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ABSTRACT. This paper describes the theory of Jacobi curves, a far reaching extension of the spaces
of Jacobi fields along Riemannian geodesics, developed by Agrachev and Zelenko. Jacobi curves
are curves in the Lagrangian Grassmannian of a symplectic space satisfying appropriate regularity
conditions. It is shown that they are fully characterised in terms of a family of conformal symplectic
invariant curvatures. In addition to a new derivation of the Ricci curvature tensor of a Jacobi curve,
a Cartan-like theory of Jacobi curves is presented that allows to associate to any admissible Jacobi
curve a reduced normal Cartan matrix. A reconstruction theorem proving that an admissible Jacobi
curve is characterised, up to conformal symplectic transformations, by a reduced normal Cartan
matrix and a geometric parametrization is obtained. The theory of cycles is studied proving that
they correspond to flat Jacobi curves.
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1. INTRODUCTION

A complete characterisation of Jacobi curves will be presented. Jacobi curves are curves I'(¢) of
Lagrangian subspaces in a given symplectic space W satisfying appropriate regularity conditions.
A natural extension of Cartan’s geometry to curves in Lagrangian Grassmannians will provide the
ground to construct a family of curvatures that will classify them.

The theory of Jacobi curves was initiated by A. Agrachev and I. Zelenko in the
context of the theory of control of dynamical systems and their applications (see, for instance,
and references therein). In its original formulation such curves were obtained by means of the flow
of a Hamiltonian system on the cotangent bundle T*@Q of a smooth manifold (). In such context a
Jacobi curve is the curve in the Lagrangian Grassmannian of the tangent space T4, ) (7™ Q) at a fixed
point (qo,po) € T*Q, obtained by pulling back the vertical subspaces of T(T*Q) along an integral
curve of a Hamiltonian system to its initial data (go,po). However curves of Lagrangian subspaces
appear in a variety of different contexts, for instance, it was recognised early the natural relation
between solutions of the Linear-Quadratic regulator problem in optimal control theory, solutions
of matrix Ricatti equations and Lagrangian subspaces (see, for instance [Ca80) [He80, [De03]). The
study of topological properties of curves of Lagrangian subspaces has been also a subject of interest
(see, for instance, [Malh]) or, in a different context, [Ba22al, for the appearance of Jacobi curves in
the study of the geometry of Lorentzian manifolds. More precisely, if (M™,C) is a strongly causal
conformal Lorentzian spacetime, the manifold N of its lightrays carries a natural contact structure
‘H characterized by the fact the each sky S(z) (the set of light rays passing through z € M) is a
Legendrian submanifold. Then for each v € N, the contact hyperplane H, inherits a (conformal)
symplectic structure and it makes sense to consider its Lagrangian Grassmannian. The fact that
I'(t) = T, (S(y(t))) is a Jacobi curve in the Lagrangian Grassmannian of #.,, and that (local) conformal
transformations in M preserve the structure (N, #H), will allows us to apply the theory developed in
this paper to obtain conformal curvatures over lightrays, that would give rise to conformal invariants
of our manifold (M,C).

One of the main objectives of this work is the construction of geometric invariants associated to
such curves that would provide a new and useful insight into the structure of the solutions of matrix
Ricatti equation, Hamiltonian systems or any other structure that could be associated to them, like the
aforementioned study of causality. Thus, beyond the interest in control theory, the analysis of Jacobi
curves embraces multiple geometrical problems that range from Riemannian and sub-Riemannian
geometry (see, for instance, the review [Aglh]) to the geometry of conformal structures [Ba22].

The Jacobi curves considered in this paper are those such that the velocity I.j(t)7 interpreted as a
symmetric bilinear form on I'(¢), is definite. This generic property is preserved under changes of the
parameter and the range [I'] of the curve I'(¢) will be called an (unparametrized) admissible Jacobi
curve. The conformal symplectic group CSp of linear maps that preserve the symplectic form up
to a multiplicative constant, acts on the set of admissible curves. The main idea developed in this
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work consists in extending Cartan’s geometry of curves on Euclidean space to analyse Jacobi curves.
For that a new definition of Agrachev and Zelenko’s [Ag02] Ricci curvature tensor of a Jacobi curve
will be introduced. Such curvature tensor is obtained after a thorough analysis of the notion of the
derivative curve associated to a Jacobi curve, that relies on the local affine structure of the Lagrangian
Grassmannian, and the appropriate construction of a geometric arc parameter. It will be shown that
there is a natural geometric parametrization for each Jacobi curve that will allow the construction
and definition of the derivative curve and of the Ricci curvature tensor of a Jacobi curve.

The notion of conformal symplectic curvature invariants of Jacobi curves will be introduced and,
using the previously developed tools, a theory of symplectic moving frames will be discussed. This
will allow us to construct a complete, independent and free from integrability conditions family of
(n —1)(n+ 2)/2, with n the dimension of the Lagrangian subspaces, conformal symplectic curvature
invariants for a given Jacobi curve. As a consequence any other curvature depends functionally
on this family, in particular the higher differential order curvatures obtained in [Ag02 [Ag02b]. To
conclude the theoretical analysis, a reconstruction theorem will be proved that will show that any
admissible Jacobi curve is characterised, up to conformal symplectic transformations, by a reduced
normal Cartan matrix and a geometric arc parameter. In the particular instance of four-dimensional
symplectic spaces, a complete system of conformal invariant curvatures consisting of two independent
curvatures, extending the results in [Mul4], will be obtained. The reduced normal Cartan matrix of
a Jacobi curve is algorithmically computable in the sense that it can be computed using a symbolic
manipulation language. Finally, the general theory of cycles, a special class of Jacobi curves with
vanishing curvatures, will be analysed further.

The paper will be organised as follows. Section [2| will be devoted to review some basic conformal
symplectic notions and notations for the convenience of the reader, most importantly the local affine
structure on the Lagrangian Grassmannian of a given symplectic space, structure that will play a
relevant role in what follows. In Sect. [3|the notion of Jacobi curves, the problem of their classification
and the role played by conformal curvatures will be stated. Section ] will be devoted to the construc-
tion of the Ricci curvature tensor of a Jacobi curve. Such notion will be introduced by the hand of a
natural curve associated to any regular Jacobi curve, called its derivative curve. In Sect. [5] the Cartan
geometry of Jacobi curves will be described. Section [6] will be devoted to prove the reconstruction
and classification theorem for Jacobi curves and, finally, Sect. [7] will discuss the theory of cycles, that
is, flat Jacobi curves.

2. ELEMENTS OF THE GEOMETRY OF THE LAGRANGIAN GRASSMANNIAN

As it was indicated in the introduction, the conformal symplectic group is the natural invariance
group when dealing with the geometry of Lagrangian subspaces. Thus any attempt of classification of
families of Lagrangian subspaces, in particular curves of them, should be invariant with respect to the
natural action of such group. This section will be devoted to establish the basic facts and notations
concerning symplectic spaces, the conformal and symplectic groups and the geometry of the collection
of all Lagrangian subspaces of a given symplectic space, its Lagrangian Grassmannian.

2.1. Symplectic preliminaries: conformal symplectic structures. We will discuss first the
emergence of the conformal symplectic group as the natural invariance group of the theory of La-
grangian subspaces and its geometrical structure.

2.1.1. The symplectic and conformal symplectic groups. Let (W,w) be a linear symplectic space, that
is, W is a real linear space and w, called a symplectic form, is a non-degenerate skew-symmetric
bilinear form on W. For convenience, we will denote by (u|v) the value of the symplectic form w on
the pair of vectors u,v € W, that is, (u|v) := w(u,v). A Lagrangian subspace A C W is a maximal
isotropic subspace with respect to the symplectic form w, that is, a subspace such that A = A+, where
A+ denotes the subspace of all vectors orthogonal to A C W with respect to the symplectic form w,
A ={ue W | (ulv) =0,Yv € A}.

The main object of study of this work are curves I'(t) of Lagrangian subspaces, i.e., I'(¢) is a La-
grangian subspace of W for each ¢ in some open interval I C R satisfying regularity properties that will
be discussed later on (see Def. . We will denote by .Z (W) the set of all Lagrangian subspaces
of W and it will be called the Lagrangian Grassmannian of W. The Lagrangian Grassmannian £ (W)
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is a closed submanifold of dimension n(n + 1)/2 of the Grassmannian manifold Gr, (W) consisting of
all n-dimensional subspaces of the linear space W, dim W = 2n.

A fundamental observation is that if A C W is a Lagrangian subspace with respect to the symplectic
form w, it is also a Lagrangian subspace for the symplectic form Aw, where A # 0. In other words,
the Lagrangian Grassmannian .Z(W) is associated to the family [w] = {Aw|A # 0} of symplectic
structures on W. We will call such a family [w] of (proportional) symplectic structures, a conformal
symplectic structure on W. In this sense a proper notation for the Lagrangian Grassmannian would
be L (W, [w]), even if we will keep the previous notation for short.

An invertible linear map ¢: W — W that maps Lagrangian subspaces into Lagrangian subspaces
will be called a conformal symplectic map. A conformal symplectic map ¢ induces a diffeomorphism
(denoted with the same symbol) c¢: L (W) — L (W), ¢: A — c¢(A). Notice that if ¢ is a conformal
symplectic map it must transform the conformal class [w] into itself, that is, choosing a representative
symplectic form w € [w], we get ¢*w = A.w, with A. # 0, that is:

(c(u) | c(v)) = Ae(u | V), Yu,v e W, (2.1)

which justifies the given name. We will denote by C'Sp(W, [w]) the Lie group of linear conformal sym-
plectic maps for the conformal structure [w]. In what follows we will denote the Lie group CSp(W, [w])
as C'Sp(W), or just CSp, if there is no risk of confusion, and will be called the conformal symplectic
group of the symplectic space W. The Lie algebra csp of the Lie group CSp consists of linear maps
A: W — W such that there exists p € R verifying:

(Aulv) + (u|Av) = p(ulv), Yu,v e W. (2.2)

It is clear that the map A: C'Sp — R*, A(¢) = A, cfr. , associated to the choice of a represen-
tative w in the conformal symplectic structure of W, is a group epimorphism onto the multiplicative
group of real numbers, whose kernel is the closed normal subgroup consisting of all linear maps
a: W — W, such that:

(a(u)la(v)) = (ulv),  Vu,veW,
called the symplectic group of the symplectic space W and denoted by Sp(W,w) (or just Sp(W), or
Sp, if there is no risk of confusion). The Lie algebra of the Lie group Sp will be denoted by sp and
its elements can be identified with skew-linear maps with respect to the bilinear form (-|-), that is, a
linear map A: W — W determines an element in sp provided that:

(Aulv) + (u|Av) =0, Yu,ve W. (2.3)

From if follows that the symplectic group Sp has dimension 2n? + n, provided that dim W = 2n,
hence dim CSp = 2n? +n + 1.

Given two transversal Lagrangian subspaces A, A C W, i.e., ANA = {0}, then W = A® A. We will
call such decomposition of W a Lagrangian decomposition. Choosing a Lagrangian decomposition
W = A& A, we can define a cross section of o: R* — CSp, of the short exact sequence 1 — Sp —

CSp ARX 1, given b
o(s)(vev)=sv®T, VveAvEA. (2.4)

Moreover, it is obvious that the map o is a group homomorphism and C'Sp becomes the semi-direct
product of Sp by R*, CSp = Sp x R*. Thus we have the identification Sp(W) x R* = CSp(W),
given by (a,s) € Sp(W) x R* — ao(s) € CSp(W). We will just write ¢ = ac(A.), where a is the
element of the symplectic group defined as co()\.)~t. Note that o(s)(A) = A.

