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Abstract
The space of light rays N of a conformal Lorentz manifold (M, C) is, under some
topological conditions, a manifold whose basic elements are unparametrized null
geodesics. This manifold N , strongly inspired on R. Penrose’s twistor theory, keeps
all information of M and it could be used as a space complementing the spacetime
model. In the present review, the geometry and related structures of N , such as the
space of skiesΣ and the contact structureH, are introduced. The causal structure ofM
is characterized as part of the geometry ofN . A new causal boundary for spacetimes
M prompted by R. Low, the L-boundary, is constructed in the case of 3–dimensional
manifolds M and proposed as a model of its construction for general dimension. Its
definition only depends on the geometry of N and not on the geometry of the space-
time M . The properties satisfied by the L–boundary ∂M permit to characterize the
obtained extensionM = M∪∂M and this characterization is also proposed for general
dimension.

Keywords Contact manifold · L–boundary · Conformal manifold · Causal structure ·
Light rays · Strongly causal spacetimes
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1 Introduction

The majority of the scientific community dedicated to mathematical physics is aware
of the importance of the magnificent Roger Penrose’s scientific contribution in the
various fields in which he has been working. One of these fields is the study of the
formation of black holes within the framework of the General Theory of Relativity,
for which he was awarded the Nobel Prize in Physics in 2020. As part of that goal,
Penrose has pioneered various theories that have been remarkably successful for their
achievements and originality, for instance, the study of causal relations [27, 59], in
the sense of describing the global properties of spacetime depending on what events
influence to (or are influenced by) others. Most of the tools used in this field are
quite simple, but the idea is powerful enough so that it has been very fruitful and
still remains active today [1, 14, 33]. Non–spacelike curves are one of these tools, so
if we would want to characterize the causality in any geometrical new model of the
spacetime, then it will be necessary to describe such curves. Once the causal relations
are determined, then it is possible to look for the c–boundary, which is a conformal
boundary of the spacetime defined by adding the chronological past and future of
inextensible causal curves as ideal points [27, 59]. The construction of boundaries of
the spacetimes is motivated, among other reasons, to extend the spacetime in order
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to study the singularities which could appear “outside” the model, or to compactify
“infinite" models to study properties at a finite range [57].

Another theory developed by Penrose is twistor theory [58, 60, 61]. This theory
takes advantage of the geometry of the 4–dimensional Minkowski spacetime M

4 to
establish a complementary framework. In this new geometry for the spacetime, the
basic elements are the paths ofmassless particles instead of the events of the spacetime.
Calling MC � C

4 the complexification of M
4, then there exists a double fibration

F12(C
4)

Gr1
(

C
4
)

MC

π1 π2

(1.1)

where F12(C
4) is the flag manifold of (complex) 1– and 2–dimensional vector sub-

spaces ofC
4 andGr1

(

C
4
) � P(C4) is the projective space ofC

4. The spaces Gr1
(

C
4
)

and MC contain complementary information (all contained in the flag manifold) that
can be transferred from one to the other by the double fibration.

The beauty of twistor theory rests on the specific geometry of the complex projective
spaces involved in the double fibration (1.1), so this geometry is not applicable to more
general spacetimes.

A new attempt to apply the ideas of twistor theory for non–flat spacetimes arose
when R. Low, a PhD student of Penrose at the time, proposed to use real geometry
instead of complex one (see, for instance, [40–47]). Low laid the foundations for
building a new framework allowing the study of the conformal properties of general
spacetimes. This new geometry is the space of light raysN . Its elements are the images
of all null geodesics in the spacetime M (called light rays). This space pretends to be a
complement (or even a substitute) of the conformal class of the given spacetime in the
study of, for instance, causality or other conformal aspects on physical models (see
also [4, 5, 15, 16, 19]). It is proven in [4] that the conformal manifold M is encoded
in N as a family Σ of submanifolds in N , called the space of skies, such that the
conformal manifold M can be univocally recovered knowing how the submanifolds
ofΣ lie inN . These submanifolds are called skies and consist of all light rays passing
through a given point in M .

In [47], Low introduces the idea of how to construct a possible new boundary for
the spacetime M . This can be done fromN and Σ by adding the congruence of light
rays “arriving at” or “going out from” the “same” endpoint of null geodesics. Some
preliminary results have been obtained in [7] by Low et al. showing that the proposed
boundary can be consistent and coinciding, in some simple cases, with the part of the
c−boundary which is accessible by null geodesics. In [8], this new boundary, called
the light boundary or the L−boundary, is studied deeper and characterized whenever
it exists. At this point, there are still technical problems to solve, such as, for example,
its differentiability.

The present article is motivated by a talk given at the meeting Singularity theorems,
causality, and all that. A tribute to Roger Penrose on 16th of June of 2021 to pay
public tribute to R. Penrose for his influence in Mathematics and Physics of the late
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mid-twentieth and early twenty-first centuries. All results in this review are strongly
inspired by his work on causality, conformal boundaries and twistor theory. Roger
Penrose has paved the way and their original ideas will be an inspiration for new
generations of researchers for a long time.

This review pretends to introduce the geometry of the space of light rays N of a
conformal manifold M to a wider audience summarizing results which are disperse in
the literature. The topics emphasized here are the geometric and topological structures
of N , the causal relations of the spacetime M studied from the structures of N and
the construction of the L–boundary. References are given along this review to balance
brevity and a detailed exposition of the subject.

The outline of this article is as follows. After a slight brush-stroke on causality,
Sect. 2 is devoted to introduce the space of light raysN of a conformal manifold M as
well as its structures. The hypotheses that M must verify forN to have nice properties
are justified. A characterization of tangent vectors of N in terms of elements of M is
given in Sect. 2.4. They can be seen as a class of Jacobi fields along null geodesics
describing light rays.Another canonical structure inN , the contact structureH ⊂ TN ,
is described briefly in Sect. 2.5.

Section 3 is addressed to describe the space of skiesΣ which will be diffeomorphic
to the spacetime M but its points consist of submanifolds in N . The elements of Σ

are called skies and they consist of the congruence of light rays passing through a
given event of M . There is a topology and a differentiable structure in Σ inherited
fromN , which makes Σ diffeomorphic to the conformal manifold M . Moreover, the
way in which the skies of Σ are embedded in N allows to obtain all the information
of the conformal structure of M as the Reconstruction theorem states, it means, under
suitable hypotheses, the conformal manifold M can be recovered from the geometry
of N .

In Sect. 4, we characterize causal curves in M as a class of Legendrian isotopies
of skies in N . This permits to recover all information about causality in M from the
“movement” of skies across the space of light rays N . In the Sect. 4.3, we show
the existence of curves in N tangent to skies everywhere in such a way they define
null curves in M , not geodesic at any point, called twisted null curves, connecting
chronological related points. Finally, the property of sky–linking corresponding to
pairs of skies of causally related points in M is briefly described in Sect. 4.4.

The construction of the L–boundary for dim M = 3 is done in Sect. 5. The original
idea, motivated by twistor geometry and due to R. Low is described. Moreover, the
hypotheses underwhich this construction canbedone are analysed inSects. 5.2 and5.3.
Then, in Sect. 5.4, an open submanifold ˜N of the bundleP (H) of 1–dimensional vector
subspaces of the contact structure H which are tangent to skies is described. Three
different distributions are defined in P (H) in Sect. 5.5, one in ˜N and two more in
the boundary ∂ ˜N . Sections 5.6 and 5.7 study the conditions under which the union of
these distributions forms a unique and smooth distribution D∼ such that the quotient

of the closure ˜N over D∼ is, whenever regularity holds, a Hausdorff manifold with
boundary M such that M ⊂ M and ∂M = M − M .
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Finally, in Sect. 6, a characterization of the L–boundary constructed in the previous
section is done in a dimensional independent way. Some examples illustrating the
properties satisfied by the L–extensions are given.

2 The space of light rays

We will start with a m–dimensional Lorentz manifold (M, g) with m ≥ 3, that is a
m–dimensional Hausdorff smooth manifold equipped with a non–degenerate metric
g with signature (−+ · · ·+) such that (M, g) is time–oriented, that means that there
exists a global vector field T ∈ X (M) such that g (T , T ) < 0 at any point of M ,
where X (M) denotes the set of all smooth vector fields in M . For brevity, sometimes
we will call spacetime to (M, g).

For a given (M, g), we can define its conformal (Lorentz) structure

Cg =
{

g = e f g : f ∈ F (M)
}

where F (M) denotes the ring of smooth function in M . By definition, the conformal
structure Cg is the set of all Lorentz metrics proportional to the given g with positive
function of proportionality. So, the pair

(

M, Cg
)

is called a conformal (Lorentz) man-
ifold and it can be denoted by (M, C), or even M , when the mention to the metric g is
not necessary.

We will use the standard notation for the tangent bundle of some smooth manifold
N and its tangent spaces at p ∈ N , that is T N and TpN respectively.

Next, we will construct the space of light rays and all its additional structures for
a given m–dimensional conformal Lorentz manifold (M, C) with m ≥ 3. The case
m = 2 can also be constructed, but some of its associated spaces have discrete or
trivial structures. Anyway, we can use this case for illustrative purpose.

2.1 Construction of the space of light rays

Let us consider a conformal structure C in M . Fixed a metric g ∈ C, it is possible
to classify any tangent vector v ∈ T M depending on the sign of g (v, v) ∈ R. So, a
tangent vector v ∈ TpM is called

– timelike⇐⇒ g (v, v) < 0
– null⇐⇒ g (v, v) = 0
– spacelike⇐⇒ g (v, v) > 0 .

We will also say that v ∈ TpM is lightlike if it is null and v 
= 0, and we will say that
v ∈ TpM is causal if it is timelike or null.

Observe that for any other g = e f g ∈ C with f ∈ F (M), trivially we have

sign (g (v, v)) = sign (g (v, v)) for all v ∈ T M

123



   59 Page 6 of 64 A. Bautista et al.

Timelike
Lightlike

Spacelike

N+
p

N−
p

0TpM

(a) Causal character of tangent vectors.

Timelike Lightlike Spacelike

(b) Causal character of smooth curves.

Fig. 1 Causal character

then, this classification, named causal character of tangent vectors is defined at (M, C)

because it does not depend on the representativemetricg ∈ C, so the causality or causal
character is a conformal property.

Since M is time–oriented, the global timelike vector field T ∈ X(M) defines the
time–orientation of vectors saying that T is future–directed and −T past–directed.
All non–zero causal vectors u can be classified into these two categories of future or
past–directed vectors depending on the sign of g(u, T ). In particular, if we denote by
Np ⊂ TpM the set of all lightlike vectors at p ∈ M then it splits in two connected
components Np = N

+
p ∪ N

−
p where

N
+
p = {u ∈ Np : g(u, T ) < 0} and N

−
p = {u ∈ Np : g(u, T ) > 0}.

We will call N
+
p the set of future–directed lightlike vectors at p and N

−
p the set of the

past–directed ones. Hence the disjoint union

N
+ =

⋃

p∈M
N
+
p ⊂ T M

denotes the sub–bundle of T M given by the future–directed lightlike vectors whose
fibres are N

+
p .

The causal character is extended automatically to smooth curves α : I → M by the
classification of its tangent vector α′ (t) ∈ Tα(t)M for t ∈ I (Fig. 1). Then we can talk
about timelike, null, spacelike, lightlike or causal curves whenever the corresponding
tangent vectors lie in such categories.

It is known by [36, Lem. 2.1] that any null geodesic related to the metric g ∈ C
is also a pregeodesic for any metric g ∈ C. This implies that if γ : I → M is a null
geodesic for the metric g ∈ C, then there exists a reparametrization γ : I ′ → M of
γ such that γ is a null geodesic for the metric g ∈ C. Since the images of γ and γ

coincide, then we can define a light ray in (M, C) as the image of a maximal null
geodesic related to some (and therefore, to any) metric g ∈ C. Hence, the set of light
rays of M is defined as

N = {γ (I ) ⊂ M : γ : I → M is a maximal null geodesic }

which is a conformal definition.
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We will abuse of the notation and denote a light ray defined by a null geodesic
γ : I → M related to some metric g ∈ C by the same lower greek letter as an element
γ ∈ N or as subset γ ⊂ M , so we can interpret a light ray as an unparametrized null
geodesic.

2.2 Causality conditions

The causal structure provides topological properties to the conformal manifold called
causality conditions. In fact, these conditions constitute a hierarchy such that the
stronger conditions also verify the weaker ones, that is why this hierarchy is also
called the causal ladder. For a complete description, see [51] and also [9, 32, 56, 59].
We will only mention some steps of this causal ladder.

We say that (M, C) satisfies the chronological condition if and only if there are
no closed timelike curves in M . This condition permits the existence of closed causal
curves (not strictly timelike, but still causal). To avoid this situation, we can require the
next step of the causal ladder: the causal condition which implies the non–existence
of closed causal curves. But still, causal curves can be almost closed (see [32, Fig.
38]). When there is not such kind of curves, then the conformal manifold is said to
be strongly causal (or to verify the strong causality condition). A physically relevant
spacetime is supposed to be strongly causal because there is not physical experience of
the existence of almost closed causal curves. There are several steps before reaching
the top of the hierarchy, that is the global hyperbolicity condition. This is the strongest
condition and it consists in the existence of a differentiable spacelike hypersurface
C ⊂ M , called Cauchy surface, such that each inextensible causal curve λ intersects
C at exactly one point [10]. The existence of such Cauchy surface allows to fix in it
initial data of Cauchy problems of differential equations in order to determine their
solutions in the entire spacetime. A globally hyperbolic conformal manifold is less
general than a strongly causal one.

The study of the causality conditions is done by checking what different properties
are satisfied by the sets that can be influenced by (or influence to) others by signals
travelling with a speed not exceeding the speed of light.

Definition 1 Let A be a subset of a Lorentzian manifold M .

1. The chronological future of A is the set I+ (A) of all points in M that can be
connected from A by a future–directed timelike curve. The chronological past of
A is defined analogously and it will be denoted by I− (A).

2. The causal future of A, denoted by J+(A), is the union of A and the set of all points
in M that can be connected from A by a future–directed causal curve. Analogously
we have J− (A), the causal past of A.

In a equivalent way, the following notation is used in the literature.

p  q ⇔ q ∈ I+(p)
p < q ⇔ there exists a future–directed causal curve from p to q
p ≤ q ⇔ q ∈ J+(p)

(2.1)
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The following theorem is a basic result to study the causal structure of spacetimes
and it can be found in [56, Prop. 10.46].

Theorem 2.1 Let M be a Lorentzian manifold. If α is a causal curve joining the points
p, q ∈ M but not a null pregeodesic, then in any neighbourhood of α there exists a
timelike curve β connecting the points p and q.

As immediate consequences of definition 1 and theorem 2.1, we get the following
properties (see [56, Cor. 14.1 & Lem. 14.2] for proofs).

Corollary 1 For p ∈ M and A ⊂ M we have

1. I+ (A) ⊂ J+ (A).
2. I+ (A) = I+

(

I+ (A)
)

.
3. J+ (A) = J+

(

J+ (A)
)

.
4. If r ∈ J+ (q) and q ∈ I+ (p), or also r ∈ I+ (q) and q ∈ J+ (p), then we have

that r ∈ I+ (p).
5. p ∈ I+ (q) ⇔ q ∈ I− (p) and moreover p ∈ J+ (q) ⇔ q ∈ J− (p).

The statements 1–4 are also true when we consider the chronological and causal past
I− , J−.

The following proposition can be found in [56, Lems. 14.3 & 14.6], and it shows
that the causality and the topology of the spacetime are closely related.

Proposition 1 For any A ⊂ M we have I+ (A) is an open set in M. Moreover,
int J+ (A) = I+ (A) and J+ (A) ⊂ I+ (A).

There is a lot of literature on causality theory, but we will only present the few basic
elements that we will need throughout this review.

For our purposes, we will assume that (M, C) is strongly causal. By [51, Lem. 3.21
& Rmk. 3.23 (2)], we can state the following result.

Proposition 2 (M, C) is strongly causal if and only if for any p ∈ M there exists
a topological basis consisting of globally hyperbolic, causally convex and normal
neighbourhoods.

We will keep in mind the meaning of properties of the neighbourhoods of proposi-
tion 2.

– If V ⊂ M is globally hyperbolic, then there is a Cauchy surface C in V .
– If V is normal, then for any q ∈ V there exists a neighbourhood W ⊂ TqM of 0
such that the exponential map expq : W → V is a diffeomorphism.

– If V is causally convex, then the intersection of any causal curve λ with V , if
non–empty, has exactly one connected component.

Remark 1 We warn the readers that such kind of globally hyperbolic, normal and
causally convex neighbourhoods V ⊂ M will be used as a tool to achieve the local
constructions along this paper. In addition, we will assume that V is small enough to
consider the Cauchy surface C ⊂ V diffeomorphic to R

m−1.
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2.3 Topological and differentiable structure ofN

A detailed explanation of this section can be found in [6, Sec. 2.2]. Notice that we will
denote by π A

B : A→ B the canonical projection of the bundle A onto the base B. Let
us fix some auxiliary metric g ∈ C. Observe that any future–directed lightlike vector
v ∈ N

+ defines the future–directed null geodesic γv ⊂ M such that γv (0) = πT M
M (v)

andγ ′v (0) = v, so v ∈ N
+ defines the light rayγv ∈ N determined by the null geodesic

γv . Also, for any a > 0, the vector av ∈ N
+ defines another null geodesic but the same

light ray, this means γv = γav ∈ N . Then, if DΔ is the distribution in N
+ such that

its leaf passing by v ∈ N
+ is [v] = span{v} ⊂ N

+, since DΔ is a regular distribution,
then the bundle of null directions PN = N

+/DΔ is a differentiable manifold such that
the projection πN

+
PN
: N+ → PN given by πN

+
PN

(v) = [v] is a submersion. Now, recall
that given two vectors u, v ∈ TpM such that u = av with a > 0, then the geodesics γu
and γv verify γu (s) = γav (s) = γv (as). Hence, the elevation of the null geodesics
from M to PN defines a distribution DG in PN such that the leaves are, precisely,
the unparametrized null geodesics, that is, the light rays. Since M is assumed to be
strongly causal, thenDG is regular and thenN = PN/DG is a differentiable manifold
such that the quotient mapγ : PN → N given byγ ([v]) = γ[v] = γv is a submersion.

For any set W ⊂ M , we will use the following notation

N
+ (W )={v ∈ N

+ : πT M
M (v) ∈ W } and PN (W )={[v] ∈ PN : πPN

M ([v]) ∈ W }.

In order to build a coordinate chart forN , by proposition 2, we will take a globally
hyperbolic, normal, causally convex open neighbourhood V ⊂ M at some p ∈ M .
Given a timelike vector field T ∈ X (M), we consider the restrictionΩ (V ) ⊂ N

+ (V )

defined by

Ω (V ) = {v ∈ N
+ (V ) : g (v, T ) = −1} (2.2)

which is diffeomorphic to PN (V ), open set in PN. IfC ⊂ V is a Cauchy surface in V ,
then any light ray γ ∈ N passing through V is determined by the intersection point
c = γ ∩ C and the corresponding null direction at c ∈ C . Then, with the abuse in
the notation because Ω (V ) � PN (V ), the restricted maps γ|PN(C) and γ|Ω(C) are
diffeomorphisms, hence we have the following diagram

PN (V ) � Ω (V ) NV ⊂ N

PN (C) � Ω (C)

γ

ξ
i

(2.3)

where i : Ω (C) ↪→ Ω (V ) is the inclusion map and moreover ξ = γ|Ω(C) ◦ i and
ξ = γ|PN(C) ◦ i are diffeomorphisms. Therefore, a coordinate chart ϕ for Ω (C)

provides us a coordinate system (NV , ψ) in N such that

ψ = ϕ ◦ ξ−1. (2.4)
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So, the topology ofN is inherited fromPN (locally represented byΩ (V )) as a quotient
space. Observe that if, at some p ∈ M , we take some orthonormal basis {Ei }i=0,...,m−1
related to some g ∈ C such that E0 is future–directed and timelike (here we consider
T = E0 at p) and Ei are spacelike for i = 1, . . . ,m − 1, then any null direction
[v] ∈ PNp can be defined by a null vector

v = E0 + v1E1 + · · · + vm−1Em−1 ∈ N
+
p

verifying
(

v1
)2 + . . .+ (vm−1)2 = 1 since g(v, v) = 0. Therefore the fibres PNp of

PN are diffeomorphic to the sphere S
m−2 and then the bundle of null directions PN(C)

is diffeomorphic to the bundle ST (C) of (m−2)–spheres on C . If C is diffeomorphic
to R

m−1 then we can consider N � C × S
m−2.

