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Resumen

En este trabajo se presenta, de forma medianamente autocontenida, un estudio sobre distintos

conjuntos de geodésicas en un espaciotiempo lorentziano (M, g) de dimensión n. Se presentan,
en primer lugar, algunos contenidos preliminares necesarios para el desarrollo posterior del trabajo.

En segundo lugar se discute, siguiendo resultados previos de otros autores, el conjuntoM de las

geodésicas temporales desparametrizadas, esto es, geodésicas temporales salvo parametrización

af́ın. Bajo ciertas condiciones, se dota a dicho conjunto de estructura de variedad simpléctica

de dimensión 2n − 2 y se da la expresión de la forma simpléctica natural inducida por la forma
simpléctica canónica del fibrado cotangente.

Posteriormente, también siguiendo estudios previos, se examina el conjunto N de las geodésicas
luminosas desparametrizadas y el conjunto Ns de las geodésicas luminosas escaladas, esto es,

salvo traslación del parámetro. Bajo ciertas asunciones, se dota a ambos de estructura de variedad

diferenciable de dimensiones 2n − 3 y 2n − 2, respectivamente. Asimismo, se dota al segundo
de una estructura simpléctica que induce en el primero una estructura de contacto, de la que

se obtiene una forma de contacto y la expresión de los hiperplanos de contacto. Se demuestra,

además, que dicha estructura, al igual que las propia variedades N y Ns, depende exclusivamente

de la clase conforme de la métrica. Para desarrollar todos estos contenidos se presentan algunos

resultados previos sobre causalidad de espaciotiempos.

Finalmente, se estudia el espacio C de las geodésicas causales desparametrizadas que, bajo ciertas
hipótesis, es una variedad diferenciable con borde N e interiorM. Se proporciona, localmente,
una 2-forma diferenciable enM que es conforme a la forma simpléctica natural y que se extiende

diferenciablemente a N , también localmente, donde coincide con la diferencial exterior de una
forma de contacto. Se trata, por tanto, de una suerte de “relleno simpléctico conforme”, concepto

no encontrado en la literatura y que acuñamos como novedoso.

Abstract

In this master thesis we present, in a reasonably self-contained way, a study of different sets of

geodesics in a Lorentzian spacetime (M, g) of dimension n. First, we present some preliminary
contents necessary for the further development of the work.

Secondly, following previous results from other authors, we discuss the setM of non-parametrized

timelike geodesics, that is, timelike geodesics except for affine reparametrizations. Under certain

assumptions, this set is given a 2n − 2-dimensional symplectic manifold structure and we also
give the expression of the natural symplectic form induced by the canonical symplectic form of

the cotangent bundle.

Subsequently, also following previous studies, the set N of non-parametrized lightlike geodesics
and the set Ns of scaled lightlike geodesics, that is, except for parameter translations, are

examined. Both are endowed, under certain conditions, with differentiable manifold structures

of dimensions 2n − 3 and 2n − 2, respectively. The latter is also endowed with a symplectic
structure which induces a contact structure in the former, from which a contact form and the

expression of the contact hyperplanes are obtained. It is also proved that this structure, as well

as the manifolds N and Ns themselves, depend exclusively on the conformal class of the metric.

To develop all these contents, some previous results on spacetime causality are presented.

Finally, we study the space C of non-parametrized causal geodesics which, under certain hy-
potheses, is a differentiable manifold with boundary N and interior M. We provide, locally, a
new differentiable 2-form on M which is conformal to the natural symplectic form and which

extends differentiably to N , locally, where it coincides with the exterior differential of the con-
tact form. It is, therefore, a kind of “conformal symplectic filling”, a concept not found in the

literature and which we coin as novel.
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Glosario de notación

M conjunto de geodésicas temporales desparametrizadas:
{

Im γ | γ geod. temp. maximal
}

N conjunto de geodésicas luminosas despar. (rayos luz):
{

Im γ | γ geod. lum. maximal
}

Ns conjunto de geodésicas luminosas escaladas

C conjunto de geodésicas causales desparametrizadas:
{

Im γ | γ geod. causal maximal
}

J (γ) conjunto de campos de Jacobi sobre una geodésica γ (1.4.5)

J 0(γ) conjunto de campos de Jacobi Y sobre γ tales que g
(
Y′(0), γ̇(0)

)
= 0

J T(γ) conjunto de campos de Jacobi Y sobre γ tales que Y = bγ̇ para cierto b ∈ R

J ⊥(γ) conjunto de campos de Jacobi Y sobre γ tales que g
(
Y(t), γ̇(t)

)
= 0, ∀t

J tan(γ) conjunto de campos de Jacobi Y sobre γ tales que Y(t) = (at + b)γ̇(t) para a, b ∈ R

TΓM ∼=
{
⟨Y⟩ = Y + J T(γ)

∣∣ Y ∈ J 0(γ)
}
, γ ∈ Γ

TΓN ∼=
{
⟨Y⟩tan = Y + J tan(γ)

∣∣ Y ∈ J 0(γ)
}
, γ ∈ Γ

TΓsNs ∼=
{
⟨Y⟩T = Y + J T(γ)

∣∣ Y ∈ J 0(γ)
}
, γ ∈ Γs

W elemento de TΓM
W tan elemento de TΓN
W T elemento de TΓsNs

ω forma simp. canónica del fibrado cotangente; a partir del ap. 2.3, forma simp. enM
ωg forma simpléctica en el fibrado tangente = ĝ∗ω

ĝ aplicación de Legendre

ω̃ nueva 2-forma enM, conforme a ω (4.3)

χ spray geodésico (1.60)

H vectores temporales unitarios (2.8)

L vectores luminosos (3.2)



Introducción

El estudio de las geodésicas en variedades afines ha suscitado gran interés en la comuni-

dad matemática. La teoŕıa de la Relatividad General y su descripción de las trayectorias de

part́ıculas (masivas o no) como geodésicas en un espaciotiempo lorentziano ha motivado que

su estudio en el marco de las variedades semiriemannianas sea especialmente rico.

Investigaciones de finales del siglo pasado (Low, 1989), (Low, 1990), (Beem et al., 1996)

comenzaron a considerar el conjunto de las geodésicas definidas en una variedad af́ın y apor-

taron condiciones suficientes para que dicho espacio admitiese una estructura de variedad

diferenciable. En otras palabras, en lugar de estudiar las propiedades de las geodésicas como

curvas, estudiaron las propiedades del conjunto formado por todas ellas.

Por supuesto, por los motivos ya mencionados, algunas de estas investigaciones prestaron

especial atención al caso semiriemanniano, donde ya se conoćıa la existencia de varios tipos

de geodésicas: las temporales, las espaciales y las luminosas. Para éstas últimas ya se sab́ıa,

también, que son conformes, esto es, que métricas que difieran exclusivamente en un factor

de proporcionalidad (llamado factor conforme) tienen idénticas geodésicas luminosas.

El estudio del espacio de las geodésicas luminosas en un espaciotiempo lorentziano pro-

porcionó interesantes resultados que relacionaron ciertas propiedades de dicho espacio con

la estructura causal del espaciotiempo. En particular, se demostró que la pseudoconvexidad

luminosa de un espaciotiempo es una condición necesaria y suficiente para que el espacio

de sus geodésicas luminosas, N , admita estructura de variedad de Hausdorff (teor. 3.25).
Análogo resultado se obtuvo para la pseudoconvexidad causal como condición necesaria y

suficiente para que el espacio de las geodésicas causales, C, admita estructura de variedad de
Hausdorff (teor. 4.3). Este último resultado se traslada, por supuesto, al caso del espacio de

las geodésicas temporales,M, proporcionando una condición suficiente para que éste admita
una estructura de variedad de Hausdorff.

Una vez que se dispone de espacios de geodésicas que admiten estructura de variedad

(Hausdorff o no), se puede estudiar si éstos admiten alguna estructura adicional. En el caso

de las geodésicas de una variedad riemanniana o las geodésicas temporales o espaciales en una

variedad semiriemanniana se demostró (Cariñena et al., 1991) que éstos admiten estructura

de variedad simpléctica. Estudios más recientes (Bautista et al., 2015b) proporcionaron una

construcción alternativa de dicha estructura simpléctica utilizando la reducción simpléctica

generalizada. Esta construcción, la que seguiremos en el presente trabajo, fue estudiada para

el caso de las geodésicas temporales en el Trabajo Fin de Máster (Gómez Zaragoza, 2020).

Por su parte, el ya mencionado estudio (Bautista et al., 2015b) demostró que el espacio

de geodésicas luminosas pod́ıa ser dotado de estructura de contacto inducida por la estructura

simpléctica del espacio de geodésicas luminosas escaladas. Esta construcción fue estudiada

en el Trabajo Fin de Máster (Espinosa Ruiz, 2022).

En este trabajo se desarrollará la relación entre estas dos estructuras: la simpléctica del

espacio de geodésicas temporales, M, y la de contacto del espacio de geodésicas lumino-
sas, N . Dicha relación se concretará la definición local de una 2-forma diferenciable enM,
conforme a la forma simpléctica natural, y en su extensión local a N de manera que, en N ,
dicha extensión coincida con la diferencial exterior de una forma de contacto. Finalmente, se

expondrán algunos de los conceptos básicos sobre rellenos simplécticos y se dará la defini-

ción de un nuevo concepto de relleno: el de relleno simpléctico conforme, basándonos en los

resultados obtenidos paraM y N .
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1 Conceptos previos

1. Conceptos previos

En esta sección se incluyen los conceptos necesarios para el desarrollo posterior del trabajo.

Se exponen todos ellos de manera lo más breve y concisa posible, tratando de evitar las

demostraciones y remitiendo a la bibliograf́ıa correspondiente en cada caso.

A lo largo de todo el trabajo se presumirán conocimientos básicos de topoloǵıa general y

variedades diferenciables, que pueden encontrarse en numerosas referencias, como (Warner,

1983), (Lee, 2012) o (Sánchez Caja et al., 2012). En cualquier caso, se hace necesaria la

siguiente observación relativa a la propia definición de variedad diferenciable.

Las variedades diferenciables se definen como una variedad topológica dotada de una

estructura diferenciable. A su vez, las variedades topológicas se definen, en general, como

espacios topológicos localmente eucĺıdeos, Hausdorff (T2) y segundo axioma de numera-
bilidad (ANII). En ocasiones se omite el requisito de ser T2 o ANII, apareciendo ejemplos

“sofisticados” de variedades. Nosotros exigiremos siempre ambas propiedades, excepto cuan-

do tratemos con variedades cociente (véase la observación previa a la definición 1.16), en

cuyo caso omitiremos la exigencia de que sean Hausdorff.

Para trabajar con este tipo de variedades no Hausdorff se debe proceder con cautela,

pues algunos resultados que son válidos para variedades Hausdorff dejan de ser ciertos, como

sucede para la existencia de particiones continuas de la unidad.

1.1. Fibrados vectoriales diferenciables. Distribuciones.

En este apartado introduciremos algunos conceptos fundamentales de las teoŕıas de fibra-

dos vectoriales y de distribuciones. Asimismo, definiremos el concepto de foliación y construi-

remos la variedad cociente por una distribución regular. Todo ello nos servirá en las secciones

2 y 3 para construir las variedades de geodésicas temporales o luminosas, respectivamente,

en un espaciotiempo lorentziano.

1.1.1. Fibrados diferenciables

Definición 1.1. Un fibrado diferenciable es una 4-upla (M, B, p, F), donde

i) M, B, F son variedades diferenciables,

ii) π : M → B es una sumersión sobreyectiva1,

iii) Alrededor de cada punto b ∈ B existe un entorno abierto U ⊂ B y un difeomorfismo
φU : π−1(U) → U × F tal que el diagrama siguiente, en el que π1 : U × F → U es la
proyección sobre la primera coordenada, es conmutativo:

π−1(U) U × F

U.
π

φU

π1

A cada Mb = π−1(b) se le denomina fibra sobre b ∈ B, y se tiene que Mb
∼= F, ∀b ∈ B. Por

ello, se suele decir que M (espacio total) es un fibrado diferenciable de B (espacio base) con

1En realidad, esto no supone ninguna exigencia adicional, pues ambas cualidades vendrán garantizadas por

la propiedad iii).
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1 Conceptos previos

fibra F. Por comodidad, en ocasiones diremos que π : M → B es un fibrado diferenciable. Por
su parte, a φU se le suele denominar trivialización local (de π).

Si tenemos dos trivializaciones locales φU y φV con U ∩ V ̸= ∅ podemos considerar la
aplicación

φUV = φU ◦ φ−1
V :

(
U ∩ V

)
× F →

(
U ∩ V

)
× F,

que es un difeomorfismo de la forma φUV(b, f ) =
(
b, φ̃UV(b, f )

)
. Aśı, podemos definir

gUV : U ∩ V → Diff(F)

dada por gUV(b)( f ) = φ̃UV(b, f ), ∀b ∈ U ∩ V, f ∈ F. Se suele denominar a dichas aplica-
ciones funciones de transición.

Definición 1.2. Sea (M, B, π, F) un fibrado diferenciable. Una sección local de π en un
entorno Ub de b ∈ B es una aplicación diferenciable s : Ub → M tal que π ◦ s = idUb . Una

sección (global) de π es una sección local definida en todo el conjunto B. Se denota al
conjunto de las secciones (globales) como Γ(M).

1.1.2. Fibrados vectoriales diferenciables

Definición 1.3. Sea (M, B, π, F) un fibrado y G < Homeo(F). Se dice que (M, B, π, F) tiene
una G-estructura si para cada b ∈ B se tiene una identificación de las fibras ψb : F → Mb, y

una trivialización local φU : π−1(U) → U × F de manera que la composición φb = φU ◦ ψb

F
ψb−→ Mb ⊂ π−1(U)

φU−→ {b} × F ≡ F

verifica φb ∈ G. A G se le denomina grupo de estructura del fibrado.

Nótese que si b ∈ U ∩ V ⊂ B, una posible identificación es ψb = φ−1
V |{b}×F. Aśı, se tiene

una definición equivalente exigiendo que φUV(b) ∈ G para todo punto b ∈ U ∩ V.

Definición 1.4. Un fibrado vectorial diferenciable es un fibrado diferenciable (M, B, π, W) en
el que la fibra es un espacio vectorial sobre un cuerpo K, y que tiene grupo de estructura

G = GL(W). Se dice que el fibrado es de rango r = dimK(W).

En otras palabras, un fibrado vectorial diferenciable es un fibrado diferenciable en el que

las fibras son espacios vectoriales y la restricción de las trivializaciones a cada una de ellas es

un isomorfismo de espacios vectoriales. En este trabajo consideraremos que dichos espacios

vectoriales son reales.

De forma natural, al conjunto de secciones de un fibrado vectorial se le puede dotar

de estructura de espacio vectorial y de módulo sobre C∞(M). Un ejemplo fundamental es
el espacio de los campos vectoriales diferenciables en una variedad, que son justamente las

secciones del fibrado tangente.

