set of all

celestial vectors by Σ̂ ⊂ TN . With the notation introduced in theorem 3.2.8, we write
Σ̂ =

⋃
X∈Σ

T̂X ⊂ T̂N .

A differentiable curve Γ : I → N is called a celestial curve if Γ′ (s) ∈ Σ̂ for every
s ∈ I. We will denote the set of celestial curves by C (N ).
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Next proposition allows us to understand that celestial curves can be described by a
particular class of geodesic variations.

Proposition 3.3.2. If the curve Γ : [0, 1]→ N with Γ (s) = γs ∈ N is celestial then there
exists a null curve µ : [0, 1] → M such that γs (τ) = expµ(s) (τσ (s)) where σ (s) ∈ N+

µ(s)

is a differentiable curve proportional to µ′ (s) wherever µ is regular.

Proof. Let Γ : [0, 1] → N be a celestial curve with Γ(s) = γs. Let s0 ∈ [0, 1] and t0 ∈ R
such that Γ′(s0) ∈ Tγs0

S(γs0(t0)) and a local chart (Û , ϕ), with ϕ = (x, u, v) as in (3.2.1)

with Γ′(s0) ∈ Û such that (V, ϕ) is the local chart containing γs0(t0) ∈M used to define
ϕ. We will denote again by {E1, . . . , Em} the orthonormal frame in V used to define the
coordinates u and v in ϕ.

Consider the neighbourhood I ⊂ R of s0 such that Γ′(s) ∈ Û for all s ∈ I, thus we
have that

ϕ(Γ′(s)) = (x(Γ′(s)), u(Γ′(s)), v(Γ′(s))) ∈ Rm × Rm−2 × Rm−2

is a smooth curve. The coordinates x and u describe the light rays supporting the Jacobi
fields, thus we can reconstruct the curve Γ from them. Notice that the curve µ(s) =
ϕ−1 ◦ x(Γ′(s)) ∈M is smooth. Then consider the curve in N+ given by:

σ(s) = E1(µ(s)) + u2(Γ′(s))E2(µ(s)) + · · ·+ um(Γ′(s))Em(µ(s)) ∈ N+
µ(s)

Clearly, σ(s) is smooth, then the geodesic variation:

f(s, τ) = expµ(s)(τσ(s)) = γs(τ)

reconstructs the curve Γ(s).
Because f (s, 0) = µ (s), by lemma 2.3.5, the Jacobi field Js along γs defined by f(s, τ)

satisfies that Js(0) = µ′(s) (we choose now t0 = 0). Moreover, since Γ is a celestial curve,
hence tangent to S (µ (s)) at Γ (s), then Js(0) = 0 (modγ′s (0)) and therefore Js(0) =
λsγ

′
s(0) for some λs ∈ R. Then we conclude that µ′ is proportional to γ′s(0), hence also

to σ(s).
Finally, due to the compactness of Γ, the curves µ and σ can be extended to the full

interval [0, 1].

The previous proposition describes a celestial curve Γ as a pair (µ, σ) ⊂M×N+ where
µ is a null curve that cannot be geodesic because in this case Γ would not be regular.
Moreover the regularity of µ is not guaranteed at all, in fact, it is possible to exhibit
examples of celestial curves such that µ stops for s ∈ [α, β] ⊂ R, where α = β is not
excluded. So, while µ remains at µ (s) = p ∈ M , the curve σ (s) moves smoothly in N+

p .
The time–orientation of µ is not guaranteed neither, as the next example shows.

Example 3.3.3. Let M3 be the 3–dimensional Minkowski spacetime with coordinates
given by (t, x, y) ∈ R3 and metric g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy. Let us denote its
space of light rays by N . Consider the geodesic variation

f (s, τ) = γs (τ) =

(
τ +

1

2
s2, s sin s+ (1 + τ) cos s,−s cos s+ (1 + τ) sin s

)
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where s ∈ [−ǫ, ǫ], τ ∈ (−δ, δ), thus Γ (s) = γs is a curve in N . Since

Js (τ) =
∂f

∂s
(s, τ) = s (1, cos s, sin s) + (0,−τ sin s, τ cos s)

for any s we have that τ = 0 implies that Js (0) = sγ′s (0), then Js ∈ TS (γs (0)) and
therefore Γ is a celestial curve. For this curve, µ is defined as

µ (s) = f (s, τ (s)) = f (s, 0) =

(
1

2
s2, s sin s+ cos s,−s cos s+ sin s

)

hence,

µ′ (s) = (s, s cos s, s sin s) = s (1, cos s, sin s)

and µ is a null curve since

g (µ′ (s) , µ′ (s)) = 0

It is trivial to observe that µ is not a regular curve when s = 0 and the s factor in µ′

changes the time–orientation of µ: if s < 0 then µ is past–oriented and if s > 0 then µ is
future–oriented.

By construction, the curve µ in proposition 3.3.2 verifies that Γ′ (s) ∈ T̂ S (µ (s)) for
all s ∈ [0, 1], then it runs the points in M such that the celestial curve Γ is tangent to
their skies, or in other words, µ is the trail in M left by the celestial curve Γ.

As a consequence of proposition 3.3.2, we have the following corollary.

Corollary 3.3.4. Given a celestial curve Γ : [0, 1] → N such that Γ′ (s0) ∈ T̂ S (p0),
0 ≤ s0 ≤ 1, then the curve µ : [0, 1] → M of the previous proposition 3.3.2, is unique
verifying µ (s0) = p0 ∈M .

Proof. Consider that there exists µ1, µ2 : [0, 1] → M associated to Γ in the sense of
proposition 3.3.2 and verifying µ1 (s0) = µ2 (s0) = p0 for s0 ∈ [0, 1]. Let us define
the set A = {s ∈ [0, 1] : µ1 (s) = µ2 (s)}. Clearly, A is not empty and closed in [0, 1].
Consider a basic neighbourhood U ⊂ M of p0. Since U is open, then there exist δ > 0
such that µi ((s0 − δ, s0 + δ)) ⊂ U for i = 1, 2 (eventually if s0 = 0 then we consider
µi ([0, δ)) ⊂ U and analogously for s0 = 1). Let us suppose that for s ∈ (s0 − δ, s0 + δ)
we have that µ1 (s) 6= µ2 (s) and since U is causally convex, then the segment of the light
ray Γ (s) = γs ∈ N connecting µ1 (s) and µ2 (s) is totally contained in U and, moreover

since Γ′ (s) ∈ T̂ S (µ1 (s)) ∩ T̂ S (µ2 (s)), then the points µ1 (s) and µ2 (s) are mutually
conjugated along γs but, in virtue of [53, Prop. 10.10], this is not possible in a normal
neighbourhood contradicting U is normal. Then we have that µ1 (s) = µ2 (s) and hence
the set A is also open in [0, 1]. Since A is open, closed and not empty in [0, 1] then
A = [0, 1] and we conclude that µ1 = µ2.

Proposition 3.3.2 and corollary 3.3.4 allow to state the following definition.

Definition 3.3.5. Given a celestial curve Γ ∈ C (N ) such that Γ′ (s0) ∈ T̂X where
X = S (x), then the only curve µ verifying µ (s0) = x of corollary 3.3.4 is called the dust
or trail of Γ through x.



The space of skies 77

As mentioned above, the dust µ : [a, b] → M associated to the celestial curve Γ :
[a, b] → N could stop for any s ∈ I for some closed interval I ⊂ [a, b] in which Γ runs
a fixed sky, so µ does not provide information about how Γ moves among skies while µ
is stopped. Then, cutting away the intervals of the domain where µ stops, we keep the
essential information about Γ. The price we will pay is that this new curve will not be
differentiable but just piecewise differentiable. The resultant curve µΓ

X will be called the
essential dust or essential trail and both µ and µΓ

X have the same image in M . We will
deal with the construction of the essential dust µΓ

X in lemma 3.3.7.
In order to characterize in some way the essential dusts, we will introduce the notion

of twisted null curve as follows.

Definition 3.3.6. A continuous curve µ : [a, b] → M will be called a piecewise twisted
null curve if there exists a partition a = s0 < s1 < . . . < sk = b such that for every
i = 1, . . . , k:

(i.) µ|(si−1,si)
is differentiable.

(ii.) g (µ′ (s) , µ′ (s)) = 0 for all s ∈ (si−1, si).

(iii.) µ′ (s) and Dµ′

ds (s) are linearly independent for all s ∈ (si−1, si).

We say that µ is future–directed (past–directed) if µ |(si−1,si) is future–directed (past-
directed) for all i = 1, . . . , k. If k = 1 then µ will be simply called twisted null curve.

Now, in next lemma, we will show that a essential dust can be identified with a
piecewise twisted null curve.

Lemma 3.3.7 (µ-Lemma). Let Γ : [0, 1]→ N be a celestial curve such that Γ′ (0) ∈ T̂X0

with X0 ∈ Σ. Then there exists a unique curve χΓ
X0

: [0, 1]→ Σ such that it is continuous

in Low’s topology and verifies χΓ
X0

(0) = X0 and Γ′ (s) ∈ T̂ χΓ
X0

(s). Moreover, the essential

dust curve µΓ
X0

is a piecewise twisted null curve inM running along the image of S−1◦χΓ
X0

.
Conversely, given a regular twisted null curve µ : [0, 1] → M such that µ (0) = x0 =

S−1 (X0), µ
′(0) 6= 0 6= µ′(1), then the curve Γµ : [0, 1] → N defined by the variation of

null geodesics f : [0, 1]× I →M such that

f (s, t) = expµ(s) (tµ
′ (s)) = Γµ (s)|t

is celestial with (Γµ)
′
(0) ∈ T̂X0 and χΓ

X0
(s) = S (µ (s)).

Proof. Let Γ : [0, 1]→ N be a celestial curve such that Γ (s) = γs ∈ N and Γ′ (0) ∈ T̂X0

with X0 = S (x0) ∈ Σ. Let µ : [0, 1] → M be the dust of Γ through p0 constructed in
corollary 3.3.4. There exists a partition

{0 = a1 ≤ b1 < a2 ≤ b2 < · · · < an−1 ≤ bn−1 < an ≤ bn = 1} ⊂ [0, 1]

such that
γs (t) = expµ(s) (tσ (s)) (3.3.1)

where σ : [0, 1]→ N is a differentiable curve verifying σ (s) = λk (s)µ
′ (s) for s ∈ (bk, ak+1)

and λk differentiable with k = 1, . . . , n− 1. This curve µ also verifies µ (s) = pk ∈M for
all s ∈ [ak, bk].
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Now, we can define the curve χΓ
X0

= S ◦ µ : [0, 1] → Σ. Recall that for an open set
U ⊂ N containing a sky X ∈ Σ, the set of all skies contained in U is denoted as Σ (U).
By the definition of the Low’s topology, the set Σ (U) is open in Σ and these collection of
open sets forms a basis at X .

In order to show that χΓ
X0

is continuous, we will show that, given any U ⊂ N containing

a sky S (µ (s)) ∈ Σ then
(
χΓ
X0

)−1
(Σ (U)) is open in [0, 1] is verified. So, take any s ∈ [0, 1]

and consider an open set U ⊂ N such that χΓ
X0

(s) ⊂ U and then χΓ
X0

(s) ∈ Σ (U). Choose
a collection of nested intervals Isn ⊂ R such that {s} = ⋂n I

s
n. Let us suppose that there

exists sn ∈ Isn such that χΓ
X0

(sn) /∈ Σ (U). Then there is a light ray γn ∈ χΓ
X0

(sn) ∈ Σ such
that γn /∈ U . Recall that a light ray is fully determined by a point p ∈M and a direction
[v] ∈ PNp, so γn can be defined by µ (sn) ∈ γn ⊂ M and a null direction [vn] ∈ PNµ(sn).
Since limµ (sn) = µ (s) and due to the compactness of the fibres PNµ(sn), then with no lack
of generality taking a subsequence of [vn] if necessary, there exists a direction [v] ∈ PNµ(s)

defining, together with µ (s), the light ray γ such that lim γn = γ ∈ χΓ
X0

(s) ⊂ U .
But since U is open, there exists an integer n0 such that for every n > n0 we have

that γn ∈ U contradicting that χΓ
X0

(sn) /∈ Σ (U). Therefore there exist Isn such that

χΓ
X0

(sn) ∈ Σ (U) and hence
(
χΓ
X0

)−1
(Σ (U)) is open in [0, 1].

To obtain the essential dust µΓ
X0

from the dust µ, we will cut off the segments µ|(ak,bk)

from µ and glue together the segments µ|[bk,ak+1]
. We call c1 = 0 and for every k =

1, . . . , n − 1, let us define ck+1 = ak+1 −
∑k

i=1 (bi − ai) ∈ [0, 1] and consider the change
of parameter hk : [ck, ck+1] → [bk, ak+1] defined by hk (τ) = τ + ak+1 − ck+1. Since µ is
differentiable and hk is a diffeomorphism for every k = 1, . . . , n−1 then µk (τ) = µ◦hk (τ)
is differentiable for τ ∈ (ck, ck+1). Moreover, since µ′

k (τ) = µ′ (hk (τ)) then

g (µ′
k (τ) , µ

′
k (τ)) = g (µ′

k (hk (τ)) , µ
′
k (hk (τ))) = 0

for τ ∈ (ck, ck+1). Also, the covariant derivatives verify

Dµ′
k (τ)

dτ
= h′′k (τ)µ

′ (hk (τ)) + (h′k (τ))
2 Dµ′ (hk (τ))

ds
=
Dµ′ (hk (τ))

ds

then denoting Js as the Jacobi field along γs defined by the variation (3.3.1), we have
Js (0) = µ′ (s) and

J ′
s (0) =

Dσ (s)

ds
=
D (λk (s)µ

′ (s))

ds
= λ′k (s)µ

′ (s) + λk (s)
Dµ′ (s)

ds

for s ∈ (bk, ak+1). Since Γ is celestial, then J ′
s 6= 0 (modγ′s) and so, Dµ′(s)

ds is not propor-

tional to µ′ (s) for s ∈ (bk, ak+1), therefore
Dµ′

k(τ)
dτ and µ′

k (τ) are linearly independent for
τ ∈ (ck, ck+1). We have shown that for any k = 1, . . . , n−1 the curves µk are twisted null
curves. Since h−1

k (ak+1) = h−1
k+1 (bk+1) then all the segments µk glue together continu-

ously. Therefore we can define, with no ambiguity, the curve µΓ
X0

: [0, a]→M such that

µΓ
X0

(τ) = µk (τ) if τ ∈ [ck, ck+1] for k = 1, . . . , n − 1 and [0, a] = ∪n−1
k=1 [ck, ck+1]. This

essential dust curve µΓ
X0

is then a piecewise twisted null curve associated to the partition
{0 = c1 < c2 < · · · < cn = a} ⊂ [0, a] and it is unique except by reparametrization.

Conversely, let us consider a twisted null curve µ : [0, 1]→M such that µ (0) = x0 =
S−1 (X0). Then, we can define the variation of null geodesics f : [0, 1]× I →M such that

f (s, t) = expµ(s) (tµ
′ (s)) = γs (t)
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which verifies γ′s (0) = µ′ (s). Now, define the curve Γµ (s) = γs ∈ N for every s ∈
[0, 1]. The Jacobi field Js of the variation f along γs verifies Js (0) = µ′ (s) = γ′s (0) and

J ′
s (0) =

Dµ′

ds (s) and, since µ is twisted null then Dµ′

ds is not proportional to γ′s. Therefore

(Γµ)′ (s) = Js (modγ′s) 6= 0 (modγ′s) and hence

(Γµ)
′
(s) ∈ T̂ S (γs (0)) = T̂ S (µ (s))

then Γµ is celestial.

3.3.2

Twisted null curves and causality in M

It is widely known that the endpoints of any future–directed timelike curve λ : [a, b]→M
can be joined by a future–directed piecewise null geodesic. This fact follows from [25,
Prop. 6.7.1] and the fact of that, by compactness and theorem 1.2.15, λ ⊂ M can be
covered by the finite union of globally hyperbolic neighbourhoods. Moreover, by theorem
1.2.4, if there is a future–directed causal curve λ connecting p ∈M to q ∈M such that λ
is not a null geodesic, then there is a future–directed timelike curve β connecting p ∈M
to q ∈M . These results permit to characterize the causality in M : q ∈ I+ (p) if and only
if there exists a future–directed piecewise null geodesic joining p to q.

Now, in theorem 3.3.11 of this section, we will show the existence of an analogue char-
acterization of the causality in M in terms of piecewise twisted null curves. This result,
in addition to be interesting by itself, will be useful in order to weaken the hypotheses of
proposition 3.2.5 in a forthcoming section.

To prove theorem 3.3.11 we will proceed in several steps. First, in lemma 3.3.8, it will
be shown that points in a 3–dimensional spacetime, locally connected by timelike geodesic
can also be connected by a twisted null curve. Next, in lemma 3.3.9, we will extend the
same statement for any m–dimensional spacetime with m ≥ 3. In proposition 3.3.10
we will show that the local connection by twisted null curves can be done by piecewise
twisted null curves at the large. Finally, Twisted null curve theorem 3.3.11 permits the
required characterization of the causality of M in terms of piecewise twisted null curves.

Lemma 3.3.8. Let M be a 3–dimensional spacetime and γ : I →M be a future–directed
timelike geodesic. Then there exists δ > 0 such that for any t ∈ (t0, t0 + δ], there exists a
future–directed twisted null curve µ joining γ(t0) to γ(t).