Remark 2 If M is globally hyperbolic, there exists a global smooth spacelike Cauchy
surface C ⊂ M . So, the diffeomorphism ξ of diagram (2.3) is global and therefore
N � PN(C).

Remark 3 It is important to note that when working in coordinates ψ : U ⊂ N →
R
2m−3 built by the diffeomorphism ξ of diagram (2.3), we will set the parametrization

of light rays as null geodesics such that their initial vectors at the local Cauchy surface
C ⊂ V given by γ ′(0) = v ∈ Ω(C) verify g(v, T ) = −1 as in Eq. (2.2).

Example 1 Consider the 4–dimensionalMinkowski spacetimeM
4, that isR

4 equipped
with the metric g = −dt⊗dt+dx⊗dx+dy⊗dy+dz⊗dz for standard coordinates
(t, x, y, z). The hypersurface C ≡ {t = 0} is a spacelike Cauchy surface of M then
any light ray intersects C at exactly one point q = (0, x, y, z). Using the spherical
coordinates θ , φ, a null direction is generated by the vector

v =
(

∂

∂t

)

q
+ cos θ sin φ

(

∂

∂x

)

q
+ sin θ sin φ

(

∂

∂ y

)

q
+ cosφ

(

∂

∂z

)

q
.

If γ ∈ N is the light ray defined in M
4 by the null geodesic γ such that γ (0) = q =

(0, x, y, z) and γ ′(0) = v, the map

ψ : N → R
3 × [0, 2π)× (0, π)

γ �→ (x, y, z, θ, φ)

is a coordinate system for N of M
4.

Remark 4 It is not ensured that the topology of N is Hausdorff. As an example,
consider the m–dimensional Minkowski space M

m , that is R
m with the metric g =

−dx1 ⊗ dx1 + dx2 ⊗ dx2 + . . .+ dxm ⊗ dxm , where
(

x1, . . . , xm
)

are the standard
coordinates in R

m . Now, if a point p ∈ M
m is removed obtaining another spacetime

M0, then the resulting spacetime is still strongly causal, but its corresponding space of
light raysN0 is not Hausdorff because there exists a sequence of light rays {γn} ⊂ N0
converging to two different light rays limits μ, λ ∈ N0. This example is illustrated in
the Fig. 2.
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Fig. 2 The space of light rays of
M0 is not Hausdorff. The light
rays μ and λ are limits of the
sequence {γn}

· · ·

· · ·
p (removed)

μ

λ

γnγ1 γ2

M0

Fig. 3 The space of light rays of
M0 is not null pseudo–convex.
Although K = K1 ∪ K2 is
compact, K ′ can not be so

K1

K2

K

M0

p

Now,wewonder what conditionmakes of the space of light rays of a strongly causal
conformal manifold a Hausdorff manifold. An answer to this question was given by
R. Low in [43, Prop. 3.2 et seq.] and it is necessary to introduce the technical property
of null pseudo–convexity of the manifold.

Definition 2 A conformal manifold M is said to be null pseudo–convex if for any
compact K ⊂ M there exists a compact K ′ ⊂ M such that any segment of light ray
with endpoints in K is contained in K ′.

In the example M0 of the remark 4, it is possible to consider a compact set K =
K1 ∪ K2, as in the Fig. 3, such that any set K ′ containing all segments of light rays
with endpoints in K can not be compact because the hole left by the removed point p
prevents it.

The mentioned proposition stated by Low is the following.

Proposition 3 Let M be a strongly causal conformal manifold. The space of light rays
N of M is Hausdorff if and only if M is null pseudo–convex.

A related result is that the lack of hausdorffness of N implies that there are naked
singularities inM [41, Prop. 2.2]. Recall that a naked singularity occurs at the future of
a inextensible causal curve λ if there exists a point p ∈ M such that its chronological
past sets verify I−(λ) ⊂ I−(p).

It is not difficult to find examples of spacetimes in which there exists naked singu-
larities but the space of light rays is Hausdorff.

Example 2 Consider the 3–dimensional Minkowski spacetime M
3 and its space of

light rays NM3 . Now, we restrict it to the cylinder given by

M =
{

(t, x, y) ∈ M
3 : x2 + y2 < 1

}

.

Clearly, the space of light rays NM of M is contained in NM3 because M ⊂ M
3

is open and any light ray in NM is a segment of light ray in NM3 . Observe that, for
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p

I−(p)

γ
(0, x0, y0) M

M3

C = {t = 0}

Fig. 4 M is nakedly–singular but NM is Hausdorff

any inextensible light ray γ ∈ NM , there always exists a point p = (t0, 0, 0) ∈ M
with t0 ∈ R big enough such that γ ⊂ I−(p) and, by corollary 1, we obtain that
I− (γ ) ⊂ I−(p) and therefore M is nakedly–singular (see Fig. 4).

The light ray γ ∈ NM can be written by γ (s) = (s, x0 + s · cos θ0, y0 + s · sin θ0)

for s ∈ (a, b) ⊂ R an open interval. We are using γ � (x0, y0, θ0) as coordinates for
NM3 and NM . Then we have

(x0 + s · cos θ0)
2 + (y0 + s · sin θ0)

2 < 1

and because this is an open condition, there exist δ > 0, ε > 0 and η > 0 such
that if |x − x0| < δ, |y − y0| < ε and |θ − θ0| < η then the light ray β(s) =
(s, x+s ·cos θ, y+s ·sin θ) intersects M for s ∈ (a′, b′) ⊂ R open. ThenNM ⊂ NM3

is an open set contained in a Hausdorff space, therefore NM is also Hausdorff.

The assumption of M being strongly causal is not necessary to obtain that N is
Hausdorff. In fact, it is possible to find spacetimes which do not verify the chronolog-
ical condition, that is, with closed timelike curves, but its space of light rays is still
Hausdorff. For example, Zollfrei manifolds Z are compact Lorentz manifold such that
all its null geodesics are closed. The compacity of Z implies that such manifolds do
not satisfy the chronological condition [51, Thm. 3.6] but their spaces of light rays
NZ are, indeed, smooth manifolds (see [28, 48, 65]).

The following example shows a simple non–compact non–chronological spacetime
with Hausdorff space of light rays.

Example 3 Let M
2 be the 2–dimensional Minkowski spacetime equipped with the

metric g = −dt ⊗ dt + dx ⊗ dx in standard coordinates (t, x) ∈ R
2. Consider the

restriction

M =
{

(t, x) ∈ M
2 : |t | ≤ 1

}

identifying the points (1, x) ∼ (−1, x). For fixed y0 ∈ R, trivially, the curve
λ(s) = (s, y0) is a closed timelike curve, then M do not satisfy any causality condition
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t

xy0

λ

z0 x00 2

γ+(s)γ+

Identify

Fig. 5 M is not chronological but NM is Hausdorff

enumerated in Sect. 4.2. Observe that, any light ray can be defined by a null geodesic
γ±(s) = (s, x0 ± s) where the signs + or − determine if the light rays travel to the
right or to the left respectively (see Fig. 5).

Notice that, by the identification (1, x) ∼ (−1, x), then t = t + 2k for all integer
k ∈ Z, and moreover, since for any x0 ∈ R there exists k0 ∈ Z such that z0 =
x0 − 2k0 ∈ [0, 2) then

γ+(s) = (s, x0 + s) = (s + 2k0, x0 + s) = (s + 2k0, z0 + 2k0 + s)

= γ+(s + 2k0) = γ+(τ )

where τ = s + 2k0 and γ+ and γ+ are the same light ray but with two different
parametrizations. This shows that the setN+ of light rays of M travelling to the right
can be globally determined by z0 ∈ [0, 2) ⊂ R. Analogously, we have N− � [0, 2)
for the light rays travelling to the left. Then N = N+ ∪N− is diffeomorphic to two
disjoint copies of the interval [0, 2) therefore N is Hausdorff.

In virtue of proposition 3, from now on, wewill assume that the conformalmanifold
M is strongly causal and null pseudo–convex.

2.4 Tangent spaces T�N

It is necessary to describe the tangent vectors of N in such a way that we can carry
out calculations with them. A detailed exposition of this description can be found in
[6, Sec. 3]. We will only introduce to the reader a glimpse of the matter.

First, observe that a tangent vector v ∈ TγN can be defined by the derivative of
a smooth curve Γ : (−ε, ε) → U ⊂ N such that Γ (s) = γs ∈ N where γ0 = γ ,
Γ ′ (0) = v and U is a neighbourhood of γ = γ0 diffeomorphic to Ω(C) ⊂ N by
the map ξ in (2.3). But this curve Γ can be got by a variation of null geodesics
f : (−ε, ε) × I → M such that f (s, τ ) = γs (τ ) where each γs is parametrized as a
null geodesic with initial vector γ ′s (0) ∈ Ω(C) ⊂ N. Then Γ ′ (0) ∈ TγN corresponds
with the variational field J ∈ Xγ of f along γ , that is

J (τ ) = ∂f
∂s

(0, τ ) ∈ Tγ (τ)M
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where Xγ denotes the set of all smooth vector fields along γ .
Notice that, by [56, Lem. 8.3], this variational vector field along γ satisfies the

equation of Jacobi fields given by

J ′′ + R
(

J , γ ′
)

γ ′ = 0 (2.5)

where prime ′ over J denotes the covariant derivative D
dτ

along γ respect to the
parameter τ , and R is the Riemann curvature tensor1. The solutions of Eq. (2.5)
are called Jacobi fields along the geodesic γ and they are fully determined by fixing
initial vectors J (0) = u ∈ Tγ (0)M and J ′ (0) = v ∈ Tγ (0)M .

A way to construct a variation of null geodesics is using the exponential map for a
fixed auxiliary metric g ∈ C. For a base curve λ : I → M and a lightlike vector field
W : I → N

+ such that W (s) ∈ N
+
λ(s) we can define f (s, τ ) = expλ(s) (τW (s)). If

λ(0) = p ∈ M andW (0) = v ∈ N
+
p , then f is a variation of the light rayγ = γ[v] ∈ N .

Lemma 1 Let λ : (−ε, ε) → M be a smooth curve and W (s) ∈ Tλ(s)M a non-
vanishing vector field along λ. Then, the Jacobi field J of the geodesic variation given
by

f (s, τ ) = expλ(s) (τW (s)) (2.6)

along γ (τ) = f (0, τ ) = expλ(0) (τW (0)) has initial vectors J (0) = λ′(0) and

J ′ (0) = DW
ds (0) .

Proof Notice that J (0) = ∂f
∂s (0, 0) is the tangent vector to the curve f (s, 0) at s = 0,

then f (s, 0) = expλ(s) (0 ·W (s)) = λ (s), then we have

J (0) = λ′ (0)

On the other hand, recall that J ′ (0) = D
dτ

∂f
∂s (0, 0) and D

ds
∂f
∂τ

(0, 0) is the covariant
derivative of ∂f

∂τ
(s, 0) = W (s) for s = 0 along the curve f (s, 0) = λ (s). Therefore,

we have

J ′ (0) = D

dτ

∂f
∂s

(0, 0) = D

ds

∂f
∂τ

(0, 0) = DW

ds
(0) .

��
Recall that a light ray can be defined by a null geodesic related to some metric

g ∈ C, then a change of its affine parameter or of metric in C results on a different

1 The expression of the equation of Jacobi fields depends on the sign of definition of the Riemann curvature
tensor R and on the order of the arguments. So,

J ′′ − R
(

J , γ ′
)

γ ′ = 0, J ′′ + R
(

γ ′, J
)

γ ′ = 0, J ′′ − R
(

γ ′, J
)

γ ′ = 0

are other expressions we can find in the literature.

123



The space of light rays: Causality and L–boundary Page 15 of 64    59 

−π
0

π0

−π

0

π

λ(s)

(a) γs(τ) = f(s, τ) = (τ, s + τ cos(s), τ sin(s)) is
a variation of light rays in M3 defined by the null
vectors W (s) = (1, cos(s), sin(s)) ∈ Nλ(s) with base
curve λ(s) = (0, s, 0) ∈ M . Observe that each single
colour corresponds to one value of the parameter s.

−π
0

π0

−π

0

π

γ0(0)

J(0)

γ0

J

(b) The Jacobi field J(τ) = ∂f
∂s

(0, τ) = (0, 1, τ)
along the light ray γ0 ∈ N defined by the variation
f in figure 6a.

Fig. 6 Variation of light rays in M
3

Jacobi field J along the corresponding null geodesic γ , but they are related by

J = J
(

mod γ ′
)

.

Therefore, a tangent vector v ∈ TγN can be represented by the class of Jacobi fields
along γ modulo γ ′ defined by the variational field J (τ ) = ∂f

∂s (0, τ ) of a null geodesic
variation f for any auxiliary metric g ∈ C and any affine parameter.

Indeed, letJ (γ ) be the vector space of Jacobi fields along the null geodesic γ ∈ N .
If f(s, τ ) = γs(τ ) is a variation of null geodesics where γ0 = γ , then the Jacobi field
J ∈ J (γ ) along γ corresponding to f verifies

g
(

J (τ ) , γ ′ (τ )
) = constant for all τ ∈ I . (2.7)

This fact can be straightforwardly proven because J is a variational field of a geodesics
variation such that g

(

γ ′s (τ ), γ ′s (τ )
) = 0 constant for any geodesic γs in the variation

(Fig. 6). See [19, Lem. 2.1] or [6, p. 142–143] for proofs.
Notice that, since g

(

J (τ ) , γ ′ (τ )
)

is constant for all τ ∈ I , then

0 = d

dτ
g
(

J (τ ) , γ ′ (τ )
) = g

(

J ′ (τ ) , γ ′ (τ )
)+ g

(

J (τ ) , γ ′′ (τ )
)

and since γ ′′ (τ ) = Dγ ′
dτ

(τ ) = 0, therefore

g
(

J ′ (τ ) , γ ′ (τ )
) = 0. (2.8)

Now, we denote by

JL (γ ) = {J ∈ J (γ ) : g (J (t) , γ ′ (t)
) = constant

} � R
2m−1
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the vector space of Jacobi fields of null geodesic variations of γ and if

J0 (γ ) = {J ∈ JL (γ ) : J (t) = (αt + β) γ ′ (t) , α, β ∈ R
} � R

2

is the vector subspace of JL (γ ) of Jacobi fields proportional to γ ′, where g ∈ C and
the parametrization of γ ∈ N are auxiliary elements, then we have the following
statement whose proof can be seen in [6, Prop. 3.16].

Proposition 4 TγN is isomorphic to L (γ ) = JL (γ ) /J0 (γ ) � R
2m−3.

We will denote the class of Jacobi fields which is identified with the corresponding
vector in TγN by 〈J 〉 = {J ∈ JL (γ ) : J = J (mod γ ′)

} ∈ L (γ ) so, by abusing of
the notation, we will say 〈J 〉 ∈ TγN .

2.5 Contact structure inN

The space of light rays N has an additional canonical structure: a contact structure
H ⊂ TN . For a broad introduction about contact structures, see [3, Appx. 4] or [39,
Ch. 5].

Consider a (2k + 1)–dimensional smooth manifold P with a smooth distribution
of hyperplanes H ⊂ T P . It is known that H can be locally defined as the kernel of a
1–form α, that is Hp = ker αp (see [25, Lem. 1.1.1]).

We will say thatH is maximally non–integrable if there is no integral submanifold
N ⊂ P such that Tq N = Hq for all q ∈ N . This property can be characterized by the
contact form α defining it, soH is maximally non–integrable if and only if α restricted
to H is non–degenerate, but this is equivalent to α ∧ (dα)k 
= 0 (see [13, Prop. 10.3]
for proof).

Definition 3 Given a (2k + 1)–dimensional smooth manifold P , a contact structure
H = ker α in P is a smooth distribution of hyperplanes Hp ⊂ TpP such that α ∧
(dα)k 
= 0. Each hyperplane Hp is called a contact element or contact hyperplane
and the 1–form α is called a contact form.

Notice that a contact form defining a contact structure is not unique, in fact, given
a contact form α, for every non–vanishing differentiable function f ∈ F (P) then f α
is also a contact form defining the same contact structureH (see [39, Sect. V.4.1]).

In the case we are studying, P = N and k = m − 2. Let us fix some auxiliary
metric g ∈ C and consider a coordinate chart (NV , ψ), as in Eq. (2.4). Recall that,
according to remark 3, we are considering the light rays in NV as parametrized as
null geodesics such that their initial vectors at the local Cauchy surface C ∈ V are in
Ω(C) ∈ N. Prevented from this, in [6, Sec. 4], a contact form α is constructed using
the quotient N � PN/DG described in Sect. 2.3, obtaining that

α (〈J 〉) = g
(

J , γ ′
)

for 〈J 〉 ∈ TγN . (2.9)

Although the expression (2.9) for α depends on the affine parameter of γ , since the
affine parameter is fixed, then α is well–defined as a contact form. Observe that,
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regardless of parameterization, the sign of α (〈J 〉) is unambiguously and globally
determined for any J in its equivalence class 〈J 〉, then it induces a co–orientation in
N . The existence of this co–orientation is equivalent to the existence of contact form
globally defined [25, Lem. 1.1.1]. See also [6, Sect. 4] for a explicit construction of a
global contact form α inN . The kernel of α at γ ∈ N defines the contact hyperplane
Hγ at γ by

Hγ =
{〈J 〉 ∈ TγN : g (J , γ ′

) = 0
}

. (2.10)

The construction of H can also be done in other ways. For example, in [6, Sec.
5] the contact structure is also obtained by co–isotropic reduction and, in [34], the
symplectic reduction is used. In both cases, basic elements of symplectic theory are
needed.

The calculus of the exterior derivative of α, carried out in [6, Sec. 4], shows that
ω|H = −dα|H is non–degenerated, and it can be written by

ωγ (〈J 〉, 〈K 〉) = g
(

J (0) , K ′ (0)
)− g

(

J ′ (0) , K (0)
)

for 〈J 〉, 〈K 〉 ∈ TγN
(2.11)

where the initial vectors J (0) , K (0) , J ′ (0) , K ′ (0) ∈ Tγ (0)C are tangent to the local
Cauchy surface C ⊂ U in M and where γ is parametrized such that γ ′(0) ∈ Ω(C)

according to remark 3.

This implies that
(

Hγ , ω|Hγ

)

is a symplectic vector space for each γ ∈ N .

Example 4 Consider the 4–dimensionalMinkowski spacetimeM
4 with all the notation

as in example 1. If γ ∈ NM4 is the light ray with coordinates (x0, y0, z0, θ0, φ0), then
we can write

γ (s) = (s, x0 + s cos θ0 sin φ0, y0 + s sin θ0 sin φ0, z0 + s cosφ0) ∈ M
4

where γ (0) ∈ C ≡ {t = 0}. Calling v(θ, φ) = (1, cos θ sin φ, sin θ sin φ, cosφ), then
for fixed s and (θ, φ) we can define

μ (θ, φ, s, τ ) = γ (s)+ τ · v(θ, φ).