Definición 1.5. Sea π : M → B un fibrado vectorial diferenciable y sea N ⊂ M una subva-

riedad regular (embebida) tal que para cada b ∈ B, se tiene que Nb = π−1(b) ∩ N es un
subespacio vectorial de Mb = π−1(b). Si π|N : N → B es un fibrado vectorial diferenciable se
dice que es un subfibrado vectorial diferenciable de π : M → B.

Definición 1.6. Dado un fibrado vectorial diferenciable (M, B, π, W) y p ∈ M, definimos
el subespacio vertical sobre p como Vp = ker(dpπ) = Tp Mπ(p) ⊂ Tp M. La unión disjunta
de estos espacios proporciona un subfibrado del fibrado tangente TM → M, denominado el
fibrado vertical de M:

VM =
{
(p, v) ∈ TM | v ∈ Vp

}
.

3



1 Conceptos previos

1.1.3. Distribuciones

El presente apartado, que será imprescindible para realizar la definición precisa de las

variedades de geodésicas temporales y luminosas, se ha extráıdo de (Lee, 2012, Cap. 19),

donde pueden encontrarse todas las demostraciones de los resultados aqúı enunciados.

Definición 1.7. Sea M una variedad diferenciable de dimensión m y sea n < m. Una distri-
bución n-dimensional ∆ es una asignación p ∈ M 7→ ∆p ⊂ Tp M, donde ∆p es un subespacio

vectorial n-dimensional. Se dice que una distribución es diferenciable si para cada p ∈ M
existe un entorno U ⊂ M de p y existen n campos diferenciables X1, . . . , Xn ∈ X(M) tales
que ∀y ∈ U, se tiene que ∆y está generado por {X1(y), . . . , Xn(y)}.

De manera equivalente, podemos ver una distribución diferenciable como un subfibrado

vectorial diferenciable del fibrado tangente π : TM → M, esto es, una subvariedad regular
∆ ⊂ TM de manera que ∆p = π−1(p) ∩ ∆ ⊂ π−1(p) = Tp M sea un subespacio vectorial y

π|∆ : ∆ → M vuelva a ser un fibrado vectorial diferenciable. En particular, el fibrado vertical

es también un ejemplo de distribución diferenciable. En adelante, siempre que hablemos de

distribuciones entenderemos que éstas son diferenciables.

Se suele decir que un campo diferenciable X ∈ X(M) está en ∆ si es una sección diferen-
ciable de ∆, esto es, si Xp ∈ ∆p, ∀p ∈ M. En tal caso, se denota X ∈ Γ(∆). Por supuesto,
Γ(∆) ⊂ Γ(TM) = X(M) es un subespacio vectorial.

Introducimos ahora dos conceptos sobre distribuciones diferenciables a priori muy distintos

que, como veremos a continuación, están ı́ntimamente ligados.

Definición 1.8. Se dice que una distribución ∆ es involutiva si dados dos campos diferenciables
X, Y ∈ Γ(∆) se tiene que [X, Y] ∈ Γ(∆), esto es, si Γ(∆) ⊂ X(M) es un subálgebra de Lie.

Definición 1.9. Sea M una variedad de dimensión m y ∆ una distribución n-dimensional. Una
subvariedad inmersa N ⊂ M se dice integral si para cada y ∈ N se tiene TyN = ∆y. Se dice

que la distribución es integrable si para todo punto p ∈ M existe una variedad integral que lo
contiene.

El siguiente resultado, que relaciona los dos conceptos recién definidos, puede demostrarse

sin demasiada dificultad.

Proposición 1.10. Toda distribución integrable es involutiva.

Introducimos ahora un nuevo concepto, más restrictivo que el de integrabilidad de una

distribución, que nos permitirá enunciar uno de los teoremas centrales de este apartado.

Definición 1.11. Un sistema local de coordenadas (p, U; φ = x1, . . . , xm) se dice que es plano
respecto a ∆ si φ(U) ⊂ Rm es un cubo y para cada p ∈ U se tiene que ∆p está generado por

∂
∂x1

∣∣
p , . . . , ∂

∂xn

∣∣
p. Se dice que una distribución ∆ en M es completamente integrable si cada

punto p ∈ M admite un sistema local de coordenadas plano respecto a ∆.

Por supuesto, toda distribución completamente integrable es integrable, pues cada sección

del tipo xn+1 = cn+1, . . . , xm = cm, para ciertas constantes cj ∈ R, será una variedad integral

de dicha distribución. El siguiente teorema, de carácter fundamental en el estudio de las

variedades diferenciables, nos proporciona la equivalencia entre los tres conceptos definidos

hasta el momento.

4



1 Conceptos previos

Teorema 1.12 (Local de Frobenius).Toda distribución involutiva es completamente integrable.

Una consecuencia del Teorema de Frobenius local es el teorema denominado de “estruc-

tura local de variedades integrales” que, grosso modo, garantiza que las variedades integrales

de una distribución involutiva cortan a los sistemas de coordenadas planos en una unión

numerable abiertos disjuntos de secciones de dichos sistemas de coordenadas.

1.1.4. Foliaciones

Definición 1.13. Una foliación de M es una familia F de subvariedades n-dimensionales
conexas e inmersas en M que satisface las siguientes propiedades:

i) F es una partición disjunta de M, esto es, M =
⊔

A∈F A,

ii) Cada punto p ∈ M admite un sistema local de coordenadas (p, U; φ = x1, . . . , xm) tal
que φ(U) ⊂ Rm es un cubo y tal que cada variedad A ∈ F o bien no interseca a U
o bien lo interseca en una unión numerable de secciones n-dimensionales dadas por
xn+1 = cn+1, . . . , xm = cm, para ciertos cj ∈ R constantes. Se dice que dicho sistema

de coordenadas es plano respecto a F .
A las subvariedades A ∈ F se les denomina hojas de la foliación.

Los dos siguientes resultados nos muestran que las foliaciones están en correspondencia

biuńıvoca con las distribuciones involutivas. De forma sencilla se puede demostrar el siguiente

resultado, que nos permitirá asociar a cada foliación una distribución involutiva.

Proposición 1.14. La colección de espacios tangentes a las hojas de una foliación forma una

distribución involutiva.

El resultado rećıproco, consecuencia del Teorema de Frobenius local, es mucho más pro-

fundo.

Teorema 1.15 (Global de Frobenius). Sea ∆ una distribución n-dimensional involutiva en M.
La familia F∆ de las variedades integrales maximales conexas de ∆ es una foliación de M.

Dada una distribución involutiva ∆ ⊂ TM, podemos considerar la relación de equivalencia
en M dada por

p ∼ q ⇐⇒ ∃F ∈ F∆ | p, q ∈ F.

Podemos considerar asimismo el conjunto cociente M/∼ ≡ M/∆ ≡ F∆, que es un espacio

topológico con la topoloǵıa cociente. Se puede comprobar además (Palais, 1957, pág. 12)

que la proyección sobre el cociente Π∆ : M → M/∆ es una aplicación abierta.

Observación. Nótese que el espacio topológico cociente recién definido no necesariamente

será de Hausdorff (T2).

En los siguientes párrafos definiremos la propiedad de regularidad de una distribución invo-

lutiva ∆. Esto nos permitirá dotar de una estructura de variedad diferenciable (no Hausdorff)
al espacio topológico M/∆.

Definición 1.16. Sea ∆ ⊂ TM una distribución involutiva n-dimensional. Se dice que un
sistema de coordenadas (p, U; φ = x1, . . . , xm) es regular (respecto a ∆) si es plano respecto a
∆ y cada hoja F ∈ F∆ interseca a U en a lo sumo una sección n-dimensional. Una hoja F ∈ F∆
se dice regular si todo punto p ∈ F admite un entorno coordenado regular. Análogamente, la
distribución ∆ se dice regular si todas las hojas de F∆ son regulares.
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1 Conceptos previos

El siguiente teorema, que culmina el presente apartado, será de gran utilidad a la hora de

definir una estructura diferenciable en los conjuntos de geodésicas temporales y luminosas. La

demostración, que requiere la introducción de algunos conceptos previos, puede encontrarse

en (Palais, 1957, págs. 13-19) y en (Brickell et al., 1970, págs. 204-206).

Teorema 1.17. Sea ∆ ⊂ TM una distribución n-dimensional regular y sea (U; φ = x1, . . . , xm)
un sistema de coordenadas regular respecto de ∆. Existe entonces una única parametrización
ψU : Π∆(U) → Rm−n tal que(

ψU ◦ Π∆
)
(p) =

(
xn+1(p), . . . , xm(p)

)
, ∀p ∈ U.

La colección de todos los sistemas de coordenadas
(
Π∆(U), ψU

)
constituye un atlas dife-

renciable de M/∆ que la convierte en una variedad diferenciable (no Hausdorff) de dimensión

m − n. Además, con dicha estructura diferenciable, la proyección Π∆ es una sumersión.

En general, dada una distribución regular ∆, siempre consideraremos que M/∆ está do-

tada de la estructura diferenciable dada por el teorema anterior. Aśı, diremos que ésta es la

estructura diferenciable natural de M/∆.

Se comprueba de manera sencilla que, en las condiciones del teorema anterior, para cada

p ∈ M se tiene que ker(dpΠ∆) = TpF = ∆p ⊂ Tp M, donde F ∈ F es la hoja que contiene
a p, esto es, F = Π−1

∆

(
Π∆(p)

)
. En consecuencia, para cada p ∈ M se tiene el isomorfismo

canónico

dpΠ∆ : Tp M/
TpF

∼=−→ TΠ∆(p)

(
M/

∆
)

.

1.2. Conexiones afines, derivada covariante y paralelismo

En este apartado introduciremos las conexiones lineales en un fibrado vectorial diferen-

ciable, con especial interés en las conexiones afines, aśı como la derivada covariante y el

transporte paralelo. Estos conceptos son esenciales para dar, en este mismo apartado, la de-

finición de geodésica af́ın, concepto central de este trabajo. Definiremos, asimismo, el tensor

de Riemann, que necesitaremos en el apartado 1.4.5 para introducir los campos de Jacobi.

1.2.1. Conexiones lineales y conexiones afines

En algunos textos se definen las conexiones lineales como un tipo especial de distribuciones

en el fibrado tangente que son complementarias al fibrado vertical. Se comprueba que estas

distribuciones están en correspondencia biuńıvoca con las aplicaciones a las que nosotros

denominamos conexiones lineales en este trabajo (def. 1.18), de modo que puede verse a

ambas definiciones como equivalentes.

En nuestro caso no será necesario entender las conexiones lineales como distribuciones, de

modo que evitaremos hacer dicha definición. En cualquier caso, puede consultarse (Castrillón

et al., 2010, págs. 47-51), donde se dan ambas definiciones y se demuestra la correspondencia

entre ellas.

Definición 1.18. Una conexión lineal en un fibrado vectorial real diferenciable (M, B, π, W)
es una aplicación

∇ : X(B)× Γ(M) → Γ(M), ∇(X, s) = ∇Xs,

que verifica:

i) ∇ es R-bilineal,

6



1 Conceptos previos

ii) ∇ f X(s) = f∇Xs, ∀ f ∈ C∞(B), X ∈ X(B), s ∈ Γ(M),

iii) ∇X( f s) = X( f )s+ f∇Xs, ∀ f ∈ C∞(B), X ∈ X(B), s ∈ Γ(M), lo que se conoce como
Regla de Leibnitz.

En particular, para el fibrado tangente TM → M se tiene que Γ(TM) = X(M), luego una
conexión lineal en éste es una aplicación ∇ : X(M)2 → X(M) que verifica las condiciones de
la definición anterior. En este caso, se dice que ∇ es una conexión af́ın en M.

Se puede comprobar que una conexión af́ın es localizable (Lee, 2018, Prop. 4.5), esto es,

el valor de ∇XY en un punto p ∈ M solo depende de Xp y de los valores que Y tome en un
entorno2 de p. En consecuencia, puede considerarse la actuación de una conexión af́ın sobre
campos definidos no en toda la variedad, sino en un entorno coordenado de algún punto.

Dado un entorno coordenado (p, U; x1, . . . , xn) y denotando ∂i =
∂

∂xi , podemos considerar

∇∂i ∂j ∈ X(U). Aśı, se podrá expresar en coordenadas locales como3

∇∂i ∂j =
n

∑
k=1

Γk
ij∂k ≡ Γk

ij∂k, (1.1)

para ciertas aplicaciones Γk
ij ∈ C∞(U) a las que denominaremos śımbolos de Christoffel.

Dada una conexión af́ın en una variedad diferenciable podemos definir dos aplicaciones de

especial relevancia que se comprueba que son campos tensoriales4 sobre dicha variedad:

Definición 1.19. Sea ∇ una conexión af́ın en M. Se define la torsión de ∇ como el campo
tensorial (1, 2)

T : X(M)2 −→ X(M), (X, Y) 7−→ T(X, Y), (1.2)

dado por

T(X, Y) = ∇XY −∇YX − [X, Y].

Asimismo, se define el tensor de Riemann como el campo tensorial (1, 3)

R : X(M)3 −→ X(M), (X, Y, Z) 7−→ RXY(Z) = R(X, Y)Z, (1.3)

dado por

RXY(Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z.

Al igual que todo campo tensorial, el valor en un punto tanto de la torsión como del

tensor de Riemann depende únicamente de los valores de los campos correspondientes en

dicho punto (véase la observación posterior a la def. 1.28).

El tensor de Riemann se suele denominar tensor de curvatura de la variedad af́ın (M,∇),
al ser un caso particular5 de curvatura de un fibrado diferenciable dotado de una conexión

de Ehresmann. En nuestro caso solo trabajaremos con el tensor de Riemann asociado a la

conexión de Levi-Civita (teor. 1.45).

2De hecho, esto puede mejorarse más aún: (∇XY)p solo depende de Xp y de los valores que Y tome a lo
largo de una curva γ con γ(0) = p y γ̇(0) = Xp.
3En la última igualdad estamos empleando el convenio de sumación de Einstein, lo que continuaremos

haciendo a lo largo del trabajo.
4Véanse la def. 1.28 y el comentario previo a la def. 1.29.
5En este caso debeŕıamos ver R como una 2-forma en M valuada sobre TM. Véase (Kobayashi et al.,

1963) para una discusión detallada de las nociones de conexión y curvatura en fibrados diferenciables.
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1 Conceptos previos

1.2.2. Derivada covariante. Geodésicas afines

Definición 1.20. Sea F : M → N una aplicación diferenciable. Un campo vectorial sobre F
es una aplicación Y : M → TN tal que π ◦ Y = F, esto es, Y(p) ∈ TF(p)N, ∀p ∈ M.

