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Abstract. This paper describes the theory of Jacobi curves, a far reaching extension of the spaces

of Jacobi fields along Riemannian geodesics, developed by Agrachev and Zelenko. Jacobi curves

are curves in the Lagrangian Grassmannian of a symplectic space satisfying appropriate regularity
conditions. It is shown that they are fully characterised in terms of a family of conformal symplectic

invariant curvatures. In addition to a new derivation of the Ricci curvature tensor of a Jacobi curve,

a Cartan-like theory of Jacobi curves is presented that allows to associate to any admissible Jacobi
curve a reduced normal Cartan matrix. A reconstruction theorem proving that an admissible Jacobi

curve is characterised, up to conformal symplectic transformations, by a reduced normal Cartan

matrix and a geometric parametrization is obtained. The theory of cycles is studied proving that
they correspond to flat Jacobi curves.
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1. Introduction

A complete characterisation of Jacobi curves will be presented. Jacobi curves are curves Γ(t) of
Lagrangian subspaces in a given symplectic space W satisfying appropriate regularity conditions.
A natural extension of Cartan’s geometry to curves in Lagrangian Grassmannians will provide the
ground to construct a family of curvatures that will classify them.

The theory of Jacobi curves was initiated by A. Agrachev and I. Zelenko [Ag02, Ag02b] in the
context of the theory of control of dynamical systems and their applications (see, for instance, [Ag08]
and references therein). In its original formulation such curves were obtained by means of the flow
of a Hamiltonian system on the cotangent bundle T ∗Q of a smooth manifold Q. In such context a
Jacobi curve is the curve in the Lagrangian Grassmannian of the tangent space T(q0,p0)(T

∗Q) at a fixed
point (q0, p0) ∈ T ∗Q, obtained by pulling back the vertical subspaces of T (T ∗Q) along an integral
curve of a Hamiltonian system to its initial data (q0, p0). However curves of Lagrangian subspaces
appear in a variety of different contexts, for instance, it was recognised early the natural relation
between solutions of the Linear-Quadratic regulator problem in optimal control theory, solutions
of matrix Ricatti equations and Lagrangian subspaces (see, for instance [Ca80, He80, De03]). The
study of topological properties of curves of Lagrangian subspaces has been also a subject of interest
(see, for instance, [Ma15]) or, in a different context, [Ba22a], for the appearance of Jacobi curves in
the study of the geometry of Lorentzian manifolds. More precisely, if (Mm, C) is a strongly causal
conformal Lorentzian spacetime, the manifold N of its lightrays carries a natural contact structure
H characterized by the fact the each sky S(x) (the set of light rays passing through x ∈ M) is a
Legendrian submanifold. Then for each γ ∈ N , the contact hyperplane Hγ inherits a (conformal)
symplectic structure and it makes sense to consider its Lagrangian Grassmannian. The fact that
Γ(t) = Tγ(S(γ(t))) is a Jacobi curve in the Lagrangian Grassmannian ofHγ , and that (local) conformal
transformations in M preserve the structure (N ,H), will allows us to apply the theory developed in
this paper to obtain conformal curvatures over lightrays, that would give rise to conformal invariants
of our manifold (M, C).

One of the main objectives of this work is the construction of geometric invariants associated to
such curves that would provide a new and useful insight into the structure of the solutions of matrix
Ricatti equation, Hamiltonian systems or any other structure that could be associated to them, like the
aforementioned study of causality. Thus, beyond the interest in control theory, the analysis of Jacobi
curves embraces multiple geometrical problems that range from Riemannian and sub-Riemannian
geometry (see, for instance, the review [Ag15]) to the geometry of conformal structures [Ba22].

The Jacobi curves considered in this paper are those such that the velocity Γ̇(t), interpreted as a
symmetric bilinear form on Γ(t), is definite. This generic property is preserved under changes of the
parameter and the range [Γ] of the curve Γ(t) will be called an (unparametrized) admissible Jacobi
curve. The conformal symplectic group CSp of linear maps that preserve the symplectic form up
to a multiplicative constant, acts on the set of admissible curves. The main idea developed in this
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work consists in extending Cartan’s geometry of curves on Euclidean space to analyse Jacobi curves.
For that a new definition of Agrachev and Zelenko’s [Ag02] Ricci curvature tensor of a Jacobi curve
will be introduced. Such curvature tensor is obtained after a thorough analysis of the notion of the
derivative curve associated to a Jacobi curve, that relies on the local affine structure of the Lagrangian
Grassmannian, and the appropriate construction of a geometric arc parameter. It will be shown that
there is a natural geometric parametrization for each Jacobi curve that will allow the construction
and definition of the derivative curve and of the Ricci curvature tensor of a Jacobi curve.

The notion of conformal symplectic curvature invariants of Jacobi curves will be introduced and,
using the previously developed tools, a theory of symplectic moving frames will be discussed. This
will allow us to construct a complete, independent and free from integrability conditions family of
(n− 1)(n+ 2)/2, with n the dimension of the Lagrangian subspaces, conformal symplectic curvature
invariants for a given Jacobi curve. As a consequence any other curvature depends functionally
on this family, in particular the higher differential order curvatures obtained in [Ag02, Ag02b]. To
conclude the theoretical analysis, a reconstruction theorem will be proved that will show that any
admissible Jacobi curve is characterised, up to conformal symplectic transformations, by a reduced
normal Cartan matrix and a geometric arc parameter. In the particular instance of four-dimensional
symplectic spaces, a complete system of conformal invariant curvatures consisting of two independent
curvatures, extending the results in [Mu14], will be obtained. The reduced normal Cartan matrix of
a Jacobi curve is algorithmically computable in the sense that it can be computed using a symbolic
manipulation language. Finally, the general theory of cycles, a special class of Jacobi curves with
vanishing curvatures, will be analysed further.

The paper will be organised as follows. Section 2 will be devoted to review some basic conformal
symplectic notions and notations for the convenience of the reader, most importantly the local affine
structure on the Lagrangian Grassmannian of a given symplectic space, structure that will play a
relevant role in what follows. In Sect. 3 the notion of Jacobi curves, the problem of their classification
and the role played by conformal curvatures will be stated. Section 4 will be devoted to the construc-
tion of the Ricci curvature tensor of a Jacobi curve. Such notion will be introduced by the hand of a
natural curve associated to any regular Jacobi curve, called its derivative curve. In Sect. 5 the Cartan
geometry of Jacobi curves will be described. Section 6 will be devoted to prove the reconstruction
and classification theorem for Jacobi curves and, finally, Sect. 7 will discuss the theory of cycles, that
is, flat Jacobi curves.

2. Elements of the geometry of the Lagrangian Grassmannian

As it was indicated in the introduction, the conformal symplectic group is the natural invariance
group when dealing with the geometry of Lagrangian subspaces. Thus any attempt of classification of
families of Lagrangian subspaces, in particular curves of them, should be invariant with respect to the
natural action of such group. This section will be devoted to establish the basic facts and notations
concerning symplectic spaces, the conformal and symplectic groups and the geometry of the collection
of all Lagrangian subspaces of a given symplectic space, its Lagrangian Grassmannian.

2.1. Symplectic preliminaries: conformal symplectic structures. We will discuss first the
emergence of the conformal symplectic group as the natural invariance group of the theory of La-
grangian subspaces and its geometrical structure.

2.1.1. The symplectic and conformal symplectic groups. Let (W,ω) be a linear symplectic space, that
is, W is a real linear space and ω, called a symplectic form, is a non-degenerate skew-symmetric
bilinear form on W . For convenience, we will denote by (u|v) the value of the symplectic form ω on
the pair of vectors u, v ∈ W , that is, (u|v) := ω(u, v). A Lagrangian subspace Λ ⊂ W is a maximal
isotropic subspace with respect to the symplectic form ω, that is, a subspace such that Λ = Λ⊥, where
Λ⊥ denotes the subspace of all vectors orthogonal to Λ ⊂ W with respect to the symplectic form ω,
Λ⊥ = {u ∈W | (u|v) = 0,∀v ∈ Λ}.

The main object of study of this work are curves Γ(t) of Lagrangian subspaces, i.e., Γ(t) is a La-
grangian subspace ofW for each t in some open interval I ⊂ R satisfying regularity properties that will
be discussed later on (see §3.1, Def. 1). We will denote by L (W ) the set of all Lagrangian subspaces
ofW and it will be called the Lagrangian Grassmannian ofW . The Lagrangian Grassmannian L (W )
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is a closed submanifold of dimension n(n+ 1)/2 of the Grassmannian manifold Grn(W ) consisting of
all n-dimensional subspaces of the linear space W , dimW = 2n.

A fundamental observation is that if Λ ⊂W is a Lagrangian subspace with respect to the symplectic
form ω, it is also a Lagrangian subspace for the symplectic form λω, where λ ̸= 0. In other words,
the Lagrangian Grassmannian L (W ) is associated to the family [ω] = {λω|λ ̸= 0} of symplectic
structures on W . We will call such a family [ω] of (proportional) symplectic structures, a conformal
symplectic structure on W . In this sense a proper notation for the Lagrangian Grassmannian would
be L (W, [ω]), even if we will keep the previous notation for short.

An invertible linear map c : W → W that maps Lagrangian subspaces into Lagrangian subspaces
will be called a conformal symplectic map. A conformal symplectic map c induces a diffeomorphism
(denoted with the same symbol) c : L (W ) → L (W ), c : Λ 7→ c(Λ). Notice that if c is a conformal
symplectic map it must transform the conformal class [ω] into itself, that is, choosing a representative
symplectic form ω ∈ [ω], we get c∗ω = λcω, with λc ̸= 0, that is:

(c(u) | c(v)) = λc(u | v) , ∀u, v ∈W , (2.1)

which justifies the given name. We will denote by CSp(W, [ω]) the Lie group of linear conformal sym-
plectic maps for the conformal structure [ω]. In what follows we will denote the Lie group CSp(W, [ω])
as CSp(W ), or just CSp, if there is no risk of confusion, and will be called the conformal symplectic
group of the symplectic space W . The Lie algebra csp of the Lie group CSp consists of linear maps
A : W →W such that there exists µ ∈ R verifying:

(Au|v) + (u|Av) = µ(u|v) , ∀u, v ∈W . (2.2)

It is clear that the map λ : CSp→ R×, λ(c) = λc, cfr. (2.1), associated to the choice of a represen-
tative ω in the conformal symplectic structure of W , is a group epimorphism onto the multiplicative
group of real numbers, whose kernel is the closed normal subgroup consisting of all linear maps
a : W →W , such that:

(a(u)|a(v)) = (u|v) , ∀u, v ∈W ,

called the symplectic group of the symplectic space W and denoted by Sp(W,ω) (or just Sp(W ), or
Sp, if there is no risk of confusion). The Lie algebra of the Lie group Sp will be denoted by sp and
its elements can be identified with skew-linear maps with respect to the bilinear form (·|·), that is, a
linear map A : W →W determines an element in sp provided that:

(Au|v) + (u|Av) = 0 , ∀u, v ∈W . (2.3)

From (2.3) if follows that the symplectic group Sp has dimension 2n2+n, provided that dimW = 2n,
hence dimCSp = 2n2 + n+ 1.

Given two transversal Lagrangian subspaces Λ, Λ̄ ⊂W , i.e., Λ∩ Λ̄ = {0}, thenW = Λ⊕ Λ̄. We will
call such decomposition of W a Lagrangian decomposition. Choosing a Lagrangian decomposition
W = Λ ⊕ Λ̄, we can define a cross section of σ : R× → CSp, of the short exact sequence 1 → Sp →
CSp

λ→ R× → 1, given by1:

σ(s)(v ⊕ v̄) = sv ⊕ v̄ , ∀v ∈ Λ, v̄ ∈ Λ̄ . (2.4)

Moreover, it is obvious that the map σ is a group homomorphism and CSp becomes the semi-direct
product of Sp by R×, CSp = Sp ⋊ R×. Thus we have the identification Sp(W ) × R× ∼= CSp(W ),
given by (a, s) ∈ Sp(W ) × R× 7→ aσ(s) ∈ CSp(W ). We will just write c = aσ(λc), where a is the
element of the symplectic group defined as cσ(λc)

−1. Note that σ(s)(Λ) = Λ.
The definition of the conformal symplectic group makes explicit the natural transitive action of

CSp(W ) on L (W ) given by (c,Λ) 7→ c(Λ), c ∈ CSp(W ) and Λ ∈ L (W ), that makes it an homoge-
neous space. This action restricts to an action of the symplectic group Sp(W ) whose orbits coincide.
Indeed, if Λ is a Lagrangian subspace, consider the orbit OΛ := CSp(W )Λ = {c(Λ) | c ∈ CSp(W )}.
Choose a Lagrangian decomposition of W of the form W = Λ ⊕ Λ̄, then using the identification be-
tween CSp and Sp×R×, provided by the cross section σ associated to this Lagrangian decomposition,
cfr. (2.4), we get c(Λ) = aσ(λc)(Λ) = a(Λ) and we conclude that the orbit of Λ under the conformal

1Note that w(v1 ⊕ v̄1, v2 ⊕ v̄2) = ω(v1, v̄2)+ω(v̄1, v2) = (v1 | v̄2)+ (v̄1 | v2). Then, ω(σ(s)(v1 ⊕ v̄1), σ(s)(v2 ⊕ v̄2)) =

ω(sv1 ⊕ v̄1, sv2 ⊕ v̄2) = (sv1 | v̄2) + (v̄1 | sv2) = sω(v1 ⊕ v̄1, v2 ⊕ v̄2), and σ(s) ∈ CSp.
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symplectic group CSp coincides as sets with the orbit under the symplectic group Sp (although this
identification is not canonical and depends on the choice of a cross section σ).

The action of the conformal symplectic group on the Lagrangian Grassmannian is obviously transi-
tive, hence the action of the symplectic group, which allows to identify L (W ) with the manifold
of cosets L (W ) ∼= CSp(W )/H ∼= Sp(W )/H0, with H0 ⊂ Sp(W ) the closed subgroup of sym-
plectic transformations fixing the Lagrangian subspace Λ, H0 = {a ∈ Sp(W ) | a(Λ) = Λ}, and
H = H0 ⋊ R× ⊂ CSp, the corresponding semi-direct product extension subgroup of CSp. Choosing
a metric structure on W compatible with the symplectic form ω, endows W with a Kähler structure.
Given a Lagrangian subspace Λ0, it is possible to choose the Kähler structure in such a way that
Λ0 becomes a real subspace, then the orbit of the symplectic group becomes the orbit of the unitary
group of the Kähler structure, which is isomorphic to U(n), and the isotropy group of such action
is clearly the orthogonal group of the metric real space Λ0, which is isomorphic to O(n), hence the
homogeneous space L (W ) is diffeomorphic to U(n)/O(n) that provides an alternative description of
the smooth structure of the Lagrangian Grassmannian.