Proof. Given the future–directed timelike geodesic γ : I →M and t0 ∈ I, it is known, e.
g. by [34, sec. 97] and [55, def. 7.13], that there exists a synchronous coordinate system
(U, φ = (t, x, y)) with γ (t0) ⊂ U in which the metric g of M can be written as

(gij) =



−1 0 0
0 g11 g12
0 g12 g22




where gij ≡ gij (t, x, y) for i, j = 1, 2, U is contained in a convex normal neighbourhood
and the expression of the geodesic γ in these coordinates is φ (γ (s)) = (s, 0, 0) ∈ R3. For



80 Special curves

a point γ
(
t
)
∈ U , it is possible to find R > 0 such that the compact set

U0 =
{
(t, x, y) : x2 + y2 ≤ R2, t0 ≤ t ≤ t

}

is contained in U .
As candidates for the required twisted null curve, we will study curves µr such that

φ (µr (s)) = (fr (s) , r (1− cos s) , r sin s)

where 0 ≤ r ≤ R/2 and fr = fr (s) is a function. If µr is a null curve, then g (µ′
r, µ

′
r) = 0

and therefore

− (f ′
r (s))

2
+ r2g11 sin

2 s+ 2r2g12 sin s cos s+ r2g22 cos
2 s = 0

where gij = gij (φ (µr (s))). Thus, we have a first order ordinary differential equation
which describes a null curve passing through γ (t0)

{
f ′
r (s) = r

√
g11 sin

2 s+ 2g12 sin s cos s+ g22 cos2 s
fr (0) = t0

(3.3.2)

Since the metric in the hypersurfaces {t = c} with t0 ≤ c ≤ t is positive definite, then the
term under the square root in (3.3.2) is always positive. Moreover, since f ′

r > 0 then µr

is future.
Let us show that we can find r > 0 such that µr is twisted. A simple calculation gives

(dφ)µr(s)

(
Dµ′

r

ds
(s)

)
=
(
f ′′
r + r2ϕ0 (r, s) , r cos s+ r2ϕ1 (r, s) ,−r sin s+ r2ϕ2 (r, s)

)
,

where ϕi = ϕi (r, s), i = 0, 1, 2, are continuous functions in U depending on the Christoffel

symbols and the components of µ′
r. In order to show that

Dµ′

r

ds and µ′
r are linearly

independent, it is enough to see that the determinant of their components x, y does not
cancel out, so

∣∣∣∣
r cos s+ r2ϕ1 (r, s) r sin s
−r sin s+ r2ϕ2 (r, s) r cos s

∣∣∣∣ = r2 (1 + r (ϕ1 (r, s) cos s+ ϕ2 (r, s) sin s))

hence, since ϕ1 and ϕ2 are continuous in U , they are also bounded in the compact set U0

and there exists r0 ≤ R/2 such that

1 + r (ϕ1 (r, s) cos s+ ϕ2 (r, s) sin s) 6= 0

for all r ∈ (0, r0], and in this case,
Dµ′

r

ds and µ′
r are linearly independent.

At this moment, we have seen that µr is a twisted null curve passing through γ (t0)
for 0 < r ≤ r0, and it remains to show that there exists δ > 0 such that for every
t ∈ (t0, t0 + δ] there is r ∈ (0, r0] verifying µr also passes through γ (t).

Now, we want to prove that for every r ∈ (0, r0] there exists sr > 0 such that
fr (sr) = t. Given r ∈ (0, r0], we define ωr = sup {s : fr (s) exists}. Let us assume
that lim

s7→ωr

fr (s) = c ≤ t. In case of ωr < +∞, the solution f r of equation (3.3.2) verifying

the initial condition fr (ωr) = c would coincide with fr = fr (s) for s < ωr contradicting
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the maximality of fr up to ωr because in that case fr could be extended beyond s = ωr.
On the other hand, if ωr = +∞, the derivability of fr would imply that lim

s7→+∞
f ′
r (s) = 0

and hence the curve solution µr would approximate to the curve βr verifying

βr (s) = (c, r (1− cos s) , r sin s) ∈ U0

in TM , i.e. for every s0 ∈ R the sequence {sn = s0 + 2πn}n∈N
would verify

lim
n7→+∞

µr (sn) = βr (s0) and lim
n7→+∞

µ′
r (sn) = β′

r (s0)

By the continuity of the metric g then we have

lim
n7→+∞

g (µ′
r (sn) , µ

′
r (sn)) = g (β′

r (s0) , β
′
r (s0)) 6= 0

since βr is contained in the spacelike hypersurface {t = c}, but this contradicts that
g (µ′

r, µ
′
r) = 0. Therefore, independently from ωr, for every r ∈ (0, r0] we have that

lim
s7→ωr

fr (s) > t and hence, for all r ∈ (0, r0] there exists sr ∈ (0, ωr) such that fr (sr) = t.

Since the functions gij are continuous in U for i, j = 1, 2, then their restrictions
to the compact set U0 reach their maximum, therefore there exists Mij > 0 such that
|gij (t, x, y)| ≤Mij for (t, x, y) ∈ U0. Then,

0 < f ′
r (s) = r

√
g11 sin

2 s+ 2g12 sin s cos s+ g22 cos2 s ≤

≤ r

√
|g11 sin2 s|+ 2|g12 sin s cos s|+ |g22 cos2 s| ≤

≤ r
√
M11 + 2M12 +M22 = rM

where M =
√
M11 + 2M12 +M22 ∈ R is independent from r and s. So integrating, we

have that t0 ≤ fr (s) ≤ rMs+ t0 and therefore

t = fr (sr) ≤ rMsr + t0 (3.3.3)

that implies
t− t0
rM

≤ sr (3.3.4)

then there exists ρ ∈ (0, r0] small enough such that sr ≥ 2π for all r ∈ (0, ρ] and hence
the parameter s of fr can be extended beyond s = 2π for all r ∈ (0, ρ]. Since f ′

ρ (s) > 0
then fρ (s) > t0 for all s > 0, therefore there exists δ > 0 such that fρ (2π) = t0 + δ. So,
by the inequality (3.3.3) we have

t0 ≤ fr (2π) ≤ 2πrM + t0

hence limr 7→0 fr (2π) = t0 and for every t ∈ (t0, t0 + δ] there exists r ∈ (0, ρ] such that

µr (0) = (t0, 0, 0) = φ (γ (t0))

µr (2π) = (fr (2π) , 0, 0) = (t, 0, 0) = φ (γ (t))

therefore we have shown that there exists δ > 0 such that for every t ∈ (t0, t0 + δ] the
points γ (t0) and γ (t) can be connected by some future–directed twisted null curve µr.
Analogously, this construction can be done to obtain a future–directed twisted null curve
joining γ (t) to γ (t0) for all t ∈ [t0 − δ, t0).
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Lemma 3.3.9. The statement of Lemma 3.3.8 is true in a m–dimensional spacetime M .

Proof. We can find a synchronous coordinate system (U, φ) with φ = (t, x1, . . . , xm−1)
(as done previously) such that the expression of the geodesic γ in these coordinates is
φ (γ (s)) = (s, 0, . . . , 0) ∈ Rm, so this chart is adapted to γ. Consider the restriction

V = {(t, x1, . . . , xm−1) : xi = 0, i = 3, . . . ,m− 1} ⊂ φ (U)

then N = φ−1 (V ) ⊂ M is a 3–dimensional manifold embedded in M . Moreover, by
[53, Lem. 4.3] we have that Levi-Civita connection in N coincides with the orthogonal

projection overN of the Levi-Civita connection inM , hence we have DN

ds = tan
(
D
ds

)
where

DN

ds and D
ds denote the covariant derivatives in N and M respectively. So the geodesics

in M contained in N are also geodesics in N and the restriction (N, φ|N = (t, x1, x2)) of
the synchronous coordinate system is still a synchronous coordinate system for N . Then,
since γ is a geodesic contained in N , by lemma 3.3.8, there exists δ > 0 and a future–
directed twisted null curve µ ⊂ N such that µ joins γ (t0) to γ (t0 + δ). Since the metric
in N is the restriction of the metric in M , then µ as curve in M is also null. Finally, since

µ′ and DNµ′

ds = tan
(

Dµ′

ds

)
are lineally independent in Tµ(s)N then, it is immediate that µ′

and Dµ′

ds are lineally independent in Tµ(s)M . Therefore, we have shown that there exists
δ > 0 and µ a future–directed twisted null curve in M joining γ (t0) to γ (t0 + δ).

A direct consequence of lemmas 3.3.8 and 3.3.9 is the following proposition.

Proposition 3.3.10. Let γ : I → M be a future–directed timelike geodesic. Then, for
any t0, t1 ∈ I, there exists a future–directed piecewise twisted null curve µ joining γ (t0)
to γ (t1).

Proof. By lemma 3.3.9, for all t ∈ [t0, t1] there exists an open interval It = [t− δt, t+ δt] ⊂
[t0, t1] relative to [t0, t1] such that γ (t) can be joined to γ (u) with u ∈ It by means of a
piecewise twisted null curve. By the compactness of [t0, t1], we can extract a finite covering
{In}n=1,...,N such that, with no lack of generality, verifies Ii ∩ Ik 6= ∅ ⇔ k = i ± 1. We
can choose a partition

{t0 = a1 < b1 < · · · < aN−1 < bN−1 < aN = t1}

such that ai ∈ Ii and bi ∈ Ii ∩ Ii+1 and therefore there exists future–directed twisted
null curves joining γ (ai) to γ (bi) and γ (bi) to γ (ai+1) for i = 1, . . . , N − 1. The union
of these curves forms a future–directed piecewise twisted null curve connecting γ (t0) to
γ (t1).

Finally, we can proceed with theorem 3.3.11.

Theorem 3.3.11 (Twisted null curve theorem). Let p, q ∈M such that q ∈ I+(p), then
there exists a future–directed piecewise twisted null curve µ joining p to q.

Proof. Consider p, q ∈ M such that q ∈ I+(p), then there exists a continuous future–
directed timelike curve λ connecting p and q. By compactness of λ between p and q,
there exists a finite covering {Wk}k=1,...,K of globally hyperbolic open sets contained in
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convex normal neighbourhoods, then it is possible to built a continuous curve γ joining p
and q formed by segments γk ⊂ Wk of future–directed timelike geodesics with endpoints
at λ. So γ becomes a future–directed piecewise timelike geodesic.

By proposition 3.3.10, the endpoints of the timelike geodesic segments γk of γ can be
connected by a future–directed piecewise twisted null curve µk. Since γ is continuous, we
can paste all µk to obtain another piecewise twisted null curve µ joining p and q.

As an immediate corollary of theorem 3.3.11 and the causality theorem 1.2.4 we have
the following result.

Corollary 3.3.12. q ∈ I+ (p) if and only if there exists a future–directed piecewise twisted
null curve µ joining p to q.

Observe that all the results of this section are valid for any spacetime M without any
further hypotheses.

Section 3.4

Causality in Σ and legendrian isotopies

According to the previous corollary 3.3.12 and the µ–lemma 3.3.7, we can translate the
causal character of curves in M into curves of skies (as legendrian submanifolds of N )
signed by the 1–form of equation (2.4.23) defining the cooriented contact structure H of
N .

To achieve this purpose, we need to introduce some background about contact geom-
etry that will be related to causality properties of spacetimes.

Let (Y,H) be a co-oriented (2n− 1)–dimensional contact manifold with contact dis-
tribution H = kerα where α ∈ T ∗Y is a contact 1–form defining the co-orientation. A
differentiable family {Λs}s∈[0,1] of legendrian submanifolds is called a legendrian isotopy.
It is possible to describe a legendrian isotopy by a parametrization F : Λ0 × [0, 1] → Y
verifying F (Λ0 × {s}) = Λs ⊂ Y where s ∈ [0, 1]. Notice that we are assuming that the
map Fs : Λ0 → Λs, given by Fs(λ) = F (λ, s) is a diffeomorphism for all s ∈ [0, 1].

Definition 3.4.1. A parametrization F of a legendrian isotopy is said to be non–negative
if (F ∗α)

(
∂
∂s

)
≥ 0 and non–positive if (F ∗α)

(
∂
∂s

)
≤ 0.

Definition 3.4.2. We will say that two legendrian isotopies are equivalent if their cor-
responding parametrizations F, F̃ : Λ0 × [0, 1] → Y verify F (Λ0 × {s}) = F̃ (Λ0 × {s})
for every s ∈ [0, 1].

Next lemma shows that the sign of signed legendrian isotopies is independent of the
parametrization.

Lemma 3.4.3. Let F, F̃ : Λ0× [0, 1]→ Y be two parametrizations of a legendrian isotopy

{Λs}s∈[0,1]. If F is non-negative (respectively non-positive) then so is F̃ .
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Proof. Let us consider a legendrian isotopy {Λs}s∈[0,1] given by two parametrizations

F, F̃ : Λ0 × [0, 1] → Y . Let us define the maps Fs, F̃s : Λ0 → Λs ⊂ Y for s ∈ [0, 1] by
Fs (λ) = F (λ, s) as before. Then we have that

F (λ, s) = F̃ (ϕ (λ, s) , s)

where ϕ (λ, s) = F̃−1
s ◦F (λ, s). To check that ϕ is differentiable, consider the differentiable

map Υ : Λ0 × [0, 1] → N × [0, 1] defined by Υ (z, s) =
(
F̃ (z, s) , s

)
whose differential at

any (z, s) is given by:

dΥ(z,s) =

(
dF̃(z,s)

Ids

)
=

( (
dF̃s

)
z
∗

0 Ids

)

and since F̃s is a diffeomorphism, then (dΥ)(z,s) is an isomorphism, therefore by the

inverse function theorem, Υ is a local difeomorphism onto its image in (z, s) and ϕ can
be written locally as:

ϕ (z, s) = π ◦Υ−1 (F (z, s) , s)

where π : Λ0 × [0, 1]→ Λ0 is the canonical projection.
Defining φ : Λ0 × [0, 1]→ Λ0 × [0, 1] as φ (λ, s) = (ϕ (λ, s) , s), we have

dF(λ,s)

(
∂

∂s

)

(λ,s)

= d
(
F̃ ◦ φ

)
(λ,s)

(
∂

∂s

)

(λ,s)

= dF̃(ϕ(λ,s),s)

(
dφ(λ,s)

(
∂

∂s

)

(λ,s)

)

= dF̃(ϕ(λ,s),s)

((
∂

∂s

)

(λ,s)

+ dϕ(λ,s)

(
∂

∂s

)

(λ,s)

)
. (3.4.1)

Notice that, since dϕ(λ,s) (∂/∂s) ∈ Tϕ(λ,s)Λ0, then

dF̃(ϕ(λ,s),s)dϕ(λ,s) (∂/∂s) ∈ T(ϕ(λ,s),s)Λs ⊂ H

and therefore

α
(
dF̃(ϕ(λ,s),s)dϕ(λ,s) (∂/∂s)

)
= 0

Now, applying α to both sides of equation (3.4.1) we get:

α

(
dF(λ,s)

(
∂

∂s

)

(λ,s)

)
= α

(
dF̃(ϕ(λ,s),s)

(
∂

∂s

)

(λ,s)

)

hence

(F ∗α)

(
∂

∂s

)
= α

(
F∗

(
∂

∂s

))
= α

(
F̃∗

(
∂

∂s

))
=
(
F̃ ∗α

)( ∂

∂s

)

therefore the sign of the parametrizations F and F̃ coincides.
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Recall that, in case of Y = N the space of light rays of a conformal manifold (M, C),
the co–orientation is defined by using the criterion that the sign of J (modγ′) ∈ TγN
is the sign of g (J, γ′), which is unambiguously determined for vectors J in the class
[J ] = J + J0 (γ), where g ∈ C and γ ∈ N is suitably parametrized according to equation
(2.4.17).

As said at the beginning of chapter 3, for any x0 ∈ M the sky X0 = S(x0) ∈ Σ is
a legendrian submanifold of N diffeomorphic to S0 = {[u] : u ∈ N+

x0
} = PN+

x0
≃ Sm−2,

then given a legendrian isotopy {Xs}s∈[0,1] where Xs is the sky of xs ∈ M for s ∈ [0, 1],
a parametrization F for it can be found of the form F : S0 × [0, 1] → N as we show in
the next lemma.

Lemma 3.4.4. Any differentiable curve µ : [0, 1] → M defines a legendrian isotopy
parametrized by the function Fµ : S0 × [0, 1]→ N given by:

Fµ ([u] , t) = γ[us]

with S0 = {[u] : u ∈ N+
µ(0)} and us ∈ N+

µ(s) the parallel transport of u ∈ N+
µ(0) along γ.

Moreover Fµ is a legendrian isotopy of skies and Fµ
s (S0) = S(µ(s)).

Proof. Let g ∈ C be a metric in M and let P : Tµ(0)M × [0, 1] → TM be the par-
allel transport with respect to the Levi–Civita connection defined by g along µ given
by P (u, s) = us ∈ Tµ(s)M . It is widely known that P is differentiable and the map
Ps : Tµ(0)M → Tµ(s)M defined by Ps (u) = P (u, s) is a linear isometry. Let us also
consider the submersion pN+ : N+ → N given by pN+ (u) = γ[u]. By composition of
differentiable maps, pN+ ◦ P is differentiable and due to the linearity of P it induces a
map Fµ on the quotient space PN+.

Moreover, since Ps is a linear isometry, then

g (us, us) = g (u, u) = 0

for every u ∈ N+ and any metric g ∈ C, therefore us ∈ N+
µ(s) and Ps

(
N+

µ(0)

)
= N+

µ(s).

For s ∈ [0, 1] we have

Fµ (S0 × {s}) = {Fµ ([u] , s) ∈ N : u ∈ N+
µ(0)} = {γ[us] ∈ N : u ∈ N+

µ(0)} =
= {γ[v] ∈ N : v ∈ N+

µ(s)} = S (µ (s))

Hence, Fµ is a legendrian isotopy.

A converse result of lemma 3.4.4 can be the following one.

Lemma 3.4.5. Let F : S0× [0, 1]→ N be a legendrian isotopy such that F (S0 × {s}) =
S (µ (s)) ∈ Σ. Then the curve µ : [0, 1]→M is differentiable and F is equivalent to Fµ.