Dada F : M → N diferenciable, el conjunto X(F) de los campos vectoriales sobre F tiene,
de forma natural, estructura de espacio vectorial sobre R y de módulo sobre C∞(M).

Observación. El hecho de que ∇ (y, por tanto, R) sea localizable, nos permite considerar
la actuación de éstos sobre campos vectoriales sobre una aplicación, como hacemos en el

apartado iii) del siguiente teorema o en la proposición 1.50. De hecho, (RXYZ)p solamente

depende de los valores de Xp, Yp y Zp (véase la observación posterior a la definición 1.28).

Consideremos una curva diferenciable γ : I → M y un campo vectorial X ∈ X(γ). Para
cada t ∈ I, podemos considerar un entorno coordenado

(
γ(t), U; φ = x1, . . . , xn) y expresar

localmente X(t) = Xi(t) ∂i(t), donde ∂i(t) ≡
(
∂i ◦ γ

)
(t). En particular, dada una curva di-

ferenciable γ : I → M, su velocidad γ̇ : I → TM es un campo vectorial a lo largo de γ. En
consecuencia, también podemos expresar6 localmente γ̇(t) = γ̇i(t) ∂i(t).

Teorema 1.21. Sea γ : I → M una curva diferenciable. Una conexión af́ın ∇ en M determina
un único operador D

dt : X(γ) → X(γ), denominado derivada covariante a lo largo de γ, que
verifica:

i) D
dt es R-lineal,

ii) D
dt ( f X) = f ′X + f DX

dt , ∀ f ∈ C∞(I), X ∈ X(γ),

iii) Si Y ∈ X(M), entonces D
dt

(
Y ◦ γ

)
= ∇γ̇Y.

En consecuencia, empleando las propiedades de la derivada covariante y la conexión se

obtiene la expresión local

DX
dt

(t) =
D
dt

(
Xi(t) ∂i(t)

)
=

dXi

dt
(t) ∂i(t) + Xi(t)

D
dt
(
∂i(t)

)
=

=
dXi

dt
(t) ∂i(t) + Xi(t)∇γ̇(∂i) =

dXi

dt
(t) ∂i(t) + Xi(t)γ̇j(t)∇∂j(t)(∂i) =

=

(
dXk

dt
(t) + Γk

ji
(
γ(t)

)
Xi(t)γ̇j(t)

)
∂k(t).

Por simplicidad, omitiremos la referencia expresa a la variable t siempre que sea posible y
denotaremos X′ = DX

dt y Ẋk = dXk

dt . Nótese que, de acuerdo con la expresión anterior, en

general Ẋk ̸= (X′)k.

Como la velocidad de una curva γ es un campo vectorial a lo largo de γ, podemos definir
su aceleración como la derivada covariante de su velocidad, esto es, γ̇′ = D

dt γ̇. Definimos
entonces uno de los objetos centrales de este trabajo, las geodésicas, como las curvas de

aceleración nula:

Definición 1.22. Un campo vectorial X ∈ X(γ) se dice paralelo (a lo largo de γ) si D
dt X ≡ 0.

Se dice que una curva γ es una geodésica (af́ın) si D
dt γ̇ ≡ 0 o, equivalentemente, si su velocidad

es un campo vectorial paralelo.

6Si γ̂ = φ ◦ γ = (γ1, . . . , γn), entonces se verifica γ̇i = dγi

dt .

8



1 Conceptos previos

Empleando la expresión local de los párrafos precedentes se tiene que las geodésicas

(afines) son aquellas que verifican

γ̈k + Γk
ji γ̇iγ̇j = 0, ∀k, (1.4)

lo que se traduce en un sistema de n ecuaciones diferenciales ordinarias de segundo orden
acopladas. Los teoremas de existencia y unicidad de soluciones maximales de ecuaciones

diferenciales nos permiten obtener el siguiente resultado (Lee, 2018, Teor. 4.27):

Teorema 1.23. Sea M una variedad diferenciable dotada de una conexión af́ın ∇. Para cada
p ∈ M y cada v ∈ Tp M existe una única geodésica maximal γ : I → M tal que γ(0) = p y
γ̇(0) = v. Denotamos a dicha geodésica por γp,v o, simplemente, γv.

En adelante, consideraremos exclusivamente geodésicas no constantes, que en virtud de

este teorema verifican que γ̇(t) ̸= 0, ∀t ∈ I. Observemos que, con esta convención, la ecua-
ción (1.4) impone ciertas restricciones a las reparametrizaciones de geodésicas: si h : J → I
es un difeomorfismo y γ : I → M es una geodésica, se tiene que

γ̃ = γ ◦ h es geodésica ⇐⇒ h(t) = at + b, ∀t ∈ J, para ciertos a, b ∈ R, a ̸= 0,

esto es, solamente las reparametrizaciones afines de geodésicas son geodésicas.

1.2.3. Transporte paralelo

De manera análoga a lo obtenido anteriormente para las geodésicas, la condición local de

un campo paralelo X ∈ X(γ) es

Ẋk + Γk
jiX

iγ̇j = 0, ∀k.

Aśı, volvemos a tener un sistema de n ecuaciones diferenciales ordinarias acopladas, en esta
ocasión de primer orden. De nuevo, los resultados del ámbito de las ecuaciones diferenciales

nos garantizan la existencia y unicidad de campos paralelos a lo largo de una curva, dada una

condición inicial (Lee, 2018, Teor. 4.32):

Proposición 1.24. Sea γ : I → M una curva diferenciable, t0 ∈ I y v ∈ Tγ(t0)M. Existe un
único campo X paralelo a lo largo de γ tal que X(t0) = v.

Definición 1.25. Sea γ : I → M una curva diferenciable y a, b ∈ I. Se define el transporte
paralelo a lo largo de γ como la aplicación

τb
a : Tγ(a)M → Tγ(b)M, v 7→ X(b), (1.5)

donde X es el único campo paralelo a lo largo de γ con X(a) = v.

Lema 1.26. El transporte paralelo a lo largo de una curva es un isomorfismo7 vectorial.

El transporte paralelo a lo largo de una curva “conecta” espacios tangentes a la variedad

en puntos distintos. Esta interpretación es justamente la que da nombre a la conexión. Aśı, el

transporte paralelo permite comparar vectores de distintos espacios y “recuperar” la noción

de derivada covariante a partir del transporte paralelo. En efecto, dada γ : I → M curva

diferenciable y X ∈ X(γ), para cada t0 ∈ I se tiene:

DX
dt

(t0) = lı́m
t→t0

τt0
t X(t)− X(t0)

t − t0
.

7Más adelante podremos asegurar que, con la conexión de Levi-Civita, el transporte paralelo es una iso-

metŕıa. Esto será una consecuencia inmediata de la proposición 1.46.
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A la vista de este resultado resulta evidente la razón de que la derivada covariante se

denomine aśı. Aunque no se puede calcular directamente la “tasa de variación” infinitesimal

de un campo a lo largo de una curva, pues vectores distintos pertenecerán a espacios distintos,

trasladando paralelamente uno de ellos śı que podemos calcular la diferencia entre ambos.

En otro orden de cosas, de la definición de transporte paralelo, se tiene que si X ∈ X(γ)
es paralelo, entonces τb

aX(a) = X(b). En particular, si γ es una geodésica, entonces

τb
aγ̇(a) = γ̇(b),

luego Dγ̇
dt = 0, como ya sab́ıamos.

Observación. Nótese que para definir los conceptos relacionados con el paralelismo no hemos

necesitado introducir el concepto de métrica. Por tanto, aún no podemos hablar de distancias

ni de minimizarlas. Sin embargo, más adelante definiremos las geodésicas métricas como

aquellas curvas diferenciables que son puntos cŕıticos del funcional enerǵıa y veremos que,

con una elección adecuada de la conexión, las geodésicas métricas coinciden con las geodésicas

afines. Véase el teorema 1.53.

1.3. Tensores, campos tensoriales y formas

En este apartado introducimos de forma breve los conceptos de campo tensorial y de

forma diferenciable, aśı como la diferencial exterior y sus propiedades. Todo ello será necesario

posteriormente para la definición de las métricas semiriemannianas, las formas simplécticas

y las formas de contacto en una variedad diferenciable. En numerosas referencias puede

encontrarse documentación adicional sobre estos conceptos, como en (O’Neill, 1983, Cap.

2) cuya exposición sigue este texto, o (Lee, 2012, Cap. 12).

Definición 1.27. Un tensor de tipo (r, s) sobre un espacio vectorial V(R) es una aplicación
R-multilineal

A : (V∗)r × Vs −→ R.

Al conjunto de los tensores de tipo (r, s) sobre V, que es un espacio vectorial sobre R, se le

denota por I r
s (V). Si M es una variedad diferenciable, se puede considerar el (r, s)-fibrado

tensorial como el conjunto

I r
s (M) =

⊔
p∈M

I r
s (Tp M) =

{
(p, Ap) | Ap ∈ I r

s (Tp M)
}

(1.6)

dotado de la proyección natural π : I r
s (M) → M.

Con las técnicas usuales se comprueba que el (r, s)-fibrado tensorial sobre M tiene una es-
tructura natural de variedad diferenciable que lo convierte en un fibrado vectorial diferenciable.

Por comodidad, denotaremos Ap ≡ (p, Ap) ∈ I r
s (M).

Definición 1.28. Sea M una variedad diferenciable. Un campo tensorial de tipo (r, s) es una
aplicación C∞(M)-multilineal

A : X∗(M)r ×X(M)s −→ C∞(M).

Se suele decir que un campo tensorial de tipo (r, 0) es r-contravariante, mientras que uno de
tipo (0, s) es s-covariante.
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Observemos que un campo tensorial de tipo (r, s) puede verse, de forma equivalente,
como una aplicación diferenciable

A : M −→ I r
s (M)

p 7−→ Ap ∈ I r
s (Tp M),

esto es, una sección diferenciable del (r, s)-fibrado tensorial. La relación entre ambas defini-
ciones es

A(θ1, . . . , θr, X1, . . . , Xs)(p) = Ap(θ
1|p, . . . , θr|p, X1|p, . . . , Xs|p),

donde θi ∈ X∗(M), Xj ∈ X(M), ∀i, j, p ∈ M.

Observación. Esta identificación nos garantiza que el valor de un campo tensorial en un

punto depende únicamente de los valores de sus “entradas” en ese punto. En otras palabras,

dados φ1, . . . , φr ∈ T∗
p M y v1, . . . , vs ∈ Tp M, se tiene que

Ap(φ1, . . . , φr, v1, . . . , vs) = A(θ1, . . . , θr, X1, . . . , Xs)(p),

para cualesquiera extensiones θi ∈ X∗(M) de φi y Xj ∈ X(M) de vj.

Asimismo, cada aplicación C∞(M)-multilineal A : X(M)s → X(M) puede identificarse con
un campo tensorial A, de tipo (1, s), dado por

A(θ, X1, . . . , Xs) = θ
(

A(X1, . . . , Xs)
)
.

Definición 1.29. Sean k, l, r, s ∈ N y V un espacio vectorial real. Se define el producto
tensorial (de tensores) como la aplicación

⊗ : Ik
l (V)× I r

s (V) → Ik+r
l+s (V), (A, B) 7→ A ⊗ B,

dada por

(A ⊗ B)(θ1, . . . , θk+r, v1, . . . , vl+s) =

= A(θ1, . . . , θk, v1, . . . , vl) B(θk+1, . . . , θk+r, vl+1, . . . , vl+s),

y se define el producto tensorial (de campos tensoriales), como (A ⊗ B)p = Ap ⊗ Bp, para

p ∈ M y A, B campos tensoriales sobre M.

Definición 1.30. Se dice que un tensor n-covariante A es completamente antisimétrico o
alternado si su signo cambia al intercambiar cualesquiera dos de sus argumentos, esto es, si

A(v1, . . . , vi, . . . , vj, . . . , vn) = −A(v1, . . . , vj, . . . , vi, . . . , vn),

o, equivalentemente, si para toda permutación σ ∈ Sn, se tiene

A(vσ(1), . . . , vσ(n)) = signo(σ) A(v1, . . . , vn).

Al conjunto de los tensores n-covariantes alternados sobre V, que es un subespacio vec-
torial de I0

n(V) se le denota por Λn(V).

Si M es una variedad diferenciable de dimensión m, podemos considerar el conjunto

Λn(M) =
⊔

p∈M

Λn(Tp M), (1.7)

que es un subfibrado de I0
n(M) denominado el fibrado exterior de orden n. Llamaremos n-

formas (diferenciables) a los n-campos tensoriales alternados, esto es, a las secciones de
Λn(M). Denotaremos por Ωn(M) al conjunto de n-formas sobre M.
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Introducimos ahora una manera de definir tensores alternados a partir de tensores co-

variantes cualesquiera. Esto nos será de utilidad posteriormente para definir el denominado

producto exterior de tensores o de formas.

Definición 1.31. Se define el operador antisimetrizador o alternador como la aplicación

Alt : I0
k (V) → Λk(V) ⊂ I0

k (V),

dada por

Alt(A)(v1, . . . , vk) =
1
k! ∑

σ∈Sk

signo(σ) A(vσ(1), . . . , vσ(k)).

Definición 1.32. Se define el producto exterior de tensores covariantes alternados como la

aplicación

∧ : Λk(V)× Λl(V) → Λk+l(V), (A, B) → A ∧ B,

dada por

A ∧ B =
(k + l)!

k! l!
Alt(A ⊗ B).

Análogamente, se define el producto exterior de k-formas como la aplicación

∧ : Ωk(M)× Ωl(M) → Ωk+l(M), (ω, η) → ω ∧ η,

dada por (ω ∧ η)p = ωp ∧ ηp, ∀p ∈ M.

El producto exterior recién definido convierte a los espacios vectoriales,

Λ(V) =
m⊕

k=0

Λk(V) y Ω(M) =
m⊕

k=0

Ωk(M),

donde m = dim V = dim M, en álgebras asociativas graduadas.

Enunciamos, para concluir esta sección, el siguiente teorema de existencia y unicidad de

la diferencial exterior, de carácter fundamental en la teoŕıa de k-formas diferenciables. Su
demostración puede encontrarse, entre otras muchas referencias, en (Lee, 2012, pág. 365).

Teorema 1.33. Sea M una variedad diferenciable. Para cada k ∈ N existe un único operador

d : Ωk(M) → Ωk+1(M), al que se denomina diferencial exterior, que verifica:

i) d es R-lineal,

ii) Si ω ∈ Ωk(M), η ∈ Ωl(M), entonces d(ω ∧ η) = dω ∧ η + (−1)k+l ω ∧ dη,

iii) d ◦ d ≡ 0,

iv) Si f ∈ Ω0(M) = C∞(M), entonces d f es la diferencial ordinaria de f .

Definición 1.34. Se dice que una n-forma ω es cerrada si dω = 0, y que es exacta si existe
α ∈ Ωn−1(M) tal que dα = ω.