The definition of the conformal symplectic group makes explicit the natural transitive action of
CSp(W) on Z(W) given by (¢, A) — c(A), c € CSp(W) and A € Z(W), that makes it an homoge-
neous space. This action restricts to an action of the symplectic group Sp(W) whose orbits coincide.
Indeed, if A is a Lagrangian subspace, consider the orbit Oy := CSp(W)A = {¢(A) | ¢ € CSp(W)}.
Choose a Lagrangian decomposition of W of the form W = A @ A, then using the identification be-
tween C'Sp and Sp x R*, provided by the cross section o associated to this Lagrangian decomposition,
cfr. [24), we get ¢(A) = ac(A.)(A) = a(A) and we conclude that the orbit of A under the conformal

INote that w(vy & o1, ve ® ¥2) = w(vy, D2) + w(vi,v2) = (v1 | D2) + (51 | v2). Then, w(o(s)(v1 ®1),0(s)(ve BV2)) =
w(sv1 & 1, sv2 B v2) = (sv1 | 2) + (01 | sv2) = sw(v1 B v1,v2 @ v2), and o(s) € CSp.
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symplectic group C'Sp coincides as sets with the orbit under the symplectic group Sp (although this
identification is not canonical and depends on the choice of a cross section o).

The action of the conformal symplectic group on the Lagrangian Grassmannian is obviously transi-
tive, hence the action of the symplectic group, which allows to identify £ (W) with the manifold
of cosets L(W) = CSp(W)/H = Sp(W)/Hy, with Hy C Sp(W) the closed subgroup of sym-
plectic transformations fixing the Lagrangian subspace A, Hy = {a € Sp(W) | a(A) = A}, and
H = Hy x R* C CSp, the corresponding semi-direct product extension subgroup of C'Sp. Choosing
a metric structure on W compatible with the symplectic form w, endows W with a Kéahler structure.
Given a Lagrangian subspace A, it is possible to choose the Kéhler structure in such a way that
Ay becomes a real subspace, then the orbit of the symplectic group becomes the orbit of the unitary
group of the Ké&hler structure, which is isomorphic to U(n), and the isotropy group of such action
is clearly the orthogonal group of the metric real space Ag, which is isomorphic to O(n), hence the
homogeneous space £ (W) is diffeomorphic to U(n)/O(n) that provides an alternative description of
the smooth structure of the Lagrangian Grassmannian.

2.1.2. Lagrangian subspaces and symplectic basis. It will be helpful to introduce local parametrizations
of the Lagrangian Grassmannian in various proofs and computations to follow. The following para-
graphs will be devoted to describe in detail the natural affine atlas of the Lagrangian Grassmannian
and a few useful formulas and notations.

Let € = (e, €) denote a symplectic basis of W, that is, e = (e1,...,€,), € = (é1,...,€,), are two
systems of n linearly independent vectors in W such that (e;|e;) = (&;]€;) = 0, (e;|€;) = d;5, for all
i,j = 1,...,n. Then we denote by A (A), the Lagrangian subspace generated by e = (e1,...,e,)
(e = (é1,...,&,), respec.). Note that W = A @ A. Conversely, if A € Z(W) is a Lagrangian subspace
and A is a Lagrangian subspace transverse to A, that is, AN A = 0, then there is a symplectic basis
(e, &) such that the system of vectors e generates A and & generates A. In such case, we will say that
the symplectic basis (e, &) is adapted to the Lagrangian decomposition W = A @ A. In fact, any one
of the systems of vectors, e C A , & C A, determines the other (Lemma [1| below makes this statement
precise). By the same token we can consider conformal symplectic basis, that is systems of vectors
€ = (e,e) such that (e;le;) = (&l€;) = 0, (e;le;) = Adyj, for all 4,5 = 1,...,n, and A # 0 called the
scaling factor of the basis. If € = (e, €) is a conformal symplectic basis with scaling factor A, then
€ = (e, e) is a symplectic basis for the symplectic form %w € [w]. Moreover, given a symplectic basis
€ = (e, &), the scaled basis €y = (ey,€y), with ey = f(A)e, €\ = g(\)e, and f(A)g(A\) = A, are new
conformal symplectic basis describing the same Lagrangian decomposition of A@ A of W. Thus, when
dealing with Lagrangian subspaces we are free to consider either symplectic or conformal symplectic
basis to describe them.

Given a Lagrangian subspace A € Z(W) we denote by A™ the open set of Lagrangian subspaces
transverse to A, that is:

A"={T'e Z(W)|TNA=0}. (2.5)
The sets A™ can be used to construct a smooth atlas for A € .Z(W). Indeed, consider a Lagrangian
decomposition W = A @ A, then any Lagrangian subspace I' in Km defines a linear map from A to A
denoted as (A, T, A), as (see Fig. :
(A,T,A): A=A, (AT,A)(v)=9, v+vel,velA,veA. (2.6)
If we choose a symplectic basis (e, &) adapted to the decomposition W = A @ A, then the matrix S
associated to the linear map (A,T', A), that is, (A, T, A)(e;) = >_; Sji€j, is symmetric and the map the
assigns to any n X n symmetric matrix .S, the Lagrangian subspace I'g given by:

Ty = {(e,e)< g > |x€]R”} - { o L?é) , 2.7)

. - .
provides a local chart for Z(W) on the open set A Note that the definition of the subspace I'g
amounts to say that £ = Sx are the equations of I's and that the system of vectors e + €S form a
basis of I'. As it will be discussed in the coming section, §2.2] such parametrisation is the natural

2A similar map can be defined using the open set A™ instead, see below this section.
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coordinate expression of the canonical affine structure on A . The initial discussion on the existence
of adapted symplectic basis is completed by the following statement.

Lemma 1. Let A and A be transverse Lagrangian subspaces in (W,w), i.e., AN A = {0}. Then if
f=(f1,...,5,) is a basis of A, then there is a unique basis f = (fl, e ,fm) of A such that (f, f) s a
symplectic basis of (W,w).

Proof. The abstract proof works as follows: given the basis f = (f1, ..., f.) of A, it determines a unique
dual basis £* = (ff,..., f}) of A*, f(f;) = 8;j. Then, the natural identifications A = W/A = A*,
determines the basis f we are looking for. In spite of this, we will work out the explicit formulas for the
vectors in f because they will turn out to be useful later on. Consider an arbitrary symplectic basis
(e,€) such that both A and A are transverse to the Lagrangian subspace generated by the vectors €,
then, using the notation introduced above, cfr. (2.7)), we can write:

A~ {In] cZ(W) and A~ [{g} eZ(W).
(e,e) (e,@)

where S and S are symmetric matrices. For v € A and ¥ € A we can write

v=-ex+eSx

U =eT + ST
where 2 and T are coordinates of v and T with respect to the basis e + €S and e + €S respectively.
So, we have, Eq. (2.12):

w(v,7) =w (em +eSz,eT + égf) =w (ex,é?f) +w (eSz,ex) =
=257 — (S2)'T=2"ST - 2" STz =2" (S-9)7

If f C A and f C A are basis, then

f=eM+eSM (28)
where the columns of M and M correspond to the coordinates of the vectors f and f respectively.
Hence, (f ,f) is a symplectic basis of (W, w) whenever:

MT(S - S)M =1,.
Since A € A™, then S — S is a non-singular matrix and because M is also non-singular, then we have
that

{feM+eSM

M=(5-5 " (M) (2.9)

is the matrix defining the basis f such that (f ,f) is a symplectic basis of W. g

Choosing a symplectic basis (e, €), the elements in the Lie algebra sp are represented by matrices
A such that ATJ + JA =0, with J the matrix representation of the symplectic structure itself, that

is the matrix whose non-zero elements are J; ;1 = 0;; = —Ji4nj, ©,J = 1,...,n. Then, A has the
form:
(M N T T
A_<RMT)’ N =N, R'=R,

with M, N, R being n x n matrices, that shows that dimsp = 2n2 + n, which is the dimension of the

symplectic group Sp, cfr. Sect.
There is a natural isomorphism S: sp — S(W), where S(W) denotes the linear space of symmetric

bilinear forms on W. Given A € sp, we define, recall Eq. :
Sa(u,v) = (Au|v) = (Avju).
Thus, given a Lagrangian subspace A € Z(W), sp(A) will denote the subspace of all elements A in
sp whose range lies in A, that is sp(A) = {A € sp | A(W) C A}, or, equivalently:
sp(A)={Aesp|Sa(A,A) =0}. (2.10)
In other words, sp(A) is isomorphic to the space of symmetric bilinear forms on W vanishing on A,

that is, S(W/A). But, W/A is canonically isomorphic to A*, the dual space to A, thus we conclude
that sp(A) is canonically isomorphic to S(A*).
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2.2. The local affine structure of the Lagrangian Grassmannian.

2.2.1. The affine structure of A™. Given a Lagrangian subspace A € Z(W), the set A™, cfr. ,
carries a canonical affine structure. The following paragraphs will be devoted to describe it and to
introduce some useful notations.

Given T € A™ consider the canonical projector onto A determined by the decomposition W = A@T.
Using the convenient notation introduced in [Ag02], we will denote such projector, called a Lagrangian
projector, by:

<VV7FaA>:W*>ACWa <I/V7F7A>(w):wA
where w = wy + wr, is the unique decomposition of the vector w € W on its A and I' components,
wp € A, wr € T. Note that if ' € A", then A € T'™, and we can define also the Lagrangian projector
(W, A,T) with range T" along A, then:

w=wp +wr = (W, T,A)(w) + (W,A,T)(w), YweW.
There is a one-to-one correspondence between A™ and the set of Lagrangian projectors P, associated
to the Lagrangian subspace A, that is the sedﬂ
Ppr={P € gl(W) | P*=P,P(W) = A, (Pulv) + (u|Pv) = (u|v), Yu,v € W},

The correspondence is such that, to any Lagrangian subspace I' € A™ we associate the Lagrangian
projector (W,I', A) and, to any Lagrangian projector P € P, we associate the Lagrangian subspace
r={-P)(W).

Lemma 2. The set Py is an affine space over the linear space sp(A), cfr. Eq. .

Proof. Indeed, given P € P, and A € sp(A), we observe that Q = P + A is a Lagrangian projector.
Certainly, Q(u) = P(u) + A(u) € A. On the other hand Q% = (P + A)?> = P + A = Q, because
A%(u) = 0 (note that (Aulv) = (Av|u), thus if Au, Av € A, then (A%ulv) = 0). Moreover AP(u) = 0,
and PA(u) = A(u). Finally, (Qu|v) + (u|Qv) = (Pulv) + (u|Pv) = (u|v), then @ € Py. O
The natural identification of A™ with the space of Lagrangian projectors Py, introduces an affine
structure on A™ with underlying ligar space sp(A), in other words, given tWO_IJagrangian spaces A and
I'in A™, the corresponding vector AT will be given by the element in sp(A): AT’ = (W,T, A)— (W, A, A).
By definition, the value of any element belonging to 5p(Al> in A is zero, cfr. (2.10), then, we can
introduce the convenient notation gﬁ, I', A) for the vector AT that takes into account this fact. Now
(A,T,A) is a linear map (A, T, A): A — A, such that (Au | v)+ (u | Av) = 0 (compare with Eq. (2.6)).
In other words, given the Lagrangian subspace A € A™, using it as the origin in the affine space A™,

we can identify the linear space sp(A) with the space (see Fig. :
S(AA) ={A: A= A | (A() | v)+ (u ] A(v)) = 0}. (2.11)

Exchanging the roles of A and A, if T';,T'y are two Lagrangian subspaces in A™ then the vector
defined by them with respect to the affine structure on A™, will be given by:

FIFQ = <A7 F27]\> - <Aa Fla A) )
where now, A plays the role of origin, the associated linear space is sp(A) which is identified with

S(A,A).