2.1.2. Lagrangian subspaces and symplectic basis. It will be helpful to introduce local parametrizations
of the Lagrangian Grassmannian in various proofs and computations to follow. The following para-
graphs will be devoted to describe in detail the natural affine atlas of the Lagrangian Grassmannian
and a few useful formulas and notations.

Let ϵ = (e, ē) denote a symplectic basis of W , that is, e = (e1, . . . , en), ē = (ē1, . . . , ēn), are two
systems of n linearly independent vectors in W such that (ei|ej) = (ēi|ēj) = 0, (ei|ēj) = δij , for all
i, j = 1, . . . , n. Then we denote by Λ (Λ̄), the Lagrangian subspace generated by e = (e1, . . . , en)
(ē = (ē1, . . . , ēn), respec.). Note that W = Λ⊕ Λ̄. Conversely, if Λ ∈ L (W ) is a Lagrangian subspace
and Λ̄ is a Lagrangian subspace transverse to Λ, that is, Λ ∩ Λ̄ = 0, then there is a symplectic basis
(e, ē) such that the system of vectors e generates Λ and ē generates Λ̄. In such case, we will say that
the symplectic basis (e, ē) is adapted to the Lagrangian decomposition W = Λ⊕ Λ̄. In fact, any one
of the systems of vectors, e ⊂ Λ , ē ⊂ Λ, determines the other (Lemma 1 below makes this statement
precise). By the same token we can consider conformal symplectic basis, that is systems of vectors
ϵ = (e, ē) such that (ei|ej) = (ēi|ēj) = 0, (ei|ēj) = λδij , for all i, j = 1, . . . , n, and λ ̸= 0 called the
scaling factor of the basis. If ϵ = (e, ē) is a conformal symplectic basis with scaling factor λ, then
ϵ = (e, ē) is a symplectic basis for the symplectic form 1

λω ∈ [ω]. Moreover, given a symplectic basis
ϵ = (e, ē), the scaled basis ϵλ = (eλ, ēλ), with eλ = f(λ)e, ēλ = g(λ)ē, and f(λ)g(λ) = λ, are new
conformal symplectic basis describing the same Lagrangian decomposition of Λ⊕Λ ofW . Thus, when
dealing with Lagrangian subspaces we are free to consider either symplectic or conformal symplectic
basis to describe them.

Given a Lagrangian subspace Λ ∈ L (W ) we denote by Λ⋔ the open set of Lagrangian subspaces
transverse to Λ, that is:

Λ⋔ = {Γ ∈ L (W ) | Γ ∩ Λ = 0} . (2.5)

The sets Λ⋔ can be used to construct a smooth atlas for Λ ∈ L (W ). Indeed, consider a Lagrangian

decomposition W = Λ⊕ Λ, then any Lagrangian subspace Γ in Λ
⋔
defines a linear map from Λ to Λ

denoted as ⟨Λ,Γ,Λ⟩, as (see Fig. 1):

⟨Λ,Γ,Λ⟩ : Λ → Λ , ⟨Λ,Γ,Λ⟩(v) = v̄ , v + v̄ ∈ Γ , v ∈ Λ , v̄ ∈ Λ . (2.6)

If we choose a symplectic basis (e, ē) adapted to the decomposition W = Λ ⊕ Λ, then the matrix S
associated to the linear map ⟨Λ,Γ,Λ⟩, that is, ⟨Λ,Γ,Λ⟩(ei) =

∑
j Sjiēj , is symmetric and the map the

assigns to any n× n symmetric matrix S, the Lagrangian subspace ΓS given by:

ΓS =

{
(e, ē)

(
x
Sx

)
| x ∈ Rn

}
=:

[
In
S

]
(e,ē)

, (2.7)

provides a local chart for L (W ) on the open set Λ
⋔2. Note that the definition of the subspace ΓS

amounts to say that x̄ = Sx are the equations of ΓS and that the system of vectors e + eS form a
basis of Γ. As it will be discussed in the coming section, §2.2, such parametrisation is the natural

2A similar map can be defined using the open set Λ⋔ instead, see below this section.
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coordinate expression of the canonical affine structure on Λ
⋔
. The initial discussion on the existence

of adapted symplectic basis is completed by the following statement.

Lemma 1. Let Λ and Λ be transverse Lagrangian subspaces in (W,ω), i.e., Λ ∩ Λ = {0}. Then if
f = (f1, . . . , fm) is a basis of Λ, then there is a unique basis f =

(
f1, . . . , fm

)
of Λ such that

(
f , f
)
is a

symplectic basis of (W,ω).

Proof. The abstract proof works as follows: given the basis f = (f1, . . . , fn) of Λ, it determines a unique
dual basis f∗ = (f∗1 , . . . , f

∗
n) of Λ∗, f∗i (fj) = δij . Then, the natural identifications Λ ∼= W/Λ ∼= Λ∗,

determines the basis f we are looking for. In spite of this, we will work out the explicit formulas for the
vectors in f because they will turn out to be useful later on. Consider an arbitrary symplectic basis
(e, e) such that both Λ and Λ are transverse to the Lagrangian subspace generated by the vectors e,
then, using the notation introduced above, cfr. (2.7), we can write:

Λ ≃
[
In
S

]
(e,e)

∈ L (W ) and Λ ≃
[
In
S

]
(e,e)

∈ L (W ) .

where S and S are symmetric matrices. For v ∈ Λ and v ∈ Λ we can write{
v = ex+ eSx
v = ex+ eSx

where x and x are coordinates of v and v with respect to the basis e + eS and e + eS̄ respectively.
So, we have, Eq. (2.12):

ω (v, v) = ω
(
ex+ eSx, ex+ eSx

)
= ω

(
ex, eSx

)
+ ω (eSx, ex) =

= xTSx− (Sx)Tx = xTSx− xTSTx = xT
(
S − S

)
x

If f ⊂ Λ and f ⊂ Λ are basis, then {
f = e M + e S M

f = e M + e S M
(2.8)

where the columns of M and M correspond to the coordinates of the vectors f and f respectively.
Hence,

(
f , f
)
is a symplectic basis of (W,ω) whenever:

MT (S − S)M = In .

Since Λ ∈ Λ⋔, then S −S is a non–singular matrix and because M is also non–singular, then we have
that

M = (S − S)−1
(
MT

)−1
(2.9)

is the matrix defining the basis f such that
(
f , f
)
is a symplectic basis of W . □

Choosing a symplectic basis (e, ē), the elements in the Lie algebra sp are represented by matrices
A such that ATJ + JA = 0, with J the matrix representation of the symplectic structure itself, that
is the matrix whose non-zero elements are Ji,j+n = δij = −Ji+n,j , i, j = 1, . . . , n. Then, A has the
form:

A =

(
M N
R −MT

)
, NT = N , RT = R ,

with M,N,R being n× n matrices, that shows that dim sp = 2n2 + n, which is the dimension of the
symplectic group Sp, cfr. Sect. 2.1.1.

There is a natural isomorphism S : sp → S(W ), where S(W ) denotes the linear space of symmetric
bilinear forms on W . Given A ∈ sp, we define, recall Eq. (2.3):

SA(u, v) = (Au|v) = (Av|u) .
Thus, given a Lagrangian subspace Λ ∈ L (W ), sp(Λ) will denote the subspace of all elements A in
sp whose range lies in Λ, that is sp(Λ) = {A ∈ sp | A(W ) ⊂ Λ}, or, equivalently:

sp(Λ) = {A ∈ sp | SA(Λ,Λ) = 0} . (2.10)

In other words, sp(Λ) is isomorphic to the space of symmetric bilinear forms on W vanishing on Λ,
that is, S(W/Λ). But, W/Λ is canonically isomorphic to Λ∗, the dual space to Λ, thus we conclude
that sp(Λ) is canonically isomorphic to S(Λ∗).
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2.2. The local affine structure of the Lagrangian Grassmannian.

2.2.1. The affine structure of Λ⋔. Given a Lagrangian subspace Λ ∈ L (W ), the set Λ⋔, cfr. (2.5),
carries a canonical affine structure. The following paragraphs will be devoted to describe it and to
introduce some useful notations.

Given Γ ∈ Λ⋔ consider the canonical projector onto Λ determined by the decompositionW = Λ⊕Γ.
Using the convenient notation introduced in [Ag02], we will denote such projector, called a Lagrangian
projector, by:

⟨W,Γ,Λ⟩ : W → Λ ⊂W , ⟨W,Γ,Λ⟩(w) = wΛ

where w = wΛ + wΓ, is the unique decomposition of the vector w ∈ W on its Λ and Γ components,
wΛ ∈ Λ, wΓ ∈ Γ. Note that if Γ ∈ Λ⋔, then Λ ∈ Γ⋔, and we can define also the Lagrangian projector
⟨W,Λ,Γ⟩ with range Γ along Λ, then:

w = wΛ + wΓ = ⟨W,Γ,Λ⟩(w) + ⟨W,Λ,Γ⟩(w) , ∀w ∈W .

There is a one-to-one correspondence between Λ⋔ and the set of Lagrangian projectors PΛ associated
to the Lagrangian subspace Λ, that is the set3:

PΛ = {P ∈ gl(W ) | P 2 = P, P (W ) = Λ, (Pu|v) + (u|Pv) = (u|v), ∀u, v ∈W} ,
The correspondence is such that, to any Lagrangian subspace Γ ∈ Λ⋔, we associate the Lagrangian
projector ⟨W,Γ,Λ⟩ and, to any Lagrangian projector P ∈ PΛ, we associate the Lagrangian subspace
Γ = (I − P )(W ).

Lemma 2. The set PΛ is an affine space over the linear space sp(Λ), cfr. Eq. (2.10).

Proof. Indeed, given P ∈ PΛ and A ∈ sp(Λ), we observe that Q = P + A is a Lagrangian projector.
Certainly, Q(u) = P (u) + A(u) ∈ Λ. On the other hand Q2 = (P + A)2 = P + A = Q, because
A2(u) = 0 (note that (Au|v) = (Av|u), thus if Au,Av ∈ Λ, then (A2u|v) = 0). Moreover AP (u) = 0,
and PA(u) = A(u). Finally, (Qu|v) + (u|Qv) = (Pu|v) + (u|Pv) = (u|v), then Q ∈ PΛ. □

The natural identification of Λ⋔ with the space of Lagrangian projectors PΛ, introduces an affine
structure on Λ⋔ with underlying linear space sp(Λ), in other words, given two Lagrangian spaces Λ and

Γ in Λ⋔, the corresponding vector
−→
ΛΓ will be given by the element in sp(Λ):

−→
ΛΓ = ⟨W,Γ,Λ⟩−⟨W, Λ̄,Λ⟩.

By definition, the value of any element belonging to sp(Λ) in Λ is zero, cfr. (2.10), then, we can

introduce the convenient notation ⟨Λ̄,Γ,Λ⟩ for the vector
−→
ΛΓ that takes into account this fact. Now

⟨Λ̄,Γ,Λ⟩ is a linear map ⟨Λ̄,Γ,Λ⟩ : Λ̄ → Λ, such that (Au | v)+(u | Av) = 0 (compare with Eq. (2.6)).
In other words, given the Lagrangian subspace Λ̄ ∈ Λ⋔, using it as the origin in the affine space Λ⋔,
we can identify the linear space sp(Λ) with the space (see Fig. 1):

S(Λ̄,Λ) = {A : Λ̄ → Λ | (A(u) | v) + (u | A(v)) = 0} . (2.11)

Exchanging the roles of Λ and Λ̄, if Γ1,Γ2 are two Lagrangian subspaces in Λ̄⋔, then the vector
defined by them with respect to the affine structure on Λ̄⋔, will be given by:

−−−→
Γ1Γ2 = ⟨Λ,Γ2, Λ̄⟩ − ⟨Λ,Γ1, Λ̄⟩ ,

where now, Λ plays the role of origin, the associated linear space is sp(Λ̄) which is identified with
S(Λ, Λ̄).
2.2.2. Coordinate description of the local affine structure. It is convenient to emphasise the coordinate
description of the previous constructions in terms of the atlas described in §2.1, Eq. (2.7). We will
introduce as before a symplectic basis (e, ē) with corresponding symplectic coordinates (x, x̄), and
the Lagrangian subspaces Λ = ⟨e1, . . . , en⟩, and Λ̄ = ⟨ē1, . . . , ēn⟩. Thinking of the vector x ∈ Rn as a
column vector, the symplectic form ω takes the coordinate expression:

((x1, x̄1) | (x2, x̄2)) = xT1 x̄2 − x2x̄
T
1 . (2.12)

In particular, ((x, 0) | (0, x̄)) = xT x̄. Note that in the identification Λ∗ ∼= Λ̄, the basis ē gets identified
with the opposite dual basis of e, that is: (ēj | · ) = −xj and (ej | · ) = x̄j . Moreover the space of

3Note that if P is a Lagrangian projector, then (Pu|v) = (uΛ|vΓ), and we get, (Pu|v)+(u|Pv) = (uΛ|vΓ)+(uΓ|vΛ) =
(u|v), that implies that P belongs to the Lie algebra of the conformal symplectic group, cfr. (2.2).
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⇤̄

⇤

�

h⇤̄,�,⇤i
v = h⇤̄,�,⇤i(v̄) v + v̄

h⇤,�,⇤i

v̄ = h⇤,�,⇤i(v)

Figure 1. A diagram representing the vectors ⟨Λ̄,Γ,Λ⟩ (in the affine space Λ⋔ with origin

at Λ̄), and ⟨Λ,Γ, Λ̄⟩ (in the affine space Λ
⋔
with origin at Λ).

symmetric bilinear forms S(Λ̄) is identified with the space of symmetric matrices S(Rn) = {S̄ =
(S̄ij) | S̄T = S̄}.

Then, the affine space Λ⋔ is identified (using as origin Λ̄) with the vector space S(Rn) by means
of:

S̄ = (S̄ij) ∈ S(Rn) 7→ ΓS̄ = {(S̄x̄, x̄) | x̄ ∈ Rn} ∈ Λ⋔ ,

and the map SΛ̄
Λ⋔ : Γ ∈ Λ⋔ 7→ ⟨Λ̄,Γ,Λ⟩ ∈ S(Λ̄) ∼= S(Rn), constitutes an affine coordinate system for

Λ⋔ (see Fig. 1). Similarly, the affine space Λ̄⋔, can be identified (using as origin Λ) with the vector
space S(Rn) again, by means of (compare with (2.7)):

S = (Sij) ∈ S(Rn) 7→ ΓS = {(x, Sx) | x ∈ Rn} ∈ Λ̄⋔ , (2.13)

where S is interpreted as ⟨Λ,ΓS , Λ̄⟩. The map SΛ
Λ̄⋔ : Γ ∈ Λ̄⋔ 7→ ⟨Λ,Γ, Λ̄⟩ ∈ S(Λ) ∼= S(Rn), SΛ

Λ̄⋔
∼=

(Sij | i ≤ j), constitutes an affine coordinate system for Λ̄⋔.