Observe thatμ defines a variation of null geodesics for the parameters s, θ andφ, where
τ is the affine parameter, that is μ(θ,φ,s)(τ ) = μ (θ, φ, s, τ ) is the corresponding null
geodesic of the variation. It verifiesμ(θ0,φ0,s)(0) = γ (s) andμ′(θ0,φ0,s)(0) = v(θ0, φ0).

It is straightforward to check that

{

∂μ
∂θ

(θ0, φ0, s, τ ) = (0,−τ sin θ0 sin φ0, τ cos θ0 sin φ0, 0)
∂μ
∂φ

(θ0, φ0, s, τ ) = (0, τ cos θ0 cosφ0, τ sin θ0 cosφ0,− sin φ0)
(2.12)
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so, we have
⎧

⎨

⎩

g
(

∂μ
∂θ

(θ0, φ0, s, τ ) , γ ′(s)
)

= 0

g
(

∂μ
∂φ

(θ0, φ0, s, τ ) , γ ′(s)
)

= 0

for all s ∈ R. Then J θ
(s,θ0,φ0)

(τ ) = ∂μ
∂θ

(θ0, φ0, s, τ ) and Jφ

(s,θ0,φ0)
(τ ) = ∂μ

∂φ
(θ0, φ0, s, τ )

are Jacobi fields along γ defining vectors in the contact hyperplane Hγ .
We can notice that μ (θ, φ, s,−s) ∈ C , and therefore the coordinates of the light

ray defined by μ(θ,φ,s) ∈ N are

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x(μ(θ,φ,s)) = x0 + s (cos θ0 sin φ0 − cos θ sin φ)

y(μ(θ,φ,s)) = y0 + s (sin θ0 sin φ0 − sin θ sin φ)

z(μ(θ,φ,s)) = z0 + s (cosφ0 − cosφ)

θ(μ(θ,φ,s)) = θ

φ(μ(θ,φ,s)) = φ

If we compute the derivatives of the expressions above with respect to θ and φ

at (θ0, φ0, s), we obtain the expression in coordinates of the tangent vectors in TγN
defined by J θ

(s,θ0,φ0)
and Jφ

(s,θ0,φ0)
. Then we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈J θ
(0,θ0,φ0)

〉 = ( ∂
∂θ

)

γ

〈J θ
(s,θ0,φ0)

〉 = s

(

sin θ0 sin φ0
(

∂
∂x

)

γ
− cos θ0 sin φ0

(

∂
∂ y

)

γ

)

+ ( ∂
∂θ

)

γ

〈Jφ

(0,θ0,φ0)
〉 =
(

∂
∂φ

)

γ

〈Jφ

(s,θ0,φ0)
〉 = s

(

− cos θ0 cosφ0
(

∂
∂x

)

γ
− sin θ0 cosφ0

(

∂
∂ y

)

γ
+ sin φ0

(

∂
∂z

)

γ

)

+
(

∂
∂φ

)

γ

which are linearly independent for s 
= 0. Therefore, since dim
(Hγ

) = 4, these four
vectors have to be a basis of the hyperplaneHγ . Whence the contact hyperplane at γ
can be written as

Hγ = span

{

sin θ0
(

∂
∂x

)

γ
− cos θ0

(

∂
∂ y

)

γ
,
(

∂
∂θ

)

γ
,
(

∂
∂φ

)

γ
,

cos θ0 cosφ0
(

∂
∂x

)

γ
+ sin θ0 cosφ0

(

∂
∂ y

)

γ
− sin φ0

(

∂
∂z

)

γ

}

and a contact form whose kernel isH can be

α = cos θ sin φ · dx + sin θ sin φ · dy + cosφ · dz .

Example 5 We can find the contact structure of the 3–dimensional Minkowski space-
time M

3 by restriction of M
4 to the hyperplane z = 0 and the angle φ to describe null

directions must be fixed to φ = π
2 . Then, the variation of null geodesic is written by

μ (θ, s, τ ) = (s + τ, x0 + s cos θ0 + τ cos θ, y0 + s sin θ0 + τ sin θ) ∈ M
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x

y

0 θ

y0

x0

π 2π

Fig. 7 The contact structure for any fixed coordinates (x0, y0) of NM3

and whence the Jacobi fields J(s,θ0) = ∂μ
∂θ

(θ0, s, τ ) satisfy

J(s,θ0) (τ ) = (0,−τ sin θ0, τ cos θ0) and J ′(s,θ0) (τ ) = (0,− sin θ0, cos θ0).

Observe that for all θ ∈ [0, 2π) we get μ (θ, s,−s) ∈ C ≡ {t = 0}, then its initial
vectors at C are

J(s,θ) (0) = (0, s sin θ,−s cos θ0) and J ′(s,θ) (0) = (0,− sin θ, cos θ) (2.13)

for all θ ∈ [0, 2π).
In an analogous way as in Example 4, we obtain that

H = span
{

sin θ ∂
∂x − cos θ ∂

∂ y ,
∂
∂θ

}

(2.14)

and a contact form can be written by

α = cos θ · dx + sin θ · dy.

SinceNM3 is 3–dimensional, we can graphically represent objects from this space
of light rays. For any γ � (x, y, θ), the basis of the contact hyperplane in equation
(2.14) does not depend on (x, y), so for any fixed (x0, y0) the contact hyperplanes
rotate as the θ–coordinate varies as shown in Fig. 7. The first vector in the basis of
(2.14)(in red) takes a complete turn when θ moves on intervals of length 2π , but
observe that expression of the hyperplane repeats when θ varies in periods of π .

3 The space of skies ˙ and the Reconstruction theorem

If we want to replace the conformal manifold M by the space of light rays N as
alternative framework in the study of conformal properties, we will need to identify
single points (events) in M as objects inN . Notice that it is reasonable to assume that
the skies watched by two observers located in different points of M are not exactly the
same because the light rays arriving at their eyes differ. So, the congruence of light
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rays S (p) ⊂ N passing by a point p ∈ M characterizes the point p. We will call the
sky of p to the set

S (p) = {γ ∈ N : p ∈ γ ⊂ M} .

We will also use capital letters to denote skies of points denoted by lower case, i.e.
S (x) = X .

For a given p ∈ M , using the diagram (2.3), we can write S (p) = γ
(

PNp
)

and
since the fibre PNp is diffeomorphic to the sphere S

m−2 then we have that every sky
S (p) is a smooth submanifold of N diffeomorphic to S

m−2.
The set of all skies is

Σ = {S (x) : x ∈ M}

and it is called the space of skies and it permits to define the sky map by

S : M → Σ

x �→ X = S (x)

which is surjective by definition. Since we want to identify points in M with skies in
N we require S to be injective, saying that M is sky–separating.

Consider x ∈ M and γ ∈ X = S (x) such that γ (s0) = x . By the description
of TγN in Sect. 2.4, any 〈J 〉 ∈ Tγ X ⊂ TγN can be represented by a Jacobi field
J defined by a null geodesic variation with x as a fixed point. So, we have J (s0) =
0
(

modγ ′
)

and then

Tγ X = {〈J 〉 ∈ TγN : J (s0) = 0
(

modγ ′
)}. (3.1)

Moreover, by eq. (2.7), we have that g
(

J , γ ′
) = 0 and therefore Tγ X ⊂ Hγ .

Remark 5 It is clear [56, Prop. 10.10] that in a normal neighbourhoodU ⊂ M there are
no conjugate points along any geodesic, then there are no t1, t2 ∈ R and 〈J 〉 ∈ TγN
where γ (t1) , γ (t2) ⊂ U ⊂ M with γ ∈ N such that J (t1) = 0

(

modγ ′
)

and
J (t2) = 0

(

modγ ′
)

. This implies that Tγ S (γ (t1)) ∩ Tγ S (γ (t2)) = {0}.
Definition 4 We will say that V ⊂ M is light non–conjugate if

Tγ X ∩ Tγ Y 
=
{

0γ

} �⇒ X = Y ∈ Σ

for all x, y ∈ V and X = S (x) ,Y = S (y). When this property, natural for normal
neighbourhoods, is extended to the entire manifold M , then we will say that M is light
non–conjugate.

A consequence of the existence of non–conjugate points along a null geodesic is
that the contact hyperplane Hγ can be constructed as a direct sum of tangent spaces
of skies. Indeed, if x, y ∈ γ are not conjugated points along γ ∈ N then we have

Hγ = Tγ X ⊕ Tγ Y . (3.2)
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In this relation, it is easy to observe that the contact structure H does not depend on
the representative metric in the conformal structure, that is, the contact hyperplanes
are given by conformal objects.

Remark 6 In Example 4, we have found the contact structureH of the 4–dimensional
Minkowski spacetime M

4 computing bases of the tangent spaces of two skies as Eq.
(3.2) suggests, because we have that

Tγ S (γ (s)) = span{〈J θ
(s,θ0,φ0)〉, 〈J

φ

(s,θ0,φ0)
〉}

for all s ∈ R.

3.1 Topology and differentiable structure in˙

Ifwewant to identify pointswith skies in a suitableway,wewill need to give a topology
and a differentiable structure to Σ to make of the sky map S a diffeomorphism.

How can we define the required topology and differentiable structure of Σ intrin-
sically, that is, in terms of the geometry of N ?

The chosen topology in Σ will be induced by the topology of N . If U ⊂ N is an
open set, then we denote the set of all skies X ∈ Σ such that X ⊂ U by

Σ (U) = {X ∈ Σ : X ⊂ U} .

Definition 5 TheReconstructive or Low’s topologyTL onΣ is the topology generated
by the basis {Σ(U) | U ⊂ N open }.

As a first step, we will state the topological equivalence.

Proposition 5 If Σ is equipped with the Reconstructive topology, then the sky map
S : M → Σ is a homeomorphism.

The first proof of this proposition was given by Kinlaw in [35, Prop. 4.3] under the
hypotheses of non-refocusing in M , that is, we say that M is refocusing at x ∈ M if
there exists an open neighbourhood V of x such that for all open U with x ∈ U ⊂ V ,
there exists y /∈ V such that all light rays through y enter U , see Fig. 8. When this
property is not satisfied at any x ∈ M we shall say that M is non–refocusing. Another
and simpler proof can be found in [4, Prop. 3].

In a later paper, it is shown [5, Cor. 20] that the non-refocusing hypothesis is
unnecessary under the hypotheses of strong causality, null pseudo-convexity and sky–
separation. So, we will not use this concept in the present review, but it must be
considered when weaker hypotheses are assumed.

Now, we want to get the differentiable structure of Σ compatible with the Recon-
structive topology. We will describe Σ , locally, as a quotient manifold.

By proposition 2, we can consider a globally hyperbolic, normal and causally
convex open set V ⊂ M (as in diagram (2.3)). Notice that, by remark 5, V is light
non-conjugate, and by Proposition 5, S (V ) = {S(x) | x ∈ V } is open in Σ . Then we
can translate the property of light non-conjugation to open sets in Σ by the following
property.
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Fig. 8 Refocusing at x ∈ M . All
light rays in the sky of some
point y ∈ M enter U ⊂ V ⊂ M

y

x

S(y)

U

V

Definition 6 An open set U ⊂ Σ in the Reconstructive topology is called light non-
conjugate if for every X ,Y ∈ U and every γ ∈ X ∩ Y such that Tγ X ∩ Tγ Y 
= {0}
implies that X = Y .

All the convex normal neighbourhoods at x ∈ M set up a basis for the topology of
M at x [56, Prop. 5.7] then, by proposition 5, all light non-conjugate neighbourhoods
in Σ also constitute a basis for the Reconstructive topology. But this property is not
good enough to construct the differentiable structure on Σ .

In what follows we will denote by

̂TW = TW − {0} (3.3)

the non–zero tangent vectors at the manifold W .

Definition 7 A light non-conjugate open setU ⊂ Σ is said to be a regular open set if
U verifies that ̂U = ⋃

X∈U
̂T X ⊂ TN is a regular submanifold of ̂TU , U = ⋃

X∈U
X .

Next Theorem 3.1, is a keystone in order to show that S is a diffeomorphism. In
the version of the statement below, we offer additional results contained in the proof
of [4, Thm. 1].

Theorem 3.1 Let X ∈ Σ be any sky with x ∈ M such that X = S(x). If V ⊂
M is a relatively compact, globally hyperbolic, causally convex and normal open
neighbourhood of x then U = S(V ) is a regular open neighbourhood U ⊂ Σ of X.
Moreover, there exists a coordinate system ϕ in ̂U adapted to the leaves ̂T X ⊂ ̂U.

Remark 7 As shown in [4], the adapted coordinate system ϕ of Theorem 3.1 can be
obtained by fixing a coordinate chart ϕ = (x1, . . . , xm) in V and a orthonormal frame
{E1, . . . ,Em} in V , related to some auxiliary metric g ∈ C, such that E1 is timelike.
Any null direction [w] ∈ PN(V ) can be defined by a vector

w = E1(p)+ u2E2(p)+ · · · + umEm(p)

where since (u2)2 + · · · + (um)2 = 1 then, with no lack of generality, (u3, . . . , um)

define the components of w. On the other hand, if 〈J 〉 ∈ ̂Tγ S(p) then J (s) =
0
(

mod γ ′(s)
)

for γ (s) = p, then the transversal component to γ ′ of the initial vector
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J ′(s) = ∑m
j=1 v jE j (p) defines 〈J 〉. So, the coordinate chart ϕ : ̂U → R

3m−4 is
given by:

ϕ (〈J 〉) = (x,u, v) =
(

x1, x2, . . . , xm, u3, . . . , um,
〈

v1 . . . , vm
〉)

∈ R
3m−4 (3.4)

where v = 〈v1, . . . , vm 〉 = (v1, . . . , vm) (mod γ ′
)

. Observe that x defines the point
p ∈ V to whose sky 〈J 〉 is tangent, u defines the null direction [w] ∈ PN(V ) such
that γ = γ[w] ∈ N and, finally, v defines the value of 〈J 〉 in the fibre Tγ S(p).

An immediate consequence [4, Cor. 1] is that regular open sets constitute a basis
for the topology of Σ . A refined notion of regular sets can be found in [5, Sec. 4.1].

Now, we can state the following theorem.

Theorem 3.2 The sky map S : M → Σ is a diffeomorphism when Σ is equipped with
the smooth structure defined by regular sets.

Proof Consider x ∈ M and V ⊂ M a relatively compact, globally hyperbolic, causally
convex and normal open neighbourhood of x , then U = S(V ) ⊂ Σ is open and light
non-conjugate. By theorem 3.1, ̂U = ⋃X∈U ̂T X is a regular submanifold of ̂TN
foliated by leaves ̂T X with X ∈ U . Hence, if we call ˜U = {̂T X : X ∈ U }, then the
map ˜S : V → ˜U given by ˜S (x) = ̂T X is a diffeomorphism. Moreover, since U is
light non–conjugate, there is a bijection U → ˜U defined by X �→ ̂T X and therefore
U inherits from ˜U a differentiable structure such that the sky map S : V → U is a
diffeomorphism since ˜S is also. The global bijectiveness of the sky map S : M → Σ

gives us that S is a diffeomorphism. ��
The compatibility between theReconstructive topology and the differentiable struc-

ture of Σ is explicitly stated in [5, Cor. 17].

Proposition 6 The family of regular sets {U | U ⊂ Σ regular} is a basis for the recon-
structive topology of Σ . Moreover, the differentiable structure in Σ inherited from
˜U � U is the only one making of S : M → Σ a diffeomorphism.

It is important to notice that the differentiable structure given inU is inherited from
˜U � ̂U/D with data coming from TN , so it is canonically obtained from elements
of N and it is not necessary to define it by the geometry of M .

3.2 The Reconstruction theorem

This section is addressed to discuss the conditions under which a conformal manifold
can be reconstructed from its space of light rays.

Notice that “isomorphic” data in the geometry ofN must provide the same recon-
struction of the conformal manifold M . This observation leads to the Reconstruction
theorem [4, Lem. 2 & Thm. 3], which is a Malament-Hawking–like theorem (see [52,
Sect. 4.3.4]). Observe that there is no explicit mention to causal conditions of the
conformal manifold in the statement of the following version of the Reconstruction
theorem. The causal structure is implicit in the geometry of the spaces of light rays
and skies as we will see in Sect. 4.
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Theorem 3.3 (Reconstruction theorem) Let (M, C),
(

M, C) be two strongly causal,
null pseudo-convex and sky–separating conformal manifolds and (N ,Σ),

(N ,Σ
)

their corresponding pairs of spaces of light rays and skies. Let φ : N → N be a
diffeomorphism such that φ (X) ∈ Σ for all X ∈ Σ . Then the map

ϕ = S
−1 ◦Φ ◦ S : M → M

is a conformal diffeomorphism onto its image, where S : M → Σ is the sky map of
M and Φ : Σ → Σ is the map induced by φ defined by Φ (X) = φ (X).

Proof First, we will show that Φ is a diffeomorphism onto its range.
Trivially,Φ is well defined and injective. Consider any open setU ⊂ Σ and denote

U = Φ−1(U ). By definition of Reconstructive topology, there exists W ⊂ N open
such that U = Σ(W). Since φ is a diffeomorphism, then W = φ−1(W) is open in
N and moreover, for each sky X ⊂W we have that φ(X) ⊂W is a sky in U , hence
Φ(X) ∈ U . So, U = Σ(W) and U ⊂ Σ is open. Therefore Φ is continuous.

Now, consider X ∈ Σ and X = φ (X) ∈ Σ . By Proposition 6 and the continuity
of Φ there exist regular neighbourhoods U = Σ(U) ⊂ Σ of X and U = Σ(U) ⊂ Σ

of X such that Φ (U ) ⊂ U , then we can assume that φ (U) ⊂ U 2.
Since φ : N → N is a diffeomorphism, then φ∗ : TN → TN is also a diffeomor-

phism and its restriction φ∗ : ̂TU → ̂TU is a diffeomorphism onto its image. SinceU

and U are regular, then ̂U and ̂U are regular submanifolds, and

φ∗
(

̂U
) = φ∗

⎛

⎝

⋃

X∈U
̂T X

⎞

⎠ =
⋃

X∈U
φ∗
(

̂T X
) =

⋃

X∈U
̂Tφ (X) ⊂ ̂U

so, the restriction φ∗ : ̂U → ̂U is another diffeomorphism onto its range.

If we denote by ̂D and ̂D the distributions in ̂U and ̂U such that their spaces of
leaves are {̂T X : X ∈ U } and {̂T X : X ∈ U } respectively, since φ maps skies to skies

and φ∗
(

̂T X
) = ̂T X , then φ∗ : ̂U → ̂U induces the canonical quotient map

φ∗ : ̂U/̂D→ ̂U/
̂D,

2 This is not an automatic property for any U ∈ N and U ∈ N . If U = Σ(V) and U = Σ(U) such that
Φ (U ) ⊂ U , then we can choose U = φ−1

(

φ (V) ∩ U) ⊂ V . Now, if X ⊂ V , since Φ (U ) ⊂ U then
φ (X) ⊂ φ (V) ∩ U and since φ is a diffeomorphism, then X ∈ U . So we have U = Σ (U) = Σ (V) and
φ (U) ⊂ U .

123



The space of light rays: Causality and L–boundary Page 25 of 64    59 

which is smooth. Then we obtain the following commutative diagram:

̂U ̂U

̂U/̂D ̂U/
̂D

U U

φ∗

φ∗

Φ

where the maps ̂U/̂D→ U and ̂U/
̂D→ U are diffeomorphisms because of Propo-

sition 6. Then Φ : U → U a diffeomorphism onto its image, by injectiveness,
Φ : Σ → Σ is a diffeomorphism onto its image and, by Theorem 3.2, therefore

ϕ = S
−1 ◦ φ ◦ S : M → M too.