2.2.2. Coordinate description of the local affine structure. It is convenient to emphasise the coordinate
description of the previous constructions in terms of the atlas described in §2.1} Eq. . We will
introduce as before a symplectic basis (e, e) with corresponding symplectic coordinates (z,Z), and
the Lagrangian subspaces A = (ey,...,e,), and A = (€1, ...,&,). Thinking of the vector x € R" as a
column vector, the symplectic form w takes the coordinate expression:

((z1,Z1) | (w2,Z2)) = fﬂffz - xzflT~ (2.12)

In particular, ((x,0) | (0,7)) = 27Z. Note that in the identification A* = A, the basis & gets identified
with the opposite dual basis of e, that is: (¢;|-) = —27 and (e;|-) = /. Moreover the space of

3Note that if P is a Lagrangian projector, then (Pu|v) = (ua |vr), and we get, (Pu|v)+ (u|Pv) = (ua|vr)+ (ur|vp) =
(u]v), that implies that P belongs to the Lie algebra of the conformal symplectic group, cfr. 1)
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FIGURE 1. A diagram representing the vectors (A, I, A) (in the affine space A™ with origin
at A), and (A, T, A) (in the affine space A" with origin at A).

symmetric bilinear forms S(A) is identified with the space of symmetric matrices S(R™") = {S =
(Si) | 8T =5} )
Then, the affine space A™ is identified (using as origin A) with the vector space S(R™) by means

of:

S =(S;;) € S(R") —»T's ={(57,%) |z € R"} € A",
and the map S/‘;\m: I e A" — (A, T,A) € S(A) = S(R™), constitutes an affine coordinate system for
A™ (see Fig. . Similarly, the affine space A™, can be identified (using as origin A) with the vector
space S(R™) again, by means of (compare with (2.7)):

S =(S;) € S(R") — T's = {(x,Sz) | z € R"} € A", (

where S is interpreted as (A,I's,A). The map S4,: T € A" — (A,T,A) € S(A) = S(R"), S
(Sij | i < 4), constitutes an affine coordinate system for A™.

[\]

1

w
~

1

>

h

3. JACOBI CURVES AND THEIR CLASSIFICATION

3.1. Jacobi curves. A curve in .Z(W) is a smooth map I" from an open interval I C R in .Z(W).
We will denote the curve I" as I' = T'(¢). The tangent vector to the curve I' at I'(t) will be denoted as
I'(t) € Try L (W).

In coordinates S = (S;;) € S(R™) introduced above, cfr. Eq. (2.13), we can write a Jacobi

curve as: r(f) = { 1;; ](e’e) = {(e,e)- ( Sfx ) |z € Rn} :

where as indicated before, cfr. (2.7)), the notation [ g” } describes the Lagrangian subspace
t _
(e,8)

spanned by the vectors e; + Z?:l(st)jiéjy i=1,...,n.

Let us consider a Lagrangian subspace Ay € .Z (W) and denote as before by S (Ag) the vector
space of symmetric bilinear forms defined in Ag. There is a natural characterization of the tangent
space Th,(Z(W)) as the space of quadratic forms on Ag.

Proposition 1. Let I' = I'(t) be a curve in £ (W) such that T'(0) = Ag. We define the quadratic
form T(0) : Ag = R by

L(0) (v0) = w (vo,v'(0))
where v = v(t) € T'(t) is a curve such that v(0) = vy and w the symplectic 2—form in W. Then the
map

TaeZ(W) = S(Ao)

I'o) — I(0)

is a linear isomorphism.
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Proof. First, we will show that the quadratic form F(O) does not depend on the chosen curve v =
v(t). If u = u(t) € T'(¢) is another curve such that u(0) = vy, then v(t) — u(t) € T'(¢) for all ¢.
Since T'(t) € Z(W) is Lagrangian, then (v(¢t) | v(t) — u(¢t)) = 0. Deriving at ¢ = 0, we obtain:
(v'(0) | v(0) — u(0)) + (v(0) | v (0) = w/(0)) = 0 = (v(0) | v'(0) —u'(0)) = 0, but then I'(0) (vy) =
(v(0) | u/(0)), that shows that I'(0) does not depend on the chosen v.

Now, consider a coordinate system S = (S;;) of £ (W) at Ag such that I'(t) = {(z, Six) | € R™},
where, Sy = (S;;(t)) € R™*"™. Since Ag = {(z, Sox) : x € R™}, then there exists a unique xy € R™ such
that vg = (2o, Sozo). We can consider v as the curve defined by: v(t) = (zg, Stxo), so v'(t) = (0, Sizo),
and then:

1'(0) (vo) = (vo | v'(0)) = ((xo, Sxo) | (0, Sjwo)) = 2 Syo
which only depends on the tangent vector IV(0) € Ty, Z (W), that in local coordinates has the

expression:
/ o ! 0
v =350 (55;)

1<

and the coordinates S;;(0) coincide with the components of the matrix Sj defining '(0). Therefore
the map Th,-Z (W) — S (Ao) is a linear isomorphism. O

Remark 1. The previous proposition is also true for any value of t. Note that S; = (S{;(7)) is
the matriz of I'(1) in the basis of I'(7): €(r) = e + &S;, that provides the system of coordinates
z € R" s (x,5.x) € (7). As an immediate consequence we get that T'(7) is positive definite iff the
matriz S'(T) is positive definite.

Given a curve I'(t) in the Lagrangian Grassmannian, in what follows we will identify I''(¢) with the
quadratic form I'(t). We will assume also the following transversality conditions in increasing order
of restrictiveness:

(1) I'(t) is non-singular, that is I'(t) # 0, for all ¢.
(2) T'(?) is regular if I'(¢) is a non-degenerate quadratic form on each Lagrangian subspace I'(t).
(3) T'(¢) is monotonous if T'(¢) is definite (positive or negative).

In what follows we will just consider regular curves in the Lagrangian Grassmannian and, unless
there is risk of confusion, we will call them Jacobi curves.

Definition 1. A regular Jacobi curve T (or just a Jacobi curve for short) on the (conformal) symplectic
space W is a smooth reqular curve in the Lagrangian Grassmannian £ (W).

3.2. The classification of Jacobi curves: curvatures. As it was discussed in Sect. 2Z.1.1] there is
a natural transitive action of the conformal symplectic group CSp in the Lagrangian Grassmannian
(a,A) — al, for all a € CSp and A € Z(W). The same action induces an action on the set of Jacobi
curves, that is if I = I'(¢) is a Jacobi curve then T' = aT' = a(T'(t)) is also a Jacobi curve. Notice that
the action of C'Sp on the Lagrangian Grassmaniann is the same as the action of the symplectic group
Sp. More generally will say that the Jacobi curves I' and T' are C'Sp-equivalents if there is a change
of parameter t = ¢(f) and an element a € CSp, such that al'(t) = al'(p(f)) = T'(f). This implies
that the map [['] — [I] between the graphs of the curves ' and T, given by I'(t) — (¢~ (t)) can be
obtained by restriction of the conformal symplectic map a.

The problem of classification of Jacobi curves consists of finding an algorithmic criterion that

allows to decide when two Jacobi curves are C'Sp-equivalent (or just ‘equivalent’ if there is no risk of
confusion).
Parametric curvatures. Curvatures could provide the criterion we are looking for. A parametric cur-
vature is a function x that assigns to any Jacobi curve I' = T'(¢), a differentiable function xr = kr(t)
such that k.- = kr, for all @ € CSp and kr(t) = kr(t + to), for all ¢,tg such that ¢ 4 ¢y belongs to
the domain of I'. We will say that the parametric curvature & is of order < r, if kr is a differentiable
function of the derivatives of order < r of I'. We will say that « is of order r if it is of order < r and
it is not of order < r — 1.
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Absolute curvatures. Given a parametric curvature x, then for a given Jacobi curve I, the function
£r(t) will change in a specific manner under changes of parameter t = ¢(t). In general x(t) will
not coincide with xr(¢(#)). When the parametric curvature x is consistent with respect to changes of
parameters we will say that x is an absolute curvature.

Definition 2. Let k be a parametric curvature for the class of Jacobi curves. We will say that k is

an absolute curvature if ki (t) = kr(@(t)) for all changes of parameters t = ¢(t).

If s is an absolute curvature, then for each Jacobi curve I' it induces a real function spy: [I'] = R,
on the graph of T, given by xrj(A) = kr(t), where A = I'(t). Finally the invariance of parametric
curvatures with respect to the action of the conformal symplectic group implies that the map xpy is
CSp-invariant, that is xrj(A) = kper(aA), a € CSp. The absolute curvature x will be called just a
curvature (unless there is risk of confusion).

Complete system of curvatures. A family {x!,..., k" } of absolute curvatures will be called a complete
system of curvatures for the class of Jacobi curves if for any pair of Jacobi curves I',T: I — & (W),
such that Ii% = Ii%, for all s = 1,...,r, then I" and I are equivalent. Note that this implies that

any diffeomorphism a: [I] — [[] that preserves the curvatures s’ is the restriction of a conformal
symplectic transformation a € C'Sp.

We will say that a system of curvatures {x',...,x"} is independent if the functions s’ are func-
tionally independent. Then, a complete family of independent curvatures will provide a classification
of Jacobi curves. We will devote the remaining of this article to construct one such family of curva-
tures, thus solving the problem of classification of Jacobi curves. It is relevant to point out that the
construction to be described is algorithmic.

3.3. Geometric arc parameters.

Definition 3. A geometric arc parameter is a map dse that assigns to each Jacobi curve I' an arc
element dsp = (p(t)dt (that is, a 1-form along the curve T' = T'(t)), invariant under the action of the
conformal symplectic group CSp, i.e., dspr = ds,r, for all a € CSp, and if t = ¢(t) is a change of
parameter, and I' =T (¢(t)) is the reparametrised Jacobi curve, then ¢*dsr = dsg, namely:

() = Crlp@) %

Note that if ds, is a geometric arc parameter, then the length L(I") of the curve does not depend
on the parameter we use to parametrise it, namely:

b b
umz/@ww=[@®ﬁ=um.

and, in addition, L(T") = L(al"), for all a € CSp.

4. THE RICCI CURVATURE TENSOR OF A JACOBI CURVE: THE DERIVATIVE CURVE

4.1. The derivative curve and its symmetry. The construction and definition of the Ricci cur-
vature tensor will rely on the notion of the derivative curve of a Jacobi curve. We will present here
a construction different from the one that appears in [Ag02] that is, we believe, perhaps simpler and
more natural. We will illustrate it first in the bidimensional case, where the Lagrangian Grassmannian
is just the projective line.