3. Jacobi curves and their classification

3.1. Jacobi curves. A curve in L (W ) is a smooth map Γ from an open interval I ⊂ R in L (W ).
We will denote the curve Γ as Γ = Γ(t). The tangent vector to the curve Γ at Γ(t) will be denoted as
Γ′(t) ∈ TΓ(t)L (W ).

In coordinates S = (Sij) ∈ S(Rn) introduced above, cfr. 2.2.2, Eq. (2.13), we can write a Jacobi
curve as:

Γ(t) =

[
In
St

]
(e,ē)

=

{
(e, ē) ·

(
x
Stx

)
| x ∈ Rn

}
.

where as indicated before, cfr. (2.7), the notation

[
In
St

]
(e,ē)

describes the Lagrangian subspace

spanned by the vectors ei +
∑n
j=1(St)jiēj , i = 1, . . . , n.

Let us consider a Lagrangian subspace Λ0 ∈ L (W ) and denote as before by S (Λ0) the vector
space of symmetric bilinear forms defined in Λ0. There is a natural characterization of the tangent
space TΛ0(L (W )) as the space of quadratic forms on Λ0.

Proposition 1. Let Γ = Γ(t) be a curve in L (W ) such that Γ(0) = Λ0. We define the quadratic

form Γ̇(0) : Λ0 → R by

Γ̇(0) (v0) = ω (v0, v
′(0))

where v = v(t) ∈ Γ(t) is a curve such that v(0) = v0 and ω the symplectic 2–form in W . Then the
map

TΛ0
L (W ) → S (Λ0)

Γ′(0) 7→ Γ̇(0)

is a linear isomorphism.
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Proof. First, we will show that the quadratic form Γ̇(0) does not depend on the chosen curve v =
v(t). If u = u(t) ∈ Γ(t) is another curve such that u(0) = v0, then v(t) − u(t) ∈ Γ(t) for all t.
Since Γ(t) ∈ L (W ) is Lagrangian, then (v(t) | v(t)− u(t)) = 0. Deriving at t = 0, we obtain:

(v′(0) | v(0)− u(0)) + (v(0) | v′(0)− u′(0)) = 0 ⇒ (v(0) | v′(0)− u′(0)) = 0, but then Γ̇(0) (v0) =

(v(0) | u′(0)), that shows that Γ̇(0) does not depend on the chosen v.
Now, consider a coordinate system S = (Sij) of L (W ) at Λ0 such that Γ(t) = {(x, Stx) | x ∈ Rm},

where, St = (Sij(t)) ∈ Rn×n. Since Λ0 = {(x, S0x) : x ∈ Rm}, then there exists a unique x0 ∈ Rm such
that v0 = (x0, S0x0). We can consider v as the curve defined by: v(t) = (x0, Stx0), so v

′(t) = (0, S′
tx0),

and then:

Γ̇(0) (v0) = (v0 | v′(0)) = ((x0, Stx0) | (0, S′
tx0)) = xT0 S

′
0x0

which only depends on the tangent vector Γ′(0) ∈ TΛ0
L (W ), that in local coordinates has the

expression:

Γ′(0) =
∑
i≤j

S′
ij(0)

(
∂

∂Sij

)
Λ0

and the coordinates S′
ij(0) coincide with the components of the matrix S′

0 defining Γ̇(0). Therefore
the map TΛ0

L (W ) → S (Λ0) is a linear isomorphism. □

Remark 1. The previous proposition is also true for any value of t. Note that S′
τ = (S′

ij(τ)) is

the matrix of Γ̇(τ) in the basis of Γ(τ): ϵ(τ) = e + eSτ , that provides the system of coordinates

x ∈ Rn 7→ (x, Sτx) ∈ Γ(τ). As an immediate consequence we get that Γ̇(τ) is positive definite iff the
matrix S′(τ) is positive definite.

Given a curve Γ(t) in the Lagrangian Grassmannian, in what follows we will identify Γ′(t) with the

quadratic form Γ̇(t). We will assume also the following transversality conditions in increasing order
of restrictiveness:

(1) Γ(t) is non-singular, that is Γ̇(t) ̸= 0, for all t.

(2) Γ(t) is regular if Γ̇(t) is a non-degenerate quadratic form on each Lagrangian subspace Γ(t).

(3) Γ(t) is monotonous if Γ̇(t) is definite (positive or negative).

In what follows we will just consider regular curves in the Lagrangian Grassmannian and, unless
there is risk of confusion, we will call them Jacobi curves.

Definition 1. A regular Jacobi curve Γ (or just a Jacobi curve for short) on the (conformal) symplectic
space W is a smooth regular curve in the Lagrangian Grassmannian L (W ).

3.2. The classification of Jacobi curves: curvatures. As it was discussed in Sect. 2.1.1 there is
a natural transitive action of the conformal symplectic group CSp in the Lagrangian Grassmannian
(a,Λ) 7→ aΛ, for all a ∈ CSp and Λ ∈ L (W ). The same action induces an action on the set of Jacobi

curves, that is if Γ = Γ(t) is a Jacobi curve then Γ̃ = aΓ = a(Γ(t)) is also a Jacobi curve. Notice that
the action of CSp on the Lagrangian Grassmaniann is the same as the action of the symplectic group
Sp. More generally will say that the Jacobi curves Γ̃ and Γ are CSp-equivalents if there is a change
of parameter t = φ(t̃) and an element a ∈ CSp, such that aΓ(t) = aΓ(φ(t̃)) = Γ̃(t̃). This implies

that the map [Γ] → [Γ̃] between the graphs of the curves Γ and Γ̃, given by Γ(t) 7→ Γ̃(φ−1(t)) can be
obtained by restriction of the conformal symplectic map a.

The problem of classification of Jacobi curves consists of finding an algorithmic criterion that
allows to decide when two Jacobi curves are CSp-equivalent (or just ‘equivalent’ if there is no risk of
confusion).
Parametric curvatures. Curvatures could provide the criterion we are looking for. A parametric cur-
vature is a function κ that assigns to any Jacobi curve Γ = Γ(t), a differentiable function κΓ = κΓ(t)
such that κaΓ = κΓ, for all a ∈ CSp and κΓ(t) = κΓ(t + t0), for all t, t0 such that t + t0 belongs to
the domain of Γ. We will say that the parametric curvature κ is of order ≤ r, if κΓ is a differentiable
function of the derivatives of order ≤ r of Γ. We will say that κ is of order r if it is of order ≤ r and
it is not of order ≤ r − 1.
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Absolute curvatures. Given a parametric curvature κ, then for a given Jacobi curve Γ, the function
κΓ(t) will change in a specific manner under changes of parameter t = φ(t̃). In general κΓ̃(t̃) will

not coincide with κΓ(φ(t̃)). When the parametric curvature κ is consistent with respect to changes of
parameters we will say that κ is an absolute curvature.

Definition 2. Let κ be a parametric curvature for the class of Jacobi curves. We will say that κ is
an absolute curvature if κΓ̃(t̃) = κΓ(φ(t̃)) for all changes of parameters t = φ(t̃).

If κ is an absolute curvature, then for each Jacobi curve Γ it induces a real function κ[Γ] : [Γ] → R,
on the graph of Γ, given by κ[Γ](Λ) = κΓ(t), where Λ = Γ(t). Finally the invariance of parametric
curvatures with respect to the action of the conformal symplectic group implies that the map κ[Γ] is
CSp-invariant, that is κ[Γ](Λ) = κ[aΓ](aΛ), a ∈ CSp. The absolute curvature κ will be called just a
curvature (unless there is risk of confusion).
Complete system of curvatures. A family {κ1, . . . , κr} of absolute curvatures will be called a complete

system of curvatures for the class of Jacobi curves if for any pair of Jacobi curves Γ, Γ̃ : I → L (W ),

such that κiΓ = κi
Γ̃
, for all i = 1, . . . , r, then Γ and Γ̃ are equivalent. Note that this implies that

any diffeomorphism α : [Γ] → [Γ̃] that preserves the curvatures κi is the restriction of a conformal
symplectic transformation a ∈ CSp.

We will say that a system of curvatures {κ1, . . . , κr} is independent if the functions κi are func-
tionally independent. Then, a complete family of independent curvatures will provide a classification
of Jacobi curves. We will devote the remaining of this article to construct one such family of curva-
tures, thus solving the problem of classification of Jacobi curves. It is relevant to point out that the
construction to be described is algorithmic.

3.3. Geometric arc parameters.

Definition 3. A geometric arc parameter is a map ds• that assigns to each Jacobi curve Γ an arc
element dsΓ = ζΓ(t)dt (that is, a 1-form along the curve Γ = Γ(t)), invariant under the action of the
conformal symplectic group CSp, i.e., dsΓ = dsaΓ, for all a ∈ CSp, and if t = φ(t̄) is a change of
parameter, and Γ̄ = Γ(φ(t̄)) is the reparametrised Jacobi curve, then φ∗dsΓ = dsΓ, namely:

ζΓ̄(t̄) = ζΓ(φ(t̄))
dφ

dt̄
.

Note that if ds• is a geometric arc parameter, then the length L(Γ) of the curve does not depend
on the parameter we use to parametrise it, namely:

L(Γ) =

∫ b

a

ζΓ(t)dt =

∫ b̄

ā

ζΓ̄(t̄)dt̄ = L(Γ̄) .

and, in addition, L(Γ) = L(aΓ), for all a ∈ CSp.

4. The Ricci curvature tensor of a Jacobi curve: the derivative curve

4.1. The derivative curve and its symmetry. The construction and definition of the Ricci cur-
vature tensor will rely on the notion of the derivative curve of a Jacobi curve. We will present here
a construction different from the one that appears in [Ag02] that is, we believe, perhaps simpler and
more natural. We will illustrate it first in the bidimensional case, where the Lagrangian Grassmannian
is just the projective line.

4.1.1. The derivative curve in the bidimensional case. If dimW = 2, then for every w ∈ W\{0}, we
get (w|w) = 0, hence the vector line [w] ∈ P(W ) defines a Lagrangian subspace and L (W ) = P(W ).
A symplectic basis is just a pair of vectors e, ē such that (e | ē) = 1. Symplectic coordinates (x, x̄) with
respect to such basis allow us to identify L (W ) with RP1 by considering the Lagrangian subspaces
Λ = [e] = (1 : 0), and Λ̄ = [ē] = (0 : 1). Under these circumstances the affine line structure for
Λ̄⋔ ∼= RP1\Λ̄, is given by the Cartesian coordinate S ∈ R 7→ (1 : S) ∈ Λ̄⋔, with origin in Λ. Thus, a
Jacobi curve Γ(t) in RP1\Λ̄ is given in projective coordinates by (1 : St), with S

′
t ̸= 0 for all t. Thus,

we get:
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Proposition 2. Given a fixed value of the parameter τ , there exists a unique point ∆τ ∈ L (W ),
∆τ ̸= Γ(t), for any t, such that the curve Γ(t) in the affine space ∆⋔

τ , denoted as Γ∆τ
, satisfies

Γ′′
∆τ

(τ) = 0. More specifically, if S′′
τ ̸= 0, then:

∆τ =
(
S′′
τ : SτS

′′
τ − 2(S′

τ )
2
)
, (4.1)

and, obviously, if S′′
τ = 0, we get ∆τ = Λ̄ = (0 : 1).

The assignment τ 7→ ∆τ will be called the derivative curve of the Jacobi curve Γ(t). The proof
that such curve exists in this bidimensional setting is simple enough.

Proof. Given A = (1 : a) ∈ Λ̄⋔ = RP1\{Λ̄}, the Cartesian coordinate S̃ in A⋔ = RP1\{A} and origin
in Sτ is given as a function of the Cartesian coordinate S in Λ̄⋔, as:

S̃ =
S − Sτ
S − a

.

Then, substituting the Cartesian coordinate S by St, we get the equation for the line Γ(t) in the affine
space A⋔:

S̃t =
St − Sτ
St − a

.

We are looking for a number a such that S̃′′
τ = 0. Writing f(t) = St − Sτ , we get:

S̃t =
f(t)

f(t) + Sτ − a
=

f(t)

f(t)− b
,

with b = a− Sτ . Then,

S̃′
τ = − bf ′

(f − b)2
, and S̃′′

τ = −bf
′′(f − b)− 2(f ′)2

(f − b)3
.

Thus, if we wish S̃′′
τ = 0, we get: f ′′(τ)(f(τ) − b) − 2f ′(τ)2 = 0. Substituting f(τ) = 0, f ′(τ) = S′

τ ,
f ′′(τ) = S′′

τ , and b = a− Sτ , we obtain the desired expression:

a = Sτ −
2(S′

τ )
2

S′′
τ

,

that corresponds to the point with projective coordinates (4.1). □

4.1.2. The definition and construction of the derivative curve in the general case. Using as a guide
the construction described in the previous section, we will proceed to construct the analogue of the
curve τ 7→ ∆τ , cfr. (4.1), when dimW = 2n. As discussed in §2.2.2, cfr. (2.13), let us consider a

coordinate system S = SΛ

Λ
⋔ on the affine space Λ

⋔ ∈ L (W ), with origin at Λ, that is S(Λ) = 0. For a

given regular Jacobi curve Γ = Γ(t) with t ∈ I ⊂ R, we have that St := S (Γ(t)) is differentiable and

the matrix S′
t ∈ Rn×n is regular in any coordinate system SΛ

Λ
⋔ with Λ ∈ Λ

⋔
.

Remark 2. Note that choosing the parameter τ ∈ I such that Γ(τ) ∈ Λ⋔ ∩Λ
⋔
, then S − Sτ = S

Γ(τ)

Λ
⋔ ,

with Sτ the matrix of coordinates of Γ(τ), is a coordinate system on Λ
⋔
with origin at Γ(τ). Hence

(S − Sτ )
−1 = SΛ

Γ(τ)⋔ are coordinates on Γ(τ)⋔ ∩ Λ⋔ ∩ Λ
⋔
, and the matrix of coordinates S − Sτ is

invertible at any Lagrangian subspace in Γ(τ)⋔ ∩ Λ⋔ ∩ Λ
⋔
. Also, we can observe that the matrix

(St − Sτ )
−1 are the coordinates of the curve Γ = Γ(t) on Γ(τ)⋔ ∩ Λ⋔ ∩ Λ

⋔
for t, τ ̸= t, in an open

interval that we can consider as the interval I.