Finally, we will show that ϕ maps light rays into light rays. The image of a light
ray γ under the sky map S can be written by

S (γ ) = {β ∈ N : ∃ X ∈ Σ such that γ, β ∈ X}.

Then

Φ (S (γ )) = φ (S (γ )) = {φ (β) ∈ N : ∃ X ∈ Σ such that γ, β ∈ X}

and since φ is a diffeomorphism preserving skies

Φ (S (γ ))={φ (β) ∈ N : ∃Φ (X)∈Σ such that φ (γ ) , φ (β) ∈ Φ (X)}= S (φ (γ ))

So, we have ϕ (γ ) = S
−1 ◦Φ ◦ S (γ ) = S

−1 ◦ S ◦ φ (γ ) = φ (γ ) ∈ N is a light ray.
Therefore, by [32, Sec. 3.2], ϕ is a conformal diffeomorphism onto its image. ��

In virtue of Hawking and Malament’s theorems, weakening the hypotheses of the
Reconstruction theorem is a plausible idea, but it is not evident that it can be done in
a simple way. For example, under the hypothesis that φ is a sky–preserving homeo-
morphism, determining whether Φ is an open map is, so far, an open problem that we
establish as a conjecture. Anyway, we can state the following proposition.

Proposition 7 Let (M, C),
(

M, C) be two strongly causal, null pseudo-convex and
sky–separating conformal manifolds and (N ,Σ),

(N ,Σ
)

their corresponding pairs
of spaces of light rays and skies. Let φ : N → N be a homeomorphism such that
φ (X) ∈ Σ for all X ∈ Σ , the map Φ : Σ → Σ is defined by Φ (X) = φ (X) and

ϕ = S
−1 ◦ Φ ◦ S where S : M → Σ and S : M → Σ are the sky maps. Then the

following conditions are equivalent:

1. Φ is an open map.
2. ϕ is a conformal diffeomorphism onto its image.
3. φ is a diffeomorphism.
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Proof 1)⇒ 2)
When φ is a homeomorphism, the same arguments used in the proof of Theorem 3.3

can be used to show that Φ is continuous (as well as well–defined and injective)
and ϕ maps light rays of N into light rays of N . If, moreover, Φ is open, then
it is a homeomorphism onto its image and therefore, by composition, ϕ is also a
homeomorphismonto its imagewhichmaps light rays into light rays.By theHawking’s
theorem [52, Thm. 4.61], ϕ is a conformal diffeomorphism.

Trivially we have 2)⇒ 3) and, as seen in the proof of Theorem 3.3, we get 3)⇒ 1).
��

The contact structureH is not sufficient to recover the conformal manifold M . The
space of skies is also needed as done in Theorem 3.3. The following example (see [4,
Ex. 2] for details) shows that there can be a diffeomorphism preserving the contact
structure between the spaces of light rays of non-equivalent conformal manifolds.

Example 6 Let M
3 be the 3–dimensional Minkowski space–time with standard coor-

dinates given by (t, x, y) ∈ R
3 and let NM3 be its space of light rays.

For ε ≥ 0, we consider Mε =
{

(t, x, y) ∈ R
3 : t < ε

}

equipped with the metric

gε = − (1+ f (t)) dt ⊗ dt + 2 f (t) dt ⊗ dx + (1− f (t)) dx ⊗ dx + dy ⊗ dy

where f is a smooth function verifying f (t) = 0 for every t ≤ 0 which gives us a
small perturbation gε of the metric g of M

3 for 0 < t < ε. It is possible to choose f
small enough to keep Mε globally hyperbolic.

Trivially, M3 and Mε are two space–times extending M0 the corresponding spaces
of light raysNM3 ,Nε andN0 can be fully determined by a common Cauchy surface,
for example C ≡ {t = −1}. Since M0 (equipped with its metric) is contained in M

3

and Mε , then every light ray γ0 in M0 passing through C , defines light rays γ ⊂ M
3

and γε ⊂ Mε . Then we can state a diffeomorphism NM3 → Nε such that the contact
structures are preserved

(HM3
)

γ
� (Hε)γε

.

It is known that M
3 is flat, but if we compute the Cotton tensor Cε of Mε , defined

by Ci jk = ∇k Ri j −∇ j Rik+ 1
4

(∇ j Rgik − ∇k Rgi j
)

where Ri j and R denote the Ricci
curvature and the scalar curvature, we obtain that Cε 
= 0 therefore, by [37, Thm. 9],
M

3 and Mε are not conformally equivalent because Mε is not conformally flat.

4 Causality inN
In this section wewill see how the causal structure ofM is encoded inN by legendrian
isotopies. Any curve λ = λ(s) ∈ M is mapped to the curve of skies S (λ(s)) ∈ Σ

under the sky map S. We can see every Λs = S (λ(s)) as a smooth submanifold in the
space of light rays N , so S ◦ λ defines a variation of smooth submanifolds in N .

4.1 Legendrian isotopies

We will introduce some basic and general definition and results. For a more detailed
description, see [17].
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Definition 8 Let (M,H) be a co-oriented (2n + 1)–dimensional contact manifold
with contact structure H.

– A smooth submanifold Λ ⊂M is called Legendrian if TpΛ ⊂ Hp for all p ∈ Λ.
– A differentiable family {Λs}s∈[0,1] of Legendrian submanifolds is called a Legen-
drian isotopy.

– A parametrization of a Legendrian isotopy {Λs}s∈[0,1] is a map F : Λ0× [0, 1]→
M such that, for all s ∈ [0, 1], we have that F (Λ0 × {s}) = Λs ⊂ M and
Fs : Λ0 → Λs given by Fs(λ) = F(s, λ) is a diffeomorphism.

– Two Legendrian isotopies are equivalent if their corresponding parametrizations
F, ˜F : Λ0 × [0, 1]→M verify Fs (Λ0) = ˜Fs (Λ0) for every s ∈ [0, 1].

Definition 9 We will say that a parametrization F of a Legendrian isotopy is
non–negative (respectively, non–positive, positive, negative) if (F∗α)

(

∂
∂s

) ≥ 0
(respectively ≤ 0, > 0, < 0), where α is a contact 1–form such that H = ker α.

If the sign of a parametrization of a Legendrian isotopy is defined in the sense of
Definition 9, then it does not depend on the parametrization. This result is shown in
[4, Lem. 3] and it allows to define the sign of a Legendrian isotopy in terms of the sign
of any parametrization.

Lemma 2 Let F, ˜F : Λ0× [0, 1]→M be two equivalent parametrizations of a Leg-
endrian isotopy {Λs}s∈[0,1]. If F is non-negative (respectively non-positive, positive,
negative) then so is ˜F.

4.2 Causal curves

As it was mentioned in the introduction of Sect. 4, we will study the Legendrian
isotopies in the space of null geodesics N defined by causal curves.

First notice that the co-orientation can be defined by appointing the sign of g
(

J , γ ′
)

to the sign of 〈J 〉 ∈ TγN , where 〈J 〉 = J
(

mod γ ′
)

with γ ∈ N and g ∈ C.
By Eqs. (2.10) and (3.1), any sky X = S(x) ∈ Σ is a Legendrian submanifold and,

by diagram (2.3), diffeomorphic to Sx = {[u] : u ∈ N
+
x } = PNx � S

m−2. So, given a
Legendrian isotopy {Xs}s∈[0,1] where Xs is the sky of xs ∈ M for s ∈ [0, 1], we can
consider a parametrization F , given by null directions, as

F : Sx0 × [0, 1]→ N

since γ(Sx0) = S(x0) ⊂ N is the sky of x0 ∈ M and γ is the submersion of diagram
(2.3).

Lemma 3 Letμ : [0, 1]→ M be a curve and F : Sμ(0)×[0, 1]→ N be a Legendrian
isotopy such that F

(

Sμ(0) × {s}
) = S (μ (s)) ∈ Σ . Then μ is differentiable.

Proof Observe that, since F is a Legendrian isotopy, then Fs : Sμ(0) → S (μ (s)) ⊂ N
given by Fs (z) = F (z, s) is a diffeomorphism for any s ∈ [0, 1]. Since F and Fs are
smooth maps then, for z0 ∈ Sμ(0) and w ∈ Tz0 Sμ(0), the curve

j (s) = (dFs)z0 (w) ∈ TF(z0,s)S (μ (s))
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is also differentiable in ̂TN . Take s0 ∈ [0, 1] and U = S (V ) be a regular open
neighbourhood of S (μ (s0)) ∈ Σ . Then j (s) ∈ ̂U for s close to s0 and then the
restriction of j to ̂U is differentiable for those s close enough to s0.

If
(

̂U , ϕ = (x,u, v)
)

is the coordinate system (3.4) of Theorem 3.1 adapted to the
leaves {̂T X} with (V , ϕ = x) the corresponding coordinate chart in M , then μ (s) =
ϕ−1 ◦ x ( j (s)) ∈ V , therefore μ is differentiable. ��

The following result will be used as a technical lemma. The converse statement
appears in [4, Lem. 6] but here we offer a simpler proof.

Lemma 4 Let M be a Lorentz manifold and p ∈ M. A non–zero vector v ∈ TpM is
timelike past–directed (respectively, causal past–directed) if and only if g (u, v) > 0
for all u ∈ N

+
p (respectively g (u, v) ≥ 0).

Proof The direct statement is a consequence of [56, Lem. 5.26] since the orthogonal
complement of [v] = span{v} is a spacelike subspace separating N

+
p and N

−
p .

To show the converse, recall that there exist coordinates (x0, . . . , xm−1) such that
the metric can be written by

gp = −dx0p ⊗ dx0p + dx1p ⊗ dx1p + · · · + dxm−1p ⊗ dxm−1p

at p ∈ M , with
(

∂
∂x0

)

p
timelike future–directed. We can write v = vk

(

∂
∂xk

)

p
and

u = λ
(

∂
∂x0

)

p
+ λ
∑m−1

k=1 Zk(θ)
(

∂
∂xk

)

p
where λ > 0 and θ = (θ1, . . . , θm−2) are

the corresponding angles in the expressions of the spherical coordinates of the sphere
S
m−2 ⊂ R

m−1 of radius r = 1 given by

⎧

⎪

⎨

⎪

⎩

Z1(θ) = cos θ1

Zk(θ) =∏k−1
j=1 sin θ j cos θk , for k = 2, . . . ,m − 2

Zm−1(θ) =∏m−2
j=1 sin θ j

If g (u, v) > 0, then −λv0 + λv1Z1 + · · · + λvm−1Zm−1 > 0 and we have

v0 < v1Z1 + · · · + vm−1Zm−1 = v · Z for all θ. (4.1)

Since v · Z can be seen as the standard scalar product in R
m−1 of the vectors

v = (v1, . . . , vm−1) and Z = (Z1, . . . , Zm−1), then v · Z = |v| · |Z | · cosα where α

is the angle between v and Z , then

min
θ

v · Z = −|v| = −
√

v21 + . . .+ v2m−1 ≤ 0 (4.2)

because |Z | = 1. By equations (4.1) and (4.2), we obtain that

{

v20 > v21 + . . .+ v2m−1
v0 < 0

⇒
{

v is timelike
v is past–directed
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The causal case is shown analogously. ��
The following proposition characterizes the causality of M in terms of Legendrian

isotopies of skies in N .

Proposition 8 A regular curve μ : [a, b] → M is causal past–directed (respectively
causal future–directed, timelike past–directed, timelike future–directed) if and only
if {S (μ(s))}s∈[a,b] is a non-negative (respectively non-positive, positive, negative)
Legendrian isotopy.

Proof Fix an auxiliary metric g ∈ C in M and denotes byP : Tμ(0)M×[0, 1]→ T M
the parallel transport along μ with respect to g given by P (u, s) = us ∈ Tμ(s)M .
SinceP is differentiable and the mapPs : Tμ(0)M → Tμ(s)M defined byPs (u) =
P (u, s) is a linear isometry, then for any s ∈ [0, 1]

g (us, us) = g (u, u) = 0, u ∈ N
+
μ(0)

hence us ∈ N
+
μ(s) andPs

(

N
+
μ(0)

)

= N
+
μ(s) for anymetric g in the conformal structure

C.
Now, consider the submersionγ : PN → N given byγ ([u]) = γ[u] (see Sect. 2.3).

By composition, the map γ ◦ πN
+

PN
◦P is differentiable and, sincePs is linear then

πN
+

PN
◦P(u) = [Ps(u)] = [Ps(λu)] = πN

+
PN
◦P(λu) ∈ PN

for all λ 
= 0, so it induces a map Fμ : Sμ(0) × [0, 1]→ N given by

Fμ ([u] , s) = γ[us ]

with Sμ(0) = {[u] : u ∈ N
+
μ(0)} ⊂ PN. So, for s ∈ [0, 1] we have

Fμ
(

Sμ(0) × {s}
) = {Fμ ([u] , s) ∈ N : u ∈ N

+
μ(0)} = {γ[us ] ∈ N : u ∈ N

+
μ(0)} =

= {γ[v] ∈ N : v ∈ N
+
μ(s)} = S (μ (s))

Hence, Fμ is a parametrization of the Legendrian isotopy {S (μ(s))}s∈[a,b].
Now, notice that, since Fμ ([u] , s) = γ[us ], we can use the exponential map to give

an affine parametrization to all light rays in the variation γ[us ], so we write

Fμ ([u] , s) (t) = γ[us ] (t) = expμ(s) (tus) .

By Lemma 1 and since us is the parallel transport of u alongμ, we have that the Jacobi
field Js (t) along γ[us ] verifies

Js (0) = μ′ (s) , J ′s (0) = D

ds

∣

∣

∣

∣

s
us = 0.
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Hence, since

Fμ∗
(

∂

∂s

)

([u],s)
= ∂Fμ

∂s
([u] , s) = 〈Js〉

we have that

α

(

Fμ∗
(

∂

∂s

))

([u],s)
= α (〈Js〉) = g

(

Js (t) , γ ′[us ] (t)
) =

= g
(

Js (0) , γ ′[us ] (0)
) = g

(

μ′ (s) , us
)

.

Therefore, the statement follows from the equality

α

(

Fμ∗
(

∂

∂s

))

([u],s)
= g
(

μ′ (s) , us
)

(4.3)

in virtue of Lemmas 2 and 4. ��
Remark 8 Recall that a causal curve μ : [a, b] → M is assumed to be continu-
ous, piecewise differentiable and time–oriented. Even being μ smooth, it may not
be regular at some s = s0, , that is, μ′(s0) = 0. In this case, by Eq. (4.3), we have
α
(

Fμ∗
(

∂
∂s

))

([u],s0)
= 0 in spite of μ could be timelike.

Therefore, ifμ is not regular, the statement of Proposition 8 only can be enunciated
as:

Corollary 2 A smooth curve μ = μ(s) is causal past–directed (respectively future–
directed) if and only if {S (μ(s))} is a non-negative (respectively non-positive)
Legendrian isotopy.

These results characterize the causality of M , that is

q ∈ J+ (p)⇐⇒ S (p) ≤Σ S (q) (4.4)

where ≤Σ denotes the existence of a non–positive Legendrian isotopy consisting of
skies.

In [18], an analogous result is stated under the hypotheses of M simply connected
and globally hyperbolic: q ∈ J+ (p) if and only if there is a non–positive Legendrian
isotopy (not necessarily consisting of skies) connecting S (p) and S (q).

4.3 Twisted null curves

A key element to show unnecessary the condition of non-refocussing is the notion of
twisted null curve. These curves, roughly speaking, are null curves non-geodesic at
any point. The precise definition is as follows.

Definition 10 A continuous curve μ : [a, b]→ M is called a twisted null curve if
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i. μ|(a,b) is differentiable.
ii. g

(

μ′ (s) , μ′ (s)
) = 0 for all s ∈ (a, b).

iii. μ′ (s) and Dμ′
ds (s) are linearly independent for all s ∈ (a, b).

If μ : [a, b]→ M is continuous and there exists a partition a = s0 < s1 < . . . <

sk = b such that μ|(si−1,si ) is a twisted null curve for every i = 1, . . . , k, thenμ is called
a piecewise twisted null curve.Moreover, we say thatμ is future–directed (respectively
past–directed) if μ |(si−1,si ) is future–directed (respectively past–directed) for all i =
1, . . . , k.

Observe that, in the definition of twisted null curve, we are considering that μ

contains its endpoints because the objective is to connect points with this kind of
curves. A general definition of these curves without endpoints can also be used for
other purposes.

It is clear that these curves μ can only exist when dim(M) ≥ 3 because, if M is
2–dimensional, μ could not be twisted so that μ′ remains null. According to this, we
state the following result.

Theorem 4.1 (Twisted null curve theorem) Let p, q ∈ M such that q ∈ I+(p), then
there exists a future–directed piecewise twisted null curve μ joining p to q.

(Sketch of the proof) The details of the demonstration are in [5, Thm. 9]. The first step
is to show that, for the 3–dimensional case, it is possible to connect locally two points
lying in a future–directed timelike geodesic λ by a future–directed twisted null curve.
It is specially helpful to consider a synchronous coordinate system in a neighbourhood
of λ (see [59, Def. 7.13] or [38, Sec. 99]). Next, it is possible to generalize the previous
step for general dimension m ≥ 3 if we apply it to some 3–dimensional submanifold.
Then, if q ∈ I+(p) then there is a timelike curve β with endpoints at p and q. If we
consider a finite covering {Wi } of the timelike segment β such that each Wi ⊂ M is
causally convex, then every pair of points in β ∩ Wi can be connected by a timelike
geodesic segment. Therefore, by gluing a finite amount of these timelike geodesic
segment, we obtain a future–directed broken timelike geodesic. Finally, we can apply
the previous steps to the resultant curve to conclude the proof. ��

The Theorem 4.1 is a result independent of the space of light rays but, since twisted
null curves can be described in terms of N and Σ , it can be written in the context of
Sect. 4.2.

In Sects. 3.1 and 3.2, we have introduced some subsets of TN such that their vectors
are tangent to skies, for example, in Theorem 3.1 we have shown that ̂U =⋃X∈U ̂T X
is a regular submanifold of TN where V ⊂ M is a causally convex, normal, globally
hyperbolic open set andU = S(V ) ⊂ Σ . This kind of vectors can characterize twisted
null curves.

Definition 11 A non-zero tangent vector 〈J 〉 ∈ ̂TγN will be called a celestial vector
if there exists a sky X ∈ Σ such that 〈J 〉 ∈ ̂Tγ X , where ̂T X = T X − {0} as in (3.3).
Consequently, a smooth curve Γ : I → N is called a celestial curve if Γ ′(s) is a
celestial vector for all s ∈ I .
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The conditions to build a variation of light rays in M defining a celestial curve in
N are stated in the following proposition.

Proposition 9 If Γ : [0, 1]→ N is a celestial curve such that Γ (s) = γs ∈ N , then
there exists a null curve μ : [0, 1] → M such that γs (τ ) = expμ(s) (τσ (s)) where
σ (s) ∈ N

+
μ(s) is a smooth curve proportional to μ′ (s) wherever μ is regular.

Proof Let Γ : [0, 1] → N be a celestial curve with Γ (s) = γs . Consider a local
chart (̂U , ϕ), with ϕ = (x,u, v) as in (3.4) at some point Γ ′(z) ∈ Tγz S(γz(t)) for
z ∈ [0, 1] and t ∈ R. We can take (V , ϕ) the coordinate chart in V ⊂ M such that
ϕ = x according to Remark 7. Consider a neighbourhood I ⊂ [0, 1] of z such that
Γ ′(s) ∈ ̂U for all s ∈ I . Then

ϕ(Γ ′(s)) = (x(Γ ′(s)),u(Γ ′(s)), v(Γ ′(s)))

is a smooth curve. Notice that the curve μ(s) = ϕ−1 ◦ x(Γ ′(s)) ∈ M is also smooth
and describes the points to whose skies Γ (s) are tangent. Then, the coordinates u of
Γ ′(s) permit to define the smooth curve σ ⊂ N

+ such that if u = (ui ) then

σ(s) = E1(μ(s))+ u2(Γ ′(s))E2(μ(s))+ · · · + um(Γ ′(s))Em(μ(s)) ∈ N
+
μ(s) .

where {E1, . . . ,Em} is the orthonormal frame associated to the local chart (̂U , ϕ).
Hence, the geodesic variation f(s, τ ) = expμ(s)(τσ (s)) = γ s(τ ) defines the curve
Γ (s).