4.1.1. The derivative curve in the bidimensional case. If dim W = 2, then for every w € W\{0}, we
get (w|w) = 0, hence the vector line [w] € P(W) defines a Lagrangian subspace and Z(W) = P(W).
A symplectic basis is just a pair of vectors e, € such that (e | €) = 1. Symplectic coordinates (x, Z) with
respect to such basis allow us to identify Z(W) with RP' by considering the Lagrangian subspaces
A=1]e=(1:0),and A =[e] = (0:1). Under these circumstances the affine line structure for
A™ = RP'\ A, is given by the Cartesian coordinate S € R — (1:S) € A™, with origin in A. Thus, a
Jacobi curve T'(t) in RP'\A is given in projective coordinates by (1 :S;), with S} # 0 for all . Thus,
we get:
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Proposition 2. Given a fized value of the parameter T, there exists a unique point A, € L (W),
A, # T(t), for any t, such that the curve T(t) in the affine space AT, denoted as T'a_, satisfies
A (1) = 0. More specifically, if S # 0, then:

A= (S7:8.50—2(50)%) , (4.1)
and, obviously, if S =0, we get A; = A= (0:1).

The assignment 7 — A, will be called the derivative curve of the Jacobi curve I'(¢). The proof
that such curve exists in this bidimensional setting is simple enough.

Proof. Given A = (1 :a) € A" = RP'\{A}, the Cartesian coordinate S in A" = RP"\{A} and origin
in S, is given as a function of the Cartesian coordinate S in A™, as:
s S —=5;
S = .
S—a
Then, substituting the Cartesian coordinate S by S, we get the equation for the line I'(¢) in the affine
l
space A™:

o St - ST
Sy = S
We are looking for a number a such that S” = 0. Writing f(t) = S; — S, we get:
PR (N ()
fO)+8Sr—a  f(t)=b’

with b = a — S;. Then,
& bf’ G f'(f —b) —2(f")?
Sl=——"—+  and S/=-b :
(f—0)? (f—b)?
Thus, if we wish S” = 0, we get: f”(1)(f() —b) — 2f'(1)? = 0. Substituting f(7) =0, f'(r) = S,
f"(r) =82, and b = a — S;, we obtain the desired expression:

2 S/ 2
Vs ASP
S
that corresponds to the point with projective coordinates (4.1]). O

4.1.2. The definition and construction of the derivative curve in the general case. Using as a guide
the construction described in the previous section, we will proceed to construct the analogue of the

curve 7 — A, cfr. (4.1), when dim W = 2n. As discussed in §2.2.2) cfr. (2.13), let us consider a
coordinate system S = S%\m on the affine space A e Z (W), with origin at A, that is S(A) = 0. For a
given regular Jacobi curve I' = I'(¢) with ¢t € I C R, we have that S, := S (I'(¢)) is differentiable and

the matrix S} € R™*" is regular in any coordinate system S/K\m with A € A .

Remark 2. Note that choosing the parameter T € I such that T'(1) € A® ﬂXm, then S — S, = S;SHT),

with S; the matriz of coordinates of I'(7), is a coordinate system on A with origin at T'(7). Hence
A . —rh . . .
(S—5,)t= S?(T)m are coordinates on T'(7)" N A" NA", and the matriz of coordinates S — S, is
. . . . —h .
invertible at any Lagrangian subspace in T'(T)" N A" NA". Also, we can observe that the matriz

—h
(S; — S;)~! are the coordinates of the curve T' = T'(t) on T(T)" N AT NA" fort, T #t, in an open
interval that we can consider as the interval I.

Given a Jacobi curve I and A € £ (W) we will denote by I'a the restriction of the curve I' to the
affine space A" € Z(W), i.e., Ta(t) = T(t), [i)rovided that T'(t) € A™. Then the derivatives I"y, T'4,

X, ... of T'a are defined in the vector space A™ associated to A™.

Consider now a Jacobi curve I'(t), then fixed a point T'(7) of the curve, and A € T'(7)™, there exists
€ > 0, such that I'(t) € A™ for all |t — 7| < ¢, and we denote as indicated before, by T'a the restriction
of I to A™. Under these conditions we get the following theorem that extends our previous result,

Prop. [2}
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Theorem 1. There exists a unique A, € T(7)" such that ' (1) =0.

The proof of Thm. [I| has two parts. First, assuming its existence, an explicit expression for the
coordinates of A, will be given.

Lemma 3. For fized t = 7, let us assume that there exists Ay € T'(7)™ such that Tk = 0. If
SY = SA (A;), then both S — S, and SV

T

are invertible and we get:
SY =S, —28,(S7)7's; (4.2)
Proof. Recall that we can write
S2y () = (A,T,A) : A — A,
Moreover we have (A, I, A) = <A,F,K>71, and then, we have:
Si— 8. =S (0 (1)

80— 5. =55 (A,)

then (S — S,)~! = SFK(T)m (A,) are the coordinates of A, in the affine space T'(7)™. So, SO — S, is
invertible.
Fixed I'(7), now we will seek the expression of S2. Observe that:

~ i\ 1
Si= (=57 = (2= 5)7") =887 (1) Tr) — A, (4.3)
corresponds to the coordinates of I'(t) in AT with origin at I'(7). Let us compute the condition:
sl o=o.
t=1
For short, in the following computation, we will call
=5 —5-
C=8"-5,
= Sg - St

and since B; = S; = —D;, and C’ = 0, substituting at t = 7, we get:

_ (4) (4)
A
where (i) denotes the i—th order derivative with i = 1,2, ...
Notice that we can re-write as:
Sy = ((St — 87— (80 - ST)_I)_l =
— (B - = (BB (By - co ) =
= (B (C—By)C~ 1)’1 =C(C-B) 'B,=C (D) ' B, = (4.5)
= (S2-5,) (82— 5) " (S: = Sy) (4.6)
From equation , we have S; = C (Dt)_ By, then:
Si=C (=(D)"'Dy(Dy) "' B, + (Dy) "' By) =
=C(Dy)7 'S, (D) "By +1d) , (4.7)
and, substituting ¢ = 7 in equation ([4.4)), we get
Sl =9, (4.8)

Deriving again (4.7]), one obtains:
Sy = C(Dy) ™" (28,(Dy) 18] + 8)') (Dy) ' By +1d) , (4.9)
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and, again for ¢t = 7:

S/ =28 C71S + 87 =257(S0 — S,)"1SL + 5. (4.10)
If $” = 0 then
(82— 8,)7 = ~5(8) 7 8(5)) (111)
and since S2 — S, and S’ are invertible, so is S”. Finally, we can re-write Eq. as
SO =8, —28.(8’)"1s. (4.12)
to obtain the expression of S? as claimed. O

Before the proof of the existence of A, we will establish some technical facts.

Lemma 4. Let ¢ : I — R be a smooth function. Then the function

tp(tl);tp(s) ift+s
glt,s) =9, 1o® il
o' (t) ift=s
defined in a neighbourhood of the diagonal Dy = {(t,t) : t € I} is smooth.

Proof. By Barrow’s rule, we have

oot = | 3

PO+ (1= N)s) d\ = (£ — s) /1 SO+ (1= \)s) d
A 0

then
1
g(t,s) = /o O (At + (1= N)s) dA

is the sought function. O
Lemma 5. Given a Jacobi curve I' = T'(t) ~ [?] , then the function
t

Si—S.
_} == ift#£s
G(t.5) { Sy ift=s

is smooth, symmetric and invertible with smooth inverse F(t,s) = G(t,s)~! in a neighbourhood of the
diagonal Dy.

Proof. If S; = (S; -(t))zljz1 € R™ ™ is a smooth symmetric matrix, then we can apply Lemma [4] to
the components .S;; obtaining smooth functions

Sij(1)=Sij(s) -
o5 (t, s) _ SIJ L J 1f t f S
1 (@) ift=s
So, the matrix G(t, s) = (gi;(t, 5))%:1 is smooth and the symmetry of Sy implies the symmetry of G.
Moreover, since
det G(t,t) = det S} #0
then, by remark 2] G is invertible in a neighbourhood of D; and
Gt,s)™ = (t—s) (S, —Ss) "
which is also smooth in a neighbourhood of Dj. O

Recall that, because of transversality, the curve I' is also defined in the affine space F(T)m having
coordinates:

S (T(B) = (S = 8-)7 1.
The curve: - B
) = (t—7) (0(t) - A) iy

is defined for t # 7 in the vector space I'(1)", where (T'(t) —A)
the map

I(ry is the vector corresponding to

(0(t) = &) pyy = (O, K, T(7)) : T(t) = T(7)
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with coordinates given by the function F(t,7) = (t —7)(S; — S;)~!. By Lemma 5| F' can be extended
] -

smoothly to ¢ = 7, because F(t,t) = (S;)~! and then T'A(¢) can be smoothly extended to t = .
Moreover, for any A € T'(7)™, we get:

() = A) piyn = (O = D)pipn + (A = A) )

and since the last term on the right hand side of the previous equation does not depend on ¢, then
the curve

LA(t) = (t = 7) (C(t) = A)p(ryo

can also be extended to t = 7.

Now, the second part of the proof, that is, the existence of A, follows from the following Lemma.

Lemma 6. There exists a unique A, € T'(7)™ such that (T2 (1) = 0, and if A, € Km, its coordinates
are given by:

S(A‘r) =Sr — 25‘/1-(‘517{/)715‘/1'
Proof. Fixed 7, consider the Taylor series of the function F(t) = F(t,7) = (t — 7) (S; — S,) "' at
t = 7, which is given by:

F(t) = B_1(7) + Bo(r) - (t = 7) + Bi(1) - (t = 7)% + - --
with F(r) = B_1(7) = (S.)71, and ﬁ’(z) = By(7). Notice that the coefficients B;(7) are symmetric
matrices representing the coordinates S?(T)m of the corresponding derivatives of T'* = T'A(¢), at t = T,
in the affine space I'(7)™, in particular F’(r) = By(7) ~ (S§(T)m)’(7).
We can choose A, € I'(7)™ such that (S(A;) — S;)"" = Bo(7), then the curve in F(T;m:
PA(E) = (¢ = 7) (D) = Ar)p oo

can be written in coordinates as:

Fa(t) = F(t) — (t — 7)Bo(7)

verifying F’y (1) = 0, and corresponding to (I'*)'(7) = 0.
Now, let us compute By. Notice that the function f(t) = Sy — S has the Taylor series at ¢t = 7
given by:
1 1
f6) =Syt =) + 587t =) + St =)+
and so

(1) — _f(t)_lll/_ 1///_2
G(t)=G(t,1) = —— =S+ 55/t —m)+ 28/ (t—7)°+ ..

therefore, denoting by (i) the i—th derivative respect to t, we get

1y

GO =75
Since F(t) = G(t)~!, deriving at ¢ = 7 we obtain
Fl(r) = ~G(r) & (n)G(r) ™ =~ (5)78())
and because F'(7) = By(r) = (S(A) — S;) ", then
(S(8) ~ 8,)7 = ~Glr) G ()Gr) " = 5 (818 (8))
whence

S(A) =S, —25.(S!)~ s

Now, we are ready to prove Thm.