Given a Jacobi curve Γ and ∆ ∈ L (W ) we will denote by Γ∆ the restriction of the curve Γ to the
affine space ∆⋔ ⊂ L (W ), i.e., Γ∆(t) = Γ(t), provided that Γ(t) ∈ ∆⋔. Then the derivatives Γ′

∆, Γ
′′
∆,

Γ′′′
∆ , ... of Γ∆ are defined in the vector space

−→
∆⋔ associated to ∆⋔.

Consider now a Jacobi curve Γ(t), then fixed a point Γ(τ) of the curve, and ∆ ∈ Γ(τ)⋔, there exists
ϵ > 0, such that Γ(t) ∈ ∆⋔ for all |t− τ | < ϵ, and we denote as indicated before, by Γ∆ the restriction
of Γ to ∆⋔. Under these conditions we get the following theorem that extends our previous result,
Prop. 2:
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Theorem 1. There exists a unique ∆τ ∈ Γ(τ)⋔ such that Γ′′
∆τ

(τ) = 0.

The proof of Thm. 1 has two parts. First, assuming its existence, an explicit expression for the
coordinates of ∆τ will be given.

Lemma 3. For fixed t = τ , let us assume that there exists ∆τ ∈ Γ(τ)⋔ such that Γ′′
∆τ

= 0. If

S0
τ = SΛ

Λ
⋔ (∆τ ), then both S0

τ − Sτ and S′′
τ , are invertible and we get:

S0
τ = Sτ − 2S′

τ (S
′′
τ )

−1S′
τ (4.2)

Proof. Recall that we can write

SΛ

Λ
⋔ (Γ) =

〈
Λ,Γ,Λ

〉
: Λ −→ Λ.

Moreover we have
〈
Λ,Γ,Λ

〉
=
〈
Λ,Γ,Λ

〉−1
, and then, we have:

St − Sτ = S
Γ(τ)

Λ
⋔ (Γ(t))

S0
τ − Sτ = S

Γ(τ)

Λ
⋔ (∆τ )

then (S0
τ − Sτ )

−1 = SΛ
Γ(τ)⋔ (∆τ ) are the coordinates of ∆τ in the affine space Γ(τ)⋔. So, S0

τ − Sτ is

invertible.
Fixed Γ(τ), now we will seek the expression of S0

τ . Observe that:

S̃t =
(
(St − Sτ )

−1 −
(
S0
τ − Sτ

)−1
)−1

= S
Γ(τ)

∆⋔
τ

(Γ(t)) : Γ(τ) −→ ∆τ (4.3)

corresponds to the coordinates of Γ(t) in ∆⋔
τ with origin at Γ(τ). Let us compute the condition:

S̃′′
t

∣∣∣
t=τ

= 0.

For short, in the following computation, we will call Bt = St − Sτ
C = S0

τ − Sτ
Dt = S0

τ − St

and since B′
t = S′

t = −D′
t and C

′ = 0, substituting at t = τ , we get:{
Bτ = 0 , B

(i)
τ = S

(i)
τ

Dτ = C , D
(i)
τ = −S(i)

τ

(4.4)

where (i) denotes the i–th order derivative with i = 1, 2, . . .
Notice that we can re–write (4.3) as:

S̃t =
(
(St − Sτ )

−1 −
(
S0
τ − Sτ

)−1
)−1

=

=
(
B−1
t − C−1

)−1
=
(
B−1
t Bt

(
B−1
t − C−1

)
CC−1

)−1
=

=
(
B−1
t (C −Bt)C

−1
)−1

= C (C −Bt)
−1
Bt = C (Dt)

−1
Bt = (4.5)

=
(
S0
τ − Sτ

) (
S0
τ − St

)−1
(St − Sτ ) (4.6)

From equation (4.5), we have S̃t = C (Dt)
−1
Bt, then:

S̃′
t = C

(
−(Dt)

−1D′
t(Dt)

−1Bt + (Dt)
−1B′

t

)
=

= C(Dt)
−1S′

t

(
(Dt)

−1Bt + Id
)
, (4.7)

and, substituting t = τ in equation (4.4), we get

S̃′
τ = S′

τ . (4.8)

Deriving again (4.7), one obtains:

S̃′′
t = C(Dt)

−1
(
2S′

t(Dt)
−1S′

t + S′′
t

) (
(Dt)

−1Bt + Id
)
, (4.9)
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and, again for t = τ :

S̃′′
τ = 2S′

τC
−1S′

τ + S′′
τ = 2S′

τ (S
0
τ − Sτ )

−1S′
τ + S′′

τ . (4.10)

If S̃′′
τ = 0 then

(S0
τ − Sτ )

−1 = −1

2
(S′
τ )

−1S′′
τ (S

′
τ )

−1 (4.11)

and since S0
τ − Sτ and S′

τ are invertible, so is S′′
τ . Finally, we can re–write Eq. (4.11) as

S0
τ = Sτ − 2S′

τ (S
′′
τ )

−1S′
τ (4.12)

to obtain the expression of S0
τ as claimed. □

Before the proof of the existence of ∆τ we will establish some technical facts.

Lemma 4. Let φ : I → R be a smooth function. Then the function

g(t, s) =

{
φ(t)−φ(s)

t−s if t ̸= s

φ′(t) if t = s

defined in a neighbourhood of the diagonal DI = {(t, t) : t ∈ I} is smooth.

Proof. By Barrow’s rule, we have

φ(t)− φ(s) =

∫ 1

0

d

dλ

∣∣∣∣
λ

φ(λt+ (1− λ)s) dλ = (t− s)

∫ 1

0

φ′(λt+ (1− λ)s) dλ

then

g(t, s) =

∫ 1

0

φ′(λt+ (1− λ)s) dλ

is the sought function. □

Lemma 5. Given a Jacobi curve Γ = Γ(t) ≃
[
Id
St

]
, then the function

G(t, s) =

{
St−Ss

t−s if t ̸= s

S′
t if t = s

is smooth, symmetric and invertible with smooth inverse F (t, s) = G(t, s)−1 in a neighbourhood of the
diagonal DI .

Proof. If St = (Sij(t))
m
i,j=1 ∈ Rn×n is a smooth symmetric matrix, then we can apply Lemma 4 to

the components Sij obtaining smooth functions

gij(t, s) =

{
Sij(t)−Sij(s)

t−s if t ̸= s

S′
ij(t) if t = s

So, the matrix G(t, s) = (gij(t, s))
m
i,j=1 is smooth and the symmetry of St implies the symmetry of G.

Moreover, since
det G(t, t) = det S′

t ̸= 0

then, by remark 2, G is invertible in a neighbourhood of DI and

G(t, s)−1 = (t− s) (St − Ss)
−1

which is also smooth in a neighbourhood of DI . □

Recall that, because of transversality, the curve Γ is also defined in the affine space Γ(τ)⋔ having
coordinates:

SΛ̄
Γ(τ)⋔(Γ(t)) = (St − Sτ )

−1 .

The curve:
ΓΛ(t) = (t− τ)

(
Γ(t)− Λ

)
Γ(τ)⋔

is defined for t ̸= τ in the vector space
−−→
Γ(τ)⋔, where

(
Γ(t)− Λ

)
Γ(τ)⋔

is the vector corresponding to

the map (
Γ(t)− Λ

)
Γ(τ)⋔

= ⟨Γ(t),Λ,Γ(τ)⟩ : Γ(t) → Γ(τ)
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with coordinates given by the function F (t, τ) = (t− τ)(St−Sτ )−1. By Lemma 5, F can be extended

smoothly to t = τ , because F (t, t) = (S′
t)

−1 and then ΓΛ(t) can be smoothly extended to t = τ .
Moreover, for any ∆ ∈ Γ(τ)⋔, we get:(

Γ(t)− Λ
)
Γ(τ)⋔

= (Γ(t)−∆)Γ(τ)⋔ +
(
∆− Λ

)
Γ(τ)⋔

and since the last term on the right hand side of the previous equation does not depend on t, then
the curve

Γ∆(t) = (t− τ) (Γ(t)−∆)Γ(τ)⋔

can also be extended to t = τ .

Now, the second part of the proof, that is, the existence of ∆τ , follows from the following Lemma.

Lemma 6. There exists a unique ∆τ ∈ Γ(τ)⋔ such that (Γ∆τ )′(τ) = 0, and if ∆τ ∈ Λ
⋔
, its coordinates

are given by:

S(∆τ ) = Sτ − 2S′
τ (S

′′
τ )

−1S′
τ .

Proof. Fixed τ , consider the Taylor series of the function F̃ (t) = F (t, τ) = (t − τ) (St − Sτ )
−1

at
t = τ , which is given by:

F̃ (t) = B−1(τ) +B0(τ) · (t− τ) +B1(τ) · (t− τ)2 + · · ·
with F̃ (τ) = B−1(τ) = (S′

τ )
−1, and F̃ ′(τ) = B0(τ). Notice that the coefficients Bi(τ) are symmetric

matrices representing the coordinates SΛ
Γ(τ)⋔ of the corresponding derivatives of ΓΛ = ΓΛ(t), at t = τ ,

in the affine space Γ(τ)⋔, in particular F̃ ′(τ) = B0(τ) ≃ (SΛ
Γ(τ)⋔)

′(τ).

We can choose ∆τ ∈ Γ(τ)⋔ such that (S(∆τ )− Sτ )
−1

= B0(τ), then the curve in
−−→
Γ(τ)⋔:

Γ∆(t) = (t− τ) (Γ(t)−∆τ )Γ(τ)⋔

can be written in coordinates as:

F̃∆(t) = F̃ (t)− (t− τ)B0(τ)

verifying F̃ ′
∆(τ) = 0, and corresponding to (Γ∆)′(τ) = 0.

Now, let us compute B0. Notice that the function f(t) = St − Sτ has the Taylor series at t = τ
given by:

f(t) = S′
τ (t− τ) +

1

2
S′′
τ (t− τ)2 +

1

6
S′′′
τ (t− τ)3 + . . .

and so

G̃(t) = G(t, τ) =
f(t)

t− τ
= S′

τ +
1

2
S′′
τ (t− τ) +

1

6
S′′′
τ (t− τ)2 + . . .

therefore, denoting by (i) the i–th derivative respect to t, we get

G̃(i)(τ) =
1

i+ 1
S(i+1)
τ .

Since F̃ (t) = G̃(t)−1, deriving at t = τ we obtain

F̃ ′(τ) = −G̃(τ)−1G̃′(τ)G̃(τ)−1 = −1

2
(S′
τ )

−1S′′
τ (S

′
τ )

−1

and because F̃ ′(τ) = B0(τ) = (S(∆)− Sτ )
−1

, then

(S(∆)− Sτ )
−1

= −G̃(τ)−1G̃′(τ)G̃(τ)−1 = −1

2
(S′
τ )

−1S′′
τ (S

′
τ )

−1

whence

S(∆) = Sτ − 2S′
τ (S

′′
τ )

−1S′
τ .

□

Now, we are ready to prove Thm. 1.
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Proof of Theorem 1. We can always choose Λ such that ∆τ ∈ Λ
⋔
, then since the coordinates of ∆τ

in Lemma 6 coincide with the coordinates of ∆τ in Lemma 3, that is:

S(∆τ ) = Sτ − 2S′
τ (S

′′
τ )

−1S′
τ = S0

τ ,

then both Lagrangian subspaces coincide, thus the proof is concluded. □

Definition 4. For a given Jacobi curve Γ = Γ(τ) the unique curve ∆: I → Γ(τ)⋔ ⊂ L (W ) such that
∆(τ) ∈ Γ(τ)⋔, and Γ′′

∆(τ)(τ) = 0, for all τ ∈ I, is called the derivative curve of Γ.

4.2. The Ricci curvature of a Jacobi curve.

4.2.1. The intrinsic definition of the Ricci curvature operator of a Jacobi curve. We will consider as
before Γ(t) a Jacobi curve with ∆(τ) = ∆τ its derivative curve, cfr. (4). In the affine space ∆⋔

τ we

can take the origin at Γ(τ). With that choice of origin, the linear space
−→
∆⋔
τ associated to ∆⋔

τ can be
identified with (cfr. §2.2, Eq. (2.11)):

−→
∆⋔
τ = S(Γ(τ),∆τ ) = {S : Γ(τ) → ∆τ | (S(u) | v) = (S(v) | u),∀u, v ∈ Γ(τ)} .

Moreover, as Γ′
∆τ

(τ), and Γ′′′
∆τ

(τ) are in the vector space
−→
∆⋔
τ , and Γ′

∆τ
(τ) is non-degenerate by

definition of Jacobi curve, we can define the operator RΓ : Γ(τ) → Γ(τ) as:

RΓ(τ) = (Γ′
∆τ

(τ))−1 ◦ Γ′′′
∆τ

(τ) , (4.13)

that is, RΓ(τ) is the operator making the following diagram commutative:

Γ (τ) ∆τ

Γ (τ)

Γ′′′
∆τ

(τ)

(
Γ′
∆τ

(τ)
)−1

RΓ (τ)

(4.14)

Definition 5. Let Γ(t) be a Jacobi curve. The curve of linear maps RΓ(τ) : Γ(τ) → Γ(τ) defined by

the previous diagram, (4.14), that is, RΓ(τ) =
(
Γ′
∆τ

)−1 ◦Γ′′′
∆τ

, will be called the Ricci curvature tensor
of the curve. We will say that the (regular) Jacobi curve Γ(t) is admissible if RΓ(τ) is invertible.

If we choose a symplectic basis (e, e) such that the Jacobi curve Γ(t) has the coordinate represen-

tation Γ(t) =

[
I
St

]
(e,e)

, then the matrix S(Sτ ) associated to the linear map RΓ(τ) : Γ(τ) → Γ(τ)

with respect to the basis e + eSt, will not depend whether we use the symplectic basis (e, e) or any
conformal symplectic basis (eλ, eλ) in the class of [ω], because the Lagrangian subspace Γ(τ) and the
affine structure of ∆⋔

τ does not, cfr. Sect. 2.1.2. This important observation implies that the Ricci
curvature RΓ depends just on the conformal symplectic structure of the space W .