By Lemma 1, the Jacobi field J s along γ s of the variation f satisfies that J s(0) =
μ′(s) and, since Γ ′(s) ∈ TΓ (s)S (μ(s)), then J s(0) = αsγ

′
s(0) for some αs ∈ R.

Then, μ′ must be proportional to γ ′s(0), therefore also proportional to σ(s).
The extension of μ and σ to the interval [0, 1] follows from the compactness of

Γ . ��
It is proved in [5, Cor. 7] that, given a celestial curve Γ : [0, 1] → N such

that Γ ′ (s0) ∈ ̂T S (p0), then the curve μ : [0, 1] → M of the previous proposition
verifying μ (s0) = p0 ∈ M is unique. The proof can be obtained by reductio ad
absurdum, assuming there are two such curves μ1, μ2 and showing that the set A =
{s ∈ [0, 1] : μ1 (s) = μ2 (s)} is closed, open and not empty, therefore A = [0, 1].

The unique curve μ (in the sense of Proposition 9) passing by p = S−1(X) of a
given celestial curve Γ will be called the dust or trail of Γ by X and denoted by μΓ

X .
The following proposition shows that the dust of a celestial curve is a twisted null
curve. See [5, Lem. 8] for proof.

Proposition 10 Let Γ : [0, 1]→ N be a celestial curve such that Γ ′ (0) ∈ ̂T X0 with
X0 ∈ Σ . Then there exists a unique curve χΓ

X0
: [0, 1] → Σ , continuous in Low’s

topology, verifying χΓ
X0

(0) = X0 and Γ ′ (s) ∈ ̂TχΓ
X0

(s). Moreover, the dust curve

μΓ
X0

is a piecewise twisted null curve in M along the image of S−1 ◦ χΓ
X0
.

Conversely, given a regular twisted null curve μ : [0, 1] → M such that μ (0) =
x0 = S−1 (X0) and μ′(0) 
= 0 
= μ′(1), then the variation of null geodesics

f (s, t) = expμ(s)

(

tμ′ (s)
) = Γ (s)|t
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with s ∈ [0, 1], defines a celestial curve Γ : [0, 1]→ N such that Γ ′ (0) ∈ ̂T X0 and
χΓ
X0

(s) = S (μ (s)).

Previous Proposition 10 says that celestial curves inN and twisted null curves inM
are two sides of the same coin, and consequently, it permits to interpret Theorem 4.1
according to Proposition 8 as the next result.

Corollary 3 q ∈ I+(p) if and only if there exists a celestial curve Γ : [0, 1] → N
and a continuous curve of skies χΓ : [0, 1]→ Σ such that

1. χΓ is a non–positive Legendrian isotopywithχΓ (0) = S (p)andχΓ (1) = S (q).
2. Γ ′ (s) ∈ TΓ (s)χ

Γ (s).

So, the connection by a signed Legendrian isotopy between the skies S(p), S(q) ∈
Σ of any pair of chronological related points q ∈ I+(p), ensured by Proposition 8,
can be achieved by the skies χΓ pointed by a celestial curve Γ .

4.4 Legendrian linking

Related to causality in the framework of the space of light rays, we find the topic of
sky–linking. This interesting subject is out of the scope of this review, but we think it
is worth introducing the general problem and some references.

By the equivalence between the conformal manifold M and its space of skies Σ

stated in Theorem 3.2 and according Sect. 4.1, we have that any (smooth) curve
λ : I → M defines a Legendrian isotopy of skies {S (λ(s))}s∈I in N . Then all skies
in Σ , trivially, can be connected by a Legendrian isotopy.

At his PhD thesis [40], Low noticed that the isotopy classes for pairs of skies
S(p)�S(q) depend on the causal relation between p, q ∈ M . Later, Penrose suggested
this conjecture to Natário et al. as a problem to be solved motivating [55]. In this
reference, the authors proposed a modification [55, Conj. 6.4] of the Low’s conjecture
to catch the past or future orientation of the skies of the link S(p) � S(q), so they
consider Legendrian isotopies.

In the literature, a pair S(p) � S(q) in N is called a link and it is shown, for
example in [16, Lem. 4.3], that all links S(p) � S(q) of skies of causally unrelated
points p, q ∈ M lies in the same class of (Legendrian) isotopies. So, in this case,
it is said that S(p) � S(q) is (Legendrian) unlinked or also (Legendrian) trivially
linked. There might be a bit of confusion with the use of the word “link", since a link
S(p) � S(q) might be unlinked, but we use this terminology as in the references.

The development of this topic done by Low in [40, 42, 44, 46], by Field and Low
[22], by Natário et al. [53–55] and by Chernov et al. [15] led Chernov and Nemirowski
to prove both conjectures in [16].

Theorem 4.2 (Low’s conjecture)Let M bea3–dimensional spacetime, globally hyper-
bolic with Cauchy surface diffeomorphic to a subset of R

2. Two points p, q ∈ M are
causally related if and only if S(p) � S(q) are linked.

Theorem 4.3 (Legendrian Low conjecture) Let M be a globally hyperbolic m–
dimensional spacetime with Cauchy surface diffeomorphic to a subset of R

m−1. Then
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two points p, q ∈ M are causally related in M if and only if their skies either intersect
or are Legendrian linked in N .

Some recent work on the extension of these results for more general spacetimes are
[20] and [21].

5 L–boundary

As it was mentioned in the introduction, we try to point out a possible way to construct
a new causal boundary for M , called the light boundary or L–boundary, introduced
by R. Low in [47]. It will be a conformal extension of the conformal manifold and
its construction requires the use of geometrical structures of the space of light rays.
A first study of this new boundary is done in [7] including some initial results and
examples comparing it with the c-boundary developed in [27]. Later, a more complete
article [8] was release.

5.1 Preliminary: the causal boundary

In [27], the c–boundary or causal boundary is introduced to improve others already
existing boundaries (Geroch’s [26], Schmidt’s [64], etc.) It is conformally invariant
and defined intrinsically adding endpoints, as subsets in the spacetime M , to causal
inextensible curves.

Definition 12 We will say that W ⊂ M is an indecomposable past set or IP if W is
open, non–empty and a past set, that is I−(W ) = W , which can not be expressed as
the union of two proper subsets satisfying the same previous properties.

If there exists p ∈ M such that I−(p) = W , we will say that W is a proper IP or
PIP. We will name W as a terminal IP or TIP whenever such p ∈ M does not exist.

The future causal boundary or future c–boundary is defined by the set of all TIP
contained in M .

In an analogous way, the past c–boundary is defined from indecomposable future
sets, PIFs and TIFs.

The following proposition characterizes the TIPs as chronological past of future
inextendible timelike curves and states that points in the c–boundary can also be
defined by causal curves. Analogue results can be stated for TIFs. See [32, Prop.
6.8.1] and [23, Prop. 3.32(i)] for proofs.

Proposition 11 Let M be a strongly causal spacetime.

1. A set W ⊂ M is a TIP if and only if there exists a future inextendible timelike
curve λ ⊂ M such that I−(λ) = W.

2. If λ ⊂ M is a future inextendible causal curve, then I−(λ) is a TIP.

An immediate consequence of Proposition 11 is the following corollary.

Corollary 4 Let M be a strongly causal spacetime. I−(γ ) is a TIP for any light ray
γ ∈ N .
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λ

q

μ

γ

r

β

p

M

I−(μ)

I−(λ)I−(β)

Fig. 9 The ideal points r̃ , p̃ and q̃ are respectively identified with the chronological past of the future
inextensible timelike curves μ, β and λ. Observe that the point p̃ has been removed from M , so it is a gap
in the spacetime. The light ray γ also defines the same TIP as μ because I−(γ ) = I−(μ)

Fig. 10 The point (0, 0) is not
accessible by light rays in M . It
corresponds to the TIP
I−(λ) = M defined by a
timelike curve such λ. Light rays
define ideal points such as p̃
which correspond to TIPs like
I−(γ ) in green

x
t

λ
γ

M

M2

I−(γ)

(0, 0)

p

Observe that the points p ∈ M can be identified by its corresponding PIPs I−(p)
or PIFs I+(p) and the gaps and points at infinity of M are identified with TIPs I−(λ)

or TIFs I+(λ) for some future inextensible timelike curve λ (Fig. 9). Therefore, by
Corollary 4, light rays also define points in the c–boundary.

Remark 9 As Proposition 11 suggests in its statements, not every TIP can be defined
by light rays because such ideal points may be accessible only by timelike curves. For
example, let us consider M = {(t, x) ∈ M

2 : t < −2|x |} as submanifold of the 2–
dimensional Minkowski spacetime with the standard metric g = −dt⊗dt+dx⊗dx .
The ideal point (0, 0) is not accessible by light rays contained in M . In fact, the TIP
defined by the curve λ(s) = (s, 0) for s ∈ (−ε, 0) is the whole spacetime M , that is
(0, 0) ∼ I−(λ) = M (see Fig. 10). This example can be easily generalized to higher
dimensions.

The identification p ∼ I−(p) ∼ I+(p) presents some inconsistencies affecting
even to the topology of the spacetime’s completion and many authors have tried to
solve this problem (Budic et al. [12], Rácz [62], Szabados [66, 67], Harris [29, 30],
Marolf et al. [49, 50] among others) but finally, Flores et al. [23] stated a consistent
definition of the c–boundary. Anyway, this matter is beyond the scope of this review,
so, for our purposes, we will only need the classical definition of the causal boundary
above. See [24, 63] and [23] for an overview on this subject.

5.2 Low’s idea

As indicated in [47], Low introduces a new idea for the construction of a causal and
conformal boundary in M . It consists in the addition of skies at infinity, in virtue of
the equivalence between events and skies by the sky map (see Sect. 3).
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It is expected that a sky at infinity will be the limit of the skies of the points of
a fixed light ray when the parameter tends to the future/past endpoint of its domain
of definition. Low wonders if this is a new way to obtain the c–boundary using the
geometry of the space of light rays.

In order to build these boundary points, we will take some future–directed inex-
tensible null geodesic γ : (a, b) → M , then we will consider the curve γ̃ : (a, b) →
Grm−2

(Hγ

)

defined by

γ̃ (s) = Tγ S (γ (s))

where S(γ (s)) ∈ Σ is the sky of γ (s) ∈ M . Since each S(p) is diffeomorphic to the
sphereS

m−2, then Tγ S (γ (s)) is contained in theGrassmannianmanifoldGrm−2
(Hγ

)

of (m − 2)–dimensional subspaces ofHγ ⊂ TγN . Then, we can define endpoints of
the curve γ̃ by

�γ = lims �→a+ γ̃ (s) ∈ Grm−2
(Hγ

)

,

⊕γ = lims �→b− γ̃ (s) ∈ Grm−2
(Hγ

)

,
(5.1)

when the limits exist. In general, the existence of �γ and ⊕γ is not clear, although
the compactness of Grm−2

(Hγ

)

assures the existence of accumulation points when
s �→ a+, b−. Moreover, even in case of the existence of the limits, we wonder if
�,⊕ : N → Grm−2 (H) are smooth distributions in N . Low defines the future/past
endpoint of the light ray γ ⊂ M for this new boundary of M as the integral manifold
of the distributions⊕/�, which will comprise all light rays arriving at/emerging from
the same point at infinity than γ , see [47].

Recall that, at the end of Sect. 2.5, we have seen that
(

Hγ , ω|Hγ

)

is a symplectic

vector space for any γ ∈ N , where ω|Hγ
satisfies the expression (2.11). Then, it is

easy to show that for any sky X ∈ Σ such that γ ∈ X , then Tγ X is its own symplectic
orthogonal vector space, that is,

Tγ X =
(

Tγ X
)⊥ ≡ {〈J 〉 ∈ Hγ : ω|Hγ

(〈J 〉, 〈K 〉) = 0 for all 〈K 〉 ∈ Tγ X}

therefore Tγ X is a lagrangian subspace of Hγ . So, if we denote by L (H) ⊂
Grm−2 (H) themanifold of Lagrange grassmannian subspaces inH and byL

(Hγ

) ⊂
Grm−2

(Hγ

)

the submanifold of Lagrange grassmannian subspaces in Hγ , then
Λ ∈ L

(Hγ

)

if and only if dimΛ = m − 2 and ω|Λ = 0. So, the image of the
maps �,⊕ can be restricted to L (H) by

�,⊕ : N → L (H) ,

as well as γ̃ ⊂ L
(Hγ

)

holds.
The distributions ⊕ and � are independent of each other and they permit to build

the future and past boundaries respectively. Therefore, the construction of one of
these boundaries is also independent of that of the other. Thus, we will describe the
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Fig. 11 The curve
γ̃ ⊂ P

(Hγ

) � S
1

P (Hγ)

γ

⊕γ

TγS (γ(s))

γ

construction of the future boundary from the distribution ⊕, taking into account that
the process to obtain the past boundary from � is analogous.

We propose the following hypotheses for the general case dim M ≥ 3:

H1 (M, C) is strongly causal, null–pseudo convex, light non–conjugate and sky–
separating.

H2 The distribution ⊕ : N → L (H), defined by ⊕γ = lims �→b− Tγ S (γ (s)) for
any maximally and future–directed parametrized light ray γ : (a, b) → M , is
differentiable and regular.

Definition 13 A Lorentz conformal manifold M satisfying conditions H1 and H2 is
said to be a L–spacetime.

Notice that H1 is required for N having good topological and differentiable prop-
erties and H2 are basic conditions on ⊕ so that the L–boundary could be built.

For the sake of simplicity, we do not use the labels future and past in the definition
of L–spacetime as the propertyH2 is verified for⊕ or� respectively. We understand
that this may be a bit ambiguous, but in this way we will avoid too many adjectives in
later definitions. Therefore, as in what follows, we will build only the future boundary,
L–spacetime should be understood as future L–spacetime.

5.3 Hypotheses for the 3–dimensional case

As a first approximation to the general case, we will study the L–boundary for 3–
dimensional conformalmanifolds following the original Low’s idea. (Fig. 11) Observe
that in such caseN is also 3–dimensional and the Lagrangian grassmannian manifold
L (H) becomes P (H) (in fact, Gr1 (H) = L (H) = P (H)). So the curve γ̃ is
contained in P

(Hγ

) � S
1.

Notice that, if M is light non–conjugate, then the curve γ̃ (s) = Tγ S (γ (s)) ∈
P
(Hγ

) � S
1 is injective and therefore the continuity of γ̃ would imply that the limits

⊕γ and �γ exist consisting in lines in P
(Hγ

)

(Fig. 11).
So, when M is 3–dimensional, the hypothesis H2 becomes

H2 The distribution ⊕ : N → P (H), defined by ⊕γ = lims �→b− Tγ S (γ (s)) for
any maximally and future–directed parametrized light ray γ : (a, b) → M , is
differentiable and regular.

The rest of this Sect. 5 is devoted to the construction of the future L–boundary for
m = 3, but we also believe that a similar way can be travelled in order to get the
L–boundary for any dimension m ≥ 3.
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5.4 The space ˜N of tangent spaces to skies

First, let us consider the following natural map

σ : PN → P (H)

[u] �→ Tγ[u] S
(

πPN

M ([u])
) (5.2)

where πPN

M : PN → M is the canonical projection. The assumption of M being light
non–conjugate, by [7, Lem. 2.5], gives us the injectivity of σ . But, moreover, this map
permits to embed M (by its bundle PN of null directions) into the geometry ofN (by
the bundle P (H) of lines in the contact structureH).

Proposition 12 The map σ : PN → P (H) defined in (5.2) is a diffeomorphism onto
its image. Moreover, ˜N = Im (σ ) is an open submanifold of P (H).

(Sketch of the proof) This proposition in proven in [8, Prop. 5.1] in two steps. First,
the differentiability of σ is shown [8, Lem. 5.1] by the construction of σ ([u]) ∈ P (H)

for [u] ∈ PN by differentiable composition of maps, using null geodesics variations
which fix the point πPN

M ([u]) ∈ M . Second, the differential dσ[u] is an isomorphism.
In this second step, it is necessary to prove that the curve γ̃ (t) = σ

([

γ ′ (t)
])

is regular
whenever the parameter t is affine [8, Lem. 5.2]. Finally, since both PN and P (H) are
4–dimensional then the image σ (PN) = ˜N is open in P (H). ��

Observe that, by construction, the manifold ˜N is the space of all tangent spaces to
skies of points of M . In [8, Sec. 3.1], ˜N is named as the blow up of M .

Notice that, if γ = γ (t) is a null geodesic, then σ
([

γ ′ (t)
]) = Tγ S (γ (t)) ∈

P
(Hγ

)

. So, the endpoints of the curve

γ̃ (t) ≡ σ
([

γ ′ (t)
]) = Tγ S (γ (t)) (5.3)

define the distributions⊕ and�. Assuming the hypothesesH1, we have the following
implications

γ̃ (t1) = γ̃ (t2) ⇒ Tγ S (γ (t1)) = Tγ S (γ (t2)) (by definition)

⇒ S (γ (t1)) = S (γ (t2)) (by light non–conjugate)

⇒ γ (t1) = γ (t2) (by injectiveness of S)

⇒ t1 = t2 (by injectiveness of γ )

then any γ̃ is also an injective curve.
In [8, Prop. 6.1], it is shown that ˜N ⊂ P (H) is a submanifold with boundary under

the hypotheses H1, H2 for both ⊕ and � with ⊕γ 
= �γ for all γ ∈ N . This last
hypothesis is not critical, it is just a technical condition to simplify the construction. It
is possible to show a more general statement only under conditions H1 and H2 with
the same procedure used in [8], which is sufficient for the construction of the future
boundary.Notice that, ifNU is the open set of all light rays passing through the globally
hyperbolic, normal and causally convex open U ⊂ M according to remark 1, we can
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consider two smooth spacelike Cauchy surfaces C,C− ⊂ U such that C− ⊂ I−(C).
Observe that ifHU =⋃γ∈NU

Hγ then

P (HU ) � NU × S
1 � C × S

1 × S
1.

So, we can choose a coordinate system ˜ψ = (x, y, θ, φ) where (x, y, θ) are coordi-
nates for C × S

1 and φ ∈ [0, 2π) is a coordinate for the fibres P
(Hγ

) � S
1 that can

be built from the initial values of the Jacobi fields at the Cauchy surface C ⊂ U . If
P ∈ P

(Hγ

)

is a line such that P = span{〈J 〉}, then we can choose a representative J
such that J (0), J ′(0) ∈ Tγ (0)C . Since g

(

J (0), γ ′(0)
) = 0 and g

(

J ′(0), γ ′(0)
) = 0,

then it is possible to write

J (0) = w · e, and J ′ (0) = v · e

whereTγ (0)C∩
{

γ ′ (0)
}⊥=span{e}with{γ ′ (0)}⊥={u∈Tγ (0)M : g (γ ′ (0) , u

)=0
}

.
Since for any 0 
= α ∈ R we have P = span{〈α J 〉} = span{〈J 〉} then the homoge-
neous coordinate

φ = [w : v] (5.4)

or, even the polar coordinate φ = arctan(w/v), determines the line P ∈ P
(Hγ

)

.
For any γ ∈ NU there exists sγ ∈ R smoothly depending on γ such that γ

(

sγ
) ∈

C−3. Moreover, since for all γ ∈ N , every curve σ
([γ ′(s)]) = γ̃ (s) is injective, then

we can assume that

0 < φ
(

σ
([γ ′(sγ )])) < φ

(

σ
([γ ′(s)])) < φ

(⊕γ

)

< 2π

for all γ ∈ NU and s > sγ in the domain of γ . Due to⊕ is a smooth distribution then
the function φ⊕ = φ ◦ ⊕ : NU → [0, 2π) is smooth, therefore the future boundary
of ˜NU = P (HU ) ∩ ˜N corresponding to ⊕ can be locally written by

∂+ ˜NU = {φ = φ⊕}

which can be seen as the graph of⊕. Then⊕ : N → P (H) is a diffeomorphism onto
its image and the future boundary of ˜N is

∂+ ˜N = ⊕ (N ) .