ON THE CLASSIFICATION OF JACOBI CURVES AND THEIR CONFORMAL CURVATURES 15

Proof of Theorem [l We can always choose A such that A, € Xm7 then since the coordinates of A,
in Lemma [6] coincide with the coordinates of A, in Lemma[3] that is:

S(A,) = S, —25,(S)71SL = 52,
then both Lagrangian subspaces coincide, thus the proof is concluded. O

Definition 4. For a given Jacobi curve T' = T(7) the unique curve A: I — T(7)" € Z(W) such that
A(T) € T(T)", and FZ(T)(T) =0, for all T € I, is called the derivative curve of I'.

4.2. The Ricci curvature of a Jacobi curve.

4.2.1. The intrinsic definition of the Ricci curvature operator of a Jacobi curve. We will consider as
before I'(t) a Jacobi curve with A(7) = A, its derivative curve, cfr. . In the affine space AT we

can take the origin at I'(7). With that choice of origin, the linear space AT associated to AT can be
identified with (cfr. Eq. (2.11)):
AP = S(O(r), Ar) = {8: T(r) = A, | (S(u) | v) = (S(0) | w), Yu,0 € T(7)} -

Moreover, as Iy (7), and I'{ (7) are in the vector space BT, and Iy (7) is non-degenerate by

definition of Jacobi curve, we can define the operator Rp: I'(7) — I'(7) as:
Rr(r) = (s, (1)) "' o TR (1), (4.13)

that is, Rr(7) is the operator making the following diagram commutative:

(4.14)

Definition 5. Let T'(t) be a Jacobi curve. The curve of linear maps Rr(7): T'(t) — T'(7) defined by
b

the previous diagram, , that is, Rp(1) = (F/AT)_I oT'X , will be called the Ricci curvature tensor
of the curve. We will say that the (regular) Jacobi curve T'(t) is admissible if Rp(7) is invertible.
If we choose a symplectic basis (e,€) such that the Jacobi curve I'(¢) has the coordinate represen-
. 1 . . .
tation I'(t) = [ g , then the matrix S(S,) associated to the linear map Rp(7): I'(t) — I'(7)
+ _
(e@)
with respect to the basis e 4+ €Sy, will not depend whether we use the symplectic basis (e, €) or any
conformal symplectic basis (ey, €y) in the class of [w], because the Lagrangian subspace I'(7) and the
affine structure of A™ does not, cfr. Sect. [2.1.2] This important observation implies that the Ricci
curvature Rp depends just on the conformal symplectic structure of the space W.
The Ricci curvature operator Rr defined above coincides with the curvature operator introduced
by Agrachev and Zelenko in [Ag02]. As a consequence of the computations in Lemma [3| it is possible

to obtain its matrix representation from S;. Deriving again in 1) and taking into account 1) we
can write:

Sy = C(Dy) ™t [V 4 38 (D) ™LS) + 3S,(Ds)7LS) + 6S4(Dy) 1S5 (D) 71S,] - ((Dy) 1By +1d)
and for ¢t = 7, because of and , we get :
S =CCT S 4+ 381CTSL +35LC7SY + 6S.CTLSLCTSL] 1d =
= SSI(SI)TS S SU(S) S + SS(S) SY =
A R R A CANE I I TR IR CRE)

with S (S;) denoting the Schwarzian derivative of the curve S; (that will be discussed at length in
the coming section). The matrices S/, S’ correspond, respectively, to the coordinates of the maps
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A and Iy  so, using (4.8)) and (4.15), the expression of Rr in the same coordinates is given by the
matrix S(S,):

S(S-) = (Sp)7hsy = S ((S1)71sy)” (4.16)

in full agreement with the results in [Ag02].

N w

Definition 6. For any non-singular matriz S; = S(t) € R*** depending smoothly ont € I C R, the
expression found in will be called the Schwarzian derivative of S;.

4.2.2. The coordinate representation of the Ricci curvature: The Schwarzian derivative and the change
of parameter formula: We will study first how the Schwarzian derivative S(S;) of Sy behaves under a
change of parameter.

Lemma 7. Let us consider two smooth functions ¢ : I CR—-JCR and ¢ :J CR — I CR, which
are inverse functions of each other, that is, they satisfy t = ¥(t), and t = @(t). Then we have:

s@hk=-(%) $@hop (4.17)

"y e 2
with S ()l = L8 — 3 (w (t)) .

Proof. Since

dt
or equivalently, simplifying the notation
e 1
YOZ S0
Then we have
"(E _‘PH (t) ’ /(t)
TOTTL0r |,
e =" ) (WD) (1) — " (1) B () +2(" (1) (' () B
V" (F) = _
(¢ (1) o)
_ "0 (@) () +3(" (1) (')’
(¢ (1) o)
Now, we can compute
o q/}///(Z) B § wl!(%) 2 _
SWk="5m ~ 2 (w))
_ ( ¢ () (WD) ¢ O +36" ) (WD) 3 <—s0” (1)) -w'<t>)2> _
(¢' (1)) 2 v (1) =0
QM) e 3@ ) e _
( ¢’ (1) W) +3 (¢ (1) Vo) ) t=u(D)
=~ (W' @) S©l—yp
as we wanted to show. O

Proposition 3. Lett = (%) be a change of parameter for a Jacobi curve T, that isT = T'(t) = T'(4(%))

such that T'(t) ~ [?] and D(t) ~ ES'd] , are the corresponding expressions in coordinates. Then
7 t

560 = (%) 86um) + S 1
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Proof. Since S; = Sy then

- d ,
Si==Si=v'[D5q (4.18)
—1 d2 / "

S; = ES =" (®)S),q + (V' ))? Sy (4.19)

—I1" d3

S = S35 = v DS, + 30 OV DS + (D) S

5 (57) = (50757 - 5 (89 7'57) =
- [w}()( o) (w”’< Sym + 3O OS] + (') SZ&N@” -
_g- o ) (0@ g + (v (>)25§Z<t>)]2:
- W) T+ 39" ()8} S + W'(t))2<%<t>)_l%l<t>] )
Jzi:;a@ <% > (0[50 - (5500500 -
= S(W)k-1d+ (C;f) S(Sy)
as claimed. )

The result of Prop. tell us how the Ricci curvature Rp(7) transforms under a change of parameter

= (t):

B0 = (%) Re @l + SO 1 (4.20)

Remark 3. Note that if Rr(t) is diagonalisable, the same will be true for Rx(t).

4.3. The geometric arc parameter of a Jacobi curve.

Definition 7. Given a Jacobi curve T' = T'(t) ~ L{ ] , we define its parametric Ricci curvature as the
t
real valued function on the parameter t of the Jacobi curve given by:
Ric; = tr (Rp(t)) = tr (S(Sy)) -

Definition 8. Let I'(t) be a Jacobi curve and T'(t) = T'(¥(f)) a reparametrization of T'(t). We will
say that t is a projective parameter if

Ric; = tr (Rpg) = 0.
Proposition 4. Any Jacobi curve T' = T'(t), has a projective parameter.

Proof. Given the Jacobi curve I'(t), consider the reparametrization ¢ = ¢(t), obtained solving the
Schwarzian equation:

1.
S(p(1)) = - Ricr (¢),
then, because of Eq. 1D and Lem. |7} Eq. 1' we get immediately, that Ricy = 0. g
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If ¢ is a projective parameter for the Jacobi curve T', taking the trace in Eq. (4.20), we get:

d 2

1 (dp\?
S(T/f)h:—ﬁ (;f) Ricy,)

whence:

and Eq. (4.20) becomes:

Re(F) = (‘f;f)Q [Rp ((B) - %Ricw) -Id] . (4.21)

Given the projective parameter ¢, we can define the geometric arc parameter sy, recall Sect. 3.3

dsp=C(B)dE  with  C(F) = %/|det (Re(®))|.

Let us observe first, that the geometric arc parameter sy given above is well defined and does not
depend on the projective parameter ¢ used to define it. Indeed, if ¢, and ¢t = (f), are projective
parameters, then S(¢) = 0, and we get:

W*(dsp) = * (a"/det Rp(t)dt) = 2/det Rr (¥ (7)) %df ,

but then, using (4.20]), with S(¢)) = 0 (the parameter ¢ is projective by assumption), we get:

)
/et Rp(¢(ﬂ)%df= 2’\L/det @iﬁ) Re(D) %di: 20 [det Re(f)d = dsx-,
with T(H) = (/).

Then the geometric arc element depending on any parameter ¢ such that ¢ = (), where t = ¢(t)
is a projective parameter, can be computed easil

dsr(t) = ¢* (dsp)l, =

— To(t)) 2ty at =

dt
= *{/|det (Rp(1)) Ccle(t) dt =
2
_ o det<<2‘f(<p(t))> [Rp(t)—Rlct IdD Z—f(t) dt

that is,

dspr = ((t)dt where ((t) = 2T\L/ det (Rp(t) - %Rict . Id)‘ ) (4.22)

Notice that, if T' = I'(s) is parametrized by the geometric arc parameter s such that ¢ = ¢(s) and

s = p(t), then
dip do, N\ ' 1
ﬁ(@(t» = (dt(t)> =@

4Without any lack of generality we may assume that the change of parameter preserves the orientation, that is,
dy
= > 0.
dt
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and therefore, by the equations (4.17) and (4.21)), the expressions of the curvature operator and the
Ricci curvature for a Jacobi curve parametrized by the geometric arc parameter s can be written, in
terms of any parameter ¢, as follows:

Rr(olt) = g5 [Rr(t) = S(2)], - 14 (123)
Ric,0 = g [Riee = 8 ()] (4.24)
S(p) = CCH - g (g) (4.25)

with ((t) given by (4.22).
Definition 9. With the previous conventions and notations, the operator given in Fq. , will be

called the absolute curvature operator of the Jacobi curve I'(t) and it will be denoted as Rr(t), i.e.,

1
= 427(75) [Rr(t) — S ()], - 1d] (4.26)

Remark 4. Since dsy = ds, because of , we get:

Rr(t)

det (Rp(s) - %ﬁs -Id) ’ =1.

4.4. Symmetry of the Ricci curvature. Because of Prop. [} we identify the tangent vector I'(t)
of the curve T" with the corresponding symmetric bilinear form I'(0), so we will denote I"(¢) € S (T'(t)).
It will be helpful to see IV (t) as a map

I'(t) : T(t) — T(t)*

where I'(£)* denotes the dual space of I'(t), because denoting by (u,v)p: ;) = I'(t) (u,v) the bilinear
form T(t) then
() (u) = (u,-)rr(e) € T(t)".
Also observe that, since the derivative point A, corresponding to I'(7) is transversal to I'(7), that
is A, € T'(r)", then the map A, — T'(7)* defined by u w(t, )py = (| )rr), is a linear
isomorphism, and we can write the bilinear form (-, -)p/) € I'(t)* in terms of the symplectic form w

as (recall Eq. (2.11))):
(u, v)p ey = (T'(#)(w) [ v) = () (v) | u)
where we identify the form I'(t)(u) € T'(t)* with its corresponding vector in A,.

Theorem 2. The Ricci curvature operator Rp(r) : T'(1) — T'(7) is symmetric with respect to the
symmetric bilinear form I'(T).