The Ricci curvature operator RΓ defined above coincides with the curvature operator introduced
by Agrachev and Zelenko in [Ag02]. As a consequence of the computations in Lemma 3 it is possible

to obtain its matrix representation from S̃t. Deriving again in (4.9) and taking into account (4.4), we
can write:

S̃′′′
t = C(Dt)

−1
[
S′′′
t + 3S′′

t (Dt)
−1S′

t + 3S′
t(Dt)

−1S′′
t + 6S′

t(Dt)
−1S′

t(Dt)
−1S′

t

]
·
(
(Dt)

−1Bt + Id
)

and for t = τ , because of (4.4) and (4.11), we get :

S̃′′′
τ = CC−1

[
S′′′
τ + 3S′′

τC
−1S′

τ + 3S′
τC

−1S′′
τ + 6S′

τC
−1S′

τC
−1S′

τ

]
Id =

= S′′′
τ − 3

2
S′′
τ (S

′
τ )

−1S′′
τ − 3

2
S′′
τ (S

′
τ )

−1S′′
τ +

6

4
S′′
τ (S

′
τ )

−1S′′
τ =

= S′′′
τ − 3

2
S′′
τ (S

′
τ )

−1S′′
τ = S′

τ ·
[
(S′
τ )

−1S′′′
τ − 3

2
(S′
τ )

−1S′′
τ (S

′
τ )

−1S′′
τ

]
= S′

τ · S (Sτ ) , (4.15)

with S (Sτ ) denoting the Schwarzian derivative of the curve Sτ (that will be discussed at length in

the coming section). The matrices S̃′′′
τ , S̃′

τ correspond, respectively, to the coordinates of the maps
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Γ′′′
∆τ

and Γ′
∆τ

so, using (4.8) and (4.15), the expression of RΓ in the same coordinates is given by the
matrix S(Sτ ):

S (Sτ ) = (S′
τ )

−1S′′′
τ − 3

2

(
(S′
τ )

−1S′′
τ

)2
, (4.16)

in full agreement with the results in [Ag02].

Definition 6. For any non–singular matrix St = S(t) ∈ Rk×k, depending smoothly on t ∈ I ⊂ R, the
expression found in (4.16) will be called the Schwarzian derivative of St.

4.2.2. The coordinate representation of the Ricci curvature: The Schwarzian derivative and the change
of parameter formula: We will study first how the Schwarzian derivative S(St) of St behaves under a
change of parameter.

Lemma 7. Let us consider two smooth functions ψ : I ⊂ R → J ⊂ R and φ : J ⊂ R → I ⊂ R, which
are inverse functions of each other, that is, they satisfy t = ψ(t), and t = φ(t). Then we have:

S (ψ)|t = −
(
dψ

dt

)2

S (φ)|t=ψ(t) , (4.17)

with S (ψ)|t =
ψ′′′(t)

ψ′(t)
− 3

2

(
ψ′′(t)

ψ′(t)

)2
.

Proof. Since

dψ

dt
(t) =

(
dφ

dt
(ψ(t))

)−1

or equivalently, simplifying the notation

ψ′(t) =
1

φ′ (t)

∣∣∣∣
t=ψ(t)

.

Then we have

ψ′′(t) =
−φ′′ (t) · ψ′(t)

(φ′ (t))
2

∣∣∣∣∣
t=ψ(t)

ψ′′′(t) =
−φ′′′ (t) ·

(
ψ′(t)

)2
φ′ (t)− φ′′ (t) · ψ′′(t)φ′ (t) + 2 (φ′′ (t))

2 (
ψ′(t)

)2
(φ′ (t))

3

∣∣∣∣∣
t=ψ(t)

=

=
−φ′′′ (t) ·

(
ψ′(t)

)2
φ′ (t) + 3 (φ′′ (t))

2 (
ψ′(t)

)2
(φ′ (t))

3

∣∣∣∣∣
t=ψ(t)

Now, we can compute

S (ψ)|t =
ψ′′′(t)

ψ′(t)
− 3

2

(
ψ′′(t)

ψ′(t)

)2

=

=

(
−φ′′′ (t) ·

(
ψ′(t)

)2
φ′ (t) + 3 (φ′′ (t))

2 (
ψ′(t)

)2
(φ′ (t))

2 − 3

2

(−φ′′ (t)) · ψ′(t)

φ′ (t)

)2
)∣∣∣∣∣

t=ψ(t)

=

=

(
−φ

′′′ (t)

φ′ (t)
·
(
ψ′(t)

)2
+

3

2

(φ′′ (t))
2

(φ′ (t))
2 ·
(
ψ′(t)

)2)∣∣∣∣∣
t=ψ(t)

=

= −
(
ψ′(t)

)2 · S (φ)|t=ψ(t)
as we wanted to show. □

Proposition 3. Let t = ψ(t) be a change of parameter for a Jacobi curve Γ, that is Γ = Γ(t) = Γ(ψ(t))

such that Γ(t) ≃
[
Id
St

]
and Γ(t) ≃

[
Id
St

]
, are the corresponding expressions in coordinates. Then

S
(
St
)
=

(
dψ

dt

)2

S(Sψ(t)) + S (ψ)|t · Id
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Proof. Since St = Sψ(t) then

S
′
t =

d

dt
St = ψ′(t)S′

ψ(t) (4.18)

S
′′
t =

d2

dt
2St = ψ′′(t)S′

ψ(t) +
(
ψ′(t)

)2
S′′
ψ(t) (4.19)

S
′′′
t =

d3

dt
3St = ψ′′′(t)S′

ψ(t) + 3ψ′(t)ψ′′(t)S′′
ψ(t) +

(
ψ′(t)

)3
S′′′
ψ(t)

So, we have

S
(
St
)
= (S

′
t)

−1S
′′′
t − 3

2

(
(S

′
t)

−1S
′′
t

)2
=

=

[
1

ψ′(t)
(S′
ψ(t))

−1
(
ψ′′′(t)S′

ψ(t) + 3ψ′(t)ψ′′(t)S′′
ψ(t) +

(
ψ′(t)

)3
S′′′
ψ(t)

)]
−

− 3

2

[
1

ψ′(t)
(S′
ψ(t))

−1
(
ψ′′(t)S′

ψ(t) +
(
ψ′(t)

)2
S′′
ψ(t)

)]2
=

=

[
ψ′′′(t)

ψ′(t)
· Id + 3ψ′′(t)(S′

ψ(t))
−1S′′

ψ(t) +
(
ψ′(t)

)2
(S′
ψ(t))

−1S′′′
ψ(t)

]
−

− 3

2

[
ψ′′(t)

ψ′(t)
· Id + ψ′(t)(S′

ψ(t))
−1S′′

ψ(t)

]2
=

=

[
ψ′′′(t)

ψ′(t)
− 3

2

(
ψ′′(t)

ψ′(t)

)2
]
· Id +

(
ψ′(t)

)2 [
(S′
ψ(t))

−1S′′′
ψ(t) −

3

2

(
(S′
ψ(t))

−1S′′
ψ(t)

)2]
=

= S (ψ)|t · Id +

(
dψ

dt

)2

S(Sψ(t))

as claimed. □

The result of Prop. 3 tell us how the Ricci curvature RΓ(τ) transforms under a change of parameter
t = ψ(t̄):

RΓ(t) =

(
dψ

dt

)2

RΓ (t)|ψ(t) + S (ψ)|t · Id (4.20)

Remark 3. Note that if RΓ(t) is diagonalisable, the same will be true for RΓ(t).

4.3. The geometric arc parameter of a Jacobi curve.

Definition 7. Given a Jacobi curve Γ = Γ(t) ≃
[
I
St

]
, we define its parametric Ricci curvature as the

real valued function on the parameter t of the Jacobi curve given by:

Rict = tr (RΓ(t)) = tr (S (St)) .

Definition 8. Let Γ(t) be a Jacobi curve and Γ(t) = Γ(ψ(t)) a reparametrization of Γ(t). We will
say that t is a projective parameter if

Rict = tr
(
RΓ(t)

)
≡ 0 .

Proposition 4. Any Jacobi curve Γ = Γ(t), has a projective parameter.

Proof. Given the Jacobi curve Γ(t), consider the reparametrization t̄ = φ(t), obtained solving the
Schwarzian equation:

S(φ(t)) =
1

n
RicΓ(t) ,

then, because of Eq. (4.20) and Lem. 7, Eq. (4.17), we get immediately, that Rict̄ = 0. □
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If t̄ is a projective parameter for the Jacobi curve Γ, taking the trace in Eq. (4.20), we get:

0 =

(
dψ

dt

)2

Ricψ(t) + n S (ψ)|t ,

whence:

S (ψ)|t = − 1

n

(
dψ

dt

)2

Ricψ(t)

and Eq. (4.20) becomes:

RΓ(t) =

(
dψ

dt

)2 [
RΓ

(
ψ(t)

)
− 1

n
Ricψ(t) · Id

]
. (4.21)

Given the projective parameter t, we can define the geometric arc parameter sΓ, recall Sect. 3.3,
as:

dsΓ = ζ(t)dt with ζ(t) = 2n

√∣∣det (RΓ(t)
)∣∣ .

Let us observe first, that the geometric arc parameter sΓ given above is well defined and does not
depend on the projective parameter t̄ used to define it. Indeed, if t̄, and t = ψ(t̄), are projective
parameters, then S(ψ) = 0, and we get:

ψ∗(dsΓ) = ψ∗
(

2n
√
detRΓ(t)dt

)
= 2n
√

detRΓ(ψ(t̄))
dψ

dt̄
dt̄ ,

but then, using (4.20), with S(ψ) = 0 (the parameter t is projective by assumption), we get:

2n
√
detRΓ(ψ(t̄))

dψ

dt̄
dt̄ =

2n

√
det

(
dψ

dt̄

)−2

RΓ(t̄)
dψ

dt̄
dt̄ = 2n

√
detRΓ(t̄)dt̄ = dsΓ ,

with Γ(t̄) = Γ(ψ(t̄)).
Then the geometric arc element depending on any parameter t such that t = ψ(t), where t = φ(t)

is a projective parameter, can be computed easily4:

dsΓ(t) = φ∗ (dsΓ)|t =

= ζ(φ(t))
dφ

dt
(t) dt =

= 2n

√∣∣det (RΓ(t)
)∣∣ dφ

dt
(t) dt =

= 2n

√√√√∣∣∣∣∣det
((

dψ

dt
(φ(t))

)2 [
RΓ(t)−

1

n
Rict · Id

])∣∣∣∣∣ dφdt (t) dt =
= 2n

√∣∣∣∣det(RΓ(t)−
1

n
Rict · Id

)∣∣∣∣ dψdt (φ(t)) dφdt (t) dt =
= 2n

√∣∣∣∣det(RΓ(t)−
1

n
Rict · Id

)∣∣∣∣ dt
that is,

dsΓ = ζ(t)dt where ζ(t) = 2n

√∣∣∣∣det(RΓ(t)−
1

n
Rict · Id

)∣∣∣∣ . (4.22)

Notice that, if Γ = Γ(s) is parametrized by the geometric arc parameter s such that t = ψ(s) and
s = φ(t), then

dψ

dt
(φ(t)) =

(
dφ

dt
(t)

)−1

=
1

ζ(t)

4Without any lack of generality we may assume that the change of parameter preserves the orientation, that is,
dψ
dt

> 0.
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and therefore, by the equations (4.17) and (4.21), the expressions of the curvature operator and the
Ricci curvature for a Jacobi curve parametrized by the geometric arc parameter s can be written, in
terms of any parameter t, as follows:

RΓ(φ(t)) =
1

ζ2(t)
[RΓ(t)− S (φ)|t · Id] (4.23)

Ricφ(t) =
1

ζ2(t)
[Rict − n S (φ)|t] (4.24)

S(φ) =
ζ ′′

ζ
− 3

2

(
ζ ′

ζ

)2

(4.25)

with ζ(t) given by (4.22).

Definition 9. With the previous conventions and notations, the operator given in Eq. (4.23), will be
called the absolute curvature operator of the Jacobi curve Γ(t) and it will be denoted as RΓ(t), i.e.,

RΓ(t) =
1

ζ2(t)
[RΓ(t)− S (φ)|t · Id] (4.26)

Remark 4. Since dsΓ = ds, because of (4.22), we get:∣∣∣∣det(RΓ(s)−
1

n
Rics · Id

)∣∣∣∣ = 1 .

4.4. Symmetry of the Ricci curvature. Because of Prop. 1, we identify the tangent vector Γ′(t)

of the curve Γ with the corresponding symmetric bilinear form Γ̇(0), so we will denote Γ′(t) ∈ S (Γ(t)).
It will be helpful to see Γ′(t) as a map

Γ′(t) : Γ(t) → Γ(t)∗

where Γ(t)∗ denotes the dual space of Γ(t), because denoting by ⟨u, v⟩Γ′(t) ≡ Γ′(t) (u, v) the bilinear
form Γ′(t) then

Γ′(t)(u) = ⟨u, ·⟩Γ′(t) ∈ Γ(t)∗.

Also observe that, since the derivative point ∆τ corresponding to Γ(τ) is transversal to Γ(τ), that
is ∆τ ∈ Γ(τ)⋔, then the map ∆τ → Γ(τ)∗ defined by u 7→ ω(u, ·)|Γ(τ) = (u | ·)Γ(τ), is a linear

isomorphism, and we can write the bilinear form ⟨·, ·⟩Γ′(t) ∈ Γ(t)∗ in terms of the symplectic form ω
as (recall Eq. (2.11)):

⟨u, v⟩Γ′(t) = (Γ′(t)(u) | v) = (Γ′(t)(v) | u)
where we identify the form Γ′(t)(u) ∈ Γ(t)∗ with its corresponding vector in ∆τ .

Theorem 2. The Ricci curvature operator RΓ(τ) : Γ(τ) → Γ(τ) is symmetric with respect to the
symmetric bilinear form Γ′(τ).

Proof. Let us take into account that the linear maps Γ(i)(τ) : Γ(τ) → ∆τ given by the derivatives of
the curve Γ for i ∈ N verify that:(

Γ(i)(τ)(u) | v
)
+
(
u | Γ(i)(τ)(v)

)
= 0

and, consequently:
(Γ′′′(τ)(u) | v) = (Γ′′′(τ)(v) | u) .

By diagram 4.14, we get:

⟨RΓ(τ)(u), v⟩Γ′(t) =
(
Γ′(t)

(
RΓ(τ)(u)

)
| v
)
= (Γ′′′(τ)(u) | v) =

= (Γ′′′(τ)(v) | u) = ⟨RΓ(τ)(v), u⟩Γ′(t) =

= ⟨u,RΓ(τ)(v)⟩Γ′(t)

as claimed. □

Corollary 1. The Ricci curvature operator RΓ(τ) : Γ(τ) → Γ(τ) is diagonalizable, i.e. there exists a
basis of eigenvectors f = (f1, . . . , fm) of Γ(τ).
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5. Cartan theory of Jacobi curves

This section will be devoted to the development of a Cartan-like theory of moving frames describing
the structure of Jacobi curves.

5.1. Moving frames and the Cartan matrix of a Jacobi curve. Let (e, e) = (e1, . . . , em, e1, . . . , em)

be a symplectic basis of (W,ω). Now, consider a Jacobi curve Γ = Γ(τ) such that Γ(τ) ≃
[
I
Sτ

]
where τ

is the geometric arc parameter. Let us assume that Γ(τ) is such that S′
τ is positive or negative definite.