The past boundary ∂− ˜N can be shown to be smooth analogously. It is summarized
in the following proposition.

3 This can be shown if we notice that, since U is globally hyperbolic, by [51, Thm. 3.78], there exists a
diffeomorphism h : C × R → U such that Cλ = h (C × {λ}) is a smooth spacelike Cauchy surface in U .
Without any lack of generality, we can assume that C = C0 and C− = Cc for some c ∈ R. Observe that
any light ray can be parametrized by γ (s) = expγ (0)

(

s · γ ′(0)) then, if p2 : C × R → R is the canonical

projection, then the equation p2 ◦ h−1 (γ (s)) = c can be written in coordinates by an equation such that
F(x, y, θ, s) = c. Then, the existence of sγ = sγ (x, y, θ) follows from the Theorem of implicit function.
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Proposition 13 Let M be a 3–dimensional conformal manifold under the hypothe-
ses H1 and H2. Then ⊕ : N → ∂+ ˜N is a diffeomorphism and ∂+ ˜N = ⊕ (N ) is a
smooth manifold embedded in the boundary of ˜N .

If both ⊕ and � satisfy the condition H2 with ⊕γ 
= �γ for all γ ∈ N , a trivial
corollary can be stated.

Corollary 5 Let M be a 3–dimensional conformal manifold under the hypotheses H1
and H2 for both ⊕ and � and ⊕γ 
= �γ for all γ ∈ N . Then the closure of ˜N is
a smooth manifold with boundary ∂ ˜N = ∂+ ˜N ∪ ∂− ˜N where ∂+ ˜N = ⊕ (N ) and
∂− ˜N = � (N ) are embedded in P (H) .

It is known that a projectivity from S
1 to R∪{∞} can be defined by choosing three

points s1, s2, s3 ∈ S
1 and assigning them the corresponding value in R ∪ {∞}. Then

we can define, in a smooth way, a projectivity in each fibre P
(Hγ

) � S
1. If U ⊂ M

is a globally hyperbolic, causally convex and normal open set and C,C− ⊂ U are
smooth spacelike Cauchy surfaces such that C− ⊂ I−(C), we can observe that ⊕
is a section of the bundle π

P(H)

N : P (HU ) → NU and we can consider two disjoint
sections σ (PN(C)) ∈ P (HU ) and σ (PN(C−)) ∈ P (HU ), then they permit to define
a projectivity t in such a way that

t (σ (PN (C−))) = −1, t (σ (PN (C))) = 0, t
(

∂+ ˜NU
) = 1.

We can see t as a new coordinate for the fibres of P (HU ). It is easy to check that t is
related to φ by

t
(

Pγ

) =
(

φ∨ − φ∧
) (

φ
(

Pγ

)− φ0
)

(

2φ0 − (φ∧ + φ∨)
)

φ
(

Pγ

)+ (2φ∧φ∨ − φ0 (φ∧ + φ∨)
) (5.5)

for Pγ ∈ P
(Hγ

) − ∞̃γ where ∞̃ is the section corresponding to the infinite of t

which verifies ∞̃ ∩ ˜NU = ∅ and where we have denoted φ∨ = φ ◦ σ
([γ ′(sγ )]),

φ∧ = φ ◦⊕(γ ) and φ0 = φ ◦σ ◦ ξ−1(γ ) with ξ : PN(C) → NU the diffeomorphism
of diagram (2.3).

So, we can express the trivialization P (HU ) � NU × S
1 by a map

ε : NU × R → P (HU )− ∞̃
(γ, t) �→ γ̃ (t)

(5.6)

which is a diffeomorphismbecause its expression in coordinates is just ((x, y, θ), t) �→
(x, y, θ, t) and t is said to be a projective parameter. Now it is clear that
ε (NU × (−1, 1)) ⊂ ˜NU with

σ (PN (C−)) = ε (NU × {−1}) , σ (PN (C)) = ε (NU × {0}) ,

∂+ ˜NU = ε (NU × {1})

123



The space of light rays: Causality and L–boundary Page 41 of 64    59 

and, for any light ray γ ∈ NU , the curve σ
([

γ ′(t)
]) = γ̃ (t) = ε (γ, t) is defined for

t ∈ (−1, 1), but it is naturally extended to any t ∈ R by γ̃ (t) = ε (γ, t). Moreover,
the tangent vector to γ̃ satisfies

γ̃ ′ (t) =
(

∂

∂t

)

γ̃ (t)
. (5.7)

The map ε defined by choosing Cauchy surfaces C,C− ⊂ U is called a local
projective synchronization and it will permit us to build the future L–boundary. The
construction of the past boundary can be done by reversing the time. Notice that,
if ⊕γ 
= �γ for all γ ∈ N , the section σ (PN(C−)) ∈ P (HU ) can be replaced
by ∂− ˜NU in order to define the projective parameter. In this case, we have that ε :
NU × (−1, 1) → ˜NU is a diffeomorphism (see [8, Prop. 5.2]).

Remark 10 If M is globally hyperbolic conformal manifold with Cauchy surface C ⊂
M diffeomorphic to R

2, then N � C × S
1 and therefore the projective parameter t

can be defined for P (H) since P (H) � N × R ∪ {∞} � C × S
1 × R ∪ {∞} where

C is a global Cauchy surface. In this case we will call universal projective parameter
to the parameter t ∈ R.

Remark 11 The bijectivity of ε implies the injectivity of the curves γ̃ . This generalizes
the condition of light non–conjugation of M , because γ̃ (t) = ε(γ, t) extends γ̃ (t) =
σ([γ ′(t)]) outside of ˜N .

5.5 Distributions in ˜N

In order to simplify, we will work only with the boundary ∂+ ˜N because all the con-
struction for ∂− ˜N can be done analogously.

Now, we will define two distributions in ˜N = ˜N ∪ ∂+ ˜N : the former will beD∼ in
˜N and the latter ∂+D∼ in ∂+ ˜N . We will determine the conditions so that the union
D∼ = D∼∪∂+D∼ is a smooth distribution in ˜N . The orbits of the distribution ∂+D∼
will corresponds to the points of the future boundary.

First, let us call P to the regular distribution in PN defined by the fibres PNq

with q ∈ M then, trivially, the map ζ : M → PN/P defined by ζ (q) = PNq is a
diffeomorphism. Then, passing the distribution P to ˜N by the diffeomorphism σ , we
obtain the distribution D∼.

Observe that the orbits of D∼ are

σ
(

PNq
) = {σ ([v]) ∈ ˜N : [v] ∈ PNq}

being 1–dimensional compact submanifolds when dim M = 3, then D∼ is a regular
distribution and ˜N /D∼ is a differentiable manifold. Moreover the quotient map π̃ :
˜N → ˜N /D∼ is a submersion.
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Now, we have the following diagram

PN ˜N

M PN/P ˜N /D∼

σ

κ π̃

ζ σ̃ (5.8)

where σ̃ is the map defined by σ̃
(

PNq
) = σ

(

PNq
) ∈ ˜N /D∼, the maps κ and π̃ are

the corresponding submersions, and σ , ζ and σ̃ are diffeomorphisms. Therefore, we
can observe that

˜S = σ̃ ◦ ζ : M → ˜N /D∼ (5.9)

is a diffeomorphism. There is a different proof of this result in [7, Prop. 2.6].
The second distribution to be defined is ∂+D∼. Recall that, by hypotheses, ⊕ is

a 1–dimensional regular distribution in N , then ⊕ is integrable and the orbits of ⊕
define a regular foliation. By Proposition 13, ⊕ : N → ∂+ ˜N is a diffeomorphism,
then the images of the orbits of ⊕ define a regular foliation in ∂+ ˜N corresponding to
the distribution ∂+D∼. Of course, the distribution ∂−D∼ in ∂− ˜N needed to build the
past boundary can be defined by �.

The next step is to describe the distribution D∼ = D∼ ∪ ∂+D∼ in order to study
its smoothness. For this purpose, we will construct explicitly the orbits of D∼.

Fix some auxiliarymetric g ∈ C and some globally hyperbolic, normal and causally
convex open U ⊂ M with C ⊂ U a smooth spacelike Cauchy surface in U as in
Remark 1. We denote by NU ⊂ N the open set of all light rays passing by U and
henceNU is diffeomorphic to C×S

1 and then, we can consider all light rays γ ∈ NU

parametrized such that γ ′ (0) ∈ Ω (C) = {u ∈ N
+ (U ) : g (u, T ) = −1} for some

future–directed timelike vector field T ∈ X (M). Since M is strongly causal, by [32,
Prop. 6.4.7], we can assume without any lack of generality, there is no imprisoned
light ray in the closure U where U is assumed to be relatively compact, so U can be
chosen such that γ ∩U has only one connected component for all γ ∈ NU .

Let us consider an orthonormal frame {E1, E2, E3} on the local Cauchy surface
C such that E2, E3 are tangent to C and E1 is future–directed timelike related to the
conformal structure (M, C). For a light ray γ ∈ NU such that γ � (c, θ) ∈ C×S

1, we
define {Ei (γ, t)}i=1,2,3 the extension of the frame {Ei (c)}i=1,2,3 by parallel transport
to γ (t) along γ related to the metric g, where t is the projective parameter defined in
Sect. 5.4 by a local projective synchronization ε.

The regular dependence on parameters of the solutions of initial value problems of
ODEs [31, Ch. 5] assures the smooth dependence of the frames {Ei (γ, t)}i=1,2,3 on
(γ, t).

If θ ∈ [0, 2π) � S
1, then we define the lightlike vector

V (γ, t, s) = E1 (γ, t)+ cos (θ + s)E2 (γ, t)+ sin (θ + s)E3 (γ, t) ∈ N
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which depends smoothly on (γ, t) and defines the line

Λ(γ, t, s) = [V (γ, t, s)
] = span{V (γ, t, s)} ∈ PN.

Bymeans of the diffeomorphisms σ and ε of Sect. 5.4, and the canonical projections
p1 : N × (−1, 1) → N and p2 : N × (−1, 1) → (−1, 1), we define the following
differentiable maps

˜X (γ, t, s) = σ (Λ (γ, t, s)) ∈ ˜N
X (γ, t, s) = p1 ◦ ε−1

(

˜X (γ, t, s)
) ∈ N

τ (γ, t, s) = p2 ◦ ε−1
(

˜X (γ, t, s)
) ∈ (−1, 1) .

(5.10)

Observe that, for fixed (γ, t) ∈ NU × (−1, 1), the curve X(γ,t) (s) = X (γ, t, s) is a
parametrization of the 1–dimensional submanifold S (γ (t)) ∩NU . We will denote

γ(t,s) = X (γ, t, s) ∈ N

when we will need to use a parameter for the light ray. Also, the function τ(γ,t) (s) =
τ (γ, t, s) is the value of the parameter of γ(t,s) at the point γ (t) from C , then the
identity

γ(t,s) (τ (γ, t, s)) = γ (t) (5.11)

holds.Moreover, ˜X(γ,t) (s) = ˜X (γ, t, s) is the curve of lines of classes of Jacobi fields
tangent to the light ray X(γ,t) (s) at the point γ (t).

Recall that the map ξ : PN(C) → NU of diagram (2.3) is a diffeomorphism, so
the curve defined by

c(γ,t) (s) = π
PN(C)
C ◦ ξ−1

(

γ(t,s)
)

(5.12)

is smooth, but it can also be written by

c(γ,t) (s) = γ(t,s) ∩ C = γ(t,s) (0) ∈ C .

Now, we replace the parameter s for the arc–length parameter. Fix some auxil-
iary metric g ∈ C in M , since the Cauchy surface C is differentiable and spacelike,
the restriction g|TC×TC is a Riemannian metric on C . If consider any 〈J(γ,t,s)〉 ∈
˜X (γ, t, s), since M is assumed to be light non–conjugate, then for any t > 0 we have
that any representative J(γ,t,s) ∈ 〈J(γ,t,s)〉 satisfies

J(γ,t,s) (0) 
= 0 (modγ ′(t,s) (0))

and by Lemma 1,

c′(γ,t) (s) 
= 0
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therefore we can parametrize the curves c(γ,t) with the arc–length parameter s defined
in C by the restriction of g.

Lemma 5 For every γ0 ∈ N and every δ ∈ (0, 1) there exists ε > 0 and a neigh-
bourhood N ε

U ⊂ N of γ0 such that the curves c(γ,t) (s) ∈ C can be defined for
(γ, t, s) ∈ N ε

U × (1− δ, 1)× (−ε, ε), where s is the arc–length parameter.

Proof Fix some auxiliary g ∈ C. Let us consider a neighbourhoodNU of γ0 such that
U ⊂ M is relatively compact and globally hyperbolic with Cauchy surface C ∈ U .
For p ∈ C and r > 0, we will denote by Br (p) the ball in C of radius r centered at
p determined by the restriction of the metric g to C . Now consider some ε > 0 such
that the ball B2ε(γ0 ∩ C) is fully contained in C . So, let us call N ε

U = {γ ∈ NU :
γ ∩ C ∈ Bε(γ0 ∩ C)} ⊂ NU .

For any (γ, t) ∈ N ε
U×(1− δ, 1) there exist a(γ,t), b(γ,t) > 0 such that the maximal

domain of definition of the segment of the curve c(γ,t) contained in B2ε(γ0 ∩C) is the
interval I(γ,t) =

(−a(γ,t), b(γ,t)
) ⊂ R.

Let us assume that b(γ,t) < ε. If we take a sequence {sn} ⊂ I(γ,t) such that
sn �→ b(γ,t), since PN(C) is relatively compact, then the sequence

[un] =
[

γ ′(t,sn)(0)
]

∈ PN(C)

has a convergent subsequence. Assuming that this subsequence is {[un]} itself, then

[un] �→ [u] ∈ PN(C).

Moreover, for any [un] there exists [vn] ∈ PNγ (t) such that γ[vn ] = γ[un ] ∈ N . Since
PNγ (t) is compact, then we can consider that [vn] �→ [v] ∈ PNγ (t). Now, because N
is Hausdorff, then γ[v] = γ[u] ∈ N and hence we have γ[u] ∈ S (γ (t)). This implies
that c(γ,t)(s) exists for s = b(γ,t) and the interval I(γ,t) is not maximal. This fact
contradicts the assumption of b(γ,t) < ε.

Therefore, b(γ,t) ≥ ε for all (γ, t) ∈ N ε
U × (1− δ, 1). The case a(γ,t) ≥ ε can be

shown analogously. Then c(γ, t, s) = c(γ,t)(s) can be defined by

c : N ε
U × (1− δ, 1)× (−ε, ε) −→ B2ε(γ0 ∩ C) ⊂ C

��
The arc–length parameter s ∈ (−ε, ε) of the curves c(γ,t) can replace the previous

variable s in the maps ˜X , X and τ . We will denote again ˜X (γ, t, s), X (γ, t, s),
τ (γ, t, s) the corresponding maps of (5.10) with the new variable s and defined as

⎧

⎨

⎩

˜X : N ε
U × (1− δ, 1)× (−ε, ε) −→ ˜NU

X : N ε
U × (1− δ, 1)× (−ε, ε) −→ NU

τ : N ε
U × (1− δ, 1)× (−ε, ε) −→ (−1, 1)

(5.13)

Observe that (Fig. 12), by construction, we have

˜X (γ, t, s) = ε (X (γ, t, s) , τ (γ, t, s)) (5.14)
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Fig. 12 The curves c(γ,t) in
C ⊂ M

J(γ,t,s)(0)

J(γ,1,s)(0)

γ(0)

γ(t) = γ(t,s) (τ(γ, t, s))

c(γ,1)(s)

C

M

γ

γ(t,s)

c(γ,t)

and moreover

{

X (γ, t, 0) = γ(t,0) = γ

τ (γ, t, 0) = t
(5.15)

holds for all t ∈ (1− δ, 1).
It is important to remark that the curve ˜X(γ,t)(s) = ˜X (γ, t, s) is a parametrization

of the orbit of the distribution D∼ passing through γ̃ (t), that is the submanifold
˜S (γ (t)) ⊂ ˜N . This implies thatD∼ is generated by the tangent vectors ∂˜X

∂s (γ, t, 0) ∈
T ˜N so, by (5.14), we have

∂˜X

∂s
(γ, t, 0) = (dε)(γ,t)

(

∂X

∂s
(γ, t, 0) ,

∂τ

∂s
(γ, t, 0)

)

(5.16)

for all (γ, t) ∈ N ε
U × (1− δ, 1).

5.6 Smoothness of the distributionD∼ = @+D∼ ∪ D∼: current status

We have defined the distributionsD∼ and ∂+D∼ separately in ˜N and in ∂+ ˜N respec-
tively, so we have that D∼ = ∂+D∼ ∪ D∼ is a distribution that, a priori, could even
be non–continuous. In this section, we will study the conditions under which the
distribution D∼ is smooth.

The following Theorem 5.1 clarifies a loophole in [8, Thm. 7.1] and allows to
establish equivalent conditions to the differentiability of D∼.

Recall that when we say that a smooth map f : A × (a, b) → B can be smoothly
(or differentiably) extended to A×(a, b]wemean that there exists ε > 0 and a smooth
map f : A × (a, b + ε)→ B such that f = f in A × (a, b).

Theorem 5.1 Under the hypotheses H1 and H2 the following conditions are equiva-
lent:

1. D∼ is smooth in ˜NU .
2. ˜X can be smoothly extended to t = 1.
3. X can be smoothly extended to t = 1.
4. τ can be smoothly extended to t = 1.
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5. h(γ, t) = ∂τ
∂s (γ, t, 0) can be smoothly extended to t = 1.

Proof 1)⇒ 2)
Assuming D∼ is smooth, since it is 1–dimensional, then there exists a non–zero

vector field ˜Φ ∈ X
(

˜N
)

such thatD∼ = span{˜Φ}. For any γ̃ (1) ∈ ∂+ ˜N there exists a

flow box of ˜Φ, that is, a smooth map ˜F : ˜U×(−ε, ε)→ ˜N such that u �→ ˜Fγ̃ (t)(u) =
˜F (γ̃ (t), u) is an integral curve of ˜Φ. Making smaller the neighbourhood of definition
of ˜F and since ε is a diffeomorphism, we can define the map

˜X : U × (1− δ, 1]× (−ε, ε) −→ ˜N
(γ, t, u) �−→ ˜X (γ, t, u) = ˜F (ε(γ, t), u) .

with U ⊂ N . Then we have that

(

X (γ, t, u) , τ (γ, t, u)
) = ε−1

(

˜X (γ, t, u)
)

∈ U × (1− δ, 1]

where X and τ are differentiable maps for t ≤ 1.