Proof. Let us take into account that the linear maps 'V (7) : T'(1) — A, given by the derivatives of
the curve I for 7 € N verify that:

(P9 ) [v) + (u] T(F)(w) =0
and, consequently:
(T (r)(w) [v) = @"(7)(v) | u).
By diagram [4.14] we get:
(Rr(7)(w), v)rr(ry = (T'(t) (Roy (w) [v) = (D7 (7)(u) | v) =
= @"(7)(v) | u) = (Rr(7)(v), u)r/(p) =
= (u, Rr(7)(v))r (1)

as claimed. 0

Corollary 1. The Ricci curvature operator Rp(7) : T'(7) — T'(7) is diagonalizable, i.e. there exists a
basis of eigenvectors £ = (f1,...,£,) of T'(7).
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5. CARTAN THEORY OF JACOBI CURVES

This section will be devoted to the development of a Cartan-like theory of moving frames describing
the structure of Jacobi curves.

5.1. Moving frames and the Cartan matrix of a Jacobi curve. Let (e,€) = (e1,...,€m,€1,...,€n)

be a symplectic basis of (W, w). Now, consider a Jacobi curve I = T'(7) such that I'(7) ~ [S{ ] where 7

is the geometric arc parameter. Let us assume that T'(7) is such that S’ is positive or negative definite.
Then, by Corollary |1} there exists a basis f = (f,...,f,,) of eigenvectors of the curvature operator
Rr (1) : T (1) — I'(7) orthonormal with respect to S.. By Lemma [1} there exists a complementary
basis £ = (f1,...,f,) of A; € Z£(W) such that (f,f) is symplectic basis of W. Then, in virtue of
diagram , we write, cfr. :
f=eM,+eS; M,
{f_eMT+e SO M, (5.1)

where, recall (2.9)):

M, = (82— S,)~t (M)~ (5.2)
and S? is the derivative curve of I'(s) given by equation (4.12)). Therefore:
(f.f) = (e,e) P, (5.3)
where P, € R?™X2™ has the form:
M, L.
PT - <S7—M7— SEMT) 9 (54)

and we will call the symplectic basis F' = (f, f) a symplectic Frenet basis for T
Deriving the equation (5.3) with respect to 7, we get:

(f’yf’) = (e,8) P, = (£,F) P;'P. (5.5)
where f' = df /dr, ¥ = df/dr, P. = dP, /dr, and:
C,. =P 'P. (5.6)
is the Cartan matriz of the moving frame (f , f).

5.2. The structure of the Cartan matrix. Observe that the matrix (5.4) can be factorized as
P.=U,V,

I I M, O
U, = (ST SE) and V.= ( 0 Mr) .
The inverse of P, is

MU0 (82 —5;)7182 (82— 5,)7
. B 1 1 . T . T T T T T
P =V U= ( 0 M_l) <—(50 ~8:)7IS, (S2-S,)7 )

T T
and its derivative with respect to 7 is

where

P =U.V,+U,V.

whence
|C, =P;'P.=V_'U;'UV, + V] VL] (5.7)
Let us compute the expression of C. depending on S, and its derivatives.
By equation ([5.2), we have that
M= MI(S2 -8, (5.8)
M = —(S2 = $0) 7L (82— 8,)/(82 — 8,)~F + (MT) = (MT Y] (MT)~?
M, M= ~MT(2 ~ 8,)/(82 — 8,) " (M) — (MTY (MI) 7 (5.9)
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Moreover, since

1y — (Sg - 57)7152 _(SB - S'r)il 0 0 —
U Ue = <—(59 — 5718, ($2-8,) ) <s; <52>/> -
(S S)7ISL (50— §,)7H(SY)
- ( (S 5.)718)  (SY - 5.)7H (82 )

then, using equations (5.2), (5.8)) and (5.9)), the two terms on the r.h.s. of (5.7) can be written as:

M-l 0 (S0 — 8718 (S0 — §)71(S0) (M. 0
1 Ay . r T T T T T T T _ =
VAUSULY, = ( 0 M1> ( (S2=8)71sL (82— 8,)7H(SY) ) ( 0 MT)

T

(—Mﬁ(SB —S)TISIM,  —MH(S — §,) 71 (S9)/(S0 - ST>1<MTT>1>

M S, M, MT(80)/(S9 - 8,)" (MT) !
V—lv/ _ (MTlM;' 9/) _
T 0 MM, M.
- <M;1M4 0 >
B 0 —MT(S? = S7)(S7 = S-)~H(MI)~H = (M) (M)~

From equations (4.11]) and (4.12]), we can compute
(S0) = —35, +28,(51) ' S(S1) S,
1
(57 = 87) 7S = —5(S) 7' sY

1
SL(SY — 5.) 7t =~ (s

(S50 5,07 = (-ast + 25045 sy/(s0) 1) (-3 s sus) ) -

N =

3 _ _ -
= D887 - (s S (s) =

Q-1 _§ IN—=1qregr\—1¢gr r\—=1grm =1 _
ST(ST) S‘r ( Q(S‘r) S’r (S'r) S‘r + (S'r) S‘r (S'r) -
= =S (S) 7S 8 (S) - ()7

So, using equation (5.7), we obtain the explicit expression of the Cartan matrix C, in terms of S,
and its derivatives:

cT_(Mfl 0><é<54>154' —éS(S»(S;w) (MT o)_1>+(M,1M; 0 )

0 M7 S" “lgr(sryt 0 (MT 0 — (Mm)”
(5.10)
where we have used that (M) (M)t = (M;lM;)T.
If we denote
K1 Ko
C, =
(K21 —K1T1>
then we have
1
Ky = 5 M7H(Sy) ™ ST M, + MM
1
Ky = —§MT_1S(ST) (Sp) )
Koy = MYS! M,
Because the column vectors of M, are normalized with respect to the bilinear form S., see Sect.
then
Ko = MTS! M, =1d (5.11)

and therefore

(S2)~' = M, MF. (5.12)
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Deriving the equation M S’ M, = Id, we have
(MTYS M, + MTS"!M, + MFS. M. =0
and because of Eq. , we get
MTS!M, = — [M;lM; + (M;lM;)T] .
So, substituting in the expressions of K15 and K71, we obtain

K =~ M7 (8) (87) 7 (M)~ = S M 'S (S,) M,

1
K1 = 51%;1(5./,_)715./,_,1\47— + M;lMi =
1
= 51%?57/./1\47 + 1\4;11%7]— =

= 5 [M ()] v =

= e

2
Then, we can write the Cartan matrix as
Mot - (o) —AMS(S,) M,
C, = . (5.13)
Id LMty = ()"
It is important to observe that, since M, is the matrix of eigenvectors of S (S, ), then:
1 1
Ko = —§M;1S(ST) M, = —§DT
is diagonal, and D, is the matrix of eigenvalues of the curvature tensor. Moreover, we also note that:

1
2
Therefore the Cartan matrix has the block structure:
. K,
Cr= (Id ET>
where K, = —1D, € R"*" is diagonal and ¥, € R"*" = 1 {(M;lMé)T - M;lM;} skew-symmetric.

But the eigenvalues k; with ¢ = 1,...,n of D, still verify an additional property. Indeed, since
I' =T'(7) is parametrized by the geometric arc parameter 7, because of Remark 4} we get:

Ki = [(MT_IM;)T - MT_IM;} =—Ku.

1 1 - 1«
1= |det (RF(T) — —tr (Rr(r)) Id> ‘ = |det <DT — —tr (D) Id) ‘ = H1 bi =~ z; kj (5.14)
1= Jj=
that establishes a functional dependence among the functions k;, ¢ = 1,...,n. Writing % Z;nzl k; as

k., the previous condition (5.14) becomes [ 11k — k| = 1, or even better:

7m
HAki =1,
i=1

where Alﬁ = |k1 — ]2'|

Next, let us compute the matrix C, for any parameter. Let ¢ be another parameter for I' such that

t =(7) and 7 = o(t) in such a way I = I'(t) = T (o(t)) ~ {5{} Then we have:
t

S T oy —C W) () —C ()
YO = e T cemy V0T T E@wm) BWn)
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and, because of Prop. [3] and Lem. [6 we get:

1 ~
S(S7) = =3 (S(8) = S(p) - 1) . 5.15
(5:) =z (85 -S(¢) (515)
Because of equation 1) any eigenvector f, of Rp(7) = S (5;) is also eigenvector of Rx(t) = S(S,).
If f, is normalized by S. then f, = —~_f, is normalized with respect to §,§ Hence, we have that

<)
e - -1
MISM,=1d & S = (MtMtT )
and M, 'S(S;)M, = D, is diagonal. Moreover

M| — iy = V C(t)M,

where M, is the matrix of coordinates of the eigenvectors of Ryx(t) orthonormal with respect to g{ .
So, we have:
dM;

Mol ) = g M+ (),

2¢1/2(t)

T=p(t)
and since ¢’ = ¢, then:
dM.
cdt

__d@® 1
oty 2632(1) ¢H2(t)
Substituting the previous expressions in the blocks of the matrix (5.13) for 7 = ¢(¢), we obtain:

LT T - L [ ()
> [MT M. — (M7MY) }_%(t) MM (Mt Mt> : (5.16)
and also, using (5.15]), we get:

1 IR 2 B 1/~

M8 (S0 Mr = 55 5 (Mt S(8,) M, — S(¢) 1) =3 (Dt S(y) 1). (5.17)

Then equation (5.10) becomes:

M, +

oy |90 = (R 02)' | e (B - 5060 10)

i - (31 37)'| o

Cowy =

1

Remark 5. Note that if {k;}i=1,... n are the eigenvalues of S(S;) and {\;}i=1,.. n the corresponding
ones for S(S;) then, they are related by:

1
Indeed,
det (S(S,) — k;Id) = 0 = det (22 (S(@) - S(@)Id) - kﬂd) —0=

= det (412 {S(Et) — (S(y) + %K) IdD =0= det (S(§t) — (S(y) + ki) Id) =0= X\ =S(p)+ k.

Remark 6. Observe that, with the notation above, and denoting by §$ =S89 lo(t), the coordinates of
the derivative curve depending on the non-geometric arc parameter t, we have that:

-3 28 (s;/ _ Cs;) 3.
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6. A RECONSTRUCTION THEOREM FOR JACOBI CURVES

6.1. Reconstruction of a Jacobi curve from its curvatures. In this section we will show that
the matrices ¥ = X(7) and K = K (1) characterize the Jacobi curves for given initial values.
Recall that we have fixed a symplectic basis (e,€) C W in which the matrix of the symplectic

2—form w is written by
_ 0 Id 2nx2n
J = (—I d 0) eR

where Id € R™*"™ is the identity matrix.
First, we will state a lemma.

Lemma 8. Let ¥ = X(1) € R"*" be a smooth skew-symmetric matriz and K = K(r) € R"*" a
smooth diagonal one. For a given symplectic basis Fy = (fo,f9) C W, the solution F(7) = (f(7),f(7))
for 7 € I C R of the initial value problem:

d(;f) = (F,F) = (£,) (I%i g)
E(O) =eAy+€By

f(O) = eZo + EE(]

is a symplectic basis for all T € I and all solutions have the form PF where P is a conformal symplectic
transform, P € C'Sp.

