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ABSTRACT. We show that in the general case, two se-
mi-riemannian conformal metrics that have the same

Ricci tensor must be homothetic.

§1 INTRODUCTION.

We consider a Semi-riemannian connected manifold (M,g) of dimension nz3.
We denote by V, Ric, and Sc, the Levi=Civita connection, the Ricci tensor, and
the scalar curvature respectively. We say that a symmetric connection v
is conformally related with V if there is a vector field AeX(M) such that:

6XY-VXY=g(A,X)Y+g(A,Y)X—g(X,Y)A for all X, YeX(M)

It is well known that V is conformally related with V iff V preserves the
conformal structure of g by parallel transport. Also, A=grad o iff V is the
Levi—Civita connection of é=e26g.

In order to give the relation between the Ricci tensor Ric of v
and Ric, we need the l=-form a(X)=g(A,X), and the tensor Q=Va-o®a.

If Ric is symmetric the following formulas are well know ([Kul, [(Eil):

6(X)=VXA—g(A,x)A [1]

(2-n) SC-SC
2 g(A,A)g+ 2(n-1)

In [11 @ is the (1,1) tensor defined by g(Q(X),Y)=Q(X,Y). Indeed
in [2], SC=Sc g, and SC=Tr(Ric) g where Tr(Ric), is the trace of Ric computed

Ric-Ric=(2-n)Q+ [2]

with the metric g. Thus we have the following theorem:

THEOREM 1

A necessary and sufficient condition for Ric=Ric is that for all XeX¥(M) we
have the following strange property for A:

VXA=g( A,X)A~%g( A,A)X [strange propertyl [3]
Proof:
If Ric=Ric, then SC=SC. Using [2] we have, Q=—%g(A,A)g and by [1] we obtain:
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QAX)=V, A-g(A,X)A=- % g(A,A)X
Reciprocally if the A has the strange property [3], then by [2] we have:
2(n-1)(Ric-Ric)=SC-SC=tr(Ric-Ric)g
Computing the trace of the two members we have 2(n-1)(SC-SC)=n(SC-SC).
Thus SC=SC and Ric=Ric.m

§2 THE MAIN RESULTS

The main aim of this work is to prove that in general case, the Ricci ten-
sor determine the connection in a conformal structure. To see that we will
‘prove that the condition [3] of theorem 1 is a very estrange property for a
non null field A. In fact, if such field exist, then almost every geodesics
for V are incomplete.

In §3 we will prove the following key theorem:

(KEY) THEOREM 2

If AcX(M) is a not identically null field in M, having the property [3],
then A(x)#0 for all xeM, and if the function g(A,A:M —R is not identically
null, then g(A,AXx)#0 for all xeM. Moreover we have:

a) Any V=geodesic which is not orthogonal to A in some point, is incomple-
te.

b) In the case g(A,A)#0, the function o=Ln(|g(A,A)|) verifies grad(c)=A.
Moreover, for all V=geodesics y with g(y’,¥’)#0, we have that g(A,y’) is not a

null constant. In particular ¥y is incomplete.m

We recall that a semi-riemanian manifold is timelike, lightlik or spaceli-
ke complete, if all geodesics of such character are complete.

The next main theorem is a easy consequence of the key theorem 2.

(MAIN) THEOREM 3
Suppose (M,g) semi-riemannian, §=e20g and Ric( g)=Ric(§). Then o is

necessary constant, if any of the following hypotheses is verified:

1) (M,g) is riemannian, and there is a complete geodesic.

2) (M,g) is Lorentz, and there is a complete timelike geodesic.

3) (M,g) is not riemannian, and spacelike or timelike or lightlike complete.

4) (M,g) is compact not riemannian, and all the lightlike geodesics

are incomplete.

Proof:

Let A =grad ¢ be in (M,g). V and V are as in §l. Suppose that o is non
constant, therefore the hypothesis of theorem 2 is verified. Thus if g(A,A) is
not identically null, then g(A,A)(x)#0 for all xeM. By a) and b) of theorem 2



we conclude that all the geodesics of (M,g) are incomplete. This proves that
under the hypothesis 1), A=0 and ¢ is a constant.