By Lemma 5, we can reparametrize the maps ˜X , X and τ by arc–length of the
curves z(γ,t)(u) = X (γ, t, u) ∩ C and we obtain the maps (called in the same way)

⎧

⎨

⎩

˜X (γ, t, s) ∈ ˜N
X (γ, t, s) ∈ N ε

U
τ (γ, t, s) ∈ (1− δ, 1]

for s ∈ (−ε, ε). Since the curves s �→ ˜X(γ, t, s) describe the orbits of D∼ and they
are parametrized by the same arc–length parameter then

˜X = ˜X , X = X , τ = τ

for t < 1. Therefore ˜X is a smooth extension of ˜X .
2)⇒ 3)
Trivially, since ε is a diffeomorphism, then if ˜X is a smooth extension of ˜X to t = 1

we have

˜X(γ, t, s) = ε
(

X(γ, t, s), τ (γ, t, s)
)

⇐⇒ ε−1 ◦ ˜X(γ, t, s) = (X(γ, t, s), τ (γ, t, s)
)

for t ≤ 1 and therefore X (and also τ ) is a smooth extension to t = 1.
3)⇒ 4)
Let us assume that X(γ, t, s) is a smooth extension of X(γ, t, s) to t = 1, then we

have that

∂X

∂s
(γ, t, s) ∈ Tγ(t,s) S

(

γ(t,s) (τ (γ, t, s))
) ⊂ Hγ(t,s)
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for t < 1.
Since the curves c(γ,t)(s) = X (γ, t, s) ∩ C are smooth and parametrized by arc–

length as in Eq. (5.12), by continuity we have that

|c′(γ,1)(s)| = lim
t �→1

|c′(γ,t)(s)| = 1

where | · | denotes the norm related to the restriction of the metric g ∈ C to the local
Cauchy surface C ⊂ U , hence we have that c′(γ,1)(s) 
= 0. Then ∂X

∂s (γ, t, s) 
= 0 for
all t ≤ 1 and so we obtain

[

∂X

∂s
(γ, t, s)

]

= span

{

∂X

∂s
(γ, t, s)

}

∈ P
(Hγ(t,s)

)

.

Notice that, since X (γ, t, s)= X (γ, t, s) for t<1 and ˜X (γ, t, s)=span
{

∂X
∂s (γ, t, s)

}

for t < 1, then we have ˜X (γ, t, s) = span
{

∂X
∂s (γ, t, s)

}

for t < 1.

By the diffeomorphism ε, we have that

(

X(γ, t, s), τ (γ, t, s)
) = ε−1

([

∂X

∂s
(γ, t, s)

])

therefore τ is a smooth extension of τ .
4)⇒ 5)
Let τ be a smooth extension of τ to t = 1. Trivially, h(γ, t) = ∂τ

∂s (γ, t, 0) is an
smooth extension of h(γ, t) = ∂τ

∂s (γ, t, 0) to t = 1.
5)⇒ 1)
First, let us show that h(γ, 1) = ∂τ

∂s (γ, 1, 0) = 0. Observe that, by Eq. (5.15),
τ(γ, t, 0) = t and since τ is continuous, we have τ(γ, 1, 0) = 1. Moreover, since
τ(γ, t, s) < 1 for all (γ, s) and t < 1, then τ(γ, 1, s) ≤ 1. So, since for every γ , the
function f (s) = τ(γ, 1, s) reaches its maximum at s = 0, then, the smoothness of τ

brings ∂τ
∂s (γ, 1, 0) = f ′(0) = 0.

Now, let us show that Φ (γ, t) = ∂X
∂s (γ, t, 0) can be smoothly extended to N ε

U ×
(1− δ, 1]. Notice that in (5.10) and (5.13), we have defined X(γ, t, s) = γ(t,s) for
t < 1 such that c(γ,t)(s) = γ(t,s)(0) ∈ C is arc–length parametrized and, by lemma 1,
the tangent vector 〈J(γ,t)〉 = ∂X

∂s (γ, t, 0) of the variation of light rays X(γ, t, s) at
s = 0 can be chosen such that J(γ,t)(0) = c′(γ,t)(0).

We can consider the fibre bundle π : H → P(H) and any smooth non–zero local
section ω : ˜U ⊂ P (H) → H in some neighbourhood ˜U of some γ̃0 (1) ∈ ∂+ ˜N .
Without any lack of generality, we can assume that ˜U = ε

(N ε
U × (1− δ, 1+ δ)

)

.
Since π (ω(γ̃ (t))) = γ̃ (t), then we have

ω(γ̃ (t)) ∈ γ̃ (t).
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We denote by 〈Z(γ,t)〉 the class of Jacobi fields along γ ∈ N ε
U defined by ω(γ̃ (t)),

that is

ω(γ̃ (t)) = 〈Z(γ,t)〉 ∈ Hγ .

For any t 
= 0, any representative Z(γ,t) ∈ 〈Z(γ,t)〉 verifies that

Z(γ,t)(0) 
= 0 (mod γ ′(0))

because, in other case, we will have 〈Z(γ,t)〉 ∈ γ̃ (0) ∩ γ̃ (t). But this is not possible
since γ̃ is an injective curve for all t ∈ R, as noted in Remark 11.

In fact, by locality of ω, we can assume that Z(γ,t)(0) is far from 0 because
Z(γ0,1)(0) 
= 0 (mod γ ′0(0)), it means that for all (γ, t) ∈ N ε

U × (1 − δ, 1 + δ)

we have

|Z(γ,t)(0)|2 = g
(

Z(γ,t)(0), Z(γ,t)(0)
) ≥ ε0 > 0

for some ε0 > 0. We can call f (γ, t) = |Z(γ,t)(0)| the smooth function which does
not annihilate for all (γ, t) ∈ N ε

U × (1− δ, 1+ δ).
If we define

Y(γ,t) = 1

f (γ, t)
· Z(γ,t)

we have that

ω (γ̃ (t)) = 1

f (γ, t)
· ω (γ̃ (t)) = 〈Y(γ,t)〉 ∈ γ̃ (t)

is another smooth non–zero local section defined for all (γ, t) ∈ N ε
U × (1− δ, 1+ δ)

verifying

g
(

Y(γ,t)(0),Y(γ,t)(0)
) = 1.

Take into account that, since γ̃ (t) = Tγ S (γ (t)) is 1–dimensional, then the initial
vectors Y(γ,t) (0) determine the value of the section ω. In fact, if Y is a another Jacobi
field along γ such that 〈Y 〉 ∈ γ̃ (t) with the same initial vector Y (0) = Y(γ,t)(0), then
K = Y(γ,t) − Y is also a Jacobi field along γ verifying K (0) = 0

(

mod γ ′(0)
)

and
so, K ∈ γ̃ (0) ∩ γ̃ (t). Since every curve γ̃ is injective, then K = 0 and therefore
〈Y 〉 = 〈Y(γ,t)〉.

Recall that the curves c(γ,t) have been parametrized by arc–length, so

g
(

c′(γ,t)(0), c
′
(γ,t)(0)

)

= 1
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and we can take representatives Y(γ,t) such that Y(γ,t)(0) = c′(γ,t)(0), therefore by
construction of X(γ, t, s) and ω, then

ω (γ̃ (t)) = 〈Y(γ,t)〉 = 〈J(γ,t)〉 = ∂X

∂s
(γ, t, 0) (5.17)

holds for t < 1.
Therefore Φ (γ, t) = ω (ε(γ, t)) = ω (γ̃ (t)) is a smooth extension of Φ (γ, t) =

∂X
∂s (γ, t, 0) defined in N ε

U × (1− δ, 1+ δ).
Now, the expression of Eq. (5.16) can be extended as

˜Φ (γ, t) = (dε)(γ,t)
(

Φ (γ, t) , h (γ, t)
)

for all (γ, t) ∈ N ε
U × (1− δ, 1] such that

∂˜X

∂s
(γ, t, 0) = ˜Φ (γ, t)

because Φ (γ, t) = ∂X
∂s (γ, t, 0) and h (γ, t) = ∂τ

∂s (γ, t, 0) for t < 1.
Notice that a curve Γ (s) ∈ N is an integral curve of ⊕ : N → P (H) if Γ ′ (s) ∈

⊕Γ (s). So, the curve ˜Γ (s) = ε (Γ (s) , 1) is a leaf of the distribution ∂+D∼ ifΓ ′ (s) ∈
⊕Γ (s), that is

˜Γ ′ (s) = (dε)(Γ (s),1)
(

Γ ′ (s) , 0
) ∈ ∂+D∼ ⇐⇒ Γ ′ (s) ∈ ⊕Γ (s). (5.18)

Now, since ∂X
∂s (γ, t, 0) ∈ γ̃ (t) for 1− δ < t < 1, by continuity we have

∂X

∂s
(γ, 1, 0) ∈ γ̃ (1) = ⊕γ

and also

∂˜X

∂s
(γ, 1, 0) = (dε)(γ,1)

(

∂X

∂s
(γ, 1, 0) ,

∂τ

∂s
(γ, 1, 0)

)

=

= (dε)(γ,1)

(

∂X

∂s
(γ, 1, 0) , 0

)

.

Then, by (5.18), ∂˜X
∂s (γ, 1, 0) ∈ ∂+D∼.

Therefore, ˜Φ (γ, t) = ∂˜X
∂s (γ, t, 0) is a smooth vector field defining D∼ = D∼ ∪

∂+D∼ for all 1− δ < t ≤ 1, so D∼ is a differentiable distribution (see Fig. 13). ��
As an immediate consequence we have the following result.
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γ

Φ

Φ

Φ

γ(0)

⊕γ = γ(1)

γ(t)

X(γ,0)

X(γ,t)

X+
γ

ε (N × {0})

ε (N × {1}) = ∂+N

N ⊂ P (H)

Fig. 13 The vector field ˜Φ in ˜N defining the distribution D∼

Corollary 6 The distribution D∼ in ˜N is smooth if for each light ray γ0 ∈ N there
exist U ⊂ M such that γ0 ∈ NU = {γ ∈ N : γ ∩U 
= ∅} satisfying the hypotheses
of Theorem 5.1.

At this point, it has not yet been possible to prove whether the hypotheses H1
and H2 are sufficient conditions to establish the existence of the extension of the
function h(γ, t) = ∂τ

∂s (γ, t, 0) to t = 1 or whether there is some counterexample of
this. So, this is an open question that should be studied in future work.

5.7 The canonical future extension ofM

Let us assume thatD∼ is a smooth distribution. Notice that the leaves ofD∼ are always
compact but the ones of ∂+D∼ could be not, making ofD∼ a non–regular distribution.
When, moreover, D∼ becomes a regular distribution then the quotient

˜N /D∼ = ˜N /D∼ ∪ ∂+ ˜N /∂+D∼

is a differentiable manifold. In this case, by the diffeomorphism ˜S : M → ˜N /D∼ of

Eq. (5.9), and because ∂+ ˜N is the boundary of ˜N , then ∂+ ˜N /∂+D∼ is the boundary

of ˜N /D∼. Then we can extend ˜S by

˜S : M → ˜N /D∼

where M = M ∪ ∂+M with

∂+M = ∂+ ˜N /∂+D∼
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in such away that ˜S
∣

∣

∂+M is the identitymap. Then there exists a differentiable structure

in M , compatible with the one in M , such that the extension ˜S is a diffeomorphism
inducing in ∂+M a differentiable structure.

This is summarized in the following corollary.

Corollary 7 If D∼ is a smooth and regular distribution then the quotient ˜N /D∼ is a
differentiable manifold with boundary ∂+M = ∂+ ˜N /∂+D∼. Moreover, there exists
an extension

˜S : M = M ∪ ∂M → ˜N /D∼

of the diffeomorphism ˜S : M → ˜N /D∼ of Eq. (5.9) such that ˜S
∣

∣

∂+M is the identity
map and it induces in ∂+M a differentiable structure such that the extended map˜S is
a diffeomorphism.

Definition 14 The extension M constructed in the Corollary 7 is called the canonical
future extension of (M, C) and the boundary ∂+M is the future L–boundary.

Again, we only focus on future boundary, but the construction of the canonical past
extension M ∪ ∂−M and the past boundary ∂−M can be done using the distribution
� analogously.

In virtue of maps (5.6) and (5.9), we obtain a double fibration extended to the
boundaries which is analogous to the double fibration (1.1) of twistor theory. So, we
have

˜N

N M

π
P(H)

N ρ

(5.19)

where π
P(H)

N is the canonical projection that can be expressed by π
P(H)

N = p1 ◦ ε−1
as in Eq. (5.10) and ρ is the extension of the submersion given by ρ = ˜S−1 ◦ π̃ where
π̃ is the quotient map given in diagram (5.8).

Remark 12 The regularity of D∼ is achieved, for example when the leaves of ∂+D∼
are compact, because then, all the leaves of D∼ are compact. This holds when M
is globally hyperbolic with compact Cauchy surface C . In this case we have that
N � PN(C) is compact and since, by hypothesis,⊕ is a regular distribution, then the
leaves of ∂+D∼ must be compact, thereforeD∼ is regular and the canonical extension
M is a differentiable manifold. This is the case of de Sitter dSm spacetimes and
Robertson-Walker models without initial or final singularity.

If the leaves of ∂+D∼ are not compact, the canonical extension can still exist, as
for Minkowski M

m spacetimes.

In Example 7, the canonical extension of Minkowski is built for dim(M) = 3. For
higher dimension it can be computed integrating the distribution ⊕ in N as done in
[7, Sec. IV.B]. In this reference, the L–boundary of M

3 is constructed by restriction of
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the one of M
4. This can be done because there exists an embedding M

3 ↪→ M
4 such

that the maximal null geodesic in M
3 are maximal null geodesics in M

4. Moreover,
any Cauchy surface C ⊂ M

4 defines a Cauchy surface C = C ∩M
3 in M

3 and, since
we have an embedding TM

3 ↪→ TM
4, then PN(C) ↪→ PN(C) is an embedding.

Therefore, NM3 ↪→ NM4 is an embedding and this implies that TNM3 ↪→ TNM4

is another embedding. Then, denoting H and ⊕ the contact structure and the future
limit distribution related to M

4 and H and ⊕ the same geometric objects related to
M

3, then it is easy to see that

Hγ = H ∩ TγNM3 , ⊕γ = ⊕ ∩ TγNM3 for γ ∈ NM3 ⊂ NM4 .

We will use this procedure in Example 8 for the 3–dimensional de Sitter spacetime
which is embedded in M

4.

Example 7 Consider the 3–dimensional Minkowski spacetime block

M
3
(a,b) =

{

(t, x, y) ∈ M
3 : a < t < b

}

.

To simplify, we will only compute the future L–boundary for −∞ < a < 0 to avoid
⊕ = � when b = ∞ and to keep C ≡ {t = 0} as Cauchy surface for initial values
of the null geodesics. First, observe that, by (2.13), the homogeneous coordinate φ in
Eq. (5.4) is

φ = [−s : 1] =
[

1 : 1

−s
]

when s 
= 0 then, by Eq. (5.5), we can consider the projective parameter t(s) =
(b−a)s

(b+a)s−2ab and whence s(t) = 2abt
(b+a)t−(b−a)

. In Example 5, we have seen that
μ(θ, s, τ ) ∈ C whenever τ = −s and this value does not depend on θ ∈ [0, 2π).
Moreover, in virtue of Remark 6 and Examples 4 and 5, the tangent space of the sky
S (γ (t)) ∈ Σ at γ can be written as

Tγ S (γ (t)) = span

{

s(t)
(

sin θ0
(

∂
∂x

)

γ
− cos θ0

(

∂
∂ y

)

γ

)

+ ( ∂
∂θ

)

γ

}

. (5.20)

Therefore, the orbit of the distributionD∼ in ˜N passing through γ̃ (t) � (x0, y0, θ0, t0)
corresponds to the integral curve c (r) = (x (r) , y (r) , θ (r) , t (r)) of the vector field

˜Φ = s(t)
(

sin θ
∂

∂x
− cos θ

∂

∂ y

)

+ ∂

∂θ
∈ X
(

˜N ) .

So, after integration, it can be written by

c (r) = (x0 + s(t0) [cos θ0 − cos (θ0 + r)] ,

y0 + s(t0) [sin θ0 − sin (θ0 + r)] , θ0 + r , t0)
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and verifies

⎧

⎨

⎩

(x − x0 − s(t0) cos θ0)
2 + (y − y0 − s(t0) sin θ0)

2 = s2(t0)
θ = θ0 + r
t = t0

. (5.21)

Since limt0 �→1− s(t0) = b then, whenever b < ∞, the light rays in M
3
(a,b) of the

orbit of ∂+D∼ passing through γ̃ (1) � (x0, y0, θ0, 1) corresponds to the sky in M
3 of

the point p = (b, x0 + b cos θ0, y0 + b sin θ0), see Fig. 14a. Then the future boundary
∂+M can be identified with the topological boundary of M

3
(a,b) as a set in M

3, that is

∂+M = {(t, x, y) ∈ M
3 : t = b}.

In case of b = ∞, we can develop the squares of the first equation in (5.21) and
divide by s(t0) to obtain

⎧

⎨

⎩

1
s(t0)

(x − x0)2 − 2 (x − x0) cos θ0 + 1
s(t0)

(y − y0)2 − 2 (y − y0) sin θ0 = 0
θ = θ0 + r
t = t0

then, taking the limit limt0 �→1− s(t0) = +∞, we have that the orbit of ∂+D∼ passing

through the point with coordinates (x0, y0, θ0, 1) ∈ ˜N verifies

⎧

⎨

⎩

(x − x0) cos θ0 + (y − y0) sin θ0 = 0
θ = θ0
t = 1

.

Therefore, as it is illustrated in Fig. 14b, the orbit consists of the light rays with tangent
vector v = (1, cos θ0, sin θ0) intersecting theCauchy surfaceC ≡ {t = 0} at the points
of the straight line

{

(x − x0) cos θ0 + (y − y0) sin θ0 = 0
t = 0.

It is trivial to see that for any β ∈ N in the above orbit of⊕, the chronological past
of β is

I− (β) =
{

(t, x, y) ∈ M
3 : t < (x − x0) cos θ0 + (y − y0) sin θ0

}

then, any point in the future L-boundary corresponds to a point in the future c-
boundary.

In both cases, the L–boundary coincides with the part of c–boundary of M
3
(a,b)

accessible by light rays, but if b = ∞, it is not possible for the L–boundary to
obtain the points of the timelike c–boundary because there exist inextensible timelike
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x

t

0
y

θ0

q

pγ

b {t = b}

γ β

(a) Case 0 < b < ∞. The orbit of ⊕ passing
through γ consists of all light rays β arriving
at pγ /∈ M3

(a,b). It forms the half of the cone
in the figure which can be identified with the
point pγ ∈ {t = b}.

x

t

0
y

θ0

γ
β

q

(b) Case b = ∞. The orbit of ⊕ passing
through γ consists of all light rays β in the
same direction that γ intersecting the Cauchy
surface C = {t = 0} in a straight line or-
thonormal to the direction of γ.

Fig. 14 The L–boundaries of M
3
(a,b)

curves with chronological past which is not the chronological past of any light ray
(see Remark 9).

Example 8 We consider the 3–dimensional de Sitter spacetime dS3 embedded in M
4

as the set verifying

− t2 + x2 + y2 + z2 = 1 . (5.22)

As seen in Example 4, a null geodesic in M
4 can be written by

γ (s) = (s, x0 + s cos θ0 sin φ0, y0 + s sin θ0 sin φ0, z0 + s cosφ0) ∈ M
4

where γ (0) ∈ C ≡ {t = 0}. Then γ is a null geodesic in dS3 if Eq. (5.22) is satisfied,
so

−s2 + (x0 + s cos θ0 sin φ0)
2 + (y0 + s sin θ0 sin φ0)

2 + (z0 + s cosφ0)
2 = 1

and simplifying we get

(x0 cos θ0 + y0 sin θ0) sin φ0 + z0 cosφ0 = 0

⇒ cot φ0 = − x0 cos θ0 + y0 sin θ0

z0
. (5.23)

Taking t = 0 in Eq. (5.22), we obtain a Cauchy surface C ⊂ dS3, in fact it is
2–sphere, restriction of the Cauchy surface C ≡ {t = 0} ⊂ M

4 to dS3. We can
parametrize C by

⎧

⎨

⎩

x = cos u sinw

y = sin u sinw

z = cosw

(5.24)

123



The space of light rays: Causality and L–boundary Page 55 of 64    59 

where (x0, y0, z0) = (cos u0 sinw0, sin u0 sinw0, cosw0).
By Remark 6, the tangent space to the sky of γ (s) related to M

4 is

Tγ S (γ (s)) = span

{

s

(

sin θ0 sin φ0
(

∂
∂x

)

γ
− cos θ0 sin φ0

(

∂
∂ y

)

γ

)

+ ( ∂
∂θ

)

γ
,

s

(

− cos θ0 cosφ0
(

∂
∂x

)

γ
− sin θ0 cosφ0

(

∂
∂ y

)

γ
+ sin φ0

(

∂
∂z

)

γ

)

+ ( ∂
∂θ

)

γ

}

and then

⊕γ = lim
s �→∞ Tγ S (γ (s)) =

= span

{

sin θ0 sin φ0
(

∂
∂x

)

γ
− cos θ0 sin φ0

(

∂
∂ y

)

γ
,

− cos θ0 cosφ0
(

∂
∂x

)

γ
− sin θ0 cosφ0

(

∂
∂ y

)

γ
+ sin φ0

(

∂
∂z

)

γ

}

.

Integrating ⊕, we obtain that its orbit passing through (x0, y0, z0, θ0, φ0) ∈ NM4

is defined by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x(τ, η) = x0 + τ sin θ0 sin φ0 − η cos θ0 cosφ0
y(τ, η) = y0 − τ cos θ0 sin φ0 − η sin θ0 cosφ0
z(τ, η) = z0 + η sin φ0
θ(τ, η) = θ0
φ(τ, η) = φ0

which verifies the equation

⎧

⎨

⎩

cos θ0 sin φ0 · (x − x0)+ sin θ0 sin φ0 · (y − y0)+ cosφ0 · (z − z0) = 0
θ = θ0
φ = φ0.

(5.25)

Substituting (5.23) and (5.24) in (5.25), we obtain the expression of the orbit of the
field ⊕ in NdS3 as the restriction of the orbit of ⊕ to dS3. So, we have

cos θ0 sin φ0 cos u sinw + sin θ0 sin φ0 sin u sinw + cosφ0 cosw = 0

⇒ tanw (cos θ0 cos u + sin θ0 sin u) = − cot φ0

⇒ tanw cos (u − θ0) = − cot φ0

(by (5.23))⇒ tanw cos (u − θ0) = tanw0 cos (u0 − θ0)

and therefore, the orbits of ⊕ must satisfy the equation

tanw cos (u − θ0) = tanw0 cos (u0 − θ0) . (5.26)

For any γ0 ∈ NdS3 with coordinates (u0, w0, θ0) � γ0, it is straightforward to
check that (u, w) in Eq. (5.26) corresponds with a maximal circumference on the
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(a) Skies of a light ray in dS3. Each blue
curve describes the trace on the Cauchy sur-
face C = S2 of the sky of a point γ(s) along
a fixed light ray γ. The red circle corresponds
to the limiting sky of the point of γ at the
L–boundary.

(b) Orbits of ⊕ in dS3. The traces of the or-
bits on the Cauchy surface C = S2 are max-
imal circles. Fixed θ0 = 0, the orbits of ⊕
correspond to the maximal circles passing by
the points (0, ±1, 0).

0

1

−1

0

1

−1

0

1
γ(0)

C ⊂ dS3

xy

z

−1

0

1

−1

0

1

−1

0

1

C ⊂ dS3

xy

z

Fig. 15 Orbits of D∼ in dS3

Cauchy surfaceC = S
2. This circumference is the limiting curve of the intersection of

the lights rays in S(γ0(s))withC whenever s �→ ∞ (see Fig. 15a). For fixed θ = θ0 we
obtain all maximal circumferences passing through the points (u, w) = (θ0 ± π

2 , π
2

)

(see Fig. 15b). Then, moving θ0 in [0, 2π), we get all maximal circumferences in the
sphereC . Observe that eachmaximal circumference can be obtained twice as solutions
of Eq. (5.26) for two different light rays with the same values of (u0, w0) and the
antipodal values θ0 and θ0 + π . So, although the space of maximal circumferences
in C is diffeomorphic to the projective space P(R3), the orbits of ⊕ do not coincide
for antipodal values of θ0. Therefore, we have that the space of orbits of ⊕, that is,
the future L–boundary is ∂+(dS3) � S

2. Notice that c–boundary and L–boundary of
dS3 coincide.

Definition 15 A L–spacetime is said to be proper if the total distributionD∼ is smooth
and regular with Hausdorff space of leaves.

If M is a proper L–spacetime, the future L–boundary ∂+M = ∂+ ˜N /∂+D∼ built
in Corollary 7 is a smooth boundary for the manifold M = M ∪ ∂+M . Moreover, the

hausdorffness of the quotient space ˜N over the regular distribution D∼ assures that
M is Hausdorff. This can be summarized in the following result.

Corollary 8 If M is a proper L–spacetime then the canonical extension M of (M, C)

exists.
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6 Characterization of the differentiable structure of the canonical
extension: L–extensions

In this section we will give a characterization of the canonical extension of a proper
L–spacetime (M, C) based on how light rays arrive at the boundary. First, let us present
some properties satisfied at the L–boundary.

6.1 Properties of L–boundary

In Sect. 5.7, we have seen that, whenever M is a proper L–spacetime, we get a dif-

feomorphism ˜S : M → ˜N /D∼ and moreover, we can consider the quotient map

π̃ : ˜N → ˜N /D∼ obtaining the following commutative diagram

˜N ˜N /D∼

M

π̃

˜S−1ρ

(6.1)

where ρ is one of the branches of the double fibration (5.19).
If we consider the following composition of diffeomorphisms

N i−→ N × {1} ε|N×{1}−→ ∂+ ˜N
γ �→ (γ, 1) �→ γ̃ (1)

then, projecting on M , we have that

∞+ = ρ|∂+ ˜N ◦ ε|N×{1} ◦ i : N → ∂+M

is a surjective submersion. The same construction can be done to get a surjective
submersion∞− onto the past L–boundary. Then the canonical extension verify the
following property:

P1 The map∞+ : N → ∂+M defined by∞+ (γ ) = limt �→+1 γ (t) is a surjective
submersion.

Observe that a light ray can be extended to the L–boundary by γ (t) = ρ (γ̃ (t)) for
all t ∈ (−1, 1]. Moreover, by (5.7), γ̃ ′(t) = ( ∂

∂t

)

γ

= 0 and, by construction, the map

X used in the proof of Theorem 5.1 to extend X verifies ∂X
∂s (γ, t, 0) 
= 0. This implies

that the curve γ̃ is transversal to the orbit ofD∼ passing through γ̃ (t). Then, applying
ρ, the curve γ (t) is regular. Moreover, since Eq. (5.7) also holds for t = +1 then γ is
transversal to ∂+M . So we obtain the second property of the canonical extension:

P2 For everyNU ⊂ N , themap ρ◦ε : NU×[−1, 1]→ M , where γ (t) = ρ◦ε (γ, t)
is a projective parametrization of γ ∈ NU such that ∂ρ◦ε

∂t (γ,+1) /∈ T∞+(γ )∂
+M .
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For a more detailed proof of the above properties, see [8, Prop. 7.1].
The differentiable structure at the boundary is a key element for an extension and

it affects to the way in which the light rays arrive at the boundary, so the features of
the parametrization of a light ray by a projective parameter can change very subtly
depending on if it corresponds to a canonical–like extension or to another general
extension. The following example illustrates this behaviour.

Example 9 In this examplewewill only consider the past L–extensionof the spacetime.
Let M3

(0,∞) =
{

(t, x, y) ∈ R
3 : t > 0

}

be the Minkowski block as seen in Example 7.

We denote by M
3
(0,∞) the canonical past extension of M

3
(0,∞), that is M

3
(0,∞) =

{

(t, y, z) ∈ R
3 : t ≥ 0

}

with the standard differentiable structure (see Example 7). A
Cauchy surface C = {t = 1} ⊂ M provides a coordinate chart for N by fixing,
for every γ ∈ N , the point γ ∩ C � (x0, y0) and an angle θ0 such that γ (0) =
(1, x0, y0) ∈ C and γ ′ (0) = (1, cos θ0, sin θ0) ∈ N

+
γ (0). So, a parametrization of γ

as a null geodesic can be written by γ (s) = (s + 1, x0 + s cos θ0, y0 + s sin θ0) for
s ∈ (−1,∞). Then we can identify γ � (x0, y0, θ0).

The parameter s is diffeomorphic to a projective parameter by s = h(t) where
h : [−1, 1) → [−1,∞) is a function such that h′ (t) > 0 for all t ∈ [−1, 1) and
γ ◦ h : (−1, 1) → M is projective. Indeed, as argued in example 7, we have h (t) =
−2t
t−1 . Then the map

Ψ (γ, s) = Ψ (x0, y0, θ0, s) = (s + 1, x0 + s cos θ0, y0 + s sin θ0)

with s ∈ [−1,∞) verifies the property P2 as ρ ◦ ε for the canonical past extension.
Observe that if we consider the spacetime M = {(u, v, w) ∈ R

3 : u > 0
}

with the
metric g = −u2du ⊗ du + dv ⊗ dv + dw ⊗ dw, then φ : M

3
(0,∞) → M defined

by φ (t, x, y) =
(√

2t, x, y
)

is an isometry. Then, the canonical past extension of M

must be M = {(u, v, w) ∈ R
3 : u ≥ 0

}

such that its differentiable structure verifies

that the extension φ (t, x, y) =
(√

2t, x, y
)

of φ to M
3
(0,∞) is a diffeomorphism. We

will call M to such extension and Ms to the same topological manifold equipped with
the standard differentiable structure. Trivially, the identity map id : M → Ms is not
a diffeomorphism and therefore Ms can not be the canonical extension of M .

Observe thatγ (s) = φ (γ (s)) = (x0 + s cos θ0, y0 + s sin θ0,
√
2 (s + 1)

)

defines
an inextensible null geodesic in M for s ∈ (−1,∞). If we change the parameter by
τ 2 = s + 1, we obtain a regular parameter τ ∈ (0,∞) which is diffeomorphic
to the canonical projective parameter for t ∈ (−1, 1). But the resulting map Ψ :
N × [0,∞) → Ms given in coordinates by

Ψ (x0, y0, θ0, τ ) =
(

x0 +
(

τ 2 − 1
)

cos θ0, y0 +
(

τ 2 − 1
)

sin θ0,
√
2τ
)

defines regular parametrizations of light rays but not diffeomorphic to the projective
parameter for τ ∈ [0,∞) because it is not smooth at τ = 0.

The following definition is motivated by the Example 9.
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Definition 16 Aregular, future–directed and inextensible parametrizationγ : (a, b) →
M of a light ray γ ∈ N is said to be

1. projective if γ̃ (s) = σ
([

γ ′(s)
]) ∈ P

(Hγ

)

defines a projectivity in the fibre
P
(Hγ

)

, and
2. admissible if there exists a diffeomorphism h : (c, d]→ (a, b] such that h′ (t) > 0

for all t ∈ (c, d] and γ ◦ h : (c, d) → M is a projective parametrization.

It can be trivially observed that any projective parametrization of γ ∈ N is admis-
sible, and any admissible parameter is diffeomorphic (in the sense of admissibility of
Definition 16) to the canonical projective parameter t ∈ (−1, 1].

As seen in Example 9, we have to notice that every parametrization of γ ∈ N can
be reparametrized diffeomorphically by the canonical projective parameter t, but it is
not an admissible parametrization.

6.2 Characterization of L–boundary

Now, we would like to offer a characterization of the canonical extension based on the
properties P1 and P2 enunciated in the previous Sect. 6.1.

The proposed characterization is given in the following definition.

Definition 17 A future L–extension of a conformal manifold (M, C) is defined as a
Hausdorff smooth manifold M = M ∪ ∂+M where ∂+M = M − M is a closed
hypersurface of M named future L–boundary satisfying the following properties:

1. Ifγ : (a, b) → M is a continuous parametrization ofγ ∈ N , then lims �→b− γ (s) =
∞+

γ ∈ ∂+M .
2. The map∞+ : N → ∂+M defined by∞+ (γ ) = ∞+

γ is a surjective submersion.
3. For every γ0 ∈ N there exists a neighbourhood U ⊂ N and a differentiable map

ΨU : U × (a, b]→ M , where γ (s) = ΨU (γ, s) is an admissible parametrization
of γ ∈ U for s ∈ (a, b) and such that ∂ΨU

∂s (γ, b) /∈ T∞+(γ )∂
+M .

A past L–extension M = M ∪ ∂−M can be defined analogously. If there exists
any future or past L–extension of (M, C), then (M, C) is said to be future or past
L-extensible.

The interpretation of the condition 3 of Definition 17 is that any light ray γ =
γ (t) parametrized inextensible to the future with a projective parameter t ∈ (a, b) is
smoothly extended to t ∈ (a, b] with γ (b) = ∞+(γ ) and γ ′(b) 
= 0 is transversal to
the future L–boundary.

From the Definition 17, since the map∞+ : N → ∂+M is a surjective submersion
then the inverse images

S (p) = (∞+)−1 (p) = {γ ∈ N : p = ∞+ (γ )} ⊂ N

define a regular distribution� : N → P (TN ) given by� (γ ) = Tγ S
(∞+ (γ )

)

, and
the map defined by

S : ∂+M → N /�
p �→ S (p)
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is a diffeomorphism.

Remark 13 For any map ΨU : U × (a, b] → M according to the definition of L–
extensions, the properties of the admissible parameter s ∈ (a, b] ensure the existence
of a change of parameter h : U × (−1, 1]→ (a, b], globally in U ⊂ N such that the
map Ψ U (γ, t) = ΨU (γ, h (γ, t)) satisfies the condition 3 of Definition 17 and where
t ∈ (−1, 1] is the canonical projective parameter.

Moreover, if {Uα}α∈I is an open covering ofNU such that Uα ⊂ NU for all α ∈ I ,
since

Ψ Uα

∣

∣Uα∩Uβ×(−1,1] = Ψ Uβ

∣

∣

Uα∩Uβ×(−1,1]

then trivially, it is possible to define ΨNU : NU × (−1, 1]→ M extending all Ψ Uα
.

By properties P1 and P2, the canonical extension is a L-extension such thatΨNU =
ρ ◦ ε. This result is summarized in the following corollary.

Corollary 9 The future (resp. past) canonical extension of a proper L–spacetime
(M, C), built in Sect. 5, is a future (resp. past) L–extension.

For any two future L–extensions, the corresponding skies at the endpoint of any
light ray coincide, that is S

(∞+
1 (γ )

) = S
(∞+

2 (γ )
)

for all γ ∈ N where∞+
i with

i = 1, 2 are the submersions of the L–extensions as in Definition 17. The details of
the proof are in [8, Lem. 8.2].

Now, let us see thatDefinition 17 gives a characterization of the canonical extension.

Theorem 6.1 Let M be a proper L–spacetime, M1 = M ∪∂+M1 the canonical future
L–extension and M2 = M ∪ ∂+M2 any other future L–extension of (M, C), then the
identity map id : M → M can be extended as a diffeomorphism id : M1 → M2.

Proof Since S
(∞+

1 (γ )
) = S

(∞+
2 (γ )

)

for all γ ∈ N , then the map φ : ∂+M1 →
∂+M2 given by φ

(∞+
1 (γ )

) = ∞+
2 (γ ) is well–defined and a bijection. Thus, the

diagram

N
∂+M1 ∂+M2

∞+
1 ∞+

2

φ (6.2)

follows. Since∞+
1 and∞+

2 are smooth submersions then, by [11, Prop. 6.1.2], φ is a
diffeomorphism.

Now, if ΨU is the map in the definition of L–extension corresponding to M2, since
ΨU |U×(−1,1) = ρ ◦ ε|U×(−1,1) and ρ ◦ ε is a submersion (see diagram (6.1) and Eq.
(5.6)), then ΨU |U×(−1,1) is a submersion.

On the other hand, since (dΨU )(γ,1)
(

∂
∂t

)

(γ,1) = γ ′ (1) 
= 0 with γ ′ (1) /∈
Tγ (1)∂

+M2 and moreover φ is a diffeomorphism and ΨU |U×{1} = φ|∞+
1 (U), then

we have that (dΨU )(γ,1) is surjective, therefore ΨU is a submersion.
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Denoting V 1 = ρ ◦ ε (U × (−1, 1]) ⊂ M1, V 2 = ΨU (U × (−1, 1]) ⊂ M2,
V1 = V 1 ∩ M and V2 = V 2 ∩ M then, V = V1 = V2 = {γ (t) ∈ M : γ ∈ U} and we
have the following diagram

U × (−1, 1]

M1 ⊃ V 1 V 2 ⊂ M2

ρ ◦ ε ΨU

id (6.3)

defining id as a bijection such that id
∣

∣

V = id : V → V is the identity map. By [11,
Prop. 6.1.2], id is a diffeomorphism extending the identity map in V ⊂ M . Finally,
taking a covering ofN , we can define globally id = M1 → M2 as a diffeomorphism.

��

Remark 14 Notice that if ϕ : (M1, C1) → (M2, C2) is a conformal diffeomorphism
then, by the Reconstruction Theorem 3.3, there exists a diffeomorphisms φ : N1 →
N2 such that for any sky X ∈ Σ1 of N1, then φ (X) ∈ Σ2 is a sky of N2. Then, in
virtue of Theorem 6.1 and by construction of the canonical extension, whenever one
of the conformal manifolds is a proper L–spacetime for any metric in C, then the other
is also a proper L–spacetime for any metric and both L–extensions are diffeomorphic
by the extension of ϕ. See [8, Cor. 8.2].

It is possible to show a converse result of Theorem 6.1 to conclude the charac-
terization of the canonical extension as the unique L–extension (up to conformal
diffeomorphism). The proof of the following proposition can be found in [8, Prop.
8.1].

Proposition 14 Let M be a 3–dimensional, strongly causal, light non–conjugate, sky-
separating, conformal Lorentz manifold. If M admits a future L–extension M, then
the canonical field of directions ⊕ : N → P (H) defines a regular and smooth
distribution. Moreover, the distribution � defined by the L–extension verifies � = ⊕.

7 Conclusion

From the initial seed, R. Penrose’s twistor theory, together with the original work of
R. Low, the geometry of the space of light raysN of a Lorentz conformal manifold M
appears as a complementary model of physical universe in addition to the spacetime
model. It contains all the information of M but it should be treated in a different way.
In this review we have introduced the geometric structures of N , characterized the
causal structure of M and built the L–boundary for dim M = 3.

But many things still need to be done. Since N is invariant by conformal diffeo-
morphisms of M , so conformal invariants in M can be well defined in N and they
can be determined, at least theoretically, by light rays. So, we can wonder what new
additional geometrical objects in N define conformal invariants of M .
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The question about if a new condition in the definition of L–spacetime should be
added to ensure that the distribution D∼ is smooth, is still open. Moreover, the partic-
ular geometry of L (H) = P (H) when dim M = 3 allows to build the L–boundary
explicitly. The construction for dim M > 3 is not free of problems, because the geom-
etry of L (H) is richer that the one in P (H). It is necessary to study the additional
problems arising in the general case, for example, ˜N is not an open submanifold of
L (H) and, under the same hypotheses, the map σ of Eq. (5.2) is not an embedding
but an injective immersion. This pushes us to build the L–extension in a more local
way. Furthermore, the projective parameter does not arise so naturally as it does in
P (H). The study of the conditions for an L–spacetime with non-compact orbits of
∂+D∼ making of D∼ a regular distribution still remains unresolved. In any case, we
believe that it is worth exploring this form of construction of the L–boundary for
general dimension m ≥ 3.
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