(6.1)

Proof. The existence and uniqueness of the solution F' = F(7) = (f(7),f(7)), is ensured by Picard-
Lindel6f theorem [Ha64, Thm. 1.1]. So, we have that f = (f;,...,f,,) and f = (fl, e ,fm), are the
unique solution of the system (6.1)) that we write as

{ f=eA+eB

f=eA+€B (6.2)

Now, let us denote the m x m matrices
A = A = = —T —T A
w(ﬁf)(AT,BT)J<B>, a%ﬁf)(ATrBT)J<B), w(f,F) = (47,4 )J(B) (6.3)

With this notation, we have that the initial value problem (6.1)) becomes:

E3)-6HEY

and then
A =AY+ A (6.4)
B'=BL+B (6.5)
A = AK + A% (6.6)
B = BK + BY. (6.7)

Deriving the matrices of and using that X7 = -3, KT = K, w (f, f) = —w (f,f)T and
equations 7, we obtain the system of ODEs
Lo f)=—Sw(,f)+w(f,f)S+w(ff) +w(ff)
Lo (,f)=—Sw(f,f) +w(f,f) S+w(ff) +w(f K
Ly () = K (£.F) - Sw (E.F) +w (.0 K +w (EF) S

which has the solution:

w(f,f)=0, w(f,f)=1d, w(f,f)=0, (6.8)
and by uniqueness of the solution, we have that F(7) = (f(7),f(7)) is a symplectic basis for all
Tel. O

Now, we can establish the following reconstruction theorem.
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Theorem 3. Given smooth matrices ¥ = (1) € R™*™ and K = K(1) € R™*", where ¥ is skew—
symmetric and K diagonal for 7 € I C R, with diagonal elements k; satisfying the functional relation

, that is:

m

Ik k=1,

i=1
and a symplectic basis Fy = (f5,f0) C W, then there exist a unique Jacobi curve I' = T'(7) such that
I'(0) = span{fy} € Z (W) and the Cartan matriz related to T' is:

Cr = (1%1 g) (6.9)

Definition 10. With the assumptions of Thm. @ we will call the matriz Cr, given by Eq. , the
reduced Cartan matriz of I' and it provides the normal form for the Cartan matriz determined by a
moving symplectic frame adapted to a Jacobi curve, cfr. Sect. Eq. @

Proof. Let F' = (f,f) be the unique solution of the problem (6.1 of lemma [8| that can be written as
‘

in (6.2). Since F = F(r) is a symplectic basis for all 7 € I then equations (6.3) become:
ATB =BTA (6.10)
ATB-BTA=1d (6.11)
A'B=B 4 (6.12)

Let us define the Jacobi curve I'(r) = span{f}, so

o= (] = f-[s2

and so, we denote the symmetric matrices
S=BA™! S=BA
By equation (2.9), we have that
AT(S§—S)A=Td=— A= (5-5) " (4T)~"
and therefore
(a7 = (4 (5-9)" (AT)”)T AT G- 8) AT = A (6.13)

so A7'A is a symmetric matrix.
Now, let us compute the blocks of the Cartan matrix (5.13)) for the curve I', where we denote

_ (C11 Cai2
CF‘(% Cn)

First, we have

S'=B'A"' - BAT'A'AT! = (because of and (6.5))
=(BLS+B)A™' —BAT' (AS+ A) A7 =
=(B- BA_lz) ATt = (because of ([6.11]))
= ((AT) "+ (A7) BTA - BATA) A =
= ( [ (BA~ ) BAfl} Z) Al = ( since S = BA™! is symmetric )

(AAT)
then,
ATS’A=1d, (6.14)

corresponding to the block Co;.



26 ON THE CLASSIFICATION OF JACOBI CURVES AND THEIR CONFORMAL CURVATURES

Since §' = (AAT) ™", because of equation (6.4), we obtain:
[ (ZAT + AZT) s,
and
S =28’ (ZAT + AZT) s’ (ZAT + AZT) S — 28’ (AAAT +4 ZT) S
Then,
S(S) = % (ZAT + AZT) ' (ZAT + AZT) S —2 (AKAT +4 ZT) S
The block Cy; of Cr is
1

Cui = 5 [16:4 - (11 4)]

S0 using and the symmetry of A~'A we have:
Cu=3+;[4d- (4D =35
Finally, the block C;s is
Cpp = —%A‘lS(S)A (6.15)
SO using , we get:

Cys = —% (471AAT + A7) 8 (A+ 4D (AT) ) + (K + ATA A (AT)7) =

= (A7 AAT AT AT ) (A AAT(AT) ) 4 (K4 ATA AT (AT) ) =
Ly 9= 1 1T —1— 1= 1T 1 41T

== (AT A (4D AT A ATA (AT + (a7 ) +

+(K+ A A (A7) ) = = (A4 + K+ (A1) = (6.16)
concluding that the Cartan matrix is:

S K
Cr = (Id 2) ’

as claimed. 0

Remark 7. Observe that equation implies, because of , that the matriz A € R™™"™ in the
proof corresponds to the matriz of eigenvectors of S(S) whose matriz of eigenvalues is —%K € Rmxm,
Since S’ is symmetric and it can be written by the product S = (A=1)T A= then S’ is positive definite.
Moreover, by equation , the eigenvectors of S(S) given by the matriz A are normalized by the
scalar product given by S’.

It is obvious that the parameters k;, diagonal elements of the matrix K, and the entries oy;,
1 <i < j < n, of the matrix X, are absolute curvatures for the Jacobi curve T'.

Note that in the reconstruction theorem above, Thm. [3] the choice of the adapted symplectic basis
is not unique in the sense, that any other basis (€1 f1,. .., €nfn, €1f1,- s €nfn), With e = £1, with
give rise to the same Jacobi curve. The same will happen if we reorder the vectors fy, fi, or, if there
are multiple eigenvalues, the structure of the eigenvectors f; can be more general. Thus, in the generic
situation when the eigenvalues ki, ..., k, are all different and are ordered in ascending order, that is,
k1 < -+ < kyn, we will say that two reduced Cartan matrices:

Y K -~ (¥ K
¢= <Id 2) , and 0= (Id 2) ’
are equivalent if there exists a diagonal matrix P with diagonal entries #1, such that K = PK P, and
¥ = PYP.
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6.2. The structure of Jacobi curves in dim(WW) = 4. Whenever n = 2, condition (5.14)) becomes:
1
Z(kl—kg)zzl = |k1—k2‘=2

and there exists u = p(7) such that:

{kl (1) = p(r) =1
ka(T) = p(7) +1

So, without any lack of generality, we can write the reduced Cartan matrix as:

0 o —(5) 0

_|-c 0 0 — ()
Cr = 1 0 0 02
0 1 -0 0

From the functions p = pu(7) and 0 = o(7) we can compute the matrix M, solving the homogeneous
linear system of ODEs given by:

f{ = —O'f2 —i—?l
fQ/ = O'f1 + fg
, 1
=~ (55) 6 o (047
?/2 — (%H) f2 + O'f1
Observe that, provided that o = 0, the system (6.17) can be decoupled as:
f] =f; { f, =1,
= - ) = . 6.18
R f, = (45)8 o1

6.2.1. Case 0 =0 and p = +£1. The solutions of an initial value problem of the form:
f'=f
f= nf
£(0) =v and f(0) =+v

with constant 7 depends on the sign of 1. So, if n > 0, then we get:

f(’]’) = cosh(y/nT) - v + % sinh(y/n7) -V
f(r) = \/nsinh(\/n7) - v 4 cosh(y/n7) - ¥V

If n < 0, then the solution is given by:
v

[

{ £(7) = cos(v/In| )'V+\%Sm( nlT) -
£(r) = —/Inlsin(\/Inl7) - v + cos(y/nl7) - ¥

and if n = 0:
{ f(r)=v+v-71

Observe that if 4 = £1, one of the eigenvalues k; = 0 and therefore the vector f; is constant. On
the other hand, if f;(7) is constant along the Jacobi curve, in virtue of the fourth equation of the
system lb since f; and f; are linearly independent, then 0 = 0 and k; = 0. That is, for i = 1,2
we have:

0
0

f;(7) constant <= {Ij

Example 1. In this example, we will assume that o = 0 and p = —1, so k1 = —2 and ks = 0 and
then the solutions f; and fy of are given by:

fi(7) = cosh(7) - vi + sinh(7) - ¥4
fQ(T) =Vo+Vo- T
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If we consider the initial symplectic basis:

<
S
|

= ey
Vi=e1+e€
Vg = €2 —|—62

with respect to the basis (e1,ez,€1,€2), then

{ f1(7) = (cosh(7) + sinh(7)) e; + sinh(7)e;

fo(7) =(1+71)ex+ 7€ (6.19)

and the matriz M, can be written by the corresponding coordinates with respect to (e1,e2). That is,

_ ({cosh(T) + sinh(7) 0
M = < 0 1+

and so, by , we obtain

-1 cosh(r) + sinh(7)) 2
S'/r = (MTME) = (( ( )+0 h(r)) (1 +07_)—2>

Also observe that it is possible to compute directly the matriz S, from the coordinates of (f,fs)
with respect to (€1,€3) by using the expression of the first equation of the system . By , we

have
S M, = (smh(T) 0)
0 T
and then
. 1 inh(7
S — <Smh(7) 0) (cosh(T)-&-sinh(T) 0 ) _ Wf&ih(ﬂ 0
S U A R 0

Example 2. Now, we will assume that 0 = 0 and u = 1 (this means ky = 0 and k2 = 2) and the
solutions of are:
{ fl(’T) =V +Vy-T
)

Again, if the initial vectors are:
V] =€
Vo = €9
Vl =e; + él
Vo =ey + €

then

(6.20)

{ fl(T) = (1 +7')€1 +T61
fo(7) = (cos(7) + sin(7)) e2 + sin(7)e,

and the matriz M, is written as:

_ (14T 0
M = ( 0  cos(T)+ sin(r)) ’
and we obtain

! T -1 _ (1 +T)_2 0
Sr = (M-M7) = < 0 (14cos2r)" ")

—_ 0
1+71
ST = ( 6 sin(7) ) .
cos(7)+sin(T)

or directly, we have
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6.3. The reconstruction theorem and the algorithmic classification of admissible Jacobi
curves. The theory and classification of Jacobi curves with respect to the action of the conformal
symplectic group developed so far allows for an algorithmic description. In fact, such algorithmic
classification can be implemented in any modern symbolic manipulation environment like Mathematica
or Maple. We will succinctly sketch it in what follows.

LetF:F(t):[s{
t

dimension 2n with conformal symplectic class [w].

] be a Jacobi curve in .Z(W), with W a conformal symplectic space of
(e,®)

A) First, we will check its admissibility, cfr. Def.

(1) Compute S}, which is the matrix of a bilinear form in I'(¢) with respect to the basis e + €5,
and we check that is definite positive, ¢fr. Remark [I] If it were positive negative we change
w by —w.

(2) Compute the matrix S(S;), c¢fr. Eq. (4.16), which is the matrix of the Ricci curvature tensor
Rr(t): T'(t) — T'(¢) in the basis € = e + €Sy, and we check that it is diagonalisable, ¢fr. Thm.
We check that all its eigenvalues u;, ¢ = 1,...,n, are different and we reorder them, if
necessary, such that p; < po < -+ < pp.

(3) Compute ((t) using Eq. , and obtain the geometric arc parameter dr = ((t)dt.

(4) Check that det (S(S; — 2Tr (S(S;))) # 0, which amounts to (fi—p1) -+ - (i—py)) = ¢*", where
=1 + -+ pn) and C(¢) is given by Eq. ([£.22).

B) We compute the absolute curvature operator Rr(t), cfr. Def. @D, Eq. (4.26).

C) Next, compute the eigenvalues k;, i = 1,...,n, of Rp(t):

Let SY = S, — 25 (S{’ - %S{) ' S} be the coordinates of the derivative curve depending on t, see
Rem.