Then, by Corollary 1, there exists a basis f = (f1, . . . , fm) of eigenvectors of the curvature operator
RΓ (τ) : Γ (τ) → Γ (τ) orthonormal with respect to S′

τ . By Lemma 1, there exists a complementary
basis f =

(
f1, . . . , fm

)
of ∆τ ∈ L (W ) such that

(
f , f
)
is symplectic basis of W . Then, in virtue of

diagram (4.14), we write, cfr. (2.8): {
f = e Mτ + e Sτ Mτ

f = e Mτ + e S0
τ Mτ

(5.1)

where, recall (2.9):

Mτ = (S0
τ − Sτ )

−1
(
MT
τ

)−1
(5.2)

and S0
τ is the derivative curve of Γ(s) given by equation (4.12). Therefore:(

f , f
)
= (e, e)Pτ (5.3)

where Pτ ∈ R2m×2m has the form:

Pτ =

(
Mτ Mτ

SτMτ S0
τMτ

)
, (5.4)

and we will call the symplectic basis F = (f , f) a symplectic Frenet basis for Γ.
Deriving the equation (5.3) with respect to τ , we get:(

f ′, f
′)

= (e, e)P′
τ =

(
f , f
)
P−1
τ P′

τ (5.5)

where f ′ = df/dτ , f
′
= df/dτ , P′

τ = dPτ/dτ , and:

Cτ = P−1
τ P′

τ (5.6)

is the Cartan matrix of the moving frame
(
f , f
)
.

5.2. The structure of the Cartan matrix. Observe that the matrix (5.4) can be factorized as

Pτ = UτVτ

where

Uτ =

(
I I
Sτ S0

τ

)
and Vτ =

(
Mτ 0
0 Mτ

)
.

The inverse of Pτ is

P−1
τ = V−1

τ U−1
τ =

(
M−1
τ 0

0 M
−1

τ

)
·
(

(S0
τ − Sτ )

−1S0
τ −(S0

τ − Sτ )
−1

−(S0
τ − Sτ )

−1Sτ (S0
τ − Sτ )

−1

)
and its derivative with respect to τ is

P′
τ = U′

τVτ +UτV
′
τ

whence

Cτ = P−1
τ P′

τ = V−1
τ U−1

τ U′
τVτ +V−1

τ V′
τ . (5.7)

Let us compute the expression of Cτ depending on Sτ and its derivatives.
By equation (5.2), we have that

M
−1

τ =MT
τ (S

0
τ − Sτ ) (5.8)

M
′
τ = −(S0

τ − Sτ )
−1
[
(S0
τ − Sτ )

′(S0
τ − Sτ )

−1 + (MT
τ )

−1(MT
τ )

′] (MT
τ )

−1

M
−1

τ M
′
τ = −MT

τ (S
0
τ − Sτ )

′(S0
τ − Sτ )

−1(MT
τ )

−1 − (MT
τ )

′(MT
τ )

−1. (5.9)
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Moreover, since

U−1
τ U′

τ =

(
(S0
τ − Sτ )

−1S0
τ −(S0

τ − Sτ )
−1

−(S0
τ − Sτ )

−1Sτ (S0
τ − Sτ )

−1

)(
0 0
S′
τ (S0

τ )
′

)
=

=

(
−(S0

τ − Sτ )
−1S′

τ −(S0
τ − Sτ )

−1(S0
τ )

′

(S0
τ − Sτ )

−1S′
τ (S0

τ − Sτ )
−1(S0

τ )
′

)
then, using equations (5.2), (5.8) and (5.9), the two terms on the r.h.s. of (5.7) can be written as:

V−1
τ U−1

τ U′
τVτ =

(
M−1
τ 0

0 M
−1

τ

)(
−(S0

τ − Sτ )
−1S′

τ −(S0
τ − Sτ )

−1(S0
τ )

′

(S0
τ − Sτ )

−1S′
τ (S0

τ − Sτ )
−1(S0

τ )
′

)(
Mτ 0
0 Mτ

)
=

=

(
−M−1

τ (S0
τ − Sτ )

−1S′
τMτ −M−1

τ (S0
τ − Sτ )

−1(S0
τ )

′(S0
τ − Sτ )

−1(MT
τ )

−1

MT
τ S

′
τMτ MT

τ (S
0
τ )

′(S0
τ − Sτ )

−1(MT
τ )

−1

)
V−1
τ V′

τ =

(
M−1
τ M ′

τ 0

0 M
−1

τ M
′
τ

)
=

=

(
M−1
τ M ′

τ 0
0 −MT

τ (S
0
τ − Sτ )

′(S0
τ − Sτ )

−1(MT
τ )

−1 − (MT
τ )

′(MT
τ )

−1

)
From equations (4.11) and (4.12), we can compute

(S0
τ )

′ = −3S′
τ + 2S′

τ (S
′′
τ )

−1S′′′
τ (S′′

τ )
−1S′

τ

(S0
τ − Sτ )

−1S′
τ = −1

2
(S′
τ )

−1S′′
τ

S′
τ (S

0
τ − Sτ )

−1 = −1

2
S′′
τ (S

′
τ )

−1

(S0
τ )

′(S0
τ − Sτ )

−1 =
(
−3S′

τ + 2S′
τ (S

′′
τ )

−1S′′′
τ (S′′

τ )
−1S′

τ

)(
−1

2
(S′
τ )

−1S′′
τ (S

′
τ )

−1

)
=

=
3

2
S′′
τ (S

′
τ )

−1 − S′
τ (S

′′
τ )

−1S′′′
τ (S′

τ )
−1 =

= −S′
τ (S

′′
τ )

−1S′
τ

(
−3

2
(S′
τ )

−1S′′
τ (S

′
τ )

−1S′′
τ + (S′

τ )
−1S′′′

τ

)
(S′
τ )

−1 =

= −S′
τ (S

′′
τ )

−1S′
τ · S (Sτ ) · (S′

τ )
−1

So, using equation (5.7), we obtain the explicit expression of the Cartan matrix Cτ in terms of Sτ
and its derivatives:

Cτ =

(
M−1
τ 0
0 MT

τ

)(
1
2 (S

′
τ )

−1S′′
τ − 1

2S (Sτ ) (S
′
τ )

−1

S′
τ − 1

2S
′′
τ (S

′
τ )

−1

)(
Mτ 0
0 (MT

τ )
−1

)
+

(
M−1
τ M ′

τ 0

0 −
(
M−1
τ M ′

τ

)T)
(5.10)

where we have used that (MT
τ )

′(MT
τ )

−1 =
(
M−1
τ M ′

τ

)T
.

If we denote

Cτ =

(
K11 K12

K21 −KT
11

)
then we have

K11 =
1

2
M−1
τ (S′

τ )
−1S′′

τMτ +M−1
τ M ′

τ

K12 = −1

2
M−1
τ S (Sτ ) (S′

τ )
−1(MT

τ )
−1

K21 =MT
τ S

′
τMτ

Because the column vectors of Mτ are normalized with respect to the bilinear form S′
τ , see Sect.

5.1, then

K21 =MT
τ S

′
τMτ = Id (5.11)

and therefore

(S′
τ )

−1 =MτM
T
τ . (5.12)
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Deriving the equation MT
τ S

′
τMτ = Id, we have

(MT
τ )

′S′
τMτ +MT

τ S
′′
τMτ +MT

τ S
′
τM

′
τ = 0

and because of Eq. (5.12), we get

MT
τ S

′′
τMτ = −

[
M−1
τ M ′

τ +
(
M−1
τ M ′

τ

)T ]
.

So, substituting in the expressions of K12 and K11, we obtain

K12 = −1

2
M−1
τ S (Sτ ) (S′

τ )
−1(MT

τ )
−1 = −1

2
M−1
τ S (Sτ )Mτ

K11 =
1

2
M−1
τ (S′

τ )
−1S′′

τMτ +M−1
τ M ′

τ =

=
1

2
MT
τ S

′′
τMτ +M−1

τ M ′
τ =

= −1

2

[
M−1
τ M ′

τ +
(
M−1
τ M ′

τ

)T ]
+M−1

τ M ′
τ =

=
1

2

[
M−1
τ M ′

τ −
(
M−1
τ M ′

τ

)T ]
Then, we can write the Cartan matrix as

Cτ =

 1
2

[
M−1
τ M ′

τ −
(
M−1
τ M ′

τ

)T ] − 1
2M

−1
τ S (Sτ )Mτ

Id 1
2

[
M−1
τ M ′

τ −
(
M−1
τ M ′

τ

)T ]
 (5.13)

It is important to observe that, since Mτ is the matrix of eigenvectors of S (Sτ ), then:

K12 = −1

2
M−1
τ S (Sτ )Mτ = −1

2
Dτ

is diagonal, and Dτ is the matrix of eigenvalues of the curvature tensor. Moreover, we also note that:

KT
11 =

1

2

[(
M−1
τ M ′

τ

)T −M−1
τ M ′

τ

]
= −K11.

Therefore the Cartan matrix has the block structure:

Cτ =

(
Στ Kτ

Id Στ

)
whereKτ = − 1

2Dτ ∈ Rn×n is diagonal and Στ ∈ Rn×n = 1
2

[(
M−1
τ M ′

τ

)T −M−1
τ M ′

τ

]
skew–symmetric.

But the eigenvalues ki with i = 1, . . . , n of Dτ still verify an additional property. Indeed, since
Γ = Γ(τ) is parametrized by the geometric arc parameter τ , because of Remark 4, we get:

1 =

∣∣∣∣det(RΓ(τ) −
1

n
tr
(
RΓ(τ)

)
Id

)∣∣∣∣ = ∣∣∣∣det(Dτ −
1

n
tr (Dτ ) Id

)∣∣∣∣ =
∣∣∣∣∣∣
m∏
i=1

ki − 1

n

m∑
j=1

kj

∣∣∣∣∣∣ (5.14)

that establishes a functional dependence among the functions ki, i = 1, . . . , n. Writing 1
n

∑m
j=1 kj as

k̄, the previous condition (5.14) becomes
∏m
i=1 |ki − k̄| = 1, or even better:

m∏
i=1

∆ki = 1 ,

where ∆ki = |ki − k̄|.

Next, let us compute the matrix Cτ for any parameter. Let t be another parameter for Γ such that

t = ψ(τ) and τ = φ(t) in such a way Γ̃ = Γ̃(t) = Γ (φ(t)) ≃
[
I

S̃t

]
. Then we have:

ψ′(τ) =
1

φ′ (ψ(τ))
=

1

ζ (ψ(τ))
, ψ′′(τ) =

−ζ ′ (ψ(τ)) · ψ′(τ)

ζ2 (ψ(τ))
=

−ζ ′ (ψ(τ))
ζ3 (ψ(τ))

.
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and, because of Prop. 3, and Lem. 6, we get:

S (Sτ ) =
1

ζ2(t)

(
S(S̃t)− S(φ) · I

)
. (5.15)

Because of equation (4.21), any eigenvector fa ofRΓ(τ) = S (Sτ ) is also eigenvector ofRΓ̃(t) = S(S̃t).
If fa is normalized by S′

τ then f̃a = 1√
ζ(t)

fa is normalized with respect to S̃′
t. Hence, we have that

M̃T
t S̃

′
tM̃t = Id ⇔ S̃′

t =
(
M̃tM̃

T
t

)−1

and M̃−1
t S(S̃t)M̃t = D̃t, is diagonal. Moreover

Mτ |τ=φ(t) =
√
ζ(t)M̃t

where M̃t is the matrix of coordinates of the eigenvectors of RΓ̃(t) orthonormal with respect to S̃′
t.

So, we have:

dMτ

dt

∣∣∣∣
τ=φ(t)

φ′(t) =
ζ ′(t)

2ζ1/2(t)
M̃t + ζ1/2(t)M̃ ′

t ,

and since φ′ = ζ, then:

dMτ

dt

∣∣∣∣
τ=φ(t)

=
ζ ′(t)

2ζ3/2(t)
M̃t +

1

ζ1/2(t)
M̃ ′
t .

Substituting the previous expressions in the blocks of the matrix (5.13) for τ = φ(t), we obtain:

1

2

[
M−1
τ M ′

τ −
(
M−1
τ M ′

τ

)T ]
=

1

2ζ(t)

[
M̃−1
t M̃ ′

t −
(
M̃−1
t M̃ ′

t

)T]
, (5.16)

and also, using (5.15), we get:

1

2
M−1
τ S (Sτ )Mτ =

1

ζ(t)2
· 1
2

(
M̃−1
t S(S̃t)M̃t − S(φ) · I

)
=

1

ζ(t)2
· 1
2

(
D̃t − S(φ) · I

)
. (5.17)

Then equation (5.10) becomes:

Cφ(t) =


1

2ζ(t)

[
M̃−1
t M̃ ′

t −
(
M̃−1
t M̃ ′

t

)T]
− 1

2ζ(t)2

(
D̃t − S(φ) · Id

)
Id 1

2ζ(t)

[
M̃−1
t M̃ ′

t −
(
M̃−1
t M̃ ′

t

)T]
 (5.18)

Remark 5. Note that if {ki}i=1,...,n are the eigenvalues of S(Sτ ) and {λi}i=1,...,n the corresponding

ones for S(S̃t) then, they are related by:

ki(φ(t)) =
1

ζ2(t)
(λi(t)− S(φ))

Indeed,

det (S(Sτ )− kiId) = 0 ⇒ det

(
1

ζ2

(
S(S̃t)− S(φ)Id

)
− kiId

)
= 0 ⇒

⇒ det

(
1

ζ2

[
S(S̃t)−

(
S(φ) + ζ2ki

)
Id
])

= 0 ⇒ det
(
S(S̃t)−

(
S(φ) + ζ2ki

)
Id
)
= 0 ⇒ λi = S(φ) + ζ2ki .

Remark 6. Observe that, with the notation above, and denoting by S̃0
t = S0

τ |φ(t), the coordinates of
the derivative curve depending on the non-geometric arc parameter t, we have that:

S̃0
t = S̃t − 2S̃′

t

(
S̃′′
t − ζ ′

ζ
S̃′
t

)−1

S̃′
t .
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6. A reconstruction theorem for Jacobi curves

6.1. Reconstruction of a Jacobi curve from its curvatures. In this section we will show that
the matrices Σ = Σ(τ) and K = K(τ) characterize the Jacobi curves for given initial values.

Recall that we have fixed a symplectic basis (e, e) ⊂ W in which the matrix of the symplectic
2–form ω is written by

J =

(
0 Id

−Id 0

)
∈ R2n×2n

where Id ∈ Rn×n is the identity matrix.
First, we will state a lemma.