Proof. Let us define the map Fs : S0 → S (µ (s)) ⊂ N given by Fs (z) = F (z, s) for
s ∈ [0, 1]. It is clear that Fs is differentiable for any s ∈ [0, 1]. Now, take any z0 ∈ S0 and
ξ ∈ Tz0S0. Since F and Fs are differentiable maps, then the curve

j (s) = (dFs)z0 (ξ) ∈ TF (z0,s)S (µ (s))
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is also differentiable in T̂N and j (s) is a Jacobi field along the null geodesic F (z0, s) ∈ N
for each s ∈ [0, 1]. Let s0 ∈ [0, 1] and V ⊂ M a basic neighbourhood of µ (s0) such that

U = S (V ). Consider coordinate charts
(
Û , ϕ = (x, u, v)

)
and (V, ϕ = x) as in theorem

3.2.8. Then, since j is differentiable and, by theorem 3.2.8, Û is regular submanifold of
T̂N with j (s0) ∈ Û , then we conclude that j (s) ∈ Û for s close to s0, and since µ can
be written locally at µ (s0) as composition of differentiable maps

µ (s) = ϕ−1 ◦ x (j (s)) ∈ V

therefore µ is differentiable.

Now, we need a simple result on the geometry of causal vectors on Lorentz manifolds
that we state as the following technical lemma.

Lemma 3.4.6. Let M be a Lorentz manifold and p ∈ M . If v 6= 0 is a vector in TpM
verifying g (u, v) ≥ 0 for any u ∈ N+

p future, then v is causal past.

Proof. First, we will see that if v ∈ TpM is spacelike, then there exists u ∈ N+
p verifying

g (u, v) < 0. So, let v ∈ TpM be spacelike and take some z ∈ TpM timelike future, then
since g (z, z) < 0 and g (v, v) > 0, the equation

g (z + λv, z + λv) = g (z, z) + 2λg (z, v) + λ2g (v, v) = 0

has two solutions λ1, λ2 due to (2g (z, v))2 − 4g (z, z)g (v, v) > 0. These solutions can be
written as

λ1 = −g (z, v)

g (v, v)
+

√
g (z, v)

2

g (v, v)2
− g (z, z)

g (v, v)

λ2 = −g (z, v)

g (v, v)
−
√

g (z, v)
2

g (v, v)
2 −

g (z, z)

g (v, v)

For i = 1, 2, let ui = z + λiv be the corresponding null vectors. We have that

g (ui, v) = g (z, v) + λig (v, v) = (−1)i+1
g (v, v)

√
g (z, v)

2

g (v, v)
2 −

g (z, z)

g (v, v)

hence g (u2, v) < 0.
Let us see now that u2 is null future. Since

g (u1, u2) = 2

[
g (z, z)− g (v, z)

2

g (v, v)

]
< 0

therefore u1 and u2 are in the same lightcone. Moreover

g (ui, z) = g (v, v)

[
g (z, z)

g (v, v)
− g (z, v)

2

g (v, v)2

]
±
√

g (z, v)
2

g (v, v)2
− g (z, z)

g (v, v)
g (z, v)

with the positive sign corresponding to i = 1 and the negative to i = 2. It can be observed
that if g (z, v) > 0 then g (u2, z) < 0 therefore u2 is in the same lightcone of z, hence u2
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is null future. In case of g (z, v) < 0 we have that g (u1, z) < 0, then u1 (and also u2) is
in the same lightcone of z, therefore u1 and u2 are null future.

At this point, we have proven the equivalent result: If for any u ∈ TpM null future
g (u, v) ≥ 0 is verified, then v ∈ TpM is causal. But if v is causal future, then g (u, v) ≤ 0,
hence v = 0 contradicting the hypothesis, therefore v must be causal past.

The time–orientation of any causal curve is related to the sign of the legendrian isotopy
it defines as we show in the following proposition.

Proposition 3.4.7. The curve µ is causal past–directed (respectively causal future–directed)
if and only if Fµ is a non–negative (respectively non–positive) legendrian isotopy.

Proof. Let us suppose that µ is causal past–directed. Since Fµ ([u] , s) = γ[us] then giving
a geodesic parameters to the light ray γ[us] we can write

Fµ ([u] , s) (t) = γ[us] (t) = expµ(s) (tus)

which is a null geodesic variation of the light ray γ[us0 ]
for every s0 ∈ [0, 1]. By lemma

2.3.5, we have that the Jacobi field Js0 (t) defined by this geodesic variation verifies that
Js0 (0) = µ′ (s0) and J

′
s0 (0) =

D
ds

∣∣
s=s0

us, and since us is the parallel transport of u along

µ, then J ′
s0 (0) = 0. Hence, since

Fµ
∗

(
∂

∂s

)

([u],s0)

=
∂

∂s

∣∣∣∣
([u],s0)

Fµ ([u] , s) =
∂

∂s

∣∣∣∣
(s0,t)

(
expµ(s) (tus)

)
= Js0 (t)

we have that

α

(
Fµ
∗

(
∂

∂s

))

([u],s0)

= α (Js0 (t)) = g
(
Js0 (t) , γ

′

[us0 ]
(t)
)
=

= g
(
Js0 (0) , γ

′

[us0 ]
(0)
)
= g (µ′ (s0) , us0) ≥ 0

since µ′ (s0) is causal past where it does not vanish and us0 is null future. This shows
that Fµ is a non-negative legendrian isotopy.

Now, let us suppose that Fµ is non-negative. So, we have as before

Fµ ([u] , s) (t) = γ[us] (t) = expµ(s) (tus)

then if α
(
Fµ
∗

(
∂
∂s

))
([u],s0)

≥ 0 for any ([u] , s0), we have that

0 ≤ α
(
Fµ
∗

(
∂

∂s

))

([u],s0)

= g (µ′ (s0) , us0) .

Then because of lemma 3.4.6 we obtain that µ′ (s0) is causal past provided that µ′ (s0) 6= 0
with s0 ∈ [0, 1].

Now, we get the following relation between causal curve and legendrian isotopies.
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Corollary 3.4.8. A legendrian isotopy of skies {S (µ (s))}s∈[0,1] is non-negative if and
only if the curve µ : [0, 1]→M is causal past–directed.

Proof. By lemma 3.4.5, a legendrian isotopy of skies F : S0 × [0, 1] → N defines a
differentiable curve µ : [0, 1]→M such that F is equivalent to Fµ. By lemma 3.4.3, Fµ is
non–negative, then proposition 3.4.7 shows that every regular segment of µ is causal past–
directed, therefore µ is causal past–directed because is the union of causal past–directed
segments.

The previous result permits to transmit the causality of M to Σ. Any causal curve
µ : [0, 1]→M defines a legendrian isotopy of skies Fµ : S0× [0, 1]→ N . Since Fµ

s (S0) =
S (µ (s)), then we can define a curve of skies χ : [0, 1] → Σ given by χ (s) = Fµ

s (S0) =
S (µ (s)). Using corollary 3.4.8, it is possible to define a partial order ≤Σ in Σ induced
by the causal relation ≤ in M in such a way

x ≤ y ⇐⇒ X ≤Σ Y

where X = S (x) and Y = S (y), that is, X ≤Σ Y if and only if there is a non–positive
legendrian isotopy of skies F : S0 × [0, 1]→ N such that F0 (S0) = X and F1 (S0) = Y .

Section 3.5

Regular sets and differentiable structure in the space of skies

We will need suitable neighbourhoods in Σ to define a smooth atlas, because null non–
conjugated neighbourhoods are not good enough to construct coordinated charts.

We have been obtained bases for the topology on the space of skies Σ in section 3.2 by
selecting the family R introduced in equation (3.2.5). Now, we will propose a refinement
of the properties of R to obtain the same topology in Σ than R does. We will call
such neighbourhoods regular neighbourhoods . Working with regular neighbourhoods will
permit us to define a differentiable structure in Σ and to weaken the hypothesis of being
non–refocusing to being just sky–separating in order to show the statement of previous
proposition 3.2.5.

First, let us introduce the properties needed to define regular neighbourhoods.

Let W ⊂ Σ be a non-empty set satisfying the conditions:

1. W is null non–conjugated and

Ŵ =
⋃

X∈W

T̂X ⊂ T̂N

is a regular (3m− 4)–dimensional submanifold of T̂N .

2. Let D̂ be the distribution in Ŵ whose leaves are X̃ = T̂X . Then the space of leaves

W̃ =
{
X̃ : X ∈W

}
= Ŵ/D̂ is a differentiable quotient manifold.
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It is clear that in this case, W̃ can be identified with W via the bijective map

Θ : W → W̃

X 7→ X̃
(3.5.1)

and hence W inherits the quotient topology such that

U ⊂W is open ⇔ Û =
⋃

X∈U

T̂X ⊂ Ŵ is open,

and also a differentiable structure from W̃ . So, we will denote W equipped with the
previous structure as W (∼) ≃ W̃ .

3. For every X0 ∈ W and every celestial curve Γ : Iǫ → N such that Γ′ (0) ∈ T̂X0,

(a) there exists 0 < δ ∈ Iǫ such that Γ′ ((−δ, δ)) ⊂ Ŵ .

(b) the curve χΓ
X0

: Iδ →W (∼) defined in lemma 3.3.7 is differentiable.

4. Given X̃, Ỹ ∈ W̃ , for any causal curve χ : [a, b] → Σ, joining X and Y , then
χ (s) ∈ W for all s ∈ [a, b].

Now we are ready to state the next definition:

Definition 3.5.1. A not–empty subset W ⊂ Σ is said to be a regular set, and denoted
by W ⊂reg Σ, if it verifies conditions (1) to (4) above.

It is important to observe that both, the definition of regular subset and the differen-
tiable structure of W (∼) ≃ W̃ , depend only on N and Σ.

Next, let us show that the class of regular subsets in Σ is not empty.

Proposition 3.5.2. Let V ⊂ M be a relatively compact basic open set, then U =
S (V ) ⊂reg Σ is regular. Moreover, S : V → U (∼) is a diffeomorphism.

Proof. Let V ⊂M be a relatively compact basic open set, since V is contained in a convex
normal neighbourhood, then trivially T̂X ∩ T̂ Y = ∅ for all X 6= Y ∈ U . Moreover, by
theorem 3.2.8 then Û is a regular manifold of T̂N . Hence, condition (1) is verified.

In order to prove condition (2), observe first that any X ∈ U is a regular submanifold

of N , therefore T̂X is a regular submanifold of T̂N . Denote Ũ = {X̃ = T̂X : X ∈ U}
and define the map S̃ : V → Ũ given by S̃ (x) = S̃ (x). Since Û is a regular submanifold

of T̂U which is an open set of T̂N and since T̂X ∩ T̂ Y 6= ∅ for all X 6= Y ∈ U , then we
have that Û is foliated by {T̂X : X ∈ U}, i.e. by Ũ . Denoting the distribution induced

by that foliation as D̂, we have that Ũ = Û/D̂ inherits a smooth structure because the

chart ϕ defined by eq. (3.2.1) along the proof of theorem 3.2.8 is adapted to D̂. Hence

S̃ : V → Ũ is a diffeomorphism. Moreover, since U is null non–conjugated, then the map
U → Ũ defined by X 7→ X̃ is a bijection, and it allows to identify U with Ũ . Therefore U
inherits from Ũ its structure of differentiable manifold and this implies that S : V → U (∼)

is a diffeomorphism.



90 Regular sets

Lemma 3.3.7 trivially implies (3a) and permits to construct the curve χΓ
X0

as the
following composition of differentiable maps

Γ π Θ−1

Iδ −→ Û −→ Ũ −→ U (∼)

s 7→ Γ′ (s) 7→ T̂ χΓ
X0

(s) 7→ χΓ
X0

(s)

then (3b) is verified.

Finally, in order to verify (4), we know that Γ′ (a) ∈ T̂X , Γ′ (b) ∈ T̂ Y and X,Y ∈ U ,
by lemma 3.3.7, there exists a piecewise twisted null curve µ : [a, b] → M such that
µ (a) = x ∈ V and µ (b) = y ∈ V . Since V is causally convex, then µ is fully contained
in V and therefore χ = S ◦ µ is fully contained in U = S (V ). So, we conclude that
U ⊂reg Σ.

We may call elementary regular sets in Σ to the regular sets U = S(V ) with V
relatively compact basic open.

Now, we will need to prove a technical lemma.

Lemma 3.5.3. Given W ⊂reg Σ a regular set and X0 = S (x0) ∈ W , then for any
twisted null curve µ : Iǫ → M such that µ (0) = x0 there exists δ > 0 verifying that
µ ((−δ, δ)) ⊂ S−1 (W ).

Proof. Consider X0 = S (x0) ∈ W ⊂reg Σ, then by lemma 3.3.7, there exists a celestial
curve Γ : Iǫ → N and a continuous curve χΓ

X0
: Iǫ → Σ such that χΓ

X0
= S ◦ µ. Since W

is regular, then there exists δ > 0 such that χΓ
X0

: (−δ, δ) ⊂ Iǫ → W (∼) is differentiable.
Then we have

µ ((−δ, δ)) = S−1 ◦ χΓ
X0

((−δ, δ)) ⊂ S−1
(
W (∼)

)
= S−1 (W ) .

Then, it is easy to prove the following result.

Theorem 3.5.4. Let W ⊂reg Σ be a regular set, then S−1 (W ) is open in M .

Proof. Given W ⊂reg Σ and consider X0 ∈ W such that x0 = S−1 (X0) ∈ M . Take a
future–directed twisted null curve µ : Iǫ → M with µ (0) = x0 , then by lemma 3.5.3,
there exists δ > 0 verifying that µ ((−δ, δ)) ⊂ S−1 (W ). Without any lack of generality,
we can assume that δ is small enough for V = I+ (µ (−δ)) ∩ I− (µ (δ)) being globally
hyperbolic and causally convex. Observe that x0 ∈ V and for any p ∈ V , we have that
p ∈ I+ (µ(−δ)), then by theorem 3.3.11, for any p ∈ V there exists a future–directed
piecewise twisted null curve µp connecting µ (−δ) and µ (δ) passing through p (see figure
3.3). Now, since W is regular, then by property (4), the curve χp = S ◦ µp is fully
contained in W , therefore p ∈ S−1 (W ) and hence V ⊂ S−1 (W ) and S−1 (W ) is open in
M .

It is interesting to point out that whenever M is globally hyperbolic, then any non-
empty V = I+(µ(−δ))∩ I−(µ(δ)) is automatically globally hyperbolic and the conclusion
of the theorem is reached easily without referring to the previous results.
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Figure 3.3: Scheme of proof of theorem 3.5.4.

If we provide the topology induced by regular sets to Σ, then proposition 3.5.2 clearly
implies that the sky map S is open. The continuity of S trivially follows from theorem
3.5.4, then both results make obvious the following corollary analogue to corollary 3.2.6.

Corollary 3.5.5. If Σ is equipped with the topology generated by regular sets, then the
sky map S :M → Σ is an homeomorphism.

The importance of the corollary 3.5.5 is that it has been proven without the assumption
on M of being non–refocusing because the definition of regular sets only depends on M
solely to ensure that M is a Hausdorff manifold and S is injective, that is M is required
to be just strongly causal, null pseudo–convex and sky separating.

Moreover, in addition to corollary 3.2.6, they imply that the reconstructive topology
in Σ coincides with the topology generated by regular sets, therefore any basis for the
topology generated by regular sets is also a basis for the reconstructive topology.

Since for every x ∈ M there is a basis for the topology of M consisting of basic
neighbourhoods V of x, then by proposition 3.5.2, theorem 3.5.4 and corollary 3.5.5, the
images of such bases are also bases for the reconstructive topology of Σ, and moreover
the sky map is a local diffeomorphism at any point x. Since S is a bijection, then it is a
global diffeomorphism. We summarize it all in the following corollary.

Corollary 3.5.6. The family of regular sets {W :W ⊂reg Σ} is a basis for the reconstruc-
tive topology of Σ. Moreover, there exists a unique differentiable structure in Σ compatible
with the manifolds W (∼) ⊂ Σ that makes of S :M → Σ a diffeomorphism.

3.5.1

Non–refocusing hypothesis is superfluous

We can take advantage of corollary 3.5.5 to show that any strongly causal, null pseudo–
convex and sky separating spacetimeM is also non–refocusing. In order to do it, we need
to observe that the sky map S is open assuming those hypotheses.
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According to definition 3.2.3 of Low’s topology generated by the bases B (X), such
topology can be realized by particular bases on M , as following lemma shows. It corrob-
orates the relation between neighbourhood basis of M and its space of skies Σ.

Lemma 3.5.7. Let B (x) be a neighbourhood basis consisting of basic open sets. For
any U ∈ B (x), denote by U = {γ ∈ N : γ ∩ U 6= ∅}. Then {Σ (U) : U ∈ B (x)} is a
neighbourhood basis of S (x) ∈ Σ.

Proof. Because the bundle PN (M) → M is locally trivial, let us take a neighbourhood
V ⊂ M of x ∈ M such that there is a diffeomorphism ϕ : V × Sm−2 → PN (V ) with
ϕ
(
{y} × Sm−2

)
= PNy for all y ∈ V .