D) Construct f = (f1,...,fn) = €M, the Sj-orthonormal basis of eigenvectors of Rp(t), and
f =eM, with M = £(S; — SY)(MT)~1, cfr. Lemma Eq. .

The basis F' = (f, f) thus constructed is the symplectic Frenet basis adapted to the curve I'(t), cfr.

Sect. (.11
E) The equation F’' = FC provides the reduced Cartan matrix C. Namely, f' = £ +f will provide
the matrices:

k
k= - so L (e (i)
. ) 2<(t) t t t t
K,
cfr. (6.18), with k1 < --- < kj, for all ¢, that ends the computation.

In this spirit and following the comments after the proof of the reconstruction theorem, Thm.
we will end this section by restating it as follows:

Theorem 4. (Classification theorem for Jacobi curves).

(1) Two Jacobi curves T' = T'(t) and T = ['(t) parametrised by a geometric arc are C Sp-equivalent
if and only if they have equivalent reduced Cartan matrices.

(2) Two Jacobi curves T' =T'(t) and T = T(t) are CSp-equivalent if and only if dsr(t) = dsg(t)
and their reduced Cartan matrices are equivalent.

(3) Fized a reduced Cartan matriz C(t):

c0=(5 5
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t € I C R, depending smoothly on t, with ky < --- < ky, and [[|ki — k| = 1, and a 1-form

ds(t) # 0 for all t, there exists a Jacobi curve T'(t) such that Cr(t) = C(t) and dsr(t) = ds(t).

Moreover this curve is unique up to transformations by the conformal symplectic group CSp.

In the particular instance of dim W = 4, ¢fr. Sect. given a Jacobi curve I'(t), we get k1 (t) =

—%, ko(t) = —%, and o(t) is obtained from f{ = —ofs + f1 (if o < 0, we take — f5 instead),

and we get the curvatures or(t) = o(t) > 0, and pr(t) = p(t) for the curve I'(¢). Conversely, given

the functions pu(t) # 0, fand o(¢) > 0, or all ¢, and a 1-form ds = {(t)dt, ((t) > 0, for all ¢, there

exists a Jacobi curve I'(t) in a 4-dimensional conformal symplectic space such that p, = p, or = o,
and dsr = ds, and all of them are of the form T = ¢(T), with ¢ € C'Sp.

7. CYCLES IN .Z (W)

We will end this work by observing that Jacobi curves with null Ricci curvature are cycles in the
Lagrangian Grassmannian, that is, the closure at infinite of affine lines. Given a Lagrangian subspace
A € £ (W), there are two classes of affine lines L in the affine space N

Regular: Affine lines L verifying that VAy, Ay € L, A1 # Ay, then Ay N Ay = 0.

Singular: Affine lines L verifying that VA1, Ay € L, A; # Ay, then A; N Ay # 0.
To show that this is true it suffices to notice that if L is a line in Km passing through A € Km, then
taking S = S%Xm, then L = L (t) = tSo provided that det .Sy # 0. In such case L is regular, because
L(a)NL(b) =0if a+#b, that is, bSy — aSe = (b—a) Sy and det (b— a) Sg # 0. If det Sy = 0, the
line L is obviously singular.

Remark 8. A regular line L in A" is an admissible Jacobi curve in L (W).

Definition 11 (Cycle). Let A € £ (W) be a Lagrangian subspace and L an affine line in A" we
will call a cycle the set C = L = L U {K} The cycle C will be said to be regular if L is regular,
otherwise singular.

In what follows we will show that regular cycles are characterised as maximal Jacobi curves with
vanishing curvature with respect to any projective parametrisation.

Proposition 5. If C is a regular cycle then for each A € C we have that C\ {A} is a Jacobi curve
and its projective reparametrizations I' = T'(t) have vanishing curvature operator, Ry = 0.

Proof. Indeed, if C = L=LU {K} with L a affine line in Km, and A € C with A # A, then taking
coordinates S = S%ﬁ, we can write L = L(t) with S(L(t)) = tSo, and det Sy # 0, which is an

affine parametrization of L = C\ {K} This parametrization is projective because S (tS(J) = 0 and,
consequently Ricr (t) = 0.

Taking now coordinates S—1 = Sﬁ in A" NAM, it is easy to see that S~ (L (t)) = (1/t) S(;l(t #£0)
is a parametrization of C\ {A, A} = I\ {A}, where L = C\ {A} is an affine line in A™.

Last, observe that any projective reparametrization L = C\ {A} has the form:

at +b
Sy = ——
P +d”?
and the Schwarzian derivative S (S;) = 0. Then Rr = 0 because of (4.16). O

Corollary 2. If C is a regular cycle and A € C, then C\ {A} is an affine line in A.

Remark 9. If C is a regular cycle like in Prop. [3, continuing with the notation in the proof, we

get that the map ¢ : RP' = RU{co0} — C given by t — T'(t), co — A is a bijection that preserves

the double ratio. It is because of this that we say that ¢ : RP' — C is a GPP (global projective

parametrization). The GPP’s of the cycle C' are determined up to homographies: h : RP! — RP!.
Moreover, given the GPP ¢ : RP' — C, for each ty = (to : 1) € RP', the map:

@ : RP'\ {to} — C\e (to)
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is an affine isomorphism, where RIP’I\ {to} has the canonical affine structure given by the fact that the
map:

1
R — RP'\ {to}, t+— = (it—t),
— o
is an affine isomorphism.

Proposition 6. IfT' =T (¢) is a Jacobi curve with projective parameter and such that Rr (t) = 0,
Vt, then the image of I' is contained in a reqular cycle.

Proof. The proof is based on the fact that the map ¢ — S; that satisfies S(S;) = 0 is uniquely
determined by its values Sy, S)), S{ and, conversely, given Sy, Sy, So, there exists a unique solution
t — S; of the equation S(S;) = 0 with So = So, S§ = So, Sj = So. Thus the only solutions of
S (St) = 0 have the form:

at+b
= S

ct+d°

t

because given Sy, So, So, the equations Sy = Sy, S = So, S = S determine the matrix ( LCL d )

up to multiplicative constants.
Remark 10. Given two different points A1, Ao € Km, with A € £ (W) there is at least one cycle
C=LuU {A} passing through them, where L = <A17A2>Km 1s the affine line generated by A1, Ao in the
affine space Km. We may ask if there are other cycles containing both points.
—h —h
Taking any Ao € A and affine coordinates S = S’K\m in A in such a way that the equation of L
& - X T —
will be Sy = tS1 and S (Ag) = S°, we then take, S = (S - SO) - S’K\m en A NAy, and the equation
0

for L in coordinates S becomes S, = (t51 — So)fl, whose image is not an affine line in general in

—h ~ —rh

Ay unless Ao € L (that is, Sy = t0S°. This implies that C' = (A1, Ag)5n U {AO} is another cycle
0

containing A1, Ao

Definition 12. Three different points A1, Ao, A3 € L (W) are called concyclic if there exists Ay €

L (W), such that Ay, Ay, A3 are colinear in the affine space AY. The three points A1, Ao, Az are said
to be in general position (GP for short) if A; N A; =0 fori # j.

If Ay, Ao, Az € Z (W) are GP concyclic, we denote by C (A1, A2, A3) the set:
C (A1, Asy As) = {A1, Ag, As} U {X € & (W) : A1, As, Az are colinear in K“‘}

Proposition 7. If Ay, Ay, Az are GP concyclic, then C (A1, Aa, A3) is a regular cycle, and it is the
only cycle that contains the three points.

Proof. If Ay, Ay, Az € £ (W) are GP concyclic, let A € £ (W), and L an affine line in A" such
that Ay, Ay, A3 € L. Consider the cycle C = LU {K} Necessarily the cycle C' is regular because
A1 N Ay = 0) and we get:

a) L € C(A1,As,As), because if Ag € L\ {A1, A2, A3}, taking S = S%g, and S (A;) = S, 1 =
0,1,2,3, with Sy = 0, and because Ag, A1, Ao are colinear in Km, there exist A\; # 0 such that
Si = )\151, with ¢ = 0, 2,3. .

Moreover, because Ag N A; = 0 the matrices S; are invertible and if S = 8//\\8” then S = S~! in

AN AD. Calling S (A;) = S;, we get S; = S;71. Hence:
~ 1 1 ~
S;i=M\S =S, =85"= y5;1 = y51, i=2,3,
and we conclude that Ay, Ay, Az are colinear in AJ.

b) We prove now that C (A1, A, As) C LU {X} Namely, if Ag € C (A1, A2,A3)N Km, in Remark

it was shown that L is also a line in KP; if and only if Ag € L. Thus because Ag € C (A1, As, As),
we conclude that Ag € L.
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d) Now we will check that C' (A1, A2, As) is the unique cycle containing Ay, A, As. If C is a cycle

containing Ay, Ao, A3 we can write C = LU {K} with L an affine line in Km such that Ay, Ax, A3 € L,
and we just proved that the equality C' = C (A1, Az, A3), is satisfied. O

Remark 11. If Ay, Ao, Az are concyclic but they are not in general position, then they lie in a singular
line L in A" for some A € L (W). Then, A;NAj =0 for all i,5. In this situation C = L U {K} is
the only cycle that contains them, and it is natural to denote C = C (A1, Aa, A3).

Corollary 3. Ay,Aqs, A5 € Z (W) are concyclic if and only if they lie in the same cycle.

8. CONCLUSIONS AND DISCUSSION

The structure of Jacobi curves, i.e., regular smooth curves on the Lagrangian Grassmannian of
a symplectic vector space has been completely elucidated. The construction of the Ricci curvature
endomorphism together with the conformal geometric arc of the curve are instrumental to define the
family of absolute conformal symplectic curvatures characterizing the curve. Such construction relies
on a new definition of the derivative curve of the Jacobi curve based on the properties of the local
affine structure of the Lagrangian Grassmannian. The natural extension of Cartan’s theory of moving
frames to the symplectic/Lagrangian setting together with a careful analysis of the Cartan matrix of
the symplectic moving frame determined by a Jacobi curve allows to prove a reconstruction theorem
for a Jacobi curve out of its conformal symplectic curvatures.

The theory presented here reproduces some fundamental traits in the treatment by Agrachev and
Zelenko, like the Ricci curvature tensor of a Jacobi curve, but following a different line of argument that
we hope could clarify some of the geometrical content of the theory developed by these authors. One
of the significant contributions of the present work concerning the construction of curvature invariants
is that the order of differentiability of the curvatures constructed according to the the theory presented
here is substantially lower that those obtained by the aforementioned authors, thus, for instance, the
normal element of arc in [Ag02] is of order 5, while the conformal element of arc presented here is
of order 3. In addition to all this, the algorithmic computations leading to the construction of the
curvatures detailed in Sect. can be implemented on any standard symbolic manipulation software.

An important outcome of the theory developed in this paper would be the construction of explicit
curvature invariants characterizing solutions of Riccati equations that could be used to provide an
alternative description of the phase space portrait of such and related equations. To end this discussion,
it is relevant to point out that Jacobi curves associated to null geodesics on Lorentzian manifolds
provide a natural and relevant application of the theory. The analysis of the new family of spacetime
conformal invariants, called conformal sky-invariants [Ba22], from the perspective offered by the results
obtained in the present article will be the subject of subsequent work.
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