Lemma 8. Let Σ = Σ(τ) ∈ Rn×n be a smooth skew–symmetric matrix and K = K(τ) ∈ Rn×n a
smooth diagonal one. For a given symplectic basis F0 = (f0, f0) ⊂W , the solution F (τ) = (f(τ), f(τ))
for τ ∈ I ⊂ R of the initial value problem:

d(f ,f)
dτ = (f ′, f̄ ′) =

(
f , f
)(Σ K

Id Σ

)
f(0) = eA0 + eB0

f(0) = eA0 + eB0

(6.1)

is a symplectic basis for all τ ∈ I and all solutions have the form PF where P is a conformal symplectic
transform, P ∈ CSp.

Proof. The existence and uniqueness of the solution F = F (τ) = (f(τ), f(τ)), is ensured by Picard-
Lindelöf theorem [Ha64, Thm. 1.1]. So, we have that f = (f1, . . . , fm) and f =

(
f1, . . . , fm

)
, are the

unique solution of the system (6.1) that we write as{
f = eA+ eB

f = eA+ eB
(6.2)

Now, let us denote the m×m matrices

ω (f , f) =
(
AT , BT

)
J

(
A
B

)
, ω

(
f , f
)
=
(
AT , BT

)
J

(
A
B

)
, ω

(
f , f
)
=
(
A
T
, A

T
)
J

(
A
B

)
(6.3)

With this notation, we have that the initial value problem (6.1) becomes:(
A′ A

′

B′ B
′

)
=

(
A A
B B

)(
Σ K
Id Σ

)
and then

A′ = AΣ+A (6.4)

B′ = BΣ+B (6.5)

A
′
= AK +AΣ (6.6)

B
′
= BK +BΣ (6.7)

Deriving the matrices of (6.3) and using that ΣT = −Σ, KT = K, ω
(
f , f
)
= −ω

(
f , f
)T

and
equations (6.4)–(6.7), we obtain the system of ODEs

d
dτ ω (f , f) = −Σω (f , f) + ω (f , f) Σ + ω

(
f , f
)
+ ω

(
f , f
)

d
dτ ω

(
f , f
)
= −Σω

(
f , f
)
+ ω

(
f , f
)
Σ+ ω

(
f , f
)
+ ω (f , f)K

d
dτ ω

(
f , f
)
= Kω

(
f , f
)
− Σω

(
f , f
)
+ ω

(
f , f
)
K + ω

(
f , f
)
Σ

which has the solution:

ω (f , f) = 0, ω
(
f , f
)
= Id, ω

(
f , f
)
= 0 , (6.8)

and by uniqueness of the solution, we have that F (τ) = (f(τ), f(τ)) is a symplectic basis for all
τ ∈ I. □

Now, we can establish the following reconstruction theorem.
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Theorem 3. Given smooth matrices Σ = Σ(τ) ∈ Rn×n and K = K(τ) ∈ Rn×n, where Σ is skew–
symmetric and K diagonal for τ ∈ I ⊂ R, with diagonal elements ki satisfying the functional relation
(5.14), that is:

m∏
i=1

|ki − k̄| = 1 ,

and a symplectic basis F0 = (f0, f0) ⊂ W , then there exist a unique Jacobi curve Γ = Γ(τ) such that
Γ(0) = span{f0} ∈ L (W ) and the Cartan matrix related to Γ is:

CΓ =

(
Σ K
Id Σ

)
. (6.9)

Definition 10. With the assumptions of Thm. 3, we will call the matrix CΓ, given by Eq. (6.9), the
reduced Cartan matrix of Γ and it provides the normal form for the Cartan matrix determined by a
moving symplectic frame adapted to a Jacobi curve, cfr. Sect. 5.1, Eq. (5.6).

Proof. Let F = (f , f) be the unique solution of the problem (6.1) of lemma 8 that can be written as
in (6.2). Since F = F (τ) is a symplectic basis for all τ ∈ I then equations (6.3) become:

ATB = BTA (6.10)

ATB −BTA = Id (6.11)

A
T
B = B

T
A (6.12)

Let us define the Jacobi curve Γ(τ) = span{f}, so

Γ(τ) ≃
[
A
B

]
≃
[

Id
BA−1

]
, span{f} ≃

[
A
B

]
≃
[

Id

B A
−1

]
and so, we denote the symmetric matrices

S = BA−1, S = B A
−1
.

By equation (2.9), we have that

AT
(
S − S

)
A = Id =⇒ A =

(
S − S

)−1
(AT )−1

and therefore(
A−1A

)T
=
(
A−1

(
S − S

)−1
(AT )−1

)T
= A−1

(
S − S

)−1
(AT )−1 = A−1A (6.13)

so A−1A is a symmetric matrix.
Now, let us compute the blocks of the Cartan matrix (5.13) for the curve Γ, where we denote

CΓ =

(
C11 C12

C21 C11

)
.

First, we have

S′ = B′A−1 −BA−1A′A−1 = (because of (6.4) and (6.5))

=
(
BΣ+B

)
A−1 −BA−1

(
AΣ+A

)
A−1 =

=
(
B −BA−1A

)
A−1 = (because of (6.11))

=
((
AT
)−1

+
(
AT
)−1

BTA−BA−1A
)
A−1 =

=
((
AT
)−1

+
[(
BA−1

)T −BA−1
]
A
)
A−1 = ( since S = BA−1 is symmetric )

=
(
AAT

)−1
,

then,

ATS′A = Id , (6.14)

corresponding to the block C21.



26 ON THE CLASSIFICATION OF JACOBI CURVES AND THEIR CONFORMAL CURVATURES

Since S′ =
(
AAT

)−1
, because of equation (6.4), we obtain:

S′′ = −S′
(
AAT +AA

T
)
S′ ,

and

S′′′ = 2S′
(
AAT +AA

T
)
S′
(
AAT +AA

T
)
S′ − 2S′

(
A∆AT +A A

T
)
S′ .

Then,

S(S) =
1

2

(
AAT +AA

T
)
S′
(
AAT +AA

T
)
S′ − 2

(
AKAT +A A

T
)
S′ .

The block C11 of CΓ is

C11 =
1

2

[
K−1
τ A′

τ −
(
K−1
τ A′

τ

)T ]
so using (6.4) and the symmetry of A−1A we have:

C11 = Σ+
1

2

[
A−1A−

(
A−1A

)T ]
= Σ .

Finally, the block C12 is

C12 = −1

2
A−1S(S)A (6.15)

so using (6.13), we get:

C12 = −1

4

(
A−1AAT +A

T
)
S′
(
A+AA

T
(AT )−1

)
+
(
K +A−1A A

T
(AT )−1

)
=

= −1

4

(
A−1AA−1 +A

T
(AT )−1A−1

)(
A+AA

T
(AT )−1

)
+
(
K +A−1A A

T
(AT )−1

)
=

= −1

4

(
A−1AA−1A+

(
A−1A

)T
A−1A+A−1A

(
A−1A

)T
+
(
A−1AA−1A

)T)
+

+
(
K +A−1A

(
A−1A

)T)
= −

(
A−1A

)2
+K +

(
A−1A

)2
= K (6.16)

concluding that the Cartan matrix is:

CΓ =

(
Σ K
Id Σ

)
,

as claimed. □

Remark 7. Observe that equation (6.16) implies, because of (6.15), that the matrix A ∈ Rn×n in the
proof corresponds to the matrix of eigenvectors of S(S) whose matrix of eigenvalues is − 1

2K ∈ Rn×n.
Since S′ is symmetric and it can be written by the product S′ = (A−1)TA−1 then S′ is positive definite.
Moreover, by equation (6.16), the eigenvectors of S(S) given by the matrix A are normalized by the
scalar product given by S′.

It is obvious that the parameters ki, diagonal elements of the matrix K, and the entries σij ,
1 ≤ i < j ≤ n, of the matrix Σ, are absolute curvatures for the Jacobi curve Γ.

Note that in the reconstruction theorem above, Thm. 3, the choice of the adapted symplectic basis
is not unique in the sense, that any other basis (ϵ1f1, . . . , ϵnfn, ϵ1f̄1, . . . , ϵnf̄n), with ϵk = ±1, with
give rise to the same Jacobi curve. The same will happen if we reorder the vectors fk, f̄k, or, if there
are multiple eigenvalues, the structure of the eigenvectors fk can be more general. Thus, in the generic
situation when the eigenvalues k1, . . . , kn are all different and are ordered in ascending order, that is,
k1 < · · · < kn, we will say that two reduced Cartan matrices:

C =

(
Σ K
Id Σ

)
, and C =

(
Σ K
Id Σ

)
,

are equivalent if there exists a diagonal matrix P with diagonal entries ±1, such that K = PKP , and
Σ = PΣP .



ON THE CLASSIFICATION OF JACOBI CURVES AND THEIR CONFORMAL CURVATURES 27

6.2. The structure of Jacobi curves in dim(W ) = 4. Whenever n = 2, condition (5.14) becomes:

1

4
(k1 − k2)

2
= 1 ⇔ |k1 − k2| = 2

and there exists µ = µ(τ) such that: {
k1(τ) = µ(τ)− 1
k2(τ) = µ(τ) + 1

So, without any lack of generality, we can write the reduced Cartan matrix as:

Cτ =


0 σ −

(
µ−1
2

)
0

−σ 0 0 −
(
µ+1
2

)
1 0 0 σ
0 1 −σ 0


From the functions µ = µ(τ) and σ = σ(τ) we can compute the matrixMτ solving the homogeneous

linear system of ODEs given by: 
f ′1 = −σf2 + f1
f ′2 = σf1 + f2
f
′
1 = −

(
µ−1
2

)
f1 − σf2

f
′
2 = −

(
µ+1
2

)
f2 + σf1

(6.17)

Observe that, provided that σ ≡ 0, the system (6.17) can be decoupled as:{
f ′1 = f1
f
′
1 = −

(
µ−1
2

)
f1

,

{
f ′2 = f2
f
′
2 = −

(
µ+1
2

)
f2

(6.18)

6.2.1. Case σ ≡ 0 and µ ≡ ±1. The solutions of an initial value problem of the form:
f ′ = f

f
′
= ηf

f(0) = v and f(0) = v

with constant η depends on the sign of η. So, if η > 0, then we get:{
f(τ) = cosh(

√
ητ) · v + 1√

η sinh(
√
ητ) · v

f(τ) =
√
η sinh(

√
ητ) · v + cosh(

√
ητ) · v

If η < 0, then the solution is given by:{
f(τ) = cos(

√
|η|τ) · v + 1√

|η|
sin(

√
|η|τ) · v

f(τ) = −
√
|η| sin(

√
|η|τ) · v + cos(

√
|η|τ) · v

and if η = 0: {
f(τ) = v + v · τ
f(τ) = v

Observe that if µ = ±1, one of the eigenvalues ki ≡ 0 and therefore the vector f i is constant. On
the other hand, if f i(τ) is constant along the Jacobi curve, in virtue of the fourth equation of the
system (6.17), since fi and f j are linearly independent, then σ ≡ 0 and ki ≡ 0. That is, for i = 1, 2
we have:

f i(τ) constant ⇐⇒
{
σ ≡ 0
ki ≡ 0

Example 1. In this example, we will assume that σ = 0 and µ = −1, so k1 = −2 and k2 = 0 and
then the solutions f1 and f2 of (6.17) are given by:{

f1(τ) = cosh(τ) · v1 + sinh(τ) · v1

f2(τ) = v2 + v2 · τ
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If we consider the initial symplectic basis:
v1 = e1
v2 = e2
v1 = e1 + e1
v2 = e2 + e2

with respect to the basis (e1, e2, e1, e2), then{
f1(τ) = (cosh(τ) + sinh(τ)) e1 + sinh(τ)e1
f2(τ) = (1 + τ)e2 + τe2

(6.19)

and the matrix Mτ can be written by the corresponding coordinates with respect to (e1, e2). That is,

Mτ =

(
cosh(τ) + sinh(τ) 0

0 1 + τ

)
and so, by (5.12), we obtain

S′
τ =

(
MτM

T
τ

)−1
=

(
(cosh(τ) + sinh(τ))

−2
0

0 (1 + τ)−2

)
Also observe that it is possible to compute directly the matrix Sτ from the coordinates of (f1, f2)

with respect to (e1, e2) by using the expression of the first equation of the system (5.1). By (6.19), we
have

SτMτ =

(
sinh(τ) 0

0 τ

)
and then

Sτ =

(
sinh(τ) 0

0 τ

)( 1
cosh(τ)+sinh(τ) 0

0 1
1+τ

)
=

(
sinh(τ)

cosh(τ)+sinh(τ) 0

0 τ
1+τ

)
Example 2. Now, we will assume that σ = 0 and µ = 1 (this means k1 = 0 and k2 = 2) and the
solutions of (6.17) are: {

f1(τ) = v1 + v1 · τ
f2(τ) = cos(τ) · v2 + sin(τ) · v2

Again, if the initial vectors are: 
v1 = e1
v2 = e2
v1 = e1 + e1
v2 = e2 + e2

then {
f1(τ) = (1 + τ)e1 + τe1
f2(τ) = (cos(τ) + sin(τ)) e2 + sin(τ)e2

(6.20)

and the matrix Mτ is written as:

Mτ =

(
1 + τ 0
0 cos(τ) + sin(τ)

)
,

and we obtain

S′
τ =

(
MτM

T
τ

)−1
=

(
(1 + τ)−2 0

0 (1 + cos 2τ)
−1

)
,

or directly, we have

Sτ =

(
τ

1+τ 0

0 sin(τ)
cos(τ)+sin(τ)

)
.
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6.3. The reconstruction theorem and the algorithmic classification of admissible Jacobi
curves. The theory and classification of Jacobi curves with respect to the action of the conformal
symplectic group developed so far allows for an algorithmic description. In fact, such algorithmic
classification can be implemented in any modern symbolic manipulation environment like Mathematica
or Maple. We will succinctly sketch it in what follows.

Let Γ = Γ(t) =

[
I
St

]
(e,e)

be a Jacobi curve in L (W ), with W a conformal symplectic space of

dimension 2n with conformal symplectic class [ω].

A) First, we will check its admissibility, cfr. Def. 5.

(1) Compute S′
t, which is the matrix of a bilinear form in Γ(t) with respect to the basis e+ eSt,

and we check that is definite positive, cfr. Remark 1. If it were positive negative we change
ω by −ω.

(2) Compute the matrix S(St), cfr. Eq. (4.16), which is the matrix of the Ricci curvature tensor
RΓ(t) : Γ(t) → Γ(t) in the basis ϵ = e+ eSt, and we check that it is diagonalisable, cfr. Thm.
2. We check that all its eigenvalues µi, i = 1, . . . , n, are different and we reorder them, if
necessary, such that µ1 < µ2 < · · · < µn.

(3) Compute ζ(t) using Eq. (4.22), and obtain the geometric arc parameter dτ = ζ(t)dt.
(4) Check that det

(
S(St − 1

nTr (S(St))
)
̸= 0, which amounts to (µ̄−µ1) · · · (µ̄−µn)) = ζ2n, where

µ̄ = 1
n (µ1 + · · ·+ µn) and ζ(t) is given by Eq. (4.22).

B) We compute the absolute curvature operator RΓ(t), cfr. Def. (9), Eq. (4.26).

C) Next, compute the eigenvalues ki, i = 1, . . . , n, of RΓ(t):

ki =
1

ζ2
(µi − S(ζ)) , k1 < · · · < kn .

Let S0
t = St − 2S′

t

(
S′′
t − ζ′

ζ S
′
t

)−1

S′
t be the coordinates of the derivative curve depending on t, see

Rem. 6.
D) Construct f = (f1, . . . , fn) = ϵM , the S′

t-orthonormal basis of eigenvectors of RΓ(t), and
f = ϵM , with M = f(St − S0

t )(M
T )−1, cfr. Lemma 1, Eq. (2.9).

The basis F = (f , f) thus constructed is the symplectic Frenet basis adapted to the curve Γ(t), cfr.
Sect. 5.1.

E) The equation F ′ = FC provides the reduced Cartan matrix C. Namely, f ′ = fΣ+ f will provide
the matrices:

K =

 k1
. . .

kn

 , Σ =
1

2ζ(t)

(
M̃−1
t M̃ ′

t −
(
M̃−1
t M̃ ′

t

)T)

cfr. (5.18), with k1 < · · · < kn for all t, that ends the computation.

In this spirit and following the comments after the proof of the reconstruction theorem, Thm. 3,
we will end this section by restating it as follows:

Theorem 4. (Classification theorem for Jacobi curves).

(1) Two Jacobi curves Γ = Γ(t) and Γ = Γ(t) parametrised by a geometric arc are CSp-equivalent
if and only if they have equivalent reduced Cartan matrices.

(2) Two Jacobi curves Γ = Γ(t) and Γ = Γ(t) are CSp-equivalent if and only if dsΓ(t) = dsΓ(t)
and their reduced Cartan matrices are equivalent.

(3) Fixed a reduced Cartan matrix C(t):

C(t) =

(
Σt Kt

Id Σt

)
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t ∈ I ⊂ R, depending smoothly on t, with k1 < · · · < kn, and
∏ |ki − k̄| = 1, and a 1-form

ds(t) ̸= 0 for all t, there exists a Jacobi curve Γ(t) such that CΓ(t) = C(t) and dsΓ(t) = ds(t).
Moreover this curve is unique up to transformations by the conformal symplectic group CSp.

In the particular instance of dimW = 4, cfr. Sect. 6.2, given a Jacobi curve Γ(t), we get k1(t) =

−µ(t)−1
2 , k2(t) = −µ(t)+1

2 , and σ(t) is obtained from f ′1 = −σf2 + f1 (if σ < 0, we take −f2 instead),
and we get the curvatures σΓ(t) = σ(t) ≥ 0, and µΓ(t) = µ(t) for the curve Γ(t). Conversely, given
the functions µ(t) ̸= 0, fand σ(t) ≥ 0, or all t, and a 1-form ds = ζ(t)dt, ζ(t) > 0, for all t, there
exists a Jacobi curve Γ(t) in a 4-dimensional conformal symplectic space such that µγ = µ, σΓ = σ,

and dsΓ = ds, and all of them are of the form Γ = ϕ(Γ), with ϕ ∈ CSp.

7. Cycles in L (W )

We will end this work by observing that Jacobi curves with null Ricci curvature are cycles in the
Lagrangian Grassmannian, that is, the closure at infinite of affine lines. Given a Lagrangian subspace

Λ ∈ L (W ), there are two classes of affine lines L in the affine space Λ
⋔
:

Regular: Affine lines L verifying that ∀Λ1,Λ2 ∈ L, Λ1 ̸= Λ2, then Λ1 ∩ Λ2 = 0.
Singular: Affine lines L verifying that ∀Λ1,Λ2 ∈ L, Λ1 ̸= Λ2, then Λ1 ∩ Λ2 ̸= 0.

To show that this is true it suffices to notice that if L is a line in Λ
⋔
passing through Λ ∈ Λ

⋔
, then

taking S = SΛ

Λ
⋔ , then L = L (t) = t

.

S0 provided that det
.

S0 ̸= 0. In such case L is regular, because

L (a) ∩ L (b) = 0 if a ̸= b, that is, b
.

S0 − a
.

S0 = (b− a)
.

S0 and det (b− a)
.

S0 ̸= 0. If det
.

S0 = 0, the
line L is obviously singular.

Remark 8. A regular line L in Λ
⋔
is an admissible Jacobi curve in L (W ).

Definition 11 (Cycle). Let Λ ∈ L (W ) be a Lagrangian subspace and L an affine line in Λ
⋔
. We

will call a cycle the set C = L̃ = L ∪
{
Λ
}
. The cycle C will be said to be regular if L is regular,

otherwise singular.

In what follows we will show that regular cycles are characterised as maximal Jacobi curves with
vanishing curvature with respect to any projective parametrisation.

Proposition 5. If C is a regular cycle then for each Λ ∈ C we have that C\ {Λ} is a Jacobi curve
and its projective reparametrizations Γ = Γ(t) have vanishing curvature operator, RΓ = 0.

Proof. Indeed, if C = L̃ = L ∪
{
Λ
}
with L a affine line in Λ

⋔
, and Λ ∈ C with Λ ̸= Λ, then taking

coordinates S = SΛ

Λ
⋔ , we can write L = L (t) with S (L (t)) = t

.

S0, and det
.

S0 ̸= 0, which is an

affine parametrization of L = C\
{
Λ
}
. This parametrization is projective because S

(
t
.

S0

)
= 0 and,

consequentlyRicΓ (t) = 0.

Taking now coordinates S−1 = SΛ
Λ⋔ in Λ

⋔∩Λ⋔, it is easy to see that S−1 (L (t)) = (1/t)
.

S
−1

0 (t ̸= 0)

is a parametrization of C\
{
Λ,Λ

}
= L\

{
Λ
}
, where L = C\ {Λ} is an affine line in Λ⋔.

Last, observe that any projective reparametrization L = C\ {Λ} has the form:

St =
at+ b

ct+ d
S0

and the Schwarzian derivative S (St) = 0. Then RΓ = 0 because of (4.16). □

Corollary 2. If C is a regular cycle and Λ ∈ C, then C\ {Λ} is an affine line in Λ.

Remark 9. If C is a regular cycle like in Prop. 5, continuing with the notation in the proof, we
get that the map φ : RP1 = R∪{∞} → C given by t 7→ Γ (t), ∞ 7→ Λ is a bijection that preserves
the double ratio. It is because of this that we say that φ : RP1 → C is a GPP (global projective
parametrization). The GPP’s of the cycle C are determined up to homographies: h : RP1 → RP1.

Moreover, given the GPP φ : RP1 → C, for each t0 = (t0 : 1) ∈ RP1, the map:

φ : RP1\ {t0} → C\φ (t0)
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is an affine isomorphism, where RP1\ {t0} has the canonical affine structure given by the fact that the
map:

R → RP1\ {t0} , t 7→
1

t− t0
= (1 : t− t0) ,

is an affine isomorphism.

Proposition 6. If Γ = Γ (t) is a Jacobi curve with projective parameter and such that RΓ (t) = 0,
∀t, then the image of Γ is contained in a regular cycle.

Proof. The proof is based on the fact that the map t 7→ St that satisfies S (St) = 0 is uniquely

determined by its values S0, S
′
0, S

′′
0 and, conversely, given S0,

.

S0,
..

S0, there exists a unique solution

t 7→ St of the equation S (St) = 0 with S0 = S0, S
′
0 =

.

S0, S
′′
0 =

..

S0. Thus the only solutions of
S (St) = 0 have the form:

St =
at+ b

ct+ d

.

S0

because given S0,
.

S0,
..

S0, the equations S0 = S0, S
′
0 =

.

S0, S
′′
0 =

..

S0 determine the matrix

(
a b
c d

)
up to multiplicative constants. □

Remark 10. Given two different points Λ1,Λ2 ∈ Λ
⋔
, with Λ ∈ L (W ) there is at least one cycle

C = L∪
{
Λ
}
passing through them, where L = ⟨Λ1,Λ2⟩Λ⋔ is the affine line generated by Λ1,Λ2 in the

affine space Λ
⋔
. We may ask if there are other cycles containing both points.

Taking any Λ0 ∈ Λ
⋔
and affine coordinates S = SΛ

Λ
⋔ in Λ

⋔
in such a way that the equation of L

will be St = tS1 and S (Λ0) = S0, we then take, S̃ =
(
S − S0

)−1
= SΛ

Λ
⋔
0

en Λ
⋔ ∩Λ

⋔
0 , and the equation

for L in coordinates S̃ becomes S̃t =
(
tS1 − S0

)−1
, whose image is not an affine line in general in

Λ
⋔
0 unless Λ0 ∈ L (that is, S0 = t0S

0. This implies that C̃ = ⟨Λ1,Λ2⟩Λ⋔
0
∪
{
Λ
⋔
0

}
is another cycle

containing Λ1,Λ2

Definition 12. Three different points Λ1,Λ2,Λ3 ∈ L (W ) are called concyclic if there exists Λ0 ∈
L (W ), such that Λ1,Λ2,Λ3 are colinear in the affine space Λ⋔

0 . The three points Λ1,Λ2,Λ3 are said
to be in general position (GP for short) if Λi ∩ Λj = 0 for i ̸= j.

If Λ1,Λ2,Λ3 ∈ L (W ) are GP concyclic, we denote by C (Λ1,Λ2,Λ3) the set:

C (Λ1,Λ2,Λ3) = {Λ1,Λ2,Λ3} ∪
{
Λ ∈ L (W ) : Λ1,Λ2,Λ3 are colinear in Λ

⋔
}

Proposition 7. If Λ1,Λ2,Λ3 are GP concyclic, then C (Λ1,Λ2,Λ3) is a regular cycle, and it is the
only cycle that contains the three points.

Proof. If Λ1,Λ2,Λ3 ∈ L (W ) are GP concyclic, let Λ ∈ L (W ), and L an affine line in Λ
⋔

such
that Λ1,Λ2,Λ3 ∈ L. Consider the cycle C = L ∪

{
Λ
}
. Necessarily the cycle C is regular because

Λ1 ∩ Λ2 = 0) and we get:

a) L ⊂ C (Λ1,Λ2,Λ3), because if Λ0 ∈ L\ {Λ1,Λ2,Λ3}, taking S = SΛ0

Λ
⋔ , and S (Λi) = Si, i =

0, 1, 2, 3, with S0 = 0, and because Λ0,Λ1,Λ2 are colinear in Λ
⋔
, there exist λi ̸= 0 such that

Si = λiS1, with i = 0, 2, 3.

Moreover, because Λ0 ∩ Λi = 0 the matrices Si are invertible and if S̃ = SΛ
Λ⋔

0
, then S̃ = S−1 in

Λ
⋔ ∩ Λ⋔

0 . Calling S̃ (Λi) = S̃i, we get S̃i = S−1
i . Hence:

Si = λiS1 =⇒ S̃i = S−1
i =

1

λi
S−1
1 =

1

λi
S̃1, i = 2, 3 ,

and we conclude that Λ1,Λ2,Λ3 are colinear in Λ⋔
0 .

b) We prove now that C (Λ1,Λ2,Λ3) ⊂ L ∪
{
Λ
}
. Namely, if Λ0 ∈ C (Λ1,Λ2,Λ3) ∩ Λ

⋔
, in Remark

10 it was shown that L is also a line in Λ
⋔
0 if and only if Λ0 ∈ L. Thus because Λ0 ∈ C (Λ1,Λ2,Λ3),

we conclude that Λ0 ∈ L.
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d) Now we will check that C (Λ1,Λ2,Λ3) is the unique cycle containing Λ1,Λ2,Λ3. If C is a cycle

containing Λ1,Λ2,Λ3 we can write C = L∪
{
Λ
}
with L an affine line in Λ

⋔
such that Λ1,Λ2,Λ3 ∈ L,

and we just proved that the equality C = C (Λ1,Λ2,Λ3), is satisfied. □

Remark 11. If Λ1,Λ2,Λ3 are concyclic but they are not in general position, then they lie in a singular

line L in Λ
⋔
for some Λ ∈ L (W ). Then, Λi ∩ Λj = 0 for all i, j. In this situation C = L ∪

{
Λ
}
is

the only cycle that contains them, and it is natural to denote C = C (Λ1,Λ2,Λ3).

Corollary 3. Λ1,Λ2,Λ3 ∈ L (W ) are concyclic if and only if they lie in the same cycle.

8. Conclusions and Discussion

The structure of Jacobi curves, i.e., regular smooth curves on the Lagrangian Grassmannian of
a symplectic vector space has been completely elucidated. The construction of the Ricci curvature
endomorphism together with the conformal geometric arc of the curve are instrumental to define the
family of absolute conformal symplectic curvatures characterizing the curve. Such construction relies
on a new definition of the derivative curve of the Jacobi curve based on the properties of the local
affine structure of the Lagrangian Grassmannian. The natural extension of Cartan’s theory of moving
frames to the symplectic/Lagrangian setting together with a careful analysis of the Cartan matrix of
the symplectic moving frame determined by a Jacobi curve allows to prove a reconstruction theorem
for a Jacobi curve out of its conformal symplectic curvatures.

The theory presented here reproduces some fundamental traits in the treatment by Agrachev and
Zelenko, like the Ricci curvature tensor of a Jacobi curve, but following a different line of argument that
we hope could clarify some of the geometrical content of the theory developed by these authors. One
of the significant contributions of the present work concerning the construction of curvature invariants
is that the order of differentiability of the curvatures constructed according to the the theory presented
here is substantially lower that those obtained by the aforementioned authors, thus, for instance, the
normal element of arc in [Ag02] is of order 5, while the conformal element of arc presented here is
of order 3. In addition to all this, the algorithmic computations leading to the construction of the
curvatures detailed in Sect. 6.3 can be implemented on any standard symbolic manipulation software.

An important outcome of the theory developed in this paper would be the construction of explicit
curvature invariants characterizing solutions of Riccati equations that could be used to provide an
alternative description of the phase space portrait of such and related equations. To end this discussion,
it is relevant to point out that Jacobi curves associated to null geodesics on Lorentzian manifolds
provide a natural and relevant application of the theory. The analysis of the new family of spacetime
conformal invariants, called conformal sky-invariants [Ba22], from the perspective offered by the results
obtained in the present article will be the subject of subsequent work.
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