Consider the map σ : PN (V ) → V ⊂ N defined by σ ([v]) = γ[v]. It is clear that σ is
continuous and hence σ = σ ◦ ϕ : V × Sm−2 → V is also so. Observe that

S (x) = σ
(
{x} × Sm−2

)
,

and σ(V × Sm−2) = V .
Now, take any open W ⊂ V containing the sky S (x), then

{x} × Sm−2 ⊂ σ−1 (S (x)) ⊂ σ−1 (W)

Since σ is continuous then σ−1 (W) is open in V × Sm−2.
For any (y, q) ∈ V × Sm−2 there exists a neighbourhood basis whose elements are

U (y,q) = Ky × Hq where Ky ⊂ V and Hq ⊂ Sm−2 are open neighbourhoods of y ∈ V
and q ∈ Sm−2 respectively. Then for any (x, q) ∈ {x} × Sm−2, there exist U (y,q) with
(x, q) ∈ U (y,q) ⊂ σ−1(W ). Since {x} × Sm−2 is compact, then there exists a finite
subcovering {Uj = Kj ×Hj}j=1,...,n ⊂ σ−1 (W). Then

{x} × Sm−2 ⊂
n⋃

j=1

Uj ⊂ σ−1 (W)

Observe that K0 =
⋂n

j=1Kj is an open neighbourhood of x and
⋃n

j=1Hj = Sm−2.
Since B (x) is a neighbourhood basis of x ∈ M , there exists U ∈ B (x) such that

U ⊂ K0.
For any (y, q) ∈ U × Sm−2, we have that

(y, q) ∈ U ×
n⋃

j=1

Hj

therefore there exists j such that q ∈ Hj and since y ∈ K0 ⊂ Kj , then (y, q) ∈ Uj ⊂
σ−1(W ). This implies that

{x} × Sm−2 ⊂ U × Sm−2 ⊂ σ−1 (W) .

and hence
S (x) ⊂ σ

(
U × Sm−2

)
⊂ W

and since U = σ
(
U × Sm−2

)
then

S (x) ∈ Σ (U) ⊂ Σ (W)

is verified. Then {Σ (U) : U ∈ B (x)} is a neighbourhood basis of S (x) ∈ Σ as we claimed.
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A direct consequence of the previous lemma is the following:

Theorem 3.5.8. Let M be a strongly causal, null pseudo–convex, space-time separating
skies such that it is refocusing at x, then the sky map S : M → Σ is not open.

Proof. We will show that there exists a sequence {xn} in M that does not converge to x
but S(xn) converges to S(x) in Σ. This contradicts the statement that S is open.

Because M is refocusing at x there exists an open neighbourhood W ⊂ M of x
such that for every open neighbourhood V ⊂ W of x there is y /∈ W such that every
light ray passing through y enters V . Let us choose a sequence of globally hyperbolic
neighbourhoods V x

n ⊂ W of x such that ∩nV x
n = {x}. More specifically, let σ(t) be a

timelike curve contained in a basic neighbourhood U ⊂W of x and let an (respect. bn) be
a sequence of points on σ, in the past (future) of x, such that an → x (respect. bn → x).
Now we choose the sequence of open neighbourhoods as V x

n = I+(an) ∩ I−(bn).
Then for any V x

n in the previous sequence there exists xn /∈ W such that γ ∩ V x
n 6= ∅

and xn ∈ γ ∈ N . Hence, since xn /∈ W for all n, then xn cannot converge to x.
On the other hand, considering the open subsets Un = {γ ∈ N : γ ∩ V x

n 6= ∅}, and
because of lemma 3.5.7, it is clear that Σ(Un) define a neighbourhood basis at S(x) in Σ,
and because S(xn) ∈ Σ(Un) then we conclude that S(xn)→ S(x).

Now, it is easy to conclude. For any strongly causal, null pseudo–convex and sky
separating spacetime M , corollary 3.5.5 claims that S is open, and by theorem 3.5.8, we
have that M is non–refocusing. Then, the following result is proven.

Corollary 3.5.9. If M is a strongly causal, null pseudo-convex, spacetime such that the
skies of M separate events, then M is non-refocusing.

Section 3.6

The reconstruction theorem

In this section we will discuss the conditions under a conformal manifold can be recon-
structed from its spaces of light rays and skies. A space that could be reconstructed
from these data should have the property that “isomorphic” data must provide the same
reconstruction. This observation leads to the following definition.

Definition 3.6.1. Let (M, C),
(
M, C

)
be two strongly causal manifolds and (N ,Σ),(

N ,Σ
)
the corresponding pairs of spaces of light rays and skies. We say that a map

φ : N → N preserves skies if φ (X) ∈ Σ for any X ∈ Σ. Moreover, (M, C) will be said
to be recoverable if for any

(
N ,Σ

)
, the spaces of light rays and skies corresponding to

another strongly causal manifold
(
M, C

)
, and φ : N → N a diffeomorphism preserving

skies, then the map

ϕ = P ◦ φ ◦ S :M →M

is a conformal diffeomorphism on its image, where P : Σ → M is the parachute map to
M .
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Lemma 3.6.2. Let (M, C) and
(
M, C

)
be two strongly causal manifolds and let (N ,Σ)

and
(
N ,Σ

)
be the corresponding pairs of spaces of light rays and skies. If φ : N → N is

a diffeomorphism preserving skies then the induced map Φ : Σ → Σ defined by Φ (X) =
φ (X) is injective, open, continuous and a diffeomorphism onto its range.

Proof. Obviously, Φ is well defined and injective. To show that Φ is continuous, consider
and open set U ⊂ Σ and denote U = Φ−1(U). Since U is open, there exists an open
set W ⊂ N such that any sky X ⊂ W is in U . Since φ is a diffeomorphism, then
W = φ−1(W) is an open set in N and every sky X ⊂ W verifies that φ(X) ⊂ W and,
therefore Φ(X) ∈ U . This implies that U = Σ(W) and U is open in Σ.

Now we show Φ is an open map. Consider X ∈ Σ and X = φ (X) ∈ Σ. Because of
corollary 3.5.6 and the continuity of Φ there exist regular neighbourhoods U ⊂ Σ of X and
U ⊂ Σ of X such that Φ (U) ⊂ U . Then φ (U) ⊂ U with U = Σ(U) and U = Σ(U). Hence,
because φ : N → N is a diffeomorphism, then φ∗ : TN → TN is also a diffeomorphism
and the restriction φ∗ : T̂U → T̂U is a diffeomorphism onto its image. It can be restricted

again to φ∗ : Û → Û since

φ∗

(
Û
)
= φ∗

( ⋃

X∈U

T̂X

)
=
⋃

X∈U

φ∗

(
T̂X

)
=
⋃

X∈U

T̂ φ (X) ⊂ Û ,

and the fact that Û and Û are regular submanifolds of T̂U and T̂U respectively.

Denoting by D̂ = {T̂X : X ∈ U}, and D̂ = {T̂X : X ∈ U} the distributions in Û and

Û , we see that φ∗

(
D̂
)
= D̂. Therefore φ∗ : Û → Û induces a smooth map

φ∗ : Û/D̂ → Û/D̂

and we have the following commutative diagram:

Û Û

Û/D̂ Û/D̂

U U

φ∗

φ∗

Φ

(3.6.1)

Notice that the lower vertical arrows are diffeomorphisms because of proposition 3.5.2,
therefore we conclude that Φ : U → U , is injective, smooth with nonsingular differential,
hence it is open and a diffeomorphism onto its image.

Restricting the map Φ of lemma 3.6.2 to its image, Φ : Σ→ Φ (Σ) then it is clear that
Φ is bijective, open and continuous, hence is a homeomorphism. This homeomorphism
induces, in virtue of corollary 3.5.6, the homeomorphism ϕ = P ◦Φ ◦ S onto an open set
of M . So, we can assume, with no lack of generality that Σ = Φ (Σ) and M = P ◦Φ (Σ).

Theorem 3.6.3. Let (M, C) be a strongly causal, null pseudo–convex and sky separating
spacetime then M is recoverable.
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Proof. Let
(
M, C

)
be another strongly causal manifold with

(
N ,Σ

)
its corresponding

spaces of light rays and skies, and φ : N → N a diffeomorphism such that φ (Σ) = Σ.
Then because of lemma 3.6.2 we conclude that Φ : Σ → Σ is a diffeomorphism. So, in
virtue of corollary 3.5.6, the map ϕ = P ◦ Φ ◦ S :M →M is a diffeomorphism too.

Now, we need to show that ϕ maps light rays of M into light rays of M . We can
consider all the light rays in the skies of a given light ray γ, denoted as

S (γ) = {β ∈ N : ∃X ∈ Σ such that γ, β ∈ X} .

Then Φ (S (γ)) = φ (S (γ)) = {φ (β) ∈ N : ∃X ∈ Σ such that γ, β ∈ X}, and since φ is a
diffeomorphism preserving skies:

Φ (S (γ)) = {φ (β) ∈ N : ∃Φ (X) ∈ Σ such that φ (γ) , φ (β) ∈ Φ (X)} .

Therefore Φ (S (γ)) = S (φ (γ)). So, it implies

ϕ (γ) = P ◦ Φ ◦ S (γ) = P ◦ S ◦ φ (γ) = φ (γ) ∈ N

is a light ray, that is, ϕ maps light rays into light rays. By proposition 2.1.3, ϕ is a
conformal diffeomorphism.

Section 3.7

Celestial curves and reconstruction theorem

We will start this section by introducing a class of curves that are going to play a funda-
mental role in characterizing when the spaces of light rays and skies of a given strongly
causal space–time are “isomorphic” regarding the reconstruction problem.

Let us recall that a curve µ : [a, b] → M is a null curve if it is differentiable and
g (µ′, µ′) = 0. Notice that this is a conformal property and µ does not have to be a
regular curve.

Definition 3.7.1. The set of all null curves µ : I → M will be denoted by L (M). The
subset of L (M) consisting of all time–orientable (future or past)–directed null curves µ
will be denoted by Lc (M), i.e., µ ∈ Lc (M) if µ is differentiable, g (µ′, µ′) = 0 and either
µ′(s) ∈ N+ or µ′(s) ∈ N− wherever µ is regular.

Observe that example 3.3.3 shows the existence of dust curves µ ∈ L (M) such that
they are not time–oriented. So, it motivates the following definition.

Definition 3.7.2. A differentiable curve Γ : I → N such that Γ ⊂ X for some sky X ∈ Σ
is called a sky curve. We will denote the set of all sky curves by Cs (N ).

It is clear that any sky curve Γ ⊂ X ∈ Σ verifies Γ′ (s) ∈ TΓ(s)X for any s ∈ I, then
we have Γ is celestial, thus

Cs (N ) ⊂ C (N )

Recall, that any basic neighbourhood V ⊂ M is null non–conjugate, and similarly,
a neighbourhood “small enough” of any closed spacelike hypersurface has this property
too.
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By convention, we can consider M ⊂ L (M) since any point p ∈ M can be identified
with a constant curve. Moreover, if M is null non–conjugate, then the dust map πCL :
C (N ) → L (M) given by πCL (Γ) = µ is well defined and µ is characterized by Γ′ (s) ∈
T̂Γ(s)S (µ (s)) for every s. In general Γ ∈ C (N ) can be defined by several curves µi with
i = 1, 2, . . ., and so πCL (Γ) should be interpreted as the family {µi}. We call {S(µ(s))}
the Legendrian isotopy of Γ.

Definition 3.7.3. Let (N ,Σ) be the spaces of light rays and skies of a null non–conjugate
strongly causal space–time M . We define the set of causal celestial curves as

Cc (N ) = {Γ ∈ C (N ) : µ = πCL (Γ) ∈ Lc (M)}

The previous definition of the class of causal celestial curves in N uses explicitly the
spaceM , however because of the results of section 3.4 we can provide a characterization of
Cc (N ) without making any reference toM . In fact, using corolary 3.4.8 and propositions
3.4.7 and 3.3.2, we see that µ ∈ Lc (M) if and only if µ is a null curve defining a non–
positive (or non–negative) legendrian isotopy and we get the following corollary that could
be used as an alternative definition of Cc (N ).

Corollary 3.7.4. A celestial curve Γ ∈ C (N ) is a past (future) causal celestial curve if
and only if Γ defines a non-negative (non-positive) legendrian isotopy of skies.

Definition 3.7.5. Let M1 and M2 be two strongly causal spacetimes and let N1 and N2

be their corresponding spaces of light rays. A diffeomorphism φ : N1 → N2 will be called

a celestial map if it preserves celestial vectors, i.e. φ∗

(
Σ̂1

)
⊂ Σ̂2.

The following lemma is a direct consequence of the definitions.

Lemma 3.7.6. Any celestial map φ : N1 → N2 preserves celestial curves.

Proof. If Γ : I → N1 is a celestial curve, then Γ′ (s) ∈ Σ̂1 for every s ∈ I. Since φ is

celestial then (φ ◦ Γ)′ (s) = φ∗ (Γ
′ (s)) ∈ Σ̂2 and hence, φ ◦Γ : I → N2 is a celestial curve.

Moreover φ induces a map φ : C (N1)→ C (N2).

Finally we have the following definition:

Definition 3.7.7. Let M1 and M2 be two strongly causal spacetimes and let N1 and N2

be their corresponding spaces of light rays. A celestial map φ : N1 → N2 will be called a
causal celestial map if φ preserves causal celestial curves, that is

φ : Cc (N1)→ Cc (N2)

Theorem 3.7.8. Let M1 and M2 be two strongly causal spacetimes, suppose that M2 is
null non–conjugate, and let (N1,Σ1) and (N2,Σ2) be their corresponding pairs of spaces
of light rays and skies. Let φ : N1 → N2 be a celestial map. Then the following conditions
are equivalent:

1. φ is a causal celestial map, that is φ ◦ Γ1 ∈ Cc (N2), for all Γ1 ∈ Cc (N1)

2. φ is a celestial sky map, that is φ ◦ Γ1 ∈ Cs (N2), for all Γ1 ∈ Cs (N1).
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3. There exists a conformal immersion Φ :M1 →M2 such that φ (γ) = Φ◦γ for every
γ ∈ N1.

Proof. (1) ⇒ (2) Consider X1 ∈ Σ1 and a closed sky curve Γ1 ∈ Cs (N1) such that
Γ1 : [0, 1]→ X1 ⊂ N1. Since φ is a diffeomorphism and by lemma 3.7.6, then Γ2 = φ ◦Γ1

is a closed celestial curve. Let µ2 be the dust of Γ2. Then, its endpoints verify

µ2 (0) , µ2 (1) ∈ Γ2 (0) = Γ2 (1) = γ2 ∈ N2

By hypothesis, we have that Γ2 ∈ Cc (N2) and therefore µ2 ∈ Lc (M). Since M2 is
strongly causal, then µ2 (0) 6= µ2 (1) and since µ2 can not be a geodesic, by [53, Prop.
10.46], µ2 (0) and µ2 (1) are timelikely related. Now, applying [53, Prop. 10.51] to γ2,
then there exists a conjugate point of µ2 (0) in γ2 before µ2 (1) contradicting that M2 is
null non–conjugate. Hence µ2 must be constant and therefore Γ2 ∈ Cs (N2).

(2)⇒ (3) It is trivial to see that φ preserves skies, then by the reconstruction theorem
3.6.3, the statement (3) follows.

(3)⇒ (1) Consider Γ1 ∈ Cs (N1) and let us denote Γ2 = φ ◦Γ1. Then there is X ∈ Σ1

such that

Γ′
1 (s) ∈ TΓ1(s)X ⇒ φ∗ (Γ

′
1 (s)) ∈ Tφ◦Γ1(s)φ (X)⇒ Γ′

2 (s) ∈ TΓ2(s)φ (X)

for all s ∈ I. Hence, since Φ is conformal, then it also preserves skies and we have that
φ (X) ∈ Σ2. Therefore Γ2 ∈ Cs (N2).

The following example illustrates that the existence of a contactomorphism preserving
celestial vectors between the spaces of light rays of two spacetimes is not sufficient to
induce a conformal diffeomorphism (on its image) between them, showing that condition
(1) in theorem 3.7.8 cannot be weakened.

Example 3.7.9. Let M = M3 be the 3–dimensional Minkowski spacetime with coor-
dinates given by (t, x, y) ∈ R3 and let N be its space of light rays. The hypersurface
C ≡ {t = 0} is a Cauchy surface, then (x, y, θ) ∈ R2 × S1 are coordinates in N for any

null geodesic γ (s) = (s, x+ s cos θ, y + s sin θ). Then

{(
∂
∂x

)
γ
,
(

∂
∂y

)
γ
,
(

∂
∂θ

)
γ

}
is a basis

of TγN . The contact hyperplane Hγ is generated by the tangent spaces of two different
skies containing γ, therefore

Hγ = span

{(
∂

∂θ

)

γ

, sin θ

(
∂

∂x

)

γ

− cos θ

(
∂

∂y

)

γ

}

and a contact form α can be written as

α = cos θdx+ sin θdy

For this γ, we have that TγS (γ (s)) = span

{
s

(
sin θ

(
∂
∂x

)
γ
− cos θ

(
∂
∂y

)
γ

)
+
(

∂
∂θ

)
γ

}

with s ∈ R and hence the celestial vectors at γ are given by γ̃ =
⋃

s∈R
TγS (γ (s)). It can

be easily observed that the whole Hγ is covered by γ̃ except the subspace defined by

span

{
sin θ

(
∂

∂x

)

γ

− cos θ

(
∂

∂y

)

γ

}
.
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We can restrict this spacetime to M0 =
{
(t, x, y) ∈ M3 : t < 0

}
denoting N0 its cor-

responding space of light rays. By global hyperbolicity of M and M0, every null geodesic
γ0 ∈ N0 can be written as γ0 = γ ∩M0 for a unique null geodesic γ ∈ N , then we can
define the restriction map

ρ : N −→ N0

γ 7−→ γ0 = γ ∩M0

and the extension map
ε : N0 −→ N

γ0 7−→ γ

Both ρ and ε are contactomorphisms and they verify ε = ρ−1 and hence we have that
N ≃ N0.