In order to prove the same, under the hypothesis 2) or 3) for (M,g) we
can suppose that g(A,A) is a null constant:

If (M,g) is not riemannian then there are spacelike ligthlike and timelike
geodesics which are not orthogonal to A, hence by a) of theorem 2, all of the-
se geodesics are incomplete.

On the other hand, if (M,g) is Lorentz, then there are not timelike geode-
sics which are orthogonal to A (because A is lightlike and is never zero)
hence all the timelike geodesics are incomplete.

Finally, if (M,g) is compact non Riemannian then also is g(A,A)=0, since
in other case (using (b) of theorem 2) the function ¢=Ln(|g(A,A)[) has not
critical points on the compact space M. The strange condition [3] says that
V,A=0, and A is a geodesic field. Since M is compact, the integral curves de A

A
are complete lightlike geodesics. This proves 4).m

REMARK 1
The main theorem generalizes [Xul. Here it is proved that under the hypo-
thesis of theorem 3, ¢ is constant when (M,g) is riemannian, compact, and

oriented.

REMARK 2

Note that the key theorem 2 also show a slight modification of theorem 3:

THEOREM 4

Let V be the Levi_Civita connection for the semi-riemannian space (M,g).
Suppose that (M,g) verifies some of the hypotheses 1) 2) 3) or 4) of the
theorem 3. Let V be a symmetric conection conformally related with V. If V and

V are the same Ricci tensor, then V=V.m

§3 PROOF OF THE KEY THEOREM 3.
From now onwards we suppose that A is é not identically null field in the
semi-riemannian connected space (M,g), that has the strange property [3I]:
VXA=<A,X>A - —;-<A,A>X for all XeX(M)
where V denote the Levi-Civita connection of g, and <X,Y>=g(X,Y). By geodesic
we mean that V-geodesic.

Also, let o be the l-~form defined by o(X)=<A,X> for all XeX(M ).

LEMMA 1
Let c:I —M be a differentiable curve. If F=<A,c’>:] —R, then the



function f=<A,A>oc, verifies the differential equation:
G F

Thus there is a constant k such that f(t)=k exp(p(t)) where ¢’=F.

In particular, if f(t)#0 for some t, then f(t)#0 for all t.
Proof’:

We can suppose without loss of generality that ¢ is an integral curve of a
differentiable field XeX(M). We have, f’(t)=X(<A,A>)(c(t)). Using now the
strange property for A we get:

£’ (t)=2<V_A,A>oc(t)=2<<A,X>A- L <A,A>X,A>oc(t)=(<A,X><A,A>)oc(t)=F(t)f(t).m

X 2

Next we can easily prove a first part of the key theorem:

COROLLARY 1.

If there is a point peM such that <A,A>(p)#0 then <A,A>(x)#0 for all xeM.
Also A=grad(c), where o=log( |<A,A>|):M—)[R
Proof:

Since M is (pathwise) connected, we can join p to a fix point xeM by a
differentiable curve c:I —M with c(0)=p, c(1)=x. Since <A,A>oc(0)20 we con-
clude by lemma 1 that <A,A>ec(1)=<A,A>(x)=0.

Suppose for example <A,A>>0. Then using the same argument of Lemma 1, we
have for all XeX(M), X(<A,A>)= <A,X><A,A>=a(X)<A,A>. This means that

a=de, where o=Ln(<A,A>)

Fix any differentiable curve c:I —M, there always exist a differentiable
function (determined up a constant) u:I —R, such that
uw’(t)=alc’(t))=<A,c’(t)> for all tel
we call u, a primitive of o along 7.

In order to end the proof of the key theorem 2 we establish:

LEMMA 2
Let y:I —M be a geodesic with <y’,¥’>=¢, (¢ is the sign in {-1,0,1})
and let u(t), tel be a primitive of « along y. Then u(t) verifies the second
order differential equation for some keR:
d%u _ {du Z ke u
()2
Also the sign of k and the sign off <A,A> coincide.
Proof: v
As in Lemma 1 we denote F=<A,y’>=afy’):] —R, and f=<A,A>oy:I —R. Thus
there are ¢:1 —R and k’eR such that ¢’=F and f(t)=k’ exp(p(t)). Note that
k’=0 if <A,A>=0.