De la propiedad iii) del teorema anterior se deduce que toda forma exacta es cerrada.

1.4. Variedades semiriemannianas

Introducimos ahora las métricas y las variedades semiriemannianas, con especial atención

a las variedades lorentzianas. Éstas serán justamente las que describan al espaciotiempo, el

ambiente en el que consideraremos las geodésicas temporales y luminosas.
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1 Conceptos previos

1.4.1. Espacios vectoriales pseudoeucĺıdeos. Carácter causal de vectores

Definición 1.35. Un espacio vectorial pseudoeucĺıdeo es un espacio vectorial real V dotado
de una forma bilineal (esto es, un tensor 2-covariante) simétrica y no degenerada g.

Se dice que dos vectores u, v ∈ V son ortogonales si g(u, v) = 0, lo que denotamos por
u ⊥ v. Se dice que una base B = {e1, . . . , en} es ortonormal si |g(ei, ej)| = δij, ∀i, j.

Siguiendo la nomenclatura de (Javaloyes V. et al., 2010), definimos el carácter causal de

vectores en un espacio vectorial pseudoeucĺıdeo como sigue:

Definición 1.36. Sean V un espacio vectorial pseudoeucĺıdeo y v ∈ V un vector distinto de
cero. Decimos que

v es temporal si g(v, v) < 0,

v es espacial si g(v, v) > 0,

v es luminoso si g(v, v) = 0,

v es causal si es luminoso o temporal.

Observación. No hay una elección estandarizada sobre el carácter causal del vector cero.

Nosotros diremos, de nuevo siguiendo a (Javaloyes V. et al., 2010), que v ∈ V es

nulo si es luminoso o cero,

no espacial si es causal o cero.

no causal si es espacial o cero,

Proposición 1.37. Sea (V, g) un espacio vectorial pseudoeucĺıdeo. Entonces V admite una
base ortonormal. Además, todas las bases ortonormales de V tienen el mismo número de
vectores temporales. Llamamos a dicho número el ı́ndice de g y lo denotamos por ν.

En el caso en que ν = 0 se tiene que la métrica es definida positiva y se dice que el
espacio es eucĺıdeo. Por otra parte, cuando n = dim V ≥ 2 y ν ̸= 0 la métrica es indefinida.
En particular, cuando ν = 1 se dice que el espacio es lorentziano. En lo que resta de apartado
consideraremos que V es lorentziano de dimensión mayor o igual que 2.

Proposición 1.38. El conjunto de vectores temporales (resp. luminosos, causales) tiene 2
componentes conexas. A cada una de ellas la denominamos cono temporal (resp. luminoso,

causal). Además se tiene

i) Dos vectores u, v están en el mismo cono temporal si, y sólo si g(u, v) < 0,

ii) Dos vectores independientes u, v están en el mismo cono causal si, y sólo si g(u, v) < 0,

iii) Si u, v están en el mismo cono temporal (resp. causal), entonces también lo están
au + bv, para a, b > 0. En particular, cada cono temporal (resp. causal) es convexo.

Definición 1.39. Una orientación temporal de un espacio vectorial lorentziano V es una
elección de uno de los conos temporales (o, equivalentemente causales o luminosos) al que

se denominará cono futuro. Al otro cono se le denominará cono pasado.

Definición 1.40. Sea W ⊂ V un subespacio vectorial. Se dice que

W es temporal si (W, gW) es lorentziano o, equivalentemente, si W contiene al menos

un vector temporal,

W es espacial si (W, gW) es eucĺıdeo,

W es luminoso si (W, gW) es degenerado.

Lema 1.41. W es temporal ⇐⇒ W⊥ es espacial.
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1 Conceptos previos

1.4.2. Métricas semiriemannianas. Orientación temporal de variedades lorentzianas

Definición 1.42. Sea M una variedad diferenciable. Una métrica semiriemanniana en M es

un campo tensorial 2-covariante simétrico y no degenerado de ı́ndice constante, esto es, una
aplicación C∞(M)-multilineal

g : X(M)2 → C∞(M),

de forma que para cada p ∈ M, la forma bilineal

gp : Tp M × Tp M −→ R, gp(Xp, Yp) = g(X, Y)(p)

es simétrica y no degenerada, y todas ellas tienen el mismo ı́ndice ν.

Se dice que (M, g) es una variedad semiriemanniana. Cuando la métrica induce en cada
punto una forma bilineal definida positiva (ν = 0) se dice que ésta es riemanniana, y cuando
dim M ≥ 2 y g define una forma bilineal de ı́ndice ν = 1, se dice que es lorentziana.

Dado un entorno coordenado (p, U; x1, . . . , xn), para cada i, j ∈ {1, . . . , n} denotamos

gij : U → R, gij(q) = gq
(
∂i(q), ∂j(q)

)
.

Dado q ∈ U y dados u, v ∈ Tq M, se tiene

gq(u, v) = gq
(
ui∂i(q), vj∂j(q)

)
= uivjgij(q).

Aśı, la matriz g̃q =
(

gij(q)
)

ij es la matriz de gq en la base
(
∂i(q)

)
i.

Análogamente, denotaremos (g̃q)−1 =
(

gij(q)
)

ij, de manera que también podemos ver

gij : U → R como la aplicación q 7→ gij(q).

Para lo que resta de apartado supondremos que M es una variedad lorentziana conexa.

Definición 1.43. Una orientación temporal de M es una aplicación τ que asigna a cada punto
p ∈ M un cono temporal τp ⊂ Tp M, de manera que para cada p ∈ M exista un entorno

U ⊂ M de p y un campo vectorial X ∈ X(U) tal que Xq ∈ τq, ∀q ∈ U.

Nótese que en esta definición pueden sustituirse los conos temporales por luminosos o

causales obteniendo idéntico concepto de orientación temporal.

Se tiene el siguiente resultado, que se demuestra haciendo uso de particiones diferenciables

de la unidad8 (Javaloyes V. et al., 2010, Prop. 3.2):

Teorema 1.44. Una variedad lorentziana M admite una orientación temporal si, y solamente si
admite un campo vectorial globalmente definido X ∈ X(M) tal que Xp es temporal, ∀p ∈ M.
En tal caso se dice que M es temporalmente orientable.

Una variedad lorentziana (conexa) temporalmente orientable admitirá justamente dos

orientaciones temporales. Dada una de ellas, τ, a los conos τp se les denominará conos

futuros y a los conos −τp, conos pasados. De igual modo, los elementos de un cono futuro

(resp. pasado) se dirá que apuntan al futuro (resp. pasado).

Una curva diferenciable cuyos vectores tangentes sean todos temporales (resp. luminosos,

causales, espaciales) se dirá que es temporal (resp. luminosa, causal, espacial). Si los vectores

8Para tener garant́ıa de la existencia de éstas es necesario asumir que la variedad sea de Hausdorff y

paracompacta, lo cual es cierto en nuestro caso, pues las variedades (excepción hecha de las variedades

cociente definidas en el apartado 1.1.4) las asumimos de Hausdorff y ANII. De hecho, la paracompacidad es

equivalente a la existencia en M de una métrica semiriemanniana (Marathe, 1972, Cor. 2).
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1 Conceptos previos

tangentes a una curva causal apuntan todos al futuro (resp. pasado) se dirá que la curva

está dirigida al futuro (resp. pasado). En general una curva diferenciable no tendrá por qué

tener carácter causal bien definido, pues no todos sus vectores tangentes tendrán que tener

el mismo carácter causal.

1.4.3. La conexión de Levi-Civita

En toda variedad semiriemanniana existe una única conexión que verifica dos propiedades

de la conexión eucĺıdea9: ser libre de torsión y ser compatible con la métrica. Esto se expresa

en el siguiente resultado, cuya demostración puede encontrarse en (Lee, 2018, Teor. 5.10).

Teorema 1.45 (Fundamental de la Geometŕıa Semiriemanniana). Sea (M, g) una variedad
semieriemanniana. Existe una única conexión af́ın ∇ en M que verifica:

i) Es compatible con la métrica:

X
(

g(Y, Z)
)
= g (∇XY, Z) + g (Y,∇XZ) , ∀X, Y, Z ∈ X(M),

ii) Es libre de torsión:

T(X, Y) = ∇XY −∇YX − [X, Y] = 0, ∀X, Y ∈ X(M).

Esta conexión, que se denomina conexión de Levi-Civita, está caracterizada por la fórmula

de Koszul:

2g(∇XY, Z) = X
(

g(Y, Z)
)
− Z

(
g(X, Y)

)
+ Y

(
g(X, Z)

)
+ g

(
[X, Y], Z

)
+

+ g
(
[Y, Z], X

)
− g

(
[X, Z], Y

)
.

Observamos en primer lugar que para una conexión libre de torsión y, en particular, para

la conexión de Levi-Civita, los śımbolos de Christoffel verifican Γk
ij = Γk

ji.

Además, puede comprobarse que en un entorno coordenado (p, U; x1, . . . , xn), los śımbolos
de Christoffel pueden expresarse como

Γk
ij =

1
2

glk
(

∂gjl

∂xi −
∂gij

∂xl +
∂gil

∂xj

)
: U → R. (1.8)

En lo sucesivo consideraremos que M ≡ (M, g,∇) es una variedad semiriemanniana de
dimensión n dotada de la conexión de Levi-Civita.

Con la conexión de Levi-Civita (y, de hecho, con cualquier conexión compatible con la

métrica), la derivada temporal de la acción de la métrica sobre dos campos vectoriales sobre

una curva se comporta de manera natural satisfaciendo una suerte de “regla de Leibniz” para

el producto en la que la “derivada de un campo” es su derivada covariante. Esto se expresa en

el siguiente resultado, que se demuestra considerando las expresiones locales de los campos

y de la derivada covariante (Lee, 2018, Prop. 5.5).

Proposición 1.46. Sea γ : I → M una curva diferenciable y sean X, Y ∈ X(γ). Para cada
t ∈ I, se verifica

d
dt

(
g
(
X(t), Y(t)

))
= g

(
DX
dt

(t), Y(t)
)
+ g

(
X(t),

DY
dt

(t)
)

.

9En Rn la conexión eucĺıdea es la que, para las coordenadas usuales, verifica Γk
ij ≡ 0, ∀i, j, k.
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Corolario 1.46.1. Sea γ una geodésica. Entonces d
dt g

(
γ̇, γ̇

)
= 2g

(
Dγ̇
dt , γ̇

)
≡ 0.

En consecuencia, para una geodésica γ, se tiene que gγ(t)
(
γ̇(t), γ̇(t)

)
es constante en su

dominio y, por tanto, γ tiene carácter causal bien definido. Se dirá que γ es temporal (resp.
causal, luminosa, espacial) si lo es alguno de sus vectores tangentes.

En otro orden de cosas, con la conexión de Levi-Civita el tensor de Riemann R (def. 1.19)
satisface ciertas propiedades de simetŕıa y antisimetŕıa, además de una propiedad análoga a

la identidad de Jacobi, denominada identidad de Bianchi. Exponemos estas propiedades en el

siguiente resultado, cuya demostración puede encontrarse en (Lee, 2018, Prop. 7.12), entre

otras referencias.

Proposición 1.47. Con la conexión de Levi-Civita, el tensor de Riemann satisface las siguien-

tes propiedades, ∀X, Y, Z, W ∈ X(M):

i) RXYZ = −RYXZ, y en particular RXX ≡ 0,

ii) g
(
RXYZ, W

)
= −g

(
Z,RXYW

)
, y en particular g

(
RXYZ, Z

)
= 0,

iii) g
(
RXYZ, W

)
= g

(
RZW X, Y

)
,

iv) RXYZ +RZXY +RYZX = 0, propiedad a la que se conoce como identidad de Bianchi.

A partir del tensor de Riemann (con la conexión de LC) se define una serie de conceptos

como la curvatura seccional, el tensor de Ricci, la curvatura de Ricci o la curvatura escalar.

En el caso de las variedades de dimensión 2 (superficies diferenciables), la curvatura seccional
coincide con la ya conocida curvatura de Gauss, lo que motiva que el tensor de Riemann sea

conocido como tensor de curvatura.

1.4.4. Variaciones de curvas

Introducimos ahora una herramienta auxiliar, las variaciones de curvas, que nos será de

utilidad tanto para definir el siguiente concepto, los campos de Jacobi, como para dar una

relación entre dos nociones de geodésica de distinta naturaleza, las geodésicas afines y las

geodésicas métricas. El contenido de este apartado se ha extráıdo de diversas fuentes, prin-

cipalmente de (O’Neill, 1983), (Janssen, 2020) y (Candela et al., 2010).

Definición 1.48. Sea α : I → M una curva diferenciable con I = [a, b]. Una variación de
α es una aplicación diferenciable x : I × (−δ, δ) → M, para cierto δ > 0, de manera que
x(t, 0) = α(t), ∀t ∈ I. Dada una variación x de α, se definen:

Para cada t ∈ I, las curvas transversales como las aplicaciones xt : (−δ, δ) → M dadas
por xt(s) = x(t, s),

Para cada s ∈ (−δ, δ), las curvas longitudinales como las aplicaciones xs : I → M dadas
por xs(t) = x(t, s).

Una variación x de α se dice de extremos fijos si x(a, s) = α(a), x(b, s) = α(b), ∀s ∈ (−δ, δ).

Definición 1.49. El campo vectorial V sobre α dado por V(t) = ∂x
∂s (t, 0) se denomina campo

variacional de x. Si cada una de las curvas longitudinales es una geodésica, se dice que x es
una variación geodésica o una familia uniparamétrica de geodésicas.
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Obsérvese que V(t) es la velocidad inicial de la curva transversal xt. En particular, para

una variación de extremos fijos se tendrá que V(a) = V(b) = 0. Más generalmente, pueden
considerarse los campos vectoriales tangentes a las curvas longitudinales o transversales

∂sx(t̃, s̃) =
d
ds

xt(s)
∣∣∣∣
(t̃,s̃)

=
∂x(t, s)

∂s

∣∣∣∣
(t̃,s̃)

,

∂tx(t̃, s̃) =
d
dt

xs(t)
∣∣∣∣
(t̃,s̃)

=
∂x(t, s)

∂t

∣∣∣∣
(t̃,s̃)

.

Estos campos son ejemplos de campos vectoriales sobre la variación x, por lo que denotaremos
∂sx, ∂tx ∈ X(x) (véase la definición 1.20).

A partir de la derivada covariante, definimos dos nuevos operadores D
dt , D

ds : X(x) → X(x)
dados por

DX(t, s)
dt

∣∣∣∣
(t̃,s̃)

=
DX(t, s̃)

dt

∣∣∣∣
t̃
,

DX(t, s)
ds

∣∣∣∣
(t̃,s̃)

=
DX(t̃, s)

ds

∣∣∣∣
s̃

.

Por simplicidad, denotaremos a los campos correspondientes DtX y DsX, respectivamente.

Se tiene entonces el siguiente resultado, cuya demostración puede encontrarse en (O’Neill,

1983, Prop. 4.44), que nos será de utilidad más adelante para trabajar con campos de Jacobi.

Proposición 1.50. Si M está dotada de la conexión de Levi-Civita, se verifica:

i) Dt ∂sx = Ds ∂tx,

ii) Si F ∈ X(x), entonces DtDsF − DsDtF = R
(
∂tx, ∂sx

)
F.

Definición 1.51. Sea α : [a, b] → M una curva diferenciable. Se define su enerǵıa como

E[α] =
1
2

∫ b

a
gα(t)

(
α̇(t), α̇(t)

)
dt.

Se puede ver entonces E como un funcional definido en cierto espacio de curvas diferencia-
bles10 α : [a, b] → M. En nuestro caso, consideraremos E como definida en el espacio Xp→q
de las curvas diferenciables α : [a, b] → M tales que α(a) = p, α(b) = q, para dos puntos
prefijados p, q ∈ M en una misma componente arcoconexa de M.

Definición 1.52. Se dice que una curva α ∈ Xp→q es una geodésica (métrica) si α es un
punto cŕıtico de E en Xp→q.

Notemos, en primer lugar, que esta definición no requiere que la variedad esté dotada de

una conexión af́ın, de modo que la definición de geodésica métrica es, a priori, completamente

independiente de la definición de geodésica af́ın.

Si x : I × (−δ, δ) → M es una variación de α, podemos definir la enerǵıa de las curvas
longitudinales de manera análoga y considerar

Ex : (−δ, δ) → R, Ex(s) = E[xs] =
1
2

∫ b

a
gxs(t̃)

(
∂tx(t̃, s), ∂tx(t̃, s)

)
dt̃.

Pues bien, puede demostrarse que α ∈ Xp→q es un punto cŕıtico de α en Xp→q si, y

solamente si E′
x(0) = 0, para toda variación de extremos fijos x de α. Véanse (O’Neill, 1983,

10De hecho, no es necesario exigir diferenciabilidad en toda la curva. Véase (Candela et al., 2010). En

nuestro caso, no nos preocuparemos por esto, dado que para nosotros las geodésicas son diferenciables en

todo su dominio.
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Cap. 10) para una discusión más detallada o (Candela et al., 2010) para un estudio en el

caso en que a las curvas no se les exige diferenciabilidad a trozos.

Concluimos este apartado con un resultado que muestra la relación entre ambas nociones

de geodésica y la naturalidad de la conexión de Levi-Civita (Janssen, 2020, Sec. 7.6 y 8.1):

Teorema 1.53. Con la conexión de Levi-Civita, se tiene

E′
x(0) = 0, ∀x variación de extremos fijos de α ⇐⇒ Dα̇

dt
≡ 0,

esto es, las geodésicas afines coinciden con las geodésicas métricas.

1.4.5. Campos de Jacobi

En este apartado, extráıdo principalmente de (O’Neill, 1983), se introduce el concepto de

campo de Jacobi, que será de vital importancia para describir el espacio tangente al fibrado

tangente de una variedad. A su vez, éste será necesario para la definición de las variedades

de geodésicas temporales y luminosas en un espaciotiempo lorentziano.

Definición 1.54. Sea M una variedad semiriemanniana y sea γ una geodésica en M. Un
campo vectorial Y sobre γ se dice de Jacobi si verifica la ecuación de Jacobi :

Y′′ =
D2Y
dt2 = RYγ̇(γ̇). (1.9)

Al ser la condición de Jacobi lineal en Y, se tiene que el conjunto J (γ) de los campos de
Jacobi sobre una geodésica γ es un subespacio vectorial de X(γ).

Como primer ejemplo de campo de Jacobi podemos considerar la velocidad γ̇ ∈ X(γ) de
γ, que verifica (véase la propiedad i) de la proposición 1.47) γ̇′′ = 0 = Rγ̇γ̇(γ̇).

De la proposición 1.50 se deduce de manera sencilla el siguiente resultado:

Lema 1.55. El campo variacional de una variación geodésica es un campo de Jacobi.

Este resultado da lugar a una interpretación (O’Neill, 1983, pág. 216) que tiene impor-

tantes implicaciones en Relatividad General: la desviación geodésica. El campo variacional

V describe grosso modo, la distancia entre dos geodésicas infinitesimalmente cercanas. De
manera análoga, su derivada covariante medirá la velocidad relativa entre ambas geodésicas

y la segunda derivada covariante, la aceleración entre éstas.

Al ser V un campo de Jacobi, se verificará D2V
dt2 = RVγ̇γ̇, luego dicha aceleración estará

ı́ntimamente relacionada con la curvatura de la variedad a lo largo de la geodésica base.

Interpretando la ecuación de Jacobi como una especie de Segunda Ley de Newton tenemos

que RVγ̇γ̇ cumple el papel de una fuerza, a la que se denomina fuerza de marea. Decimos
que esta interpretación tiene importantes consecuencias en Relatividad General, pues permite

la descripción de la gravedad a través de la curvatura del espaciotiempo. En este sentido, la

literatura f́ısica denomina a la ecuación de Jacobi ecuación de la desviación geodésica.

Veamos ahora algunos resultados sobre existencia y unicidad de campos de Jacobi sobre

una geodésica.

Teorema 1.56. Sea γ una geodésica con γ(0) = p. Para cada v, w ∈ Tp M, existe un único
campo de Jacobi Y sobre γ que verifica Y(0) = v, Y′(0) = DY

dt (0) = w.
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La demostración de este resultado se basa en la obtención de un sistema de ecuaciones

diferenciales de cuya solución conocemos, por resultados conocidos, la existencia y unicidad.

Para la obtención de dicho sistema se define una referencia móvil ortonormal, esto es, una

base ortonormal en Tp M que se traslada paralelamente a lo largo de γ. Posteriormente, para
cada t ∈ I, se expresa Y(t) en dicha base y se obtienen las condiciones sobre sus coeficientes.

Corolario 1.56.1. El espacio vectorial J (γ) de los campos de Jacobi sobre una geodésica
γ : I → M es isomorfo a Tp M × Tp M, donde p = γ(0). En particular, se trata de un espacio
vectorial de dimensión 2n.

Por otra parte, tenemos el siguiente resultado, rećıproco del lema 1.55, que se demuestra

haciendo uso de la exponencial geodésica11 para definir una variación geodésica cuyo campo

variacional es el buscado, lo que se demuestra a su vez empleando la unicidad de los campos

de Jacobi.

Proposición 1.57. Sea γ una geodésica e Y ∈ J (γ). Entonces Y es el campo variacional de
una variación geodésica (de γ).

Lema 1.58. Dado Y ∈ J (γ), se verifica g
(
Y(t), γ̇(t)

)
= at + b para ciertos a, b ∈ R.

Demostración. Se verifica

d2

dt2 g
(
Y(t), γ̇(t)

)
= g

(
D2Y
dt2 (t), γ̇(t)

)
= g

(
RY(t),γ̇(t)γ̇(t), γ̇(t)

)
= 0, (1.10)

donde en la última igualdad hemos empleado el apartado ii) de la proposición 1.47. ■

Proposición 1.59. Dada una geodésica no nula12 γ, el espacio J (γ) de los campos de Jacobi
sobre γ puede expresarse como suma directa J (γ) = J tan(γ)⊕J ⊥(γ), donde

J tan(γ) = {Y ∈ J (γ) | ∃a, b ∈ R, Y(t) = (at + b)γ̇(t), ∀t},

J ⊥(γ) = {Y ∈ J (γ) | g
(
Y(t), γ̇(t)

)
= 0, ∀t}.

Demostración. Sea Y ∈ J tan(γ) ∩ J ⊥(γ). Se tiene entonces que Y(t) = (at + b)γ̇(t) para
ciertos a, b ∈ R. En consecuencia, g

(
Y(t), γ̇(t)

)
= (at + b)g

(
γ̇, γ̇

)
= 0, ∀t, y al ser γ no

nula, deberá ser a = b = 0, luego Y ≡ 0.

Sea ahora Y ∈ J (γ) y sean a, b ∈ R tales que g
(
Y(t), γ̇(t)

)
= at + b, ∀t. Definimos los

campos Ytan(t) = (at + b) g(γ̇, γ̇)−1 γ̇(t) ∈ J tan(γ) e Y⊥ = Y − Ytan ∈ J ⊥(γ), con lo que
obtenemos la descomposición buscada. ■

1.4.6. El spray geodésico

La expresión local de las geodésicas (1.4) puede ser reescrita, de forma equivalente, como

un sistema de ecuaciones diferenciales de primer orden{
γ̇k = λk,

λ̇k = −Γjiλ
iλj.

(1.11)

11La exponencial geodésica en p ∈ M es una aplicación expp : Up ⊂ Tp M → M, definida en el conjunto
Up = {v ∈ Tp M | γp,v está definida en 1}, y dada por expp(v) = γp,v(1), ∀v ∈ Up.
12De acuerdo con los convenios expuestos en la definición 1.36 y la observación posterior, con esta nomen-

clatura hacemos referencia a que, para cada t, γ̇(t) es no nulo, es decir, ni es cero ni es luminoso.
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1 Conceptos previos

Asociado a este sistema, en cada entorno coordenado
(
(p, v), U; x1, . . . , xn, y1, . . . , yn) de

TM, podemos definir un campo vectorial χ ∈ X(TM) dado por

χ(q, w) = χ
(
x1, . . . , xn, y1, . . . , yn) = yk ∂

∂xk

∣∣∣∣
(q,w)

− Γk
ji(q) yiyj ∂

∂yk

∣∣∣∣
(q,w)

(1.12)

Las curvas integrales α : I → TM de dicho campo serán tales que, denotando αk = yk ◦ α,

α̇(t) = χα(t) = αk ∂

∂xk

∣∣∣∣
α(t)

− Γk
ji
(
α(t)

)
αiαj ∂

∂xk

∣∣∣∣
α(t)

. (1.13)

Aśı, expresando βk = xk ◦ α, se deduce que β̇k = αk y α̇k = −Γjiα
iαj. En resumen, las

coordenadas (βk, αk) de las curvas integrales de χ verifican el sistema de ecuaciones diferen-
ciales (1.11) y, por tanto, las coordenadas βk verifican la ecuación (1.4) de las geodésicas. El

razonamiento seguido se resume en el siguiente resultado (Geiges, 2008, pág. 26):

Proposición 1.60. Sea (M, g,∇) una variedad semiriemanniana. Existe entonces un único
campo vectorial χ ∈ X(TM) cuyas curvas integrales son las aplicaciones de la forma

α : I −→ TM
t 7−→

(
γ(t), γ̇(t)

)
∈ Tγ(t)M,

(1.14)

donde γ : I → M es una geodésica. En general, por comodidad denotaremos α ≡ γ̇. Deno-
minamos a χ el spray geodésico de M.

Observación. No se deben confundir las curvas integrales de χ con las variedades integrales
de la distribución unidimensional ⟨χ⟩ generada por χ en TM. Por supuesto, la imagen de
una curva de la forma (1.14) será una variedad integral de ⟨χ⟩. Rećıprocamente, todas13
las variedades integrales maximales conexas de ⟨χ⟩ son imagen de alguna curva de la forma
(1.14). Denotemos por Γ a una de estas variedades integrales maximales conexas y tomemos
v ≡ (p, v) ∈ Γ. Entonces Γ = Im γ̇v. Pero también

14 se tiene Γ = Im γ̇, donde γ es una
reparametrización de γv por traslación del parámetro.

1.5. Geometŕıa simpléctica

La geometŕıa simpléctica cubre un ámbito muy extenso de la geometŕıa diferencial que

guarda gran relación con la mecánica clásica y, más espećıficamente, con la mecánica anaĺıti-

ca. En este trabajo no necesitaremos profundizar excesivamente en esta teoŕıa, de modo

que introduciremos los conceptos necesarios de manera breve y concisa. Pueden consultarse

(Cannas da Silva, 2001), que realiza un estudio detallado, o (Arnold, 1997), que ofrece una

visión más amplia de la relación de la geometŕıa simpléctica con la F́ısica.

13Todo punto (p, v) ∈ TM está en una (única) variedad integral maximal conexa de ⟨χ⟩. Además, por todo
punto (p, v) pasa una curva integral de χ de la forma (1.14) (por ejemplo, tomando γ = γ(p,v)). Como dos

curvas integrales maximales o bien tienen igual imagen o bien no se cortan, se deduce el resultado.
14Nótese que aunque dos geodésicas tengan la misma imagen, esto es, cada una sea una reparametrización

(general) de la otra, las imágenes de las aplicaciones de la forma (1.14) correspondientes no tendrán la misma

imagen a no ser que la reparametrización sea una traslación del parámetro.
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1.5.1. Espacios vectoriales simplécticos

Definición 1.61. Una forma simpléctica ω en un espacio vectorial V es una forma bilineal
antisimétrica15 y no degenerada, esto es,

ω(v, w) = 0, ∀w ∈ V ⇐⇒ v = 0.

Se dice que (V, ω) es un espacio vectorial simpléctico.

Se comprueba sin dificultad que toda forma bilineal antisimétrica definida en un espacio

vectorial de dimensión impar es degenerada. En consecuencia, un espacio vectorial simpléctico

necesariamente tendrá dimensión par.

Lema 1.62. Sea (V, ω) un espacio vectorial simpléctico. Existe una base e1, . . . , en, f1, . . . , fn
de V tal que

ω(ei, ej) = ω( fi, f j) = 0, ω(ei, f j) = δij.

Definición 1.63. Sea (V, ω) un espacio vectorial simpléctico y W un subespacio vectorial

suyo. Se dice que W es

i) simpléctico si ω|W×W es no degenerada,

ii) isótropo si ω|W×W ≡ 0 o, equivalentemente, si W ⊆ W⊥ω ,

iii) coisótropo si W⊥ω ⊆ W,

iv) lagrangiano si es isótropo y coisótropo, esto es, si W⊥ω = W.

Tomemos entonces (V, ω) un espacio vectorial simpléctico de dimensión 2n y W un

subespacio vectorial coisótropo de dimensión m. El espacio ortogonal W⊥ω tendrá dimensión

2n − m al ser ω no degenerada y al ser W coisótropo deberá suceder que n ≤ m. Podemos
considerar el espacio cociente W/W⊥ω , que tendrá dimensión 2(m − n) ≥ 0. Se tiene entonces
el siguiente resultado, que puede demostrarse sin dificultad con las herramientas básicas del

álgebra lineal.

Teorema 1.64 (Reducción coisótropa). Sea (V, ω) un espacio vectorial simpléctico y W un

subespacio vectorial coisótropo. La aplicación

ω : W/
W⊥ω × W/

W⊥ω −→ R,
(
[v], [w]

)
7−→ ω(v, w),

es una forma simpléctica en W/W⊥ω . En particular,
(

W/W⊥ω , ω
)
es un espacio vectorial simplécti-

co de dimensión 2(m − n).

Es sencillo comprobar que todo hiperplano de un espacio vectorial simpléctico es coisótro-

po. En consecuencia, el teorema anterior nos garantiza que si W ⊂ V es un hiperplano,
entonces

(
W/W⊥ω , ω

)
es un espacio vectorial simpléctico de dimensión 2n − 2.

El teorema 1.64, extráıdo de (Bautista et al., 2015b, págs. 23-24), es un caso particular

de la denominada reducción simpléctica. Ésta describe matemáticamente cómo la existencia

de simetŕıas en un sistema mecánico permite reducir la dimensión del espacio de fases que lo

parametriza (Cannas da Silva, 2001, Parte IX).

15O lo que es lo mismo, un tensor 2-covariante y antisimétrico, esto es ω ∈ Λ2(V).
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1.5.2. Variedades simplécticas

Definición 1.65. Una forma simpléctica ω en una variedad diferenciable M es una 2-forma
diferenciable cerrada y no degenerada, esto es, una aplicación diferenciable

ω : M → Λ2(M)

tal que dω = 0 y para cada p ∈ M se tiene que ωp ∈ Λ2(Tp M) es no degenerada. Se dice
que (M, ω) es una variedad simpléctica.

Observación. Dados V un espacio vectorial de dimensión 2n y ω una forma bilineal anti-
simétrica en V, se tiene que ω es no degenerada si, y solamente si ωn ̸= 0. En consecuencia,
una forma simpléctica ω en una variedad diferenciable de dimensión 2n es una 2-forma dife-
renciable cerrada tal que ωn no se anula en ningún punto, esto es, para cada p ∈ M, ωn

p no es

idénticamente nula. En tal caso, decimos que ωn es una forma de volumen. La existencia de

esta forma de volumen garantiza la orientabilidad de la variedad. En resumen, toda variedad

simpléctica es necesariamente orientable.

Vamos a introducir como primer ejemplo la denominada forma simpléctica canónica en el

fibrado cotangente de una variedad. Para ello, definiremos una 1-forma auxiliar, denominada
de Liouville o también potencial simpléctico, que nos permitirá definir una forma simpléctica

como su derivada exterior.

Consideremos entonces M una variedad diferenciable y denotemos N = T∗M a su fibrado
cotangente. La proyección16 π̃ : N → M es diferenciable, luego dπ̃ : TN → TM. Cada punto
q ∈ N será un par (p, φp) con p = π̃(q) ∈ M y φp ∈ T∗

p M, esto es, φp : Tp M → R.

Definición 1.66. En las condiciones del párrafo anterior, se define la 1-forma de Liouville
como la aplicación θ : N → T∗N = Λ1(N) dada por θq = θ(p,φp) = φp ◦ dqπ̃ ∈ T∗

q N:

TqN Tπ̃(q)M = Tp M R.
dqπ̃ φp

Proposición 1.67. La 2-forma ω = −dθ es una forma simpléctica en N = T∗M a la que se
denomina forma simpléctica canónica del fibrado cotangente.

Además, puede comprobarse que, dado un entorno coordenado (p, U; x1, . . . , xn) en M,
y considerando las coordenadas naturales x1, . . . , xn, θ1, . . . , θn en T∗U, se puede expresar

θ = ∑
i

θi dxi =⇒ ω = ∑
i

dxi∧ dθi. (1.15)

Para lo que resta de apartado se ha seguido una exposición similar a la de (Gómez Zara-

goza, 2020), realizando aqúı demostraciones ligeramente distintas.

Proposición 1.68. Sea (M, ω) una variedad simpléctica y H una hipersuperficie suya. En-
tonces ω induce una distribución (diferenciable) 1-dimensional H⊥ω en H dada por

H⊥ω
p =

(
TpH

)⊥ωp ⊂ TpH, ∀p ∈ H. (1.16)

Demostración. En primer lugar, al ser H una hipersuperficie y, por tanto, TpH ⊂ Tp M un

hiperplano ∀p ∈ H, deducimos que TpH es coisótropo, luego (TpH)⊥ω ⊂ TpH. Además,
dim(TpH)⊥ω = 1 al ser ω no degenerada. En resumen, H⊥ω es una 1-distribución en H.

16En adelante diferenciaremos la notación π : TM → M y π̃ : T∗M → M para facilitar la lectura.
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Para comprobar que dicha distribución es diferenciable consideramos un entorno coorde-

nado (p, U; x1, . . . , xm−1) de H y definimos la aplicación diferenciable

f : TU −→ U × Rm−1

(q, v) 7→
(

q,
(
ωq(v, ∂1,q), . . . , ωq(v, ∂m−1,q)

))
,

donde hemos denotado ∂i,q =
∂

∂xi

∣∣∣
q
. Definimos asimismo el conjunto

ker f = f−1(U × {0}
)
=

{
(q, v) | q ∈ U, f (q, v) = (q, 0)

}
.

Con las técnicas habituales, se comprueba de manera sencilla que ker f es un subfibra-
do vectorial diferenciable del fibrado tangente TU → U ⊂ H, cuyas fibras son precisamente
(TqH)⊥ω , ∀q ∈ U. De la arbitrariedad de p, se deduce el resultado buscado. ■

Supongamos ahora que (M, ω) es una variedad simpléctica y H una hipersuperficie suya.
Al ser la distribución H⊥ω 1-dimensional, en particular será involutiva. En estas circunstancias,
el teorema 1.15 nos garantiza que la familia FH⊥ω de variedades integrales maximales conexas

de H⊥ω es una foliación de H. Aśı, podemos considerar el espacio cociente H/H⊥ω dotado de

la proyección ΠH⊥ω : H → H/H⊥ω . Por simplicidad, denotaremos Π = ΠH⊥ω siempre que no

haya lugar a ambigüedad.

Dado entonces un punto p ∈ H, podemos considerar la hoja F = Π−1(Π(p)) ⊂ H que
lo contiene. Ésta es la variedad integral maximal conexa de H⊥ω que contiene a p. En otras
palabras, se verifica TqF = (Hq)⊥ω = (TqH)⊥ω , ∀q ∈ F. Además, F se representa en H/H⊥ω

por Π(p). Indistintamente se suele denominar a F y a Π(p) la órbita de p, por lo que al
espacio H/H⊥ω se le denomina espacio de órbitas. Del teorema 1.17 se deduce el siguiente

resultado sobre este espacio, al requerir que la distribución H⊥ω sea regular:

Corolario 1.68.1. Sea (M, ω) una variedad simpléctica de dimensión m y H una hipersuper-
ficie suya. Si la distribución H⊥ω es regular, entonces H/H⊥ω admite una estructura natural

de variedad diferenciable (no necesariamente Hausdorff) de dimensión m − 2 respecto de la
cual la proyección Π : H → H/H⊥ω es una sumersión.

Al ser Π una sumersión, para cada p ∈ H se tiene que dpΠ : TpH → TΠ(p)H/H⊥ω es

sobreyectiva. En consecuencia, de las consideraciones posteriores al teorema 1.17 y de las

previas al corolario 1.68.1 se tiene el isomorfismo canónico

dpΠ : TpH/TpF = TpH/(TpH)⊥ω

∼=−→ TΠ(p)H
/
H⊥ω . (1.17)

Proposición 1.69. En las condiciones del corolario anterior, ω induce en H/H⊥ω una única

forma simpléctica ω̃ tal que Π∗ω̃ = ω|H, esto es
17, tal que para cada p ∈ H y u, v ∈ TpH

se verifica

ωp(v, w) = ω̃Π(p)
(
dpΠ(v), dpΠ(w)

)
.

Demostración. Para cada punto p ∈ H, el teorema 1.64 nos garantiza que la aplicación
ωp : Tp H/(Tp H)⊥ω × Tp H/(Tp H)⊥ω → R dada por

ωp
(
[v], [w]

)
= ωp(v, w), ∀v, w ∈ TpH,

17La notación Π∗ω es la estándar para el pull-back de una k-forma a través de una aplicación diferenciable.
Por su parte, denotamos ω|H ≡ i∗ω, donde i : H ↪→ M es la inclusión.
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es una forma simpléctica en Tp H/(Tp H)⊥ω . Teniendo en cuenta que el isomorfismo dpΠ está
dado por [v] ↔ dpΠ(v), ∀v ∈ TpH, podemos trasladar esta forma simpléctica a TΠ(p)H/H⊥ω

considerando

ω̃Π(p)
(
dpΠ(v), dpΠ(w)

)
= ωp

(
[v], [w]

)
= ωp(v, w), ∀v, w ∈ TpH. (1.18)

En resumen, por el momento hemos demostrado que la asignación

ω̃ : H/H⊥ → Λ2(H/H⊥
)

Π(p) 7−→ ω̃Π(p)
(1.19)

está bien definida. Aśı, queda demostrar que dicha asignación es una aplicación diferenciable

y, por tanto, una 2-forma, aśı como que ésta es cerrada y única.

La primera de las cuestiones es consecuencia de un resultado técnico18 y del hecho de que

Π sea una sumersión y Π∗ω̃ = ω|H sea una forma diferenciable en H. Por su parte, que ω̃
sea cerrada es consecuencia directa de las propiedades de la diferencial exterior con respecto

al pull-back:

Π∗dω̃ = d
(
Π∗ω̃

)
= dω|H = d(i∗ω) = i∗dω = 0,

y, al ser dpΠ sobreyectiva ∀p ∈ H, se deduce que dω̃ = 0, como queŕıamos demostrar.

Por último, la unicidad de la forma simpléctica ω̃ en H/H⊥ω tal que ω|H = Π∗ω̃ es con-
secuencia directa de que Π sea una sumersión sobreyectiva. ■

1.6. Geometŕıa de contacto

Exponemos ahora una breve introducción a la geometŕıa de contacto, limitándonos a

describir lo necesario para definir una estructura de contacto en la variedad de geodésicas

luminosas. Se sigue aqúı la exposición de (Cannas da Silva, 2001, Cap. 10), que puede con-

sultarse para un estudio introductorio, pero algo más extenso.

Definición 1.70. Sea M una variedad diferenciable de dimensión m. Un elemento de contacto
es un par (p, Hp), donde p ∈ M y Hp ⊂ Tp M es un hiperplano. Se dice que p es el punto de
contacto y que Hp es el hiperplano de contacto.

Un elemento de contacto determina, salvo multiplicación por un escalar no nulo, una

forma lineal αp : Tp M → R cuyo núcleo es ker αp = Hp.

Supongamos ahora que H es una distribución diferenciable de dimensión m − 1, esto
es, una distribución de hiperplanos. Localmente, esta distribución de hiperplanos podrá ser

expresada como el núcleo de una 1-forma α : M → T∗M (Geiges, 2008, Lema 1.1.1). Ésta,

evidentemente, no será única pues cualquier producto por una función diferenciable que no

se anule tendrá el mismo núcleo. Se dice que α es una 1-forma local asociada a H.

Definición 1.71. Una estructura de contacto en una variedad diferenciable M es una distri-
bución de hiperplanos H tal que para alguna (y, por tanto, para toda) 1-forma local asociada
α se tiene que dα|H es no degenerada

19. Se dice que el par (M, H) es una variedad de con-
tacto, que α es una forma (local) de contacto y que H es una distribución máximamente no
integrable.

18Lema: Sean M, N dos variedades diferenciables y φ : M → N una sumersión. Sea asimismo ω una forma
(no necesariamente diferenciable) en N. Si φ∗ω es una forma diferenciable en M, entonces ω es diferenciable.
19Esto es, (dα)p : Hp × Hp → R es no degenerada para todo punto p en el dominio de α.
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Si H es una estructura de contacto en M, al ser dα|H no degenerada (decimos, por
comodidad, que es simpléctica) la dimensión de Hp será necesariamente par, dim Hp = 2n.
Como además dim Hp = dim M − 1, deducimos que dim M = m = 2n + 1 y, en particular,
toda variedad de contacto tiene dimensión impar.

Consideramos el conjunto

ker(dαp) =
{

v ∈ Tp M | dαp(v, w) = 0, ∀w ∈ Tp M
}

.

De nuevo, la no degeneración de (dαp)|Hp nos garantiza que Hp ∩ ker(dαp) = {0}. Además,
dim ker(dαp) ̸= 0, pues en caso contrario dαp seŕıa no degenerada y, en particular, M tendŕıa
dimensión par. En consecuencia Tp M = Hp ⊕ ker(dαp).

La observación posterior a la definición 1.65 nos garantiza que la restricción de (dαp)n a

Hp no es idénticamente nula, de donde se deduce sin dificultad que αp ∧ (dαp)n, definida en

Tp M, tampoco es idénticamente nula.

En general no tendrá por qué existir una forma de contacto definida globalmente. La

obstrucción a dicha existencia es puramente topológica, pues se tiene

∃ α forma de contacto global ⇐⇒ el fibrado vectorial TM/
H es trivial. (1.20)

El fibrado TM/H es unidimensional, por lo que ser trivial es equivalente a ser orientable

(en el sentido de la orientabilidad de fibrados vectoriales). En general, si ∆ es un subfibrado
vectorial de TM, se dice que ∆ es coorientable si TM/∆ es trivial. Pueden consultarse (Cannas

da Silva, 2001) y (Geiges, 2008) para un estudio más detallado de este asunto.

Se tiene el siguiente resultado, del que ya hemos probado la implicación a la derecha, que

permite adoptar definiciones equivalentes de estructura de contacto:

Proposición 1.72. Sea H una distribución en M de dimensión m − 1. Entonces

H es una estructura de contacto ⇐⇒ α ∧ (dα)n ̸= 0, ∀α forma local asociada a H.

Por su parte, α ∧ (dα)n es una forma de orden 2n + 1 = dim M. Por tanto, si H es una
estructura de contacto y α es una forma de contacto global, entonces α ∧ (dα)n es una forma

de volumen en M y, en particular, M deberá ser orientable.

Nos centramos ahora en varios resultados que proporcionan una interesante relación entre

geometŕıa simpléctica y de contacto. Esta relación nos proporcionará, en el caṕıtulo 3, la

estructura de contacto en la variedad de geodésicas luminosas. Ambos resultados, con los

que concluimos este caṕıtulo, pueden encontrarse en (Bautista et al., 2015b, Teors. 5.1 y

5.2). La demostración del segundo de ellos seguirá una exposición similar a la de (Espinosa

Ruiz, 2022, Teor. 4.3.2).

Proposición 1.73. Sea (M, ω) una variedad simpléctica y H una hipersuperficie suya. Supon-
gamos que H⊥ω es una distribución regular y denotemos por ω̃ a la única forma simpléctica
en H/H⊥ que verifica Π∗ω̃ = i∗ω (Cor. 1.68.1 y Prop. 1.69). Si existe una 1-forma θ en M tal
que ω = −dθ y existe una 1-forma θ̃ en H/H⊥ tal que Π∗ θ̃ = i∗θ = θ|H, entonces ω̃ = −dθ̃.

Demostración. Las propiedades de la diferencial exterior con respecto al pull-back nos garan-

tizan que

Π∗ω̃ = i∗ω = i∗(−dθ) = −d(i∗θ) = −d(Π∗ θ̃) = Π∗(−dθ̃),

de donde se deduce el resultado al ser Π una sumersión sobreyectiva. ■
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Teorema 1.74. Sea (M, ω) una variedad simpléctica exacta con ω = −dθ, N una variedad
de dimensión dim N = dim M− 1 y π : M → N una sumersión sobreyectiva. Denotamos por
H a la distribución en M dada por Hp = ker(θp), ∀p ∈ M. Supongamos que para cada par
de puntos p1, p2 ∈ M con π(p1) = π(p2) = q se tiene que dp1 π(Hp1) = dp2 π(Hp2) ⊂ TqN
es un hiperplano. Entonces se puede definir una estructura de contacto H en N dada por

Hq = dpπ(Hp), ∀q = π(p) ∈ N.

Demostración. Al ser π : M → N una sumersión, se tiene que dim
(
ker dpπ

)
= 1. Como

dpπ(Hp) ⊂ Tπ(p)N es un hiperplano, entonces ker dpπ ⊂ Hp. Asimismo, se deduce que

(dpπ)−1(Hπ(p)
)
= Hp. En los siguientes párrafos veremos que, de hecho, ker dpπ = H⊥

p ,

y al tener ambos espacios igual dimensión bastará probar la inclusión de izquierda a derecha.

Sea v ∈ ker dpπ. Queremos demostrar que ωp(v, w) = 0, ∀w ∈ Hp = ker θp. Se tiene:

ωp(v, w) = −dθp(v, w) = v
(
�

��θp(w)
)
− w

(
���θp(v)

)
− θp

(
[v, w]

)
, ∀w ∈ Hp,

donde los dos primeros términos del lado derecho se anulan al ser v, w ∈ Hp = ker θp. Aśı,

solo necesitamos comprobar que θp
(
[v, w]

)
= 0, ∀w ∈ Hp, ∀v ∈ ker dpπ, para lo que nece-

sitaremos recurrir a resultados técnicos sobre flujos de campos vectoriales.

Para cada q ∈ N denotamos a la fibra que se proyecta sobre q por Fq = π−1(q). Conside-
ramos U ⊂ M abierto y X ∈ X(U) un campo vectorial tal que Xp ∈ TpFπ(p), ∀p ∈ U, esto
es, un campo tangente a las fibras de π. Por supuesto, se tiene que TpFπ(p) = ker dpπ.

Consideramos ϕt : M → M el flujo20 de X y tomemos Y ∈ X(U) un campo vectorial con
Yp ∈ Hp, ∀p ∈ U. Como se tiene que

dϕt(p)π ◦ dpϕt = dp(π ◦ ϕt) = dpπ,

entonces dϕt(p)π
(
dpϕt(Yp)

)
= dpπ(Yp) ∈ Hπ(p) y de las observaciones iniciales se deduce

que

dpϕt(Yp) ∈ Hϕt(p), ∀t, ∀p

y, en particular, dϕt(p)ϕ−t(Yp) ∈ Hp.

Empleando la expresión del corchete de Lie como derivada de Lie se obtiene:

[Xp, Yp] = lı́m
t→0

dϕt(p)ϕ−t(Yp)− Yp

t
∈ Hp,

de donde se deduce inmediatamente que θp
(
[Xp, Yp]

)
= 0, como queŕıamos demostrar.

Hemos demostrado, por tanto, que ker dpπ = H⊥
p , ∀p ∈ M. Considerando la restricción

(dpπ)|Hp : Hp → Tπ(p)N, y al ser ker dpπ ⊂ Hp, se tiene que

Hp
/

ker dpπ = Hp
/
H⊥

p
∼= dpπ(Hp) = Hπ(p).

Veamos ahora que existe una 1-forma local α asociada a la distribución H que verifica que
dα|H es no degenerada. Para cada p ∈ M y cada par de elementos ξ1, ξ2 ∈ Hp/H⊥

p definimos

ω̃p(ξ1, ξ2) = ωp(u1, u2), (1.21)

20El flujo de un campo vectorial X ∈ X(M) es una aplicación ϕ : I × M → M, con 0 ∈ I ⊆ R, tal que

ϕ(t, p) = ϕt(p) = αX
p (t), donde αX

p es la única curva integral de X que verifica αX
p (0) = p. En ocasiones se

denomina flujo de X a la aplicación ϕt : M → M, p 7→ ϕt(p).
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1 Conceptos previos

donde ui ∈ ξi. El teorema 1.64 garantiza que ω̃p está bien definida y es no degenerada.

Sea ahora σ : U ⊆ N → M una sección local diferenciable de π, esto es, π ◦ σ = idU.

Emplearemos σ para trasladar la forma bilineal ω̃p a Hπ(p), definiendo para cada q ∈ U y
cada ξ1, ξ2 ∈ Hq

ωq(ξ1, ξ2) = ω̃σ(q)(ξ1, ξ2), (1.22)

donde ξ i = dσ(q)π(ξi), siendo dσ(q)π el isomorfismo entre Hσ(q)/H⊥
σ(q) y Hq. De nuevo, es inme-

diato que ωq es no degenerada, ∀q ∈ U.

Por otra parte, σ∗θ es una 1-forma diferenciable en U que verifica −d(σ∗θ) = −σ∗dθ =
σ∗ω. Además, para cada q ∈ U ⊂ N y cada par w1, w2 ∈ TqN se tiene

(σ∗ω)q(w1, w2) = ωσ(q)
(
dqσ(w1), dqσ(w2)

)
,

y de la independencia de ui ∈ ξi en (1.21) deducimos que (σ
∗ω)H = ω en el dominio de σ.

Por su parte,

ker(σ∗θ)q =
{

w ∈ TqN | θσ(q)
(
dqσ(w)

)
= 0

}
=

{
w ∈ TqN | dqσ(w) ∈ Hσ(q)

}
= Hq.

En conclusión, −σ∗θ es una 1-forma local asociada a H cuya diferencial, restringida a H,
es ω, que es no degenerada. La existencia de secciones locales de π alrededor de cada punto
de N concluye la demostración. ■

Obsérvese que a lo largo de la demostración hemos empleado una herramienta auxiliar, la

sección local σ de π, de cuya elección dependen las formas bilineales ωq y la 1-forma σ∗θ. Sin
embargo, se razona sin demasiada dificultad que la estructura de contacto H es independiente
de la elección de la sección σ.
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2 Estructura simpléctica del espacio de geodésicas temporales

2. Estructura simpléctica del espacio de geodésicas temporales

En este apartado trataremos de describir el espacio M de las geodésicas temporales de

una variedad lorentziana conexa M temporalmente orientada de dimensión n, esto es, un
espaciotiempo n-dimensional (def. 3.4). Veremos que, bajo ciertas condiciones, M admite

una estructura de variedad diferenciable de dimensión 2n − 2 a la que se puede dotar de una
forma simpléctica, partiendo de la de TM (sección 2.2).

2.1. Descripción del espacio tangente TvTM con campos de Jacobi

Sea (p, v) ≡ v ∈ TM. Sabemos que el fibrado tangente es una variedad diferenciable
de dimensión 2n. Su espacio tangente en v será un espacio vectorial de dimensión 2n que
podemos identificar, v́ıa el corolario 1.56.1, con el espacio J (γ) de campos de Jacobi sobre
una geodésica. En este apartado construiremos un isomorfismo natural de manera expĺıcita

entre ambos espacios y, por lo tanto, un isomorfismo TvTM ∼= Tp M × Tp M.

De una parte, tenemos

TvTM =
{

ξ = α̇(0) | α : J → TM diferenciable con α(0) = v
}

,

donde una curva diferenciable α : J → TM es un campo vectorial sobre β = π ◦ α.

De otra parte, consideramos γv : I → M la única geodésica maximal tal que γ(0) = p y
γ̇(0) = v. Ésta puede expresarse (Lee, 2018, Prop. 5.19) como γv(t) = expp(tv), ∀t ∈ I.

Dado ahora ξ ∈ TvTM, consideramos una curva diferenciable α : J → TM con α(0) = v
y α̇(0) = ξ y definimos la aplicación

xα : [−δ, δ]× [−ε, ε] −→ M, xα(t, s) = expβ(s)
(
tα(s)

)
= γα(s)(t),

donde los intervalos [−δ, δ] ⊆ I y [−ε, ε] ⊆ J serán lo suficientemente estrechos como para
que la exponencial esté siempre bien definida.

Se tiene entonces que xα(t, 0) = γv(t), ∀t ∈ [−δ, δ]. Además, xs
α(t) = γα(s)(t), luego xs

α

es una geodésica. En resumen, xα es una variación geodésica de γv.

Consideramos el campo variacional Yα de xα que, de acuerdo con el lema 1.55, es un

campo de Jacobi. Se verifica

Yα(0) =
∂xα

∂s
(0, 0) =

d
ds

∣∣∣∣
s=0

expβ(s)(0) =
d
ds

∣∣∣∣
s=0

β(s) = β̇(0) ∈ Tp M,

Y′
α(0) =

DYα

dt
(0) =

D
dt
(
∂sxα

)
(0, 0) =

D
ds

(
∂txα

)
(0, 0) =

D
ds

∣∣∣∣
0

α(s) = α′(0) ∈ Tp M,
(2.1)

donde en la segunda ĺınea hemos empleado la proposición 1.50 y hemos sustituido

∂txα(0, s) =
d
dt

∣∣∣∣
0

expβ(s)
(
tα(s)

)
= α(s).

Veamos ahora que el campo de Jacobi recién definido no depende de la elección de la

curva α. Se verifica, por una parte,

β̇(0) =
d
ds

∣∣∣∣
s=0

(
π ◦ α

)
(s) = dπα(0)

(
α̇(0)

)
= dπ(ξ). (2.2)
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2 Estructura simpléctica del espacio de geodésicas temporales

Por otra parte, en un entorno coordenado
(
(p, v), U; x1, . . . , xn, y1, . . . , yn) de TM pode-

mos expresar ξ = (η1, . . . , ηn, ξ1, . . . , ξn) y α(s) =
(

β1(s), . . . , βn(s), α1(s), . . . , αn(s)
)
. Em-

pleando la expresión local de la derivada covariante, se deduce que

α′(0) =
(

α̇k(0) + Γk
ji
(

β(0)
)
αi(0)β̇j(0)

)
∂k(0) =

(
ξk + Γk

ji
(

p
)
viη j

) ∂

∂xk

∣∣∣∣
(p,v)

. (2.3)

En resumen, Yα(0) e Y′
α(0) no dependen de la curva α, sino únicamente de (p, v) y ξ.

Ahora, el teorema 1.56 nos garantiza que el campo de Jacobi Yα tampoco depende de α, pues
éste está caracterizado por sus valores en 0. Denotamos, por tanto, Yξ ≡ Yα. Aśı, hemos

demostrado que la siguiente aplicación está bien definida

TvTM ∋ ξ 7−→ Yξ ∈ J (γv). (2.4)

De manera rutinaria se comprueba que esta aplicación es lineal. Además, las expresiones

de Yξ(0) e Y′
ξ(0) nos garantizan su inyectividad. Al tener ambos espacios la misma dimensión,

deducimos que se trata de un isomorfismo de espacios vectoriales.

2.2. Estructura simpléctica de TM

En una variedad semiriemanniana (M, g) podemos considerar la siguiente aplicación dife-
renciable, denominada de Legendre

ĝ : TM −→ T∗M,
(p, v) 7→

(
p, gp(v, ·)

)
,

que nos proporciona un isomorfismo (ĝ, idM) de fibrados vectoriales diferenciables.

A través del pull-back, la aplicación de Legendre permite trasladar la 1-forma de Liouville
(véase la definición 1.66) al fibrado tangente, definiendo θg = ĝ∗θ : TM → T∗TM, esto es,
para cada (p, v) ∈ TM y cada ξ ∈ T(p,v)TM, se tiene que(

θg
)
(p,v)(ξ) = θ(

p,gp(v,·)
)(dĝ(ξ)

)
= gp

(
v, (dπ̃ ◦ dĝ)(ξ)

)
= gp

(
v, dπ(ξ)

)
,

donde en la última igualdad hemos empleado que dπ̃ ◦ dĝ = dπ.

De nuevo, en un entorno coordenado
(
(p, v), U; x1, . . . , xn, y1, . . . , yn) de TM podemos

expresar v = vi ∂
∂xi ∈ Tp M y ξ = ηi ∂

∂xi + ξ i ∂
∂yi ∈ TvTM. En consecuencia, se puede expresar(

θg
)
(p,v)(ξ) ≡ θg(ξ) = gp

(
vi ∂

∂xi , η j ∂
∂xj

)
= viη jgij,

donde hemos empleado que dπ(ξ) = η j ∂
∂xj . De este modo, se puede expresar localmente

θg = gij yjdxi.

Análogamente, podemos trasladar al fibrado tangente la forma simpléctica canónica ω en
el fibrado cotangente definiendo ωg = ĝ∗ω : TM → Λ2(TM), esto es, para cada (p, v) ∈ TM
y cada ξ1, ξ2 ∈ T(p,v)TM,(

ωg
)
(p,v)(ξ1, ξ2) ≡ ωg(ξ1, ξ2) = ω(

p,gp(v,·)
)(dĝ(ξ1), dĝ(ξ2)

)
.
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2 Estructura simpléctica del espacio de geodésicas temporales

Las propiedades de la diferencial exterior con respecto al pull-back nos garantizan que

ωg = ĝ∗ω = ĝ∗(−dθ) = −d
(

ĝ∗θ
)
= −dθg,

luego en particular, ωg es una 2-forma exacta. La no degeneración de ω nos garantiza que
ωg es también no degenerada. En resumen, (TM, ωg) es una variedad simpléctica exacta de
dimensión 2n.

De la expresión local de θg se deduce la de ωg como

ωg = −dθg = −d
(

gij yjdxi) = yjdxi∧ dgij + gijdxi∧ dyj = yj ∂gij

∂xk dxi∧ dxk + gijdxi∧ dyj.

Proposición 2.1. Sea v ≡ (p, v) ∈ TM, ξ, ξ1, ξ2 ∈ TvTM e Yξ , Yξ1 , Yξ2 ∈ J (γv) los campos
de Jacobi sobre γv asociados. Entonces

d
dt

(
g
(
Y′

ξ1
(t), Yξ2(t)

)
− g

(
Yξ1(t), Y′

ξ2
(t)

))
= 0. (2.5)

Además, se tienen las siguientes identidades:

θg(ξ) = gp
(
v, Yξ(0)

)
, y ωg(ξ1, ξ2) = g

(
Y′

ξ1
, Yξ2

)
− g

(
Yξ1 , Y′

ξ2

)
. (2.6)

Demostración. La primera identidad se demuestra de manera sencilla empleando las simetŕıas

del tensor de Riemann (prop. 1.47). Igualmente, la segunda identidad se deduce directamente

de consideraciones previas, recordando que Yξ(0) = dπ(ξ).

Por su parte, para demostrar la tercera identidad necesitamos hacer uso de la expresión

local de ωg. Aśı, para ξr = η
j
r

∂
∂xj + ξk

r
∂

∂yk ∈ TvTM, r ∈ {1, 2}, se tiene1:

ωg(ξ1, ξ2) = vj(gsiΓs
kj + gjsΓs

ki
)(

ηi
1ηk

2 − ηi
2ηk

1
)
+ gij

(
ηi

1ξ
j
2 − ηi

2ξ
j
1

)
=

= vjgsiΓs
kjη

i
1ηk

2 +������vjgjsΓs
kiη

i
1ηk

2 − vjgsiΓs
kjη

i
2ηk

1 −������vjgjsΓs
kiη

i
2ηk

1 + gij
(
ηi

1ξ
j
2 − ηi

2ξ
j
1

)
=

= gij
(
ηi

1ξ
j
2 + Γi

ksv
sη

j
1ηk

2
)
− gij

(
ηi

2ξ
j
1 + vsΓj

ksη
i
2ηk

1
)
=

= gp

(
ηi

1
∂

∂xi ,
(
ξ

j
2 + Γj

ksv
sηk

2
)

∂
∂xj

)
− gp

(
ηi

2
∂

∂xi ,
(
ξ

j
1 + Γj

ksv
sηk

1
)

∂
∂xj

)
=

= gp
(
Yξ1(0), Y′

ξ2
(0)

)
− gp

(
Y′

ξ1
(0), Yξ2(0)

)
.

■

2.3. La variedadM de las geodésicas temporales en M

En este apartado queremos construir el conjunto de las geodésicas temporales maxi-

males desparametrizadas en M = (M, g,∇) y dotarlo de estructura de variedad diferenciable
simpléctica. Para ello, consideramos en primera instancia el conjuntoM′ de todas las geodési-
cas temporales maximales en M, esto es, las geodésicas maximales γ tales que g

(
γ̇, γ̇

)
< 0.

Introducimos enM′ la relación de equivalencia dada por γ1 ∼ γ2 ⇐⇒ Im γ1 = Im γ2 y

consideramos el conjunto cocienteM = M′/∼ inducido enM′ por dicha relación. Diremos
que las clases de equivalencia [γ] = {γ̃ : I → M geodésica temporal maximal | Im γ̃ = Im γ}

1Aqúı empleamos la expresión local de los śımbolos de Christoffel (1.8) para obtener la identidad:

∂gij

∂xk = gsiΓ
s
kj + gjsΓs

ki.
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2 Estructura simpléctica del espacio de geodésicas temporales

son geodésicas temporales maximales desparametrizadas. De modo equivalente, podemos ver

M ∼=
{

Im γ | γ es geodésica temporal maximal
}

.

Dos geodésicas γ1, γ2 ∈ [γ] se diferencian exclusivamente en un cambio de parametri-
zación, en otras palabras, [γ] es una geodésica “salvo parametrización”. Además, sabemos
que las únicas reparametrizaciones de geodésicas que son geodésicas son las afines (véase la

discusión posterior al teorema 1.23). Aśı, se tiene

[γ] = {γ ◦ h | h : J
∼=−→ I, h(t) = at + b, a, b ∈ R}. (2.7)

En particular, en cada clase de equivalencia existen geodésicas γb, que decimos que están

parametrizadas por el arco o por el tiempo propio, tales que g
(
γ̇b, γ̇b

)
= −1. Por simplicidad,

siempre consideraremos a una de estas geodésicas como representante natural2 de su clase

de equivalencia. Además, para no hacer referencia a ningún representante de las clases de

equivalencia, denotaremos por Γ a los elementos deM.
Consideramos ahora el conjunto

H =
{

v ≡ (p, v) ∈ TM | g(v, v) = −1
}

, (2.8)

que es una hipersuperficie de TM. Los resultados de las secciones 1.5.2 y 2.2 nos permiten
considerar la distribución unidimensional (y, por tanto, involutiva) H⊥ωg , donde ωg es la

forma simpléctica canónica de TM, aśı como el espacio cociente H/H⊥. Sabemos que si H⊥

es regular entonces H/H⊥ admitirá una estructura de variedad diferenciable que hará que la

proyección sea una sumersión, y una única forma simpléctica ω tal que Π∗ω = ωg |H. De

hecho, para cada v ∈ H se tendrá un isomorfismo

dvΠ : TvH/(TvH
)⊥ −→ TΠ(v)

(
H/H⊥

)
. (2.9)

El conjunto H tiene dos componentes conexas, H+ y H−, formadas por los elementos
v ∈ H que apuntan al futuro o al pasado, respectivamente, separadas por la sección cero del
fibrado tangente. Al ser las componentes conexas abiertas en H, los resultados 2.2–2.5 siguen
siendo ciertos al reemplazar H por H+ o H− y considerar la distribución H⊥ restringida al
conjunto correspondiente, que denotamos por simplicidad de la misma manera.

Pues bien, más adelante identificaremos M ≡ H+/H⊥, empleando como herramienta el

spray geodésico, lo que dotará aM de la estructura de variedad simpléctica buscada. Para

ello, necesitamos considerar los siguientes resultados previos:

Proposición 2.2. Sea (p, v) ∈ H. Entonces χ(p,v) ∈ TvH. En otras palabras, χ|H ∈ X(H) y,
por tanto, χ|H genera una distribución unidimensional en H, a la que denotamos por ⟨χ|H⟩.

Demostración. Tomemos (p, v) ∈ H y consideremos γ la única geodésica maximal en M tal
que γ(0) = p y γ̇(0) = v. Entonces, g(γ̇, γ̇) ≡ −1 y, en consecuencia, la curva α : I → H
dada por α = (γ, γ̇) está bien definida y verifica α(0) = (p, v) y α̇(0) = χ(p,v). ■

Proposición 2.3. Sea (p, v) ∈ H. El campo de Jacobi Y ∈ J (γv) asociado a χ(p,v) ∈ TvH
es Y = γ̇v ∈ J tan(γv).

2Hay tantas geodésicas parametrizadas por el arco como posibles traslaciones temporales, esto es, del tipo

γb(t) = γ(t + b), b ∈ R. Aśı, la elección de la geodésica representante no es canónica.
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Demostración. De las expresiones locales (1.12) y (2.1)-(2.3) del spray geodésico y del campo

de Jacobi asociado a un elemento ξ ∈ TvTM se deduce que si Y ∈ J (γv) es el campo de
Jacobi asociado a χ(p,v) ∈ T(p,v)H, entonces

Y(0) = dπ
(
χ(p,v)

)
= v, Y′(0) = 0.

Como γ̇v ∈ J (γv) también verifica dichas condiciones, la unicidad dada por el teorema
1.56 nos proporciona el resultado buscado. ■

Proposición 2.4. Sea ξ ∈ TvH ⊂ TvTM. Entonces, el campo de Jacobi asociado Yξ verifica

g
(
Y′

ξ(0), v
)
= 0. De hecho, la aplicación

TvH ∋ ξ 7→ Yξ ∈ J 0(γv) =
{

Y ∈ J (γv)
∣∣ g

(
Y′(0), v

)
= 0

}
(2.10)

es un isomorfismo de espacios vectoriales.

Demostración. Sabemos que g
(
Y′

ξ(0), v
)
= g

(
α′(0), v

)
, donde α : I → TM es cualquier curva

tal que α(0) = v ≡ (p, v) y α̇(0) = ξ. En particular, podemos tomar α de manera que para
cada t ∈ I, se verifique α(t) ∈ H. Aśı, se tiene

g
(
α(t), α(t)

)
= −1, ∀t =⇒ g

(
α′(t), α(t)

)
= 0, ∀t =⇒ g

(
α′(0), α(0)

)
= g

(
α′(0), v

)
= 0.

Además, al estar un campo de Jacobi Y determinado por los valores de Y(0) y Y′(0),
imponer una condición lineal sobre las coordenadas de este último vector reduce la dimensión

en 1. Aśı, dimJ 0(γv) = dimJ (γv)− 1 = 2n − 1 = dim TvH.

Como TvTM ∋ ξ 7→ Yξ ∈ J (γv) es un isomorfismo, y la imagen de TvH por éste está
contenida en J 0(γv), la igualdad de dimensiones nos garantiza el resultado. ■

Proposición 2.5. Para cada v ≡ (p, v) ∈ H, se tiene que χ(p,v) ⊥ TvH. Al ser H⊥ unidi-
mensional, H⊥

v estará generado por χ(p,v). En consecuencia, H⊥ ≡ ⟨χ|H⟩, esto es, ambas
distribuciones coinciden.

Demostración. Sean (p, v) ∈ H y ξ ∈ TvH. Por la proposición anterior, sabemos que el cam-
po de Jacobi asociado a χ(p,v) es γ̇. En consecuencia, se verifica

ωg
(
χ(p,v), ξ

)
= g

(
�
��γ̇′(0), Yξ(0)

)
− g

(
γ̇(0), Y′

ξ(0)
)
= −g

(
v, Y′

ξ(0)
)
= 0,

donde en la última igualdad hemos empleado la proposición 2.4. ■

A la vista de este resultado, deducimos que si α = (γ, γ̇) es una curva integral de χ, esto
es, χα(t) = α̇(t), entonces se verifica

α̇(t) ∈
(
Tα(t)H

)⊥, ∀t.

De la proposición anterior deducimos que el espacio cociente H/H⊥ es el espacio de las

órbitas de la distribución ⟨χ|H⟩, esto es, el conjunto de sus variedades integrales maximales
conexas. Estas, como comentamos en la observación posterior a la proposición 1.60, son

las imágenes de las aplicaciones α = (γ, γ̇), donde γ es una geodésica maximal, que estén
contenidas en H. En otras palabras, los elementos de H/H⊥ son de la forma Im γ̇, donde γ
es una geodésica temporal maximal parametrizada por el arco.

Tratamos en los siguientes párrafos de establecer la conexión entreM y H/H⊥ que, como

hab́ıamos avanzado, se traducirá en la identificaciónM ≡ H+/H⊥.
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2 Estructura simpléctica del espacio de geodésicas temporales

Dada una geodésica temporal desparametrizada, Γ = [γ̃] ∈ M, ya sabemos que todas
las geodésicas γ ∈ Γ pueden expresarse como γ(t) = γ̃(at + b), con a, b ∈ R, a ̸= 0. Si solo
consideramos las que están parametrizadas por el arco, fijaremos el valor de |a|, pero no el
de b. Aśı, tendremos “dos familias” de geodésicas temporales maximales parametrizadas por
el arco: unas dirigidas al futuro,

{
γa,b}

b∈R
, y otras dirigidas al pasado,

{
γ−a,b}

b∈R
.

Las aplicaciones α = (γ, γ̇) correspondientes a distintas geodésicas de una misma familia
tendrán igual imagen. Por el contrario, las correspondientes a familias distintas tendrán dis-

tintas imágenes. De este modo, a la hora de asociar a cada elemento [γ̃] ∈ M un elemento

Im γ̇ ∈ H/H⊥ no solo hay que tener en cuenta la parametrización por el arco, sino también la

orientación temporal de las curvas.

Aśı las cosas, podemos considerar la aplicación

Φ : M −→ H+/
H⊥

Γ 7−→ Im γ̇,
(2.11)

donde γ es cualquier geodésica maximal en Γ que esté parametrizada por el arco y dirigida al
futuro. Esta aplicación es claramente una biyección, por los comentarios realizados hasta el

momento, lo que nos permite identificar

H+/
H⊥ = H+/

⟨χ|H⟩ ≡ M, (2.12)

con lo que, como ya anunciamos, si ⟨χ|H⟩ = H⊥ es una distribución regular, entonces M
admitirá una estructura de variedad diferenciable simpléctica de dimensión 2n − 2.

Observemos, además, que dado un elemento v ∈ H+, se tiene que Π(v) ∈ H+/H⊥ podrá

expresarse como Π(v) = Im γ̇v. En consecuencia, Π(v) = Φ
(
[γv]

)
.

Por último, construiremos expĺıcitamente la estructura diferenciable deM. Daremos, para
ello, tres atlas diferenciables equivalentes:

i) El primero de ellos es el proporcionado por el teorema 1.17 (véase (Brickell et al., 1970,
pág. 205)). Supongamos que la distribución ⟨χ|H⟩ es regular y tomemos un sistema de
coordenadas regular (U, φ = x1, . . . , x2n−1) en H+. Denotamos U′ = Π(U) ⊂ M. Al
ser (U, φ) regular, cada hoja Γ interseca a U en a lo sumo una sección unidimensional,
esto es, Π−1(Γ) ∩ U es de la forma φ−1(I × {a}

)
, para cierto I ⊆ R conexo y cierto

a ∈ R2n−2. En resumen, tenemos el siguiente diagrama:

U ⊂ H+ R × R2n−2

U′ ⊂ M R2n−2.

Π

φ

p2

φ̃

Definimos entonces φ̃(Γ) = p2
(

φ(v)
)
, donde v ∈ Π−1(Γ). Los comentarios preceden-

tes nos garantizan que φ̃ está bien definida. Con cierta dificultad puede demostrarse que
los sistemas coordenados (U′, φ̃) forman un atlas diferenciable (véase la mencionada
referencia).

ii) De forma alternativa, supongamos que (M, g) es fuertemente causal (def. 3.13). Dado
un punto de M, consideremos un entorno suyo U globalmente hiperbólico y causal-
mente convexo (en M). Además, consideremos una hipersuperficie de Cauchy S (def.
3.14) en U. Restringiendo el entorno lo suficiente puede conseguirse que S admita una
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2 Estructura simpléctica del espacio de geodésicas temporales

parametrización global ϕS. Definimos

US =
{

v ≡ (p, v) ∈ H+ | p ∈ S
} ∼= S × Rn−1.

Se tiene que dim US = 2n − 2. Además, al ser U causalmente convexo, toda curva
temporal dirigida al futuro corta a S a lo sumo en un punto. Aśı, se tiene el siguiente
diagrama:

US ⊂ H+ S × Rn−1

U′
S ⊂ M R2n−2,

Π

φ

ϕ×id

φ̃

donde ϕ es una parametrización de S.

Definimos entonces φ̃(Γ) = (ϕ × id)
(

φ(v)
)
, donde v ∈ Π−1(