Now, let us consider Mǫ =
{
(t, x, y) ∈ R3 : t < ǫ

}
for ǫ > 0, equipped with the metric

gǫ = − (1 + f (t)) dt⊗ dt+ 2f (t) dt⊗ dx+ (1− f (t)) dx ⊗ dx+ dy ⊗ dy

where f is a smooth function verifying f (t) = 0 for every t ≤ 0. We can see gǫ as
a small perturbation of the metric g of M for 0 < t < ǫ. Trivially, we observe that
M and Mǫ are two space–times extending M0. By [52], the value of ǫ can be chosen
small enough such that Mǫ remains globally hyperbolic, then we can consider Nǫ ≃ N
and therefore Hγ ≃ Hγ0 ≃ Hγǫ

for γ0 = γ ∩M0 and γǫ = γ ∩Mǫ. This extension is
independent from the coordinates x and y. Denoting by γ̃ǫ, γ̃0 the celestial vectors at
the corresponding curve, and working at N with certain abuse of notation we have that
γ̃0 =

⋃
s∈(−∞,0) TγS (γ (s)) ⊂ γ̃ ∩ γ̃ǫ then the value ǫ also can be selected small enough

such that γ̃ǫ ⊂ γ̃ and therefore the contactomorphism Φ : Nǫ → N preserves celestial
vectors. In spite of the existence of Φ preserving celestial vectors, the space–times M and
Mǫ can not be conformally equivalent. Observe that 3–dimensional Minkowski space–time
M is flat. Denoting as Rij , R and gǫij the Ricci curvature, the scalar curvature and the
metric in Mǫ respectively, then the components of the Cotton tensor Cǫ in Mǫ are given
by Cijk = ∇kRij −∇jRik + 1

4

(
∇jRg

ǫ
ik −∇kRg

ǫ
ij

)
. It is widely known (see [33, Th. 9])

that a 3–dimensional manifold is locally conformally flat if its Cotton tensor vanishes.
A straightforward calculation shows that Cǫ 6= 0, then Mǫ is not conformally flat and
therefore it can not be conformal to M .



Chapter 4

Miscellanea

The following sections compound a catchall chapter. First, as application of the concepts
previously developed, we will deal with the boundary proposed by Low in [45]. This author
suggests the construction of a new boundary, invariant by conformal diffeomorphisms, for
spacetimes of any dimension m ≥ 3. In section 4.1, we will accomplish the construction
of Low’s boundary for dimM = 3 and then, in section 4.1.2 we will check if, in some very
simple conditions, it has good properties.

In order to illustrate the geometric structures contained in spaces of light rays of
specific spacetimes, we will collect some examples in section 4.2. Mainly, we will focus our
study on dimensionm = 3, even though the first offered example will be the 4–dimensional
Minkowski spacetime M4. All the calculations done for M4 can be generalized to describe
a general Minkowski spacetime Mm for m ≥ 3. This example will also help us to obtain,
by restriction, the structures of Minkowski M3 and de Sitter S3

1 since they are embedded
in M4, and where null geodesics in the embedded manifold are also null geodesics in the
ambient one. In section 4.2.1 is justified how to achieve said restriction.

Finally, in section 4.3, we will list some open problem that could be studied in future
researches.

Section 4.1

Low’s boundary in the 3–dimensional case

In [45], the author introduces the following new idea for a causal boundary in M . Given
a null geodesic γ : (a, b) → M , we can consider the curve γ̃ : (a, b) → Grm−2 (Hγ)
defined by γ̃ (s) = TγS (γ (s)) contained in the grassmannian manifold Grm−2 (Hγ) of
(m− 2)–dimensional subspaces of Hγ ⊂ TγN . Defining

⊖γ = lims7→a+ γ̃ (s) ∈ Grm−2 (Hγ)

⊕γ = lims7→b− γ̃ (s) ∈ Grm−2 (Hγ)
(4.1.1)

99
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if the previous limits exist, then it is possible to assign endpoints to γ̃. The compactness
of Grm−2 (Hγ) assures the existence of accumulation points when s 7→ a+, b−. In case of
⊖γ and ⊕γ exist for any γ ∈ N , they define subsets in Grm−2 (H) but, a priori, they do
not constitute any distribution. Low defines the points in this new future causal boundary
as the classes of equivalence of light rays that can be connected by a curve tangent to
some ⊕γ at any point. Analogously, the new past causal boundary is defined by ⊖γ .

Now, we will show that, in case ofM being 3–dimensional, Low’s causal boundaries can
have fair topological and differentiable structures. Observe that when the dimension of
the spacetime is dimM = m = 3 then N is also 3–dimensional since dimN = 2m−3 = 3,
and moreover the grassmannian manifold Grm−2 (H) is Gr1 (H) = P (H).

4.1.1

Construction of Low’s boundary

Let us consider a conformal manifold (M, C) where M is 3–dimensional, strongly causal
and null pseudo–convex. We will use g ∈ C as an auxiliary metric.

In order to obtain the Low’s boundary, we will construct a manifold Ñ ⊂ P (H)
equipped with a regular distribution D̃ generated by the tangent spaces of the skies. The
quotient space Σ∼ = Ñ/D̃ will be diffeomorphic to M . Then, assigning endpoints to any

γ̃ ⊂ Ñ ⊂ P (H) provides us two fields of directions ⊖ and ⊕ in N whose orbits, under

some conditions, will be identified to points at the boundary of Ñ in P (H). Finally, this
boundary can be propagated to M via an extension of the diffeomorphism Σ∼ ≃ M . In
this way, Low’s boundary can be seen as the orbits of the fields ⊖ and ⊕.

Notice that the projection

πTN
P(TN ) : TN → P (TN )

J 7→ span {J}

is a submersion, then the restriction

π = πTN
P(TN )

∣∣∣
H

: H → P (H)

also is so.
Observe that for X ∈ Σ and J ∈ TγX , we have that λJ ∈ TγX and π (λJ) = π (J)

for any λ ∈ R.
For each sky X ∈ U ⊂ Σ, we define the map

ρX : X → P (H)
γ 7→ TγX

(4.1.2)

Let us see that ρX is differentiable. Restrict the canonical projection πTN
N to the regular

submanifold T̂X ⊂ H (U) and consider a differentiable local section σ :W ⊂ X → T̂X of
πTN
N

∣∣
T̂X

. Since any TγX is 1–dimensional, then ρX |W = π|T̂X ◦ σ independently of the
section σ. By composition of differentiable maps, ρX is differentiable.

Now, we will show that ρX is an immersion proving that it maps regular curves into
regular curves. So, consider any regular curve Γ : I → X . The composition of Γ with
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the map in (4.1.2) gives us the differentiable curve c = ρX ◦ Γ : I → P (H) defined by

c (s) = TΓ(s)X and since the base curve Γ = π
P(H)
N ◦ c is regular then the curve c in the

fibre bundle P (H) is also regular.
The image of ρX will be denoted as

X∼ = {TγX : γ ∈ X}

Next lemma shows that the union of images X∼ where X lives in any open U0 ⊂ Σ is
also open in P (H).

Lemma 4.1.1. Let V0 ⊂M be an open set and U0 = S (V0) ⊂ Σ. Then U∼
0 =

⋃
X∈U0

X∼

is open in P (H).

Proof. Given any P ∈ U∼
0 there exist X ∈ U0 and γ ∈ X such that P = TγX . Then

for this X ∈ U0, by corollary 3.5.6, there exists a regular open neighbourhood U ⊂ U0

of X . It means that the set of celestial vectors Û =
⋃

X∈U T̂X is a regular submanifold

in TU ⊂ TN where U =
{
γ ∈ N : γ ∩ S−1 (U) 6= ∅

}
. Also observe that, since H (U) =

H ∩ TU is a submanifold of TU then Û is also a regular submanifold of H (U). Due to

dim Û = dimH (U) = 5 and H (U) is open in H then Û is open in H (U) as well as in
H. Since the restriction of the projection π : H (U) → P (H (U)) is a submersion then
π (H (U)) is open in P (H (U)). Observe that for ξ ∈ TγX we have

π (ξ) = TγX =⇒ π
(
T̂X

)
= X∼ =⇒ π

(
Û
)
= U∼

and since Û ⊂ H (U) is open, then U∼ = π
(
Û
)
⊂ P (H (U)) is also open, therefore U∼

is open in P (H). This shows that U∼
0 is open in P (H).

The next step is to define the space

Ñ = {TγX ∈ P (H) : γ ∈ X ∈ Σ} =
⋃

X∈Σ

X∼

Lemma 4.1.2. Ñ is open in P (H).

Proof. If {Uα}α∈Ω is a open covering of Σ, then

Ñ =
⋃

X∈Σ

X∼ =
⋃

X∈
⋃

α∈Ω Uα

X∼ =
⋃

α∈Ω

( ⋃

X∈Uα

X∼

)

and, by lemma 4.1.1, Ñ is union of the open sets U∼
α =

⋃
X∈Uα

X∼, then Ñ is open in
P (H).

If we would want to do the present construction for a higher dimensional M , it would
be necessary that Ñ were a regular submanifold of P (H). This is trivially implied by
lemma 4.1.2 in case of a 3–dimensional M .

Corollary 4.1.3. Ñ is a regular submanifold of P (H).
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We are going to express Ñ in a different way. Let γ : I → M be a future–directed
parametrized light ray, then we define the curve γ̃ : I → P (Hγ) given by

γ̃ (s) = TγS (γ (s)) ∈ P (Hγ)

and we denote its image by

γ̃ = {TγS (γ (s)) ∈ P (Hγ) : s ∈ I}

Applying the previous definition, it is clear that we can see Ñ in two different ways:

Ñ =
⋃

X∈Σ

X∼ =
⋃

γ∈N

γ̃

It is important to observe that the curve γ̃ is locally injective. Indeed, for any s ∈ I
there exists a basic neighbourhood V ⊂M of γ (s). This implies that there is no conjugate
points in V along γ, but this also means that for any t1, t2 ∈ I such that γ (ti) ∈ V with
i = 1, 2 we have that

TγS (γ (t1)) ∩ TγS (γ (t2)) = {0} .
Therefore it is clear that TγS (γ (t1)) 6= TγS (γ (t2)).

Definition 4.1.4. Given a conformal manifold (M, C), we will say that M has tangent
skies if there exist skies X,Y ∈ Σ and γ ∈ X ∩ Y ⊂ N verifying TγX = TγY .

It is obvious that null non–conjugation condition automatically implies absence of
tangent skies for M of any dimension. In the 3–dimensional case, the converse is also
true, as it is shown in the following lemma.

Lemma 4.1.5. If M is a 3–dimensional spacetime without tangent skies at M then it is
also null non–conjugate.

Proof. Given X 6= Y ∈ Σ with γ ∈ X ∩ Y verifying T̂γX ∩ T̂γY 6= ∅, since dimTγX =
dim TγY = 1 then we have TγX = TγY and therefore X and Y are tangent skies at
M .

We have seen that in the 3–dimensional case, Ñ is a regular submanifold of P (H) and
it is foliated by the leaves X∼ = {TγX : γ ∈ X}. Since each X∼ is compact, this foliation
D∼ is regular and defines the quotient manifold

Σ∼ = Ñ/D∼

We will use the following technical result.

Proposition 4.1.6. Let f : M1 → M2 be a submersion. If g : M2 → M3 verifies that
g ◦ f is differentiable, then g is also differentiable.

Proof. See [11, Prop. 6.1.2].

Next proposition gives us the geometric equivalence between Σ∼ and its corresponding
conformal manifold.
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Proposition 4.1.7. If M is such that there are not tangent skies, then the map S∼ :
M → Σ∼ defined by S∼ (p) = S (p)

∼
is a diffeomorphism.

Proof. Given a basic open set V ⊂ M , we consider the set of skies U = S (V ) ⊂ Σ, the

set of celestial vectors Û =
⋃

X∈U T̂X and the set U∼ =
⋃

X∈U X
∼. Recall that the

inclusion Û →֒ TN is an embedding, and consider the submersion π : H → P (H). For

ξ ∈ TγX ⊂ Û then we have that π (ξ) = TγX , and then

π
(
T̂X

)
= X∼ (4.1.3)

hence
π
(
Û
)
= U∼ (4.1.4)

So, since Û ⊂ H and U∼ ⊂ Ñ ⊂ P (H) are open sets, it is clear that the restriction

π : Û → U∼ is submersion. We also know from proposition 3.5.2 that there exists a
regular distribution D̂ in Û whose leaves are T̂X =

⋃
γ∈X TγX with X ∈ U .

The equation (4.1.3) implies that there exist a bijection

π̂ : Û/D̂ → U∼/D∼

T̂X 7→ X∼

and we obtain the following diagram

Û U∼

Û/D̂ U∼/D∼

π

p1 p2

π̂

where p1 and p2 are the corresponding quotient maps. Since D̂ and D∼ are regular dis-
tributions, by proposition 2.2.4, there exists differentiable structures in Û/D̂ and U∼/D∼

such that p1 and p2 are submersions. In this case, p2 ◦ π is another submersion, then
since both p1 and p2 ◦ π are open and continuous, it is clear that the bijection π̂ is a
homeomorphism.

On the other hand, since p1 is a submersion and p2 ◦π is differentiable, by proposition
4.1.6, we have that π̂ is differentiable. Analogously, since p2 ◦ π is a submersion and p1 is
differentiable, then π̂−1 is differentiable, therefore π̂ is a diffeomorphism.

It is known by proposition 3.5.2 that the quotient Û/D̂ is diffeomorphic to V ⊂M by
mean of the sky map S. So, we have shown that

S∼ : V → U∼/D∼

p 7→ S∼ (p) = S (p)∼

is a diffeomorphism.
Under the hypothesis of absence of tangent skies, then given x 6= y ∈ M and X =

S (x), Y = S (y), we have that TγX 6= TγY , hence X∼ = S∼ (x) 6= S∼ (y) = Y ∼

implying the injectiveness of the map S∼ : M → Σ∼. The surjectiveness of S∼ is
obtained by definition, hence it is also a bijection. Finally, since S∼ is a bijection and a
local difeomorphism at every point then it is a global diffeomorphism.
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For a parametrized light ray γ : (a, b)→M we define

⊖γ = lims7→a+ γ̃ (s)

⊕γ = lims7→b− γ̃ (s)
(4.1.5)

when the limits exist.

Under the hypotheses that M is 3–dimensional null non–conjugate spacetime, by
lemma 4.1.5, there are no tangent skies in M , and by the compactness of P (Hγ) ≃ S1

and the local injectivity of γ̃, we have ensured the existence of the limits in (4.1.5). Then
it is possible to define the maps

⊖ : N → P (H)
γ 7→ ⊖ (γ) = ⊖γ

and
⊕ : N → P (H)

γ 7→ ⊕ (γ) = ⊕γ

and the set

Ñ =
⋃

γ∈N

(γ̃ ∪ {⊖γ ,⊕γ}) .

First, we will construct local coordinates in H and P (H) using the ones in TN defined
by the initial values of Jacobi fields at a local Cauchy surface as done in section 3.1.

Indeed, given a set V ⊂ M we define U = S (V ) ⊂ Σ and U =
⋃

X∈U X ⊂ N . Let
us assume that V is a basic open set in such a way (V, ϕ = (t, x, y)) is a coordinate chart
such that the local hypersurface C ⊂ V defined by t = 0 is a spacelike (local) Cauchy
surface. Let {E1, E2, E3} be an orthonormal frame in V such that E1 is a future oriented
timelike vector field in V . Normalizing the timelike component along E1 and considering
tangent vectors of null geodesics at C as γ′ (0) = E1+u

2E2+u
3E3 and since γ is lightlike,

then
(
u2
)2

+
(
u3
)2

= 1. So, we can parametrize all the light rays passing through γ (0)
by u2 = cos θ and u3 = sin θ. This permit us to define coordinates in U by

ψ : U → R3; ψ = (x, y, θ)

Moreover, in this case we have that U ⊂ Σ is a regular set in the sense of definition
3.5.1, hence Û =

⋃
X∈U T̂X is a regular submanifold of TU ⊂ TN and the inclusion

Û →֒ TN is an embedding.

Consider γ ∈ U and J ∈ TγU , since J can be identified with a Jacobi field along the
stated parametrization of γ, we can write J (0) = w1E1 + w2E2 + w3E3 and J ′ (0) =
v1E1 + v2E2 + v3E3. Since g (γ′, J ′) = 0 and considering the equivalence modγ′, then
denoting wk = wk −w1uk and vk = vk − v1uk we have that v2u2 + v3u3 = 0. Supposing
without lack of generality that u2 6= 0 since

(
u2, u3

)
6= (0, 0), we can have v = v3, w2 and

w3 as coordinates in TU . So, we obtain the chart

ψ : TU → R6; ψ =
(
x, y, θ, w2, w3, v

)

Let us denote H (U) = H ∩ TU =
⋃

γ∈U Hγ and now we can construct coordinates in

H (U) ⊂ TU from ψ. If J ∈ Hγ then g (γ′, J) = 0 and therefore

w2u2 + w3u3 = 0



Miscellanea 105

Again, since u2 6= 0, then we have w2 = −1
u2 w

3u3 and we can consider w = w3 as a
coordinate for H (U), then

ϕ : H (U)→ R5; ϕ = (x, y, θ, w, v)

is a coordinate chart.
The projection π = πTN

P(TN )

∣∣∣
H

: H → P (H) allows to define coordinates in P (H) as

follows. From the coordinates ϕ = (x, y, θ, w, v), if we consider J ∈ Hγ and J = λJ for
some λ ∈ R, then

{
J (0) = λJ (0) = λw1E1 + · · ·+ λwmEm

J
′
(0) = λJ ′ (0) = λv1E1 + · · ·+ λvmEm

thus the coordinates w and v verify

{
w
(
J
)
= λw (J)

v
(
J
)
= λv (J)

then the homogeneous coordinate φ = [w : v] verifies

φ
(
J
)
=
[
w
(
J
)
: v
(
J
)]

= [w (J) : v (J)] = φ (J)

and defines the element span {J} ∈ P (Hγ). Therefore, we obtain that

ϕ̃ : P (H (U))→ R4; ϕ̃ = (x, y, θ, φ) (4.1.6)

is a coordinate chart in P (H). Observe that, equivalently, we can also consider φ as the
polar coordinate φ = arctan w

v .
We will use a coordinate chart (P (H (U)) , ϕ̃ = (x, y, θ, φ)) as in (4.1.6), where U =

{γ ∈ N : γ ∩ V 6= ∅} is open in N , to describe Ñ as a manifold with boundary. In this
chart, the coordinate φ describes the entire γ̃ as well as its limit points. Also observe that
a light ray γ is defined by a fixed (x, y, θ) = (x0, y0, θ0).

Every P (Hγ) can be represented by a circumference as shown in figure 4.1, where γ̃
is a connected segment of it with endpoints ⊖γ and ⊕γ .

Proposition 4.1.8. Let M be a 3–dimensional null non–conjugate space–time. Consider
that ⊖ and ⊕ are differentiable distributions,

1. If ⊖ = ⊕ then Ñ is a manifold without boundary.

2. If ⊖γ 6= ⊕γ for all γ ∈ N , then Ñ is a manifold with boundary ∂Ñ =
⋃

γ∈N {⊖γ ,⊕γ}.

Proof. Since ⊖γ and ⊕γ are defined by the limit of γ̃ (s) at the endpoints, γ̃ is locally
injective and, by lemma 4.1.5, there is no tangent skies in M , then γ̃ must be a connected
open set in P (Hγ) ≃ S1 with boundary {⊖γ ,⊕γ}. Now, consider P ∈ P (H) such that
there exist γ ∈ N verifying ⊖γ = P and a coordinate chart ϕ̃ = (x, y, θ, φ) at P as in
(4.1.6). Since ⊖ is a distribution, for any γ ∈ N there exists a point ⊖γ ∈ P (Hγ) ⊂ P (H)
which smoothly depends on the light ray γ. In this case, the coordinates (x, y, θ) define
the light rays in N , and hence the function φ ◦ ⊖ : N → [0, 2π) ≃ S1 has to depend
differentially on the coordinates (x, y, θ). Analogously, the same rules for ⊕. Let us
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Figure 4.1: Representation of P (Hγ).

denote by φ⊖ = φ⊖ (x, y, θ) and φ⊕ = φ⊕ (x, y, θ) the functions φ ◦ ⊖ and φ ◦ ⊕ in
coordinates respectively.

If ⊖ = ⊕, then for any γ ∈ U we have that γ̃ ∪ {⊖γ} = P (Hγ) therefore P (H (U)) =
Ũ ⊂ Ñ and since P (H (U)) ⊂ P (H) is open, then Ñ = P (H), and therefore Ñ is a
manifold without boundary.

In case of ⊖γ 6= ⊕γ , without any lack of generality, we can restrict the domain of φ⊖
and φ⊕, and choose a diffeomorphism [0, 2π) ≃ S1 such that

0 < φ⊖ (x, y, θ) < φ⊕ (x, y, θ) < 2π

for all (x, y, θ). Then, for all γ ∈ U , the points in Ñ restricted to the chart can be written
as

{(x, y, θ, φ) : φ⊖ (x, y, θ) ≤ φ ≤ φ⊕ (x, y, θ)}
describing a manifold with boundary.

Notice that the previous result is also true if ⊖ and ⊕ are continuous distributions. In
this case, the functions φ⊖ and φ⊕ depends continuously of the coordinates (x, y, θ) and
the proof is still valid.

Now, we will see how Low’s boundary can be assigned to M . We will split the
boundary ∂Ñ into the past boundary ∂−Ñ = {⊖γ : γ ∈ N} and the future boundary

∂+Ñ = {⊕γ : γ ∈ N}.
Let us define the sets of orbits of ⊖ and ⊕ as

∂−Σ = N/⊖ ∂+Σ = N/⊕

Since ⊖ and ⊕ are 1–dimensional distributions, their orbits are 1–dimensional differen-
tiable submanifolds of N . So, for an orbit X+ ∈ ∂+Σ and for any γ ∈ X+ we have that
TγX

+ = ⊕γ ∈ P (H), and analogously TγX
− = ⊖γ ∈ P (H). This fact implies that the

maps

X− → ∂−Ñ
γ 7→ TγX

− and
X+ → ∂+Ñ
γ 7→ TγX

+ (4.1.7)

are differentiable because they coincide with the restriction ⊖|X− and ⊕|X+ respectively.
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Analogously, we can denote by

(
X−

)∼
=
{
TγX

− : γ ∈ X−
}

(
X+
)∼

=
{
TγX

+ : γ ∈ X+
}

the corresponding images of the previous maps in (4.1.7).
If (X−)

∼∩ (Y −)
∼ 6= ∅ then there exists γ ∈ X−∩Y − but since both X− and Y − are

orbits of the field of directions ⊖ then we have that X− = Y −. Analogously for orbits
of ⊕. So, we have that the images in P (H) of the orbits of ⊖ and ⊕ are separate, this
means (

X−
)∼ ∩

(
Y −
)∼ 6= ∅ =⇒ X− = Y −

(
X+
)∼ ∩

(
Y +
)∼ 6= ∅ =⇒ X+ = Y +

This property of separation permits us to define

(
∂−Σ

)∼
=
{(
X−

)∼
: X− ∈ ∂−Σ

}

(
∂+Σ

)∼
=
{(
X+
)∼

: X+ ∈ ∂+Σ
}

and also (
Σ
)∼

= Σ∼ ∪
(
∂−Σ

)∼ ∪
(
∂+Σ

)∼

Now, observe that the map S∼ :M → Σ∼ can be naturally extended to

S∼ :M →
(
Σ
)∼

by S∼ (X±) = (X±)
∼
, where M =M ∪ ∂−Σ ∪ ∂+Σ.

Lemma 4.1.9. The maps

N → ∂−Ñ
γ 7→ ⊖γ

and
N → ∂+Ñ
γ 7→ ⊕γ

are diffeomorphisms.

Proof. We can see trivially that the map N → ∂−Ñ is bijective. Observe that the image
of the map ⊖ : N → P (H) is ∂−Ñ . Since its expression in coordinates is

(x, y, θ) 7→ (x, y, θ, φ⊖ (x, y, θ))

and φ⊖ is differentiable, it is clear that N is locally diffeomorphic to the graph of φ⊖
and moreover this graph is locally diffeomorphic to the image of ⊖, that is ∂−Ñ . So,
the map N → ∂−Ñ is a bijection and a local diffeomorphism, therefore it is a global
diffeomorphism. The proof for N → ∂+Ñ can be done in the same way.

Since ⊖ and ⊕ define regular distributions in N , we can propagate them, respectively
to ∂−Ñ and ∂+Ñ using the difeomorphisms of lemma 4.1.9. Then we obtain the regular
distributions (D−)

∼
and (D+)

∼
whose leaves are the elements of (∂−Σ)

∼
and (∂+Σ)

∼

respectively. These distributions, together with D∼, give rise to a new distribution D∼

whose leaves are disjoint in Ñ and they can be seen as elements of
(
Σ
)∼

. Since all the
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distributions D∼, (D−)
∼

and (D+)
∼

are regular, then D∼ is also a regular distribution.
Therefore we can consider the quotient

Ñ/D∼ = Ñ/D∼ ∪ ∂−Ñ/
(
D−
)∼ ∪ ∂+Ñ /

(
D+
)∼

(4.1.8)

as a differential manifold identified, in virtue of lemma 4.1.9, with

(
Σ
)∼

= Σ∼ ∪
(
∂−Σ

)∼ ∪
(
∂+Σ

)∼ ≃ Ñ/D∼

with boundary ∂
(
Σ
)∼

= (∂−Σ)
∼ ∪ (∂+Σ)

∼
.

Then we can identify
(
Σ
)∼

with M via the map S∼ : M →
(
Σ
)∼

obtaining that M
is the causal Low’s completion. We state that Low’s boundary of M is

∂M =M −M = ∂−Σ ∪ ∂+Σ

In case of ⊖ = ⊕ then ∂+Ñ = ∂−Ñ and (∂+Σ)
∼
= (∂−Σ)

∼
. Hence (D+)

∼
= (D−)

∼

and ∂−Σ = ∂+Σ and therefore, the Low’s completion of M is

∂M =M −M = ∂Σ

where ∂Σ = ∂−Σ = ∂+Σ.

4.1.2

Low’s boundary and c-boundary

In order to study a spacetime M at large, the attachment of a boundary can be use-
ful. There are several boundaries defined in the literature (Geroch’s g–boundary [21],
Schmidt’s b–boundary [60], GKP c–boundary1 [22],...) and their interest depend on the
properties we want to study. In [45], the author wonders if Low’s and GKP boundaries
are the same, so we will focus on it. We will see that, unfortunately, they are not equal as
sets of points in the general case, but it is easy to find examples in which they are fairly
related. The classical definition of c–boundary has been re–defined along the years to
avoid problems arising in the study of its topology. For our purposes, we will recall and
deal with this classical definition, but [19], [59] and references therein can be consulted
to get a wider understanding on the subject.

Definition 4.1.10. A set W ⊂ M is said to be an indecomposable past set or an IP if
it verifies the following conditions:

1. W is open and non–empty.

2. W is a past set, that is I− (W ) =W .

3. W can not be expressed as the union of two proper subsets verifying conditions 1
and 2.

1It is also called Geroch–Kronheimer–Penrose’s boundary, causal boundary or just c–boundary.
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We will say that an IP W is a proper IP or PIP if there is p ∈ M such that W =
I− (p). In other case, W will be called a terminal IP or TIP. In an analogous manner,
considering the chronological future, we can define indecomposable future sets or IF, then
we obtain proper IFs and terminal IFs, that is, PIFs and TIFs

In the figure 4.2, as shown in [8, Fig. 6.4], we offer a trivial example about how IPs and
IFs can be identified with the boundary of M . We consider M as a cropped rectangle of
the 2–dimensional Minkowski spacetime equipped with the metric g = −dy⊗dy+dx⊗dx.
Points at the boundary of M such as p are related to TIPs like A, such as q corresponds
to TIPs like B and such as r can be related to TIPs like C as well as TIFs like D.

Figure 4.2: TIPs and TIFs.

The following proposition provide us a characterization of all TIPs in a strongly causal
spacetime.

Proposition 4.1.11. For any strongly causal spacetime M , A ⊂M is a TIP if and only
if there exists a timelike curve µ inextensible to the future such that A = I− (µ).

Proof. See [25, Prop. 6.8.1.].

Light rays also define terminal ideal points as next proposition shows.

Proposition 4.1.12. Let γ be a future–directed inextensible causal curve in a strongly
causal spacetime M , then I− (γ) is a TIP.

Proof. See [19, Prop. 3.32].

Now, we are ready for the classical definition of GKP c–boundary.

Definition 4.1.13. We define the future (past) causal boundary or future (past) c–
boundary of M as the set of all TIPs (TIFs).

Observe that any point p ∈M can be identified with the PIP I− (p) as well as the PIF
I+ (p), moreover it is possible the existence of TIP and TIF identified with the same point
at the boundary, as TIP C and TIF D seen in figure 4.2. Then, in order to define the
causal completion of M , a suitable identification between sets of IPs and IFs is needed.
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This is out of the scope of this work, but [19] and its references can be consulted to get
a feedback on that subject.

The question arising now is if all the TIPs in the future c–boundary can be defined by
the chronological past of a light ray. Unfortunately, this is not always true as the following
example shows because there are TIPs that only can be defined by timelike curves. We
will denote by I± (·, V ) the chronological relations I± (·) restricted to V . It is clear that
I± (·, V ) ⊂ I± (·) ∩ V , but the equality is not always true.

Example 4.1.14. Let M3 be the 3–dimensional Minkowski spacetime and N its space
of light rays. Let us choose any point ω ∈ M3 and consider the spacetime M as the
restriction of M3 to any open half K ⊂ M3 of a solid cone with vertex in ω such that
K ⊂ I− (ω), as figure 4.3 shows. Notice that M = I− (ω) can also be considered. Observe
that there exists a light ray γ arriving at points like p∗, so a point X+

γ ∈ ∂+ΣV can be
defined by γ, and notice that p∗ can be identified with the TIP I− (γ, V ). But also observe
that the point ω is not accessible by any light ray in M = K so there is no point in future
Low’s boundary corresponding to the TIP M = I− (µ) defined by the future–inextensible
timelike curve µ.

Figure 4.3: Low’s boundary is not GKP.

Anyway, Low’s boundary can look alike to GKP boundary when we include some
topological constraints to the spacetime.

As a first step, it is possible to study Low’s boundary corresponding to the restriction
of a spacetime M to a suitable open set V ⊂M . The aim of it is to know how to identify
∂Σ under näıve conditions. The study of the future Low’s boundary ∂+Σ is enough,
because the past one is analogous.

Consider V ⊂M an relatively compact basic open set and U = {γ ∈ N : γ ∩ V 6= ∅}.
We denote by ⊕V the field of limiting subspaces tangent to the skies of points in a light
ray when they tends to the boundary of V future–directed. So, given γ ∈ U ⊂ N we can
parametrize future–directed the segment of γ in V by γ : (a, b)→ V , then

⊕V
γ = ⊕V (γ) = lim

s7→b−
TγS (γ (s))

Observe that a curve c : I → U is the integral curve of ⊕V passing through γ at τ = 0
if {

c′ (τ) ∈ ⊕V (c (τ))
c (0) = γ
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Now, consider x ∈ ∂V ⊂ M such that lims7→b− γ (s) = x and let Γ : I → X ∩ U be
a curve travelling along the light rays of the sky X = S (x) in U such that Γ (τ) = γτ
with γ0 = γ and γτ ∩ V has a future endpoint at x for all τ ∈ I. Then it is possible to
construct a variation of light rays f : I × [0, 1]→ V ⊂ M such that f (τ, ·) ⊂ γτ ∈ X ∩ U
and f (τ, 1) = x for all τ ∈ I. It is clear that for all τ ∈ I we have

Γ′ (τ) ∈ Tγτ
X

and using the definition of ⊕V , then

⊕V
Γ(τ) = ⊕V

γτ
= lim

s7→1−
Tγτ

S (γτ (s)) = Tγτ
S (γτ (1)) = Tγτ

S (f (τ, 1)) = Tγτ
X

and therefore, for all τ ∈ I
Γ′ (τ) ∈ ⊕V

Γ(τ).

This implies that the orbit X+ ∈ ∂+ΣV of ⊕V going across γ is just the set of light rays of
the sky X coming out of V . So, for any of such extendible spacetime V , Low’s boundary
is made up of skies of points at the boundary of V .

Let us denote by γV = γ ∩ V the segment of the light ray γ contained in V . Consider
any γ, µ ∈ X+ ∈ ∂+ΣV and any q ∈ I− (γV , V ). Since x ∈ I+ (q) then µV ∩ I+ (q) 6= ∅
and hence there is a timelike curve λ : [0, 1] → M such that λ (0) = q ∈ V and λ (1) ∈
µV ⊂ V . But this implies that λ ⊂ V because its endpoints are in a causally convex open
set, therefore q ∈ I− (µV , V ). This shows that I− (γV , V ) = I− (µV , V ) for any γ, µ ∈ X+

and therefore there is a well defined map between Low’s and GKP boundaries given by

X+ 7→ I− (γV , V )

because it is independent from the chosen light ray γ ∈ X+

Since there is no imprisoned causal curve in V , every light ray γV ⊂ V has endpoints
in the boundary ∂V ⊂M , then

Ũ ⊂ Ñ ⊂ P (H)
is an open manifold with boundary and therefore

∂+Ũ →֒ Ñ .

is a homeomorphism onto its image.
We have proven above that any orbit X+ of ⊕V is contained in the sky X = S (x)

where x ∈ ∂V , then the set of leaves in the foliation
(
D+

V

)∼
of tangent spaces to the

orbits coincide with the set of leaves in the foliation (D)∼ of tangent spaces to the skies

of points of M restricted to ∂+Ũ , then using equation (4.1.8) we have

(
∂+ΣV

)∼ ≃ ∂+Ũ/
(
D+

V

)∼
= ∂+Ũ/D∼ ⊂ Ñ/D∼ = Σ∼

Using now the inverse of the diffeomorphism S∼ : M → Σ∼ of lemma 4.1.7, we ob-

tain that (S∼)
−1
(
∂+Ũ/D∼

)
is contained in ∂V , then the topology of (∂+ΣV )

∼ ≃
(S∼)

−1
(
∂+Ũ/D∼

)
, and therefore also of ∂+ΣV , is induced by the ambient manifold

M . Observe that (S∼)−1
(
∂+Ũ/D∼

)
is formed by all points in ∂V accessible by a light

ray.
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In case of any open segment of light ray passing through V is not contained in ∂V ,
that is any segment of light ray γ : [a, b]→M with γ (a) ∈ V and γ (b) /∈ V verifies that
γ ∩ ∂V is just an only point. This is clearly verified for V = I+ (x) ∩ I− (y) such that
J+ (x) ∩ J− (y) is closed. Then, it is possible to show that for any p ∈ ∂V accessible by
light rays from V there is a neighbourhood W ⊂ ∂V such that q ∈ W is accessible by
light rays from V .

So, let us assume that there is a light ray γ passing by a given p ∈ ∂V . We can take
a relatively compact, differentiable, spacelike local hypersurface C such that p ∈ C − ∂C.
If γ is parametrized as the future–directed null geodesic verifying γ (0) = p, then we can

construct a non–zero differentiable null vector field Z̃ ∈ XC on C such that Z̃p = γ′ (0).
In this conditions, we will apply the following result.

Lemma 4.1.15. Let C be a relatively compact, differentiable, spacelike (local) hypersur-

face and Z̃ ∈ XC a non-zero differentiable vector field defined at C and transverse to C,
then there exists ǫ > 0 such that

F : C × (−ǫ, ǫ) → M

(p, s) 7→ F (p, s) = expp

(
sZ̃p

)

is a diffeomorphism onto its image.

Proof. First, let us extend Z̃ to a vector field Z in a neighbourhood U ⊂ M of C. For
every p ∈ C there are a neighbourhood Up ⊂ C and δp > 0 such that for all x ∈ Up the

geodesic γx (s) ≡ expx

(
sZ̃x

)
is defined for all s < |δp| without conjugated points. Since

C is relatively compact, there exists a finite subcovering {Upi} of C. Fixing δ = min {δpi
}

then for all p ∈ C the null geodesic γp (s) is defined for s < |δ|. Then we can define

F : C × (−δ, δ) → M

(p, s) 7→ F (p, s) = expp

(
sZ̃p

)

and if q = F (p, s) = γp (s) then Zq ≡ γ′p (s) is an extension of Z̃ to the open neighbour-

hood of C given by W = F (C × (−δ, δ)) ⊂ M . By the locality of C, we can choose an

orthonormal frame
{
Ẽj

}
on C and propagate it to the whole W by parallel transport

along every γp for all p ∈ C. For every (p, 0) ∈ C × (−δ, δ) we have

dF(p,0)

((
0p,

∂
∂s

∣∣
0

))
= Z̃p ∈ TpM

dF(p,0)

(((
Ẽj

)
p
,00

))
=
(
Ẽj

)
p
∈ TpM

where ∂
∂s is the tangent vector field of the curves αq (s) = (q, s) ∈ C × (−δ, δ). Since

dF(p,0) maps a basis of T(p,0) (C × R) ≈ TpC × T0R into a basis of TpM , then it is an
isomorphism and hence F is a local diffeomorphism. So, there exists a neighbourhood
Hp × (−ǫp, ǫp) of (p, 0) ∈ C × (−δ, δ) with 0 < ǫp < δ such that the restriction of F is a
diffeomorphism. Again, since C is relatively compact, then from the covering {Hp} we
can extract a finite subcovering

{
Hk
}
of C, then taking ǫ = min {ǫk} we have

C × (−ǫ, ǫ) =
⋃

k

Hk × (−ǫ, ǫ)
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CallingW = F (C × (−ǫ, ǫ)) then for any (p, s) ∈ C×(−ǫ, ǫ), the map F : C×(−ǫ, ǫ)→W
is a local diffeomorphism. By construction, this restriction of F is surjective, and since
there are not conjugated points in the null geodesics γq, then we get the injectivity.
Therefore we conclude that F : C × (−ǫ, ǫ)→W is a global diffeomorphism.

If we apply now lemma 4.1.15 to the proposed hypersurface C, then the image of the
map F is an open neighbourhood of p ∈M . We can take a nested sequence {Cn} ⊂ C of
neighbourhoods of p in C converging to {p} and restrict F to Cn× (−ǫ, ǫ). Let us assume
that for every Cn there exists a null geodesic segment γn = F (qn, (0, ǫ)) fully contained
in V , then for any 0 < s < ǫ the sequence F (qn, s) 7→ γ (s) as n increases. Hence
γ ((0, ǫ)) ⊂ ∂V since γ ((0, ǫ)) ∩ V = ∅, therefore γ|(0,ǫ) is contained in ∂V contradicting
that there is no segment of a light ray contained in ∂V .

On the other hand, if for every Cn there is a null geodesic segment γn = F (qn, (−ǫ, 0))
without points in V , then as done before, we have that γ ((−ǫ, 0)) ⊂ ∂V but this contra-
dicts that γ ((−ǫ, 0)) ⊂ V .

Therefore, there exist Ck ⊂ C such that for all q ∈ Ck the null geodesic segment
γq = F (q, ·) has endpoints γq (s1) ∈ V and γq (s2) ∈M −V with −ǫ < s1 < s2 < ǫ. Since
∂V is a topological hypersurface then B = F (Ck, (−ǫ, ǫ))∩ ∂V is an open set of ∂V such
that all points in B are accessible by future–directed null geodesic.

Then ∂+ΣV is topologically equivalent to an open set relative to ∂V with the induced
topology of M . It is also known that the future c–boundary of V is also topologically
equivalent to ∂V ⊂ M , so future Low’s boundary is equivalent to future c–boundary in
the set they shared.

The previous procedure can be carried out for more general spacetimes V , we only
need to ensure that any null geodesic γq defined by the diffeomorphism F intersects ∂V
“transversally” even if ∂V is not smooth, in the sense of crossing ∂V but not remaining
in for any interval of the parameter of γq.

Now, how can we deal with a general case in order to calculate points in the Low’s
boundary when there is not any larger spacetime containingM? We can use the previous
calculations. Consider any light ray γ ∈ N , then we can parametrize a inextensible
future–directed segment of it by γ : [0, b) → M . We can cover this segment by means
of a numerable collection {Vn} formed by relatively compact basic neighbourhoods Vn.
Without any lack of generality, we can assume that Vn ∩ Vk 6= ∅ if and only if n = k ± 1
and n increases when γ (s) moves to the future. If we denote by xn ∈ ∂Vn the future
endpoint of γ ∩ Vn, then the orbit of ⊕Vn passing through γ is Xn ∩ Un ⊂ N , or in other
words, it is defined by Xn ∈ Σ. In this way, the orbit X+ ∈ ∂+Σ of ⊕ : N → P (H) can
be constructed by the limit in N of the sequence {Xn}, because that limit must exist as
we saw in section 4.1.

Section 4.2

Examples of spaces of light rays

In the present section, we offer some examples in which we show explicitly the previously
studied structures of their corresponding spaces of light rays. Although we will focus
on 3–dimensional spacetimes, we will also deal with 4–dimensional Minkowski spacetime
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that will help us in the study of two embedded 3–dimensional examples: Minkowski and
de Sitter spacetimes. In these two examples, we will proceed restricting them from the
4–dimensional Minkowski example as section 4.2.1 suggests.

4.2.1

Embedded spaces of light rays

Now, we will deal with some particular cases of embedded spacetimes. Let M be a
(m+ ν)–dimensional, strongly causal and null pseudo–convex spacetime with metric g

where m ≥ 3. We will denote overlined its structures N , H,... Consider M ⊂ M an
embedded m–dimensional, strongly causal and null pseudo–convex spacetime equipped
with the metric g = g|TM×TM such that any maximal null geodesic in M is a maximal

null geodesic in M . Since M is embedded in M , then trivially TM is embedded in TM .

Given a basic open set V ⊂ M such that C ⊂ V is a smooth spacelike Cauchy
surface, then clearly V = V ∩M is causally convex and contained in a convex normal
neighbourhood. Moreover, if λ ⊂ V is a inextensible timelike curve, since λ ⊂ V then
λ intersects exactly once to C, hence the intersection point must be in C = C ∩M and
therefore C ⊂ V is a smooth spacelike Cauchy surface in V . This implies that V is a
basic open set in M .

Observe that the inclusion TV →֒ TV is an embedding, and we can use the chain
of manifolds (2.2.8) to ensure that the restriction N (C) →֒ N

(
C
)
is also an embedding.

Fixed a timelike vector field Z ∈ X (V ), since V is an arbitrary basic open set, without
any lack of generality, we can choose any timelike extension Z ∈ X

(
V
)
of Z, that is

X = X
∣∣
V
. For all v ∈ N (C) ⊂ N

(
C
)
we have

g (v, Z) = g
(
v, Z

)

Then,

ΩZ (C) = {v ∈ N (C) : g (v, Z) = −1} →֒ ΩZ
(
C
)
=
{
v ∈ N

(
C
)
: g
(
v, Z

)
= −1

}

is an embedding. Again, by equation (2.2.8) U ≃ ΩZ (C) and U ≃ ΩZ
(
C
)
, then we have

that the inclusion

N ⊃ U →֒ U ⊂ N

is an embedding. Since N →֒ N is an inclusion, then it is injective and thus a global
embedding. Therefore also

TN →֒ TN

is another global embedding.

Given a point x ∈ M ⊂ M , its sky X ∈ Σ is the set of all light rays contained in N
passing through x, but since every light ray in N is a light ray in N , then calling X ∈ Σ
the sky of x relative to N we have

X = X ∩N
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Since the metric in M is just the restriction to TM of the metric in M , then the
contact structure H of N is the restriction of the contact structure H of N to the tangent
bundle TN , that is

Hγ = Hγ ∩ TγN
for all γ ∈ N .

So, for any γ ∈ X ⊂ N , now it is clear that

TγX = TγX ∩ TγN = TγX ∩Hγ

due to TγX ⊂ Hγ . For a regular parametrization γ : (a, b)→M , then we can write

TγS (γ (s)) = TγS (γ (s)) ∩Hγ

and hence, the future Low’s distribution is

⊕γ = lim
s7→b−

TγS (γ (s)) = lim
s7→b−

TγS (γ (s)) ∩Hγ = ⊕γ ∩Hγ

If the distribution defined by ⊕ in N is integrable, then the orbits of ⊕ becomes the
orbits of ⊕ restricted to N , that is

X+ = X
+ ∩N

Now, we can use the contents of the current section to study of 3–dimensional Minkowski
and de Sitter spacetimes as embedded in a 4–dimensional Minkowski spacetime.

4.2.2

4–dimensional Minkowski

Consider Minkowski spacetime given by M4 =
(
R4,g

)
where the metric is given by

g = −dt⊗dt+dx⊗dx+dy⊗dy+dz⊗dz in the standard coordinate system ϕ = (t, x, y, z).
We will use the notation N , H, ... for the structures related to M4.

It is known that the hypersurface C ≡ {t = 0} is a global Cauchy surface, then by
remark 2.2.9, N is diffeomorphic to C × S2. We can describe points at the sphere S2

using the angles θ, φ of the spherical coordinates. Then, we can use ψ = (x, y, z, θ, φ) as
a system of coordinates in N , where ψ−1 (x0, y0, z0, θ0, φ0) = γ ∈ N corresponds to the
light ray given by

γ (s) = (s , x0 + s · cos θ0 sinφ0 , y0 + s · sin θ0 sinφ0 , z0 + s · cosφ0)

with s ∈ R.
In general, it is possible to calculate the contact hyperplane at γ ∈ N as the vector

subspace in TγN generated by tangent spaces to two different non–conjugated points in
γ as done in (3.0.4), or in other words, if γ (s1) and γ (s2) are not conjugated along γ
then TγS (γ (s1)) ∩ TγS (γ (s2)) = {0} and since the suitable dimension is reached, then

Hγ = TγS (γ (s1))⊕ TγS (γ (s2))
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In case of Minkowski spacetime, there are not conjugate points along any geodesics, so
we will use the points γ (0) and any γ (s).

For any (θ, φ) the curve

µ(θ,φ) (τ) = γ (s) + τ (1 , cos θ sinφ , sin θ sinφ , cosφ)

describes a null geodesic passing by γ (s) which is in C at τ = −s. So, the sky of γ (s)
can be written in coordinates by

ψ (S (γ (s))) ≡





x (θ, φ) = x0 + s (cos θ0 sinφ0 − cos θ sinφ)
y (θ, φ) = y0 + s (sin θ0 sinφ0 − sin θ sinφ)
z (θ, φ) = z0 + s (cosφ0 − cosφ)
θ (θ, φ) = θ
φ (θ, φ) = φ

then the derivatives of these expressions with respect to θ and φ at (θ, φ) = (θ0, φ0) give
us the generators of the tangent space of the sky S (γ (s)) at γ, so

TγS (γ (s)) = span

{
s

(
sin θ0 sinφ0

(
∂
∂x

)
γ
− cos θ0 sinφ0

(
∂
∂y

)
γ

)
+
(

∂
∂θ

)
γ
,

s

(
− cos θ0 cosφ0

(
∂
∂x

)
γ
− sin θ0 cosφ0

(
∂
∂y

)
γ
+ sinφ0

(
∂
∂z

)
γ

)
+
(

∂
∂φ

)
γ

}

and trivially

TγS (γ (0)) = span

{(
∂
∂θ

)
γ
,
(

∂
∂φ

)
γ

}

Therefore the contact hyperplane at γ is

Hγ = span

{(
∂
∂θ

)
γ
,
(

∂
∂φ

)
γ
, sin θ0

(
∂
∂x

)
γ
− cos θ0

(
∂
∂y

)
γ
,

cos θ0 cosφ0
(

∂
∂x

)
γ
+ sin θ0 cosφ0

(
∂
∂y

)
γ
− sinφ0

(
∂
∂z

)
γ

}

and a contact form is

α = cos θ sinφ · dx+ sin θ sinφ · dy + cosφ · dz

For this spacetime it is possible to calculate ⊕ and ⊖. We will proceed only for ⊕
because the case of ⊖ is analogous. Using the definition (4.1.1), we have

⊕γ = lim
s7→+∞

TγS (γ (s)) =

= span

{
sin θ0 sinφ0

(
∂
∂x

)
γ
− cos θ0 sinφ0

(
∂
∂y

)
γ
,

− cos θ0 cosφ0
(

∂
∂x

)
γ
− sin θ0 cosφ0

(
∂
∂y

)
γ
+ sinφ0

(
∂
∂z

)
γ

}
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and therefore ⊕ defines a integrable distribution whose partial differential equations are





∂x
∂α (α, β) = sin θ sinφ
∂y
∂α (α, β) = − cos θ sinφ
∂z
∂α (α, β) = 0
∂θ
∂α (α, β) = 0
∂φ
∂α (α, β) = 0





∂x
∂β (α, β) = − cos θ cosφ

∂y
∂β (α, β) = − sin θ cosφ

∂z
∂β (α, β) = sinφ

∂θ
∂β (α, β) = 0

∂φ
∂β (α, β) = 0

and its solution with initial values (x0, y0, z0, θ0, φ0) is given by





x (α, β) = x0 + α sin θ0 sinφ0 − β cos θ0 cosφ0
y (α, β) = y0 − α cos θ0 sinφ0 − β sin θ0 cosφ0
z (α, β) = z0 + β sinφ0
θ (α, β) = θ0
φ (α, β) = φ0

(4.2.1)

This solution corresponds to the 2–plane

cos θ0 sinφ0 · (x− x0) + sin θ0 sinφ0 · (y − y0) + cosφ0 · (z − z0) = 0 (4.2.2)

in the Cauchy surface C and it defines the orbit X
+

γ of ⊕ passing through γ. The image

in M of all the light rays in X
+

γ is precisely the 3–plane in M4 given by

cos θ0 sinφ0 · (x− x0) + sin θ0 sinφ0 · (y − y0) + cosφ0 · (z − z0)− t = 0

and it is easy to show, using straightforward calculations, that any light ray µ ∈ X+

γ in
the same orbit of ⊕ than γ determines the TIP

I− (µ) = I− (γ) = {t < cos θ0 sinφ0 · (x− x0) + sin θ0 sinφ0 · (y − y0) + cosφ0 · (z − z0)}

so the future Low’s boundary coincides with c-boundary one except for the TIP I− (λ) =
M4 defined by a timelike geodesic λ, because it can not be defined by light rays.

Moreover, [19, Thm. 4.16] ensures that, for this spacetime, c–boundary is the same
than conformal boundary.

The Low’s boundary corresponds to the set of all orbits of ⊕, that is, all existent
2-planes (4.2.2). Observe that the map

R3 × S2 ≃ N → ∂+Σ ≃ R1 × S2

γ 7→ X
+

γ

(4.2.3)

such that every light ray γ ∈ N is mapped to the point of Low’s boundary corresponding
to the orbit of ⊕ passing through γ can be written in coordinates by

(x, y, z, θ, φ) 7→ (cos θ sinφ · x+ sin θ sinφ · y + cosφ · z, θ, φ)

therefore future Low’s boundary is ∂+Σ ≃ R1 × S2.
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4.2.3

3–dimensional Minkowski

Let us proceed now with 3–dimensional Minkowski spacetime given by M3 =
(
R3,g

)
with

metric g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy in coordinates ϕ = (t, x, y). We will use the
notation N , H, ... for the structures related to M3.

It is possible to see M3 as the restriction of M4 to its hyperplane z = 0. So, in order to
obtain the description of the space of light rays of M3, we can restrict the results obtained
in section 4.2.2 to z = 0 and therefore, also φ = π/2.

Then, C ≡ {t = 0} is still a Cauchy surface and N ≃ C × S1 and we can use ψ =
(x, y, θ) as a system of coordinates in N , where ψ−1 (x0, y0, θ0) = γ ∈ N describes the
light ray given by

γ (s) = (s , x0 + s · cos θ0 , y0 + s · sin θ0)
with s ∈ R.

So, the tangent space of the skies S (γ (s)) and S (γ (0)) at γ can be written as

TγS (γ (s)) = span

{
s

(
sin θ0

(
∂
∂x

)
γ
− cos θ0

(
∂
∂y

)
γ

)
+
(

∂
∂θ

)
γ

}
(4.2.4)

and
TγS (γ (0)) = span

{(
∂
∂θ

)
γ

}

Therefore the contact hyperplane at γ is

Hγ = span

{
sin θ0

(
∂
∂x

)
γ
− cos θ0

(
∂
∂y

)
γ
,
(

∂
∂θ

)
γ

}

and any contact form will be proportional to

α = cos θ · dx+ sin θ · dy

Using expression 4.2.4 it is possible to calculate easily the point in Low’s boundary
passing by γ , then

⊕γ = lim
s7→+∞

TγS (γ (s)) = span

{
sin θ0

(
∂
∂x

)
γ
− cos θ0

(
∂
∂y

)
γ

}

and therefore we can obtain the integral curve c (τ) = (x (τ) , y (τ) , θ (τ)) defining the
orbit X+

γ ⊂ N of ⊕ containing γ solving the initial value problem





x′ (τ) = sin θ
y′ (τ) = − cos θ
θ′ (τ) = 0
c (0) = (x0, y0, θ0)

Its solution is c (τ) = (x0 + τ sin θ0 , y0 − τ cos θ0 , θ0) and it corresponds to the family of
null geodesics with tangent vector v = (1, cos θ0, sin θ0) and initial value in the straight
line contained in C given by

{
cos θ0 (x− x0) + sin θ0 (y − y0) = 0
t = 0

.
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Again, by straightforward calculations, it is possible to show that given µ1, µ2 ∈ X+
γ

then I− (µ1) = I− (µ2), therefore any light ray in X+
γ defines the same TIP

I− (γ) =
{
(t, x, y) ∈ M3 : t < cos θ0 (x− x0) + sin θ0 (y − y0)

}
.

then, again future Low’s boundary coincides with the future part of the c–boundary
accessible by light rays.

In an analogous way, the orbit X−
γ of ⊖ verifies X−

γ = X+
γ and thus it corresponds to

the TIF I+ (γ).

The restriction of the map (4.2.3) to N ≃ R2 × S1 results

R2 × S1 ≃ N → ∂+Σ ≃ R1 × S1

γ 7→ X+
γ

that, in coordinates, can be written by

(x, y, θ) 7→ (cos θ · x+ sin θ · y, θ)

therefore, ∂+Σ ≃ R1 × S1.
We can use the previous calculations to describe a globally hyperbolic block embedded

in M3. Let us call M∗ =
{
(t, x, y) ∈M3 : t > −1

}
with the same metric g restricted to

M∗, and denote by N∗, H∗,... the corresponding structures for M∗. Since M∗ ⊂ M3 is
open and they share the same Cauchy surface C ≡ {t = 0}, then trivially N∗ ≃ N and
H∗ ≃ H. To calculate ⊖∗, we can consider the limit of the expression (4.2.4) when s
tends to −1, then

(⊖∗)γ = lim
s7→−1

TγS (γ (s)) = span

{
− sin θ0

(
∂
∂x

)
γ
+ cos θ0

(
∂
∂y

)
γ
+
(

∂
∂θ

)
γ

}

Thus, the orbit X−
γ ⊂ N∗ of ⊖∗ passing by γ is the solution c (τ) = (x (τ) , y (τ) , θ (τ)) of





x′ (τ) = − sin θ
y′ (τ) = cos θ
θ′ (τ) = 1
c (0) = (x0, y0, θ0)

and it is given by c (τ) = (x0 + cos (τ + θ0) , y0 + sin θ0 (τ + θ0) , τ + θ0). The light ray
in X−

γ defined by c (τ) can be parametrized (as a null geodesic) by

γτ (s) = (s , x (τ) + s cos θ (τ) , y (τ) + s sin θ (τ)) =

= (s , x0 + (s+ 1) cos (τ + θ0) , y0 + (s+ 1) sin (τ + θ0))

verifying lims7→−1 γτ (s) = (−1, x0, y0) for all τ . This clearly shows that X−
γ ⊂ N∗ can be

identified with S ((−1, x0, y0)) ⊂ N and therefore past Low’s completion M∗ ∪ ∂−Σ∗ ≃{
(t, x, y) ∈ M3 : t ≥ −1

}
diffeomorphically.
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4.2.4

3–dimensional de Sitter spacetime

We will continue using the notation of section 4.2.2.
We can define the de Sitter spacetime S3

1 as the set in M4 verifying

−t2 + x2 + y2 + z2 = 1 (4.2.5)

We will denote the structures related to S3
1 by NS , HS ,... By [53, Prop. 4.28], light

rays in NS are straight lines in M4 contained in S3
1 , that is, light rays in M4 too.

Let us consider the Cauchy surface in S3
1 given by CS = C ∩S3

1 , that is, the 2-surface
verifying {

t = 0
x2 + y2 + z2 = 1

so we can parametrize CS by 



x = cosu sinw
y = sinu sinw
z = cosw

(4.2.6)

Obviously, the null geodesic γ ∈ N will entirely lie in S3
1 if it verifies the equation

(4.2.5), so for every s we have

−s2 + (x+ s cos θ sinφ)
2
+ (y + s sin θ sinφ)

2
+ (z + s cosφ)

2
= 1

that can be simplified into

2s ((x cos θ + y sin θ) sinφ+ z cosφ) = 0

therefore
(x cos θ + y sin θ) sinφ+ z cosφ = 0 (4.2.7)

and hence, we solve

cotφ = −x cos θ + y sin θ

z
.

By the relation (4.2.6) we can write

cotφ = − cos (θ − u) tanw

so φ only depends on the variables u,w, θ. We will abbreviate it as

cotφ = f (u,w, θ)

Let us restrict the contact form α to NS considering





x = cosu sinw
y = sinu sinw
z = cosw
θ = θ
φ = arccotf (u,w, θ)

(4.2.8)
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Changing the differentials




dx = − sinu sinwdu + cosu coswdw
dy = cosu sinwdu + sinu coswdw
dz = − sinwdw

into α we obtain

αS = α|NS
= cos θ sinφ (− sinu sinwdu+ cosu coswdw) +

+ sin θ sinφ (cosu sinwdu + sinu coswdw) + cosφ (− sinwdw) =

= − cosw sinw sin(θ−u)√
cos2(θ−u) sin2 w+cos2 w

du− cos(θ−u)√
cos2(θ−u) sin2 w+cos2 w

dw

where we have used the relations, obtained from (4.2.7), given by





sinφ = − cosw√
cos2(θ−u) sin2 w+cos2 w

cosφ = sinw cos(θ−u)√
cos2(θ−u) sin2 w+cos2 w

. (4.2.9)

We can choose the following contact form in NS

αS = cosw sinw sin (θ − u)du + cos (θ − u)dw

Then, the 2-plane that annihilates αS is

(HS)γ = span
{
− cos (θ − u)

(
∂
∂u

)
γ
+ cosw sinw sin (θ − u)

(
∂
∂w

)
γ
,
(

∂
∂θ

)
γ

}

In order to find the future Low’s boundary of 3–dimensional de Sitter spacetime, in
virtue of section 4.2.1, we will restrict the results obtained in section 4.2.2 for M4 to the
embedded S3

1 . So, using the expression (4.2.8) for the values (u0, w0, θ0) we have

(x0, y0, z0, θ0, φ0) = (cosu0 sinw0, sinu0 sinw0, cosw0, θ0, arccotf (u0, w0, θ0))

and substituting it, together with (4.2.9), into the equation (4.2.2), we obtain the equation

of the orbit
(
X+

S

)
γ
= X

+

γ ∩ NS of ⊕S through γ as a curve in the Cauchy surface CS

given by
cos (θ0 − u) tanw = cos (θ0 − u0) tanw0 (4.2.10)

or equivalently
f (u,w, θ0) = f (u0, w0, θ0) . (4.2.11)

If we consider the inclusion in coordinates

i : NS ≃ S2 × S1 → N ≃ R3 × S2

(u,w, θ) 7→ (cosu sinw, sinu sinw, cosw, θ, arccotf (u,w, θ))
(4.2.12)

then its composition with the map (4.2.3) is

NS ≃ S2 × S1 → ∂+ΣS ⊂ R1 × S2

(u,w, θ) 7→ (0, θ, arccotf (u,w, θ))
(4.2.13)
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For a fixed θ = θ0, because (4.2.11), every level set Uk = {(u,w) ∈ CS : f (u, v, θ0) = k}
corresponds to an orbit of ⊕S. Since the image of

F (u,w) = f (u, v, θ0) = − cos (θ0 − u) tanw

is (−∞,∞) then the image of

G (u,w) = arccotf (u, v, θ0)

is (0, π), therefore the image of the map (4.2.13) is ∂+ΣS = {0} × S2 ≃ S2.
By [53, Prop. 4.28], it can be easily observed that I− (p)∩S3

1 = I−
(
p, S3

1

)
and hence,

for any light ray γ ∈ NS

I− (γ) ∩ S3
1 = I−

(
γ, S3

1

)

Thus, the restriction of TIPs of M4 to de Sitter spacetime are TIPs of S3
1 , and therefore

future Low’s boundary of de Sitter spacetime coincides with the part of future c–boundary
accessible by null geodesics.

4.2.5

A family of 3–dimensional spacetimes

In this section we will study the family of spacetimes given byMα =
{
(t, x, y) ∈ R3 : t > 0

}

with metric tensor gα = −t2αdt⊗ dt+ dx⊗ dx+ dy ⊗ dy.
It is trivial to see that the transformations given by

For α < −1: For α = −1: For α > −1:




t = tα+1

α+1

x = x
y = y





t = log t
x = x
y = y





t = tα+1

α+1 − 1

x = x
y = y

(4.2.14)

are conformal diffeomorphisms such that

For α < −1: For α = −1: For α > −1:

Mα ≃M3 M−1 ≃M3 Mα ≃M∗

where the last spacetimeM∗ denotes the 3–dimensional Minkowski block studied in section
4.2.3. So, the space of light rays, its contact structure and Low’s boundary of these
spacetimes are already calculated in section 4.2.3.

Anyway, we will take a closer look at Low’s boundary for α > −1.
Observe that the null vectors in TpMα are proportional to v = (1, tα cos θ, tα sin θ)

for θ ∈ [0, 2π] at p = (t, x, y), and the only non–zero Christoffel symbol is Γ0
00 = αt−1.

Hence, since the equations of geodesics are





t′′ + α
t (t

′)
2
= 0

x′′ = 0
y′′ = 0
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then the null geodesic γ such that γ (0) = (t0, x0, y0) and γ′ (0) = (1, tα0 cos θ0, t
α
0 sin θ0)

for a given θ0 ∈ [0, 2π] for α > −1 can be written as

γ (s) =
((

(α+ 1) tα0 s+ tα+1
0

)1/(α+1)
, x0 + stα0 cos θ0 , y0 + stα0 sin θ0

)

defined for s ∈
(

−t0
α+1 ,∞

)
.

Observe that, when −1 < α < 0, lightcones open wider as t approaches to 0, becoming
a plane at the limit t = 0. On the other hand, when α > 0, they close narrower when
t gets close to 0, degenerating into a line when t = 0. The case α = 0 corresponds to a
Minkowski block isometric to M∗.

Let us consider C ≡ {t = 1} as the global Cauchy surface we will use as origin of any
given null geodesic

γ (s) =
(
((α+ 1) s+ 1)

1/(α+1)
, x0 + s cos θ0 , y0 + s sin θ0

)
= (ts, xs, ys)

Then the curve

µθ (τ) =
((

(α+ 1) tαs τ + tα+1
s

)1/(α+1)
, xs + τtαs cos θ , ys + τtαs sin θ

)

describes a null geodesic starting at γ (s). So, for τ = −s
tαs

, we have

µθ (−s/tαs ) = (0, x0 + s (cos θ0 − cos θ) , y0 + s (sin θ0 − sin θ)) ∈ C.

Therefore, the coordinates of the sky of γ (s) can be written by

ψ (S (γ (s))) ≡





x (θ) = x0 + s (cos θ0 − cos θ)
y (θ) = y0 + s (sin θ0 − sin θ)
θ (θ) = θ

Deriving with respect to θ at θ = θ0, we obtain a generator of the tangent space of the
sky S (γ (s)) at γ, so

TγS (γ (s)) = span

{
s

(
sin θ0

(
∂
∂x

)
γ
− cos θ0

(
∂
∂y

)
γ

)
+
(

∂
∂θ

)
γ

}

and then

(⊖α)γ = lim
s7→ −1

α+1

TγS (γ (s)) = span

{
− sin θ0

(
∂
∂x

)
γ
+ cos θ0

(
∂
∂y

)
γ
+ (α+ 1)

(
∂
∂θ

)
γ

}

The solution c (τ) = (x (τ) , y (τ) , θ (τ)) of the initial value problem




x′ (τ) = − sin θ
y′ (τ) = cos θ
θ′ (τ) = α+ 1
c (0) = (x0, y0, θ0)

describes the orbit X−
γ ⊂ Nα of ⊖α passing by γ. Then

c (τ) =
(
x0 +

cos((α+1)τ+θ0)−cos θ0
α+1 , y0 +

sin((α+1)τ+θ0)−sin θ0
α+1 , (α+ 1) τ + θ0

)
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It is easy to realize that the points in Mα in the orbit X−
γ verify

t2α+2 = (α+ 1)2
[(
x−

(
x0 − cos θ0

α+1

))2
+
(
y −

(
y0 − sin θ0

α+1

))2]
(4.2.15)

A schematic picture of X−
γ can be seen in figure 4.4.

Figure 4.4: The α-family of spacetimes.

Observe that each orbit X−
γ is determined by the vertex of the surface (4.2.15), there-

fore past Low’s boundary can be identified with R2 such that any (u, v) ∈ R2 corresponds
to the orbit of ⊖α whose light rays emerges from the point (t, x, y) = (0, u, v).

The differentiable structure of Mα = Mα ∪ ∂−Σα can not be the standard one in-
duced fromM∗ =M∗ ∪∂−Σ∗ =

{
(t, x, y) ∈ R3 : t ≥ −1

}
by the corresponding conformal

mapping (4.2.14), because it would be needed that

Mα → M∗

(t, x, y) 7→
(

tα+1

α+1 − 1, x, y
)

were differentiable, but it is not the case with the standard differentiable structure when
−1 < α < 0.

Section 4.3

Future lines of research

Throughout this work, we have assumed the strong causality condition for the conformal
manifold M in order to construct its space of light rays rays N and its structures therein.
Strongly causal spacetimes is the largest class for which is possible to build the space of
light rays but it is just a sufficient condition. In fact, we have not needed all the power of
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strong causality because we only have used that property for light rays and not for other
causal curves.

In virtue of theorem 1.2.15, any spacetime M has a neighbourhood basis consisting of
globally hyperbolic and normal neighbourhoods. If the open set of this basis are causally
convex, then M is strongly causal. Then, we can replace the property of causal convexity
of the basis neighbourhoods with the condition of light convexity, that is, U ⊂M is said
to be lightly convex if x 6= y ∈ U are connected by a future–directed inextensible null
geodesic γ : I →M with x = γ (a) < γ (b) = y ∈ U , then γ ([a, b]) ⊂ U .

Observe that the neighbourhoods U of this new basis remain globally hyperbolic and
normal, then any null geodesic passing through U intersects the local Cauchy surface in
an only point and there is not conjugated points along null geodesics in U . Moreover, the
definition of light convexity property trivially implies that γ ∩ U has a unique connected
component for γ ∈ N and U a lightly convex neighbourhood. This implies that the
distribution D = span {Xg,∆} used in section 2.2 to define N = N+/D is still regular,
thereforeN becomes a quotient manifold. Moreover, ifM is null pseudo–convex, and since
there is not any null geodesic imprisoned in any compact, then the proof of proposition
2.2.14 can be achieved in identical way and N becomes Hausdorff.

The neighbourhoods of this lightly convex basis can be used, as we did in sections 3.1
and 3.2, to define coordinates in TN as well as the Low’s topology in Σ. Theorem 3.2.8
is still true because in its proof we only use the absence of conjugated points and the
existence of a local Cauchy surface. Thus, corollary 3.2.9 can be proved with the same
proof.

Unfortunately, in this work, it is not possible to replace globally the hypothesis of
strong causality for light convexity property. This is because the proof of proposition 3.5.2
uses, in a decisive way, the causal convexity condition in order to prove that property 4
in the definition of regular sets is verified.

The importance of weakening strong causality condition is due to the convenience of
studying non–strongly causal spacetimes like Anti–de Sitter among others. This spacetime
is chronological but non–causal, and it is lightly convex. It is possible to check that its
space of light rays can be well described from the point of view of this work.

As an easy and illustrative example, consider the spacetime given by

M =
{
(t, x, y) ∈M3 : 0 ≤ t < 1, (t+ 1, x, y) ∼ (t, x, y)

}

where M3 is the Minkowski spacetime and ∼ denotes the identification of the planes t = 0
and t = 1. Observe thatM is not even chronological since the curve λ (s) = (s, x0, y0) is a
closed timelike geodesic for any fixed (x0, y0). But N can be fairly defined for M since it
coincides with Minkowski spacetime locally, and since null geodesics do not accumulates
outside themselves, it is equipped with good topological properties.

So, the following open questions arise:

• Is light convexity condition enough to ensure the equivalence between reconstructive
and regular sets topology?

• Can the conditions in the definition of regular sets be weaken but still defining the
same topology?

• Can weak refocusing exist in a sky–separating non-strongly causal spacetime?



126 Future lines of research

Another subject with many open questions is Low’s boundary. We have study some
aspects of the 3–dimensional case and shown an example (section 4.2.2) of its existence
and good properties in higher dimension. Also, we have checked in section 4.1.2 that this
new boundary can be comparable with c-boundary, in spite of they do not coincide in
general, because the existence of points at c-boundary that can not be defined by light
rays. Moreover, we have seen examples in which both boundaries are essentially the same.
In proposition 4.1.8, we have assumed that ⊖ and ⊕ are distribution, but this fact seems
to depend on the global geometry of the spacetime M . So, some pending question are:

• What conditions ensure that ⊖ and ⊕ are distribution?

• Can the conformal structure ofM be extended to Low’s completionM? This means
that any X± ∈ ∂±Σ is, in fact, a sky of M .

• Is really Low’s boundary an open subset of c-boundary as examples suggest?

• Are the results in section 4.1 still true for any dimension m ≥ 3?

In section 2.4, we studied the existence of a canonical contact structure H turning N
into a contact manifold. Contact structures of 3–dimensional contact manifolds can be
divided in two types: overtwisted and tight (not overtwisted) [20, Sect. 4.5]. A complete
classification of overtwisted and tight contact structures in 3–dimensional contact man-
ifolds is known, mainly due to the work of Y. Eliashberg [18] and K. Honda [28], [29]
among others. Thus, the classification of H is an open question.

• Is H tight or overtwisted?

• In case of tight, is H fillable by the symplectic structure defined by the manifold of
timelike geodesic of M?

Maybe further but already in the horizon, the converse problem arises.

• Given a contact manifold N0 and a family of legendrian spheres Σ0, is there any
conformal manifold (M, C) with space of light rays N and space of skies Σ such that
N = N0 and Σ = Σ0 isomorphically?

The point of view in this work is closer to the study of the relationship between M
and N than to set up N as the manifold where to study conformal properties of specific
spacetimes. We have characterized the causal structure of M in terms of N , but many
others conformal invariants of M could be described in its space of light rays in order to
use N as working manifold. So, we believe that, in this new scope, an interesting road is
laid to be travelled by future researches. Time and new efforts will say if this outlook is
fruitful.
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