Since u(t) and ¢(t) are primitives of « along ¥ we conclude that gp=u+k’’,
and
f=k.e"
where k=k’.exp(k’’). (Note that k=k’=0 if <A,A>=0).
Moreover, using [3] we have

V(Aoy) _ , 1 |
—ar =<A,y’>A > <A,A>oy’=FA 5
by scalar multiplication for ¥’ and using that ¥y is geodesic we get:

Yy _ T d . V(A°7)
u’=F’= E<A,7 >—<T

)_,_1 u,
fy’=u’A 7ke7

ro(py2. L .U
' >=(u’) 2kt:e

We prove now the assert a) of key theorem 2

COROLLARY 2
Any geodesic y, such that <A,y’(t)>#0 for some t, is incomplete.
Proof:
Let y:1 —M be a maximal geodesic, as in Lemma 2, with <A,y’(0)>=0.
Suppose first <A,A>=0 and let uw:I —R be a primitive of « along 7.
By Lemma 2, u verifies the second order differential equation
d2u du 2
= |at [4]
dt
since u’=<A,¥’>, is not a null constant, u is not the trivial solution.The

nontrivial solution is
a

u(t)=Ln {lth] where u(0)=a, u’(0)=b#0 [5]

which is not defined on the whole real line as it should be if ¥ were
complete.

Suppose now <A,A>#0. By the Corollary 1 is a=de, and by Lemma 2 v(t)=c(y(t))
verifies the second order differential equation :
_‘f!_ _ [dv ]z_k_eev

2z |dt 2

where £ is the sign of ¥, and lc(:[R have the same sign of <A,A>.

If ke=0 we argue as before. Else (ke#20) we compare the solution [5] of
[4] for a=u(0)=v(0), b=u’(0)=v’(0)=O0.
Taylor formula gives:

u(t)—v(t)=t2§—€eV(s) for some s between O and t [6]
Since v’(t)=<A,7’(t)> and sign(k)=sign(<A,A>), we can suppose (reversing
if necessary the orientation of %) that v’(0)=b has the same sign of -ke. We
get now:
1) If b>0 and ke<O then u(t) —+w for t — 1/b, and v(t) —+w for t—31/b be-

cause u(t)>v(t).



2) if b<0 and ke>0 then u(t) —-w for t — 1/b, and v(t) —-w for t —1/b be-
cause u(t)<v(t).

Thus v(t) is not defined in the whole real line, and ¥ is incomplete.m

Moreover we have:

COROLLARY 3

The vector field A verifies A(x)#0 for all xeM.
Proof:

By Corollary 1, we can suppose that <A,A>=0. If there is peM, with A(p)=0
we will prove that A is zero in the whole M. In fact, fixing any geodesic
¥:1 —>M with ¥(0)=p, let w:I —R be a primitive u of « along y. By Lemma 2,
u(t) verifies the differential equation [4] with solution [5]. But
b=u’(0)=<A(p),y’(0)>=0, thus u(t)=u(O)=a, and u’=<A,y’>=0. Finally, using the
strange property [3] for A, we have:

V(Aoy)
dt
Since A(y(0))=0 is A=0 along y. Using now the exponential function in p

=<A,y’>A=0

we see that A=0 in a neighbdurhood of p. Thus {xeM:A(x)=0} is open and closed

set, which coincides with the whole M. =
To end the proof of the key theorem it is sufficient to prove:

COROLLARY 4
If <A4,A>#0, then for any geodesic y:I —M such that <y’,y’>=ece{-1,1}, we

have that the function <A,y’>:I —R is not a null constant.
Proof’:

Let u:I —R a primitive of « along ¥. By Lemma 2, u verifies:
d%u _ [511]2_ ke u
dtz dt 2

where ke#0. If we supposse u’=<A,y’>=0 then u’’=0, and kee'=0. This is a

contradiction. m

This end the proof of the key Theorem.

REMARK 3
Note that if <A,A>#0 then the form « is closed (since is exact).
It is easy to prove that a is also closed if <A,A>=0. This means that if
Ric=Ric, then V is always locally the Levi_Civita connection for some é=e20g.
Moreover, the orthogonal distribution of A is integrable and the integral

surfaces are totally geodesics. We do not know if such geodesic are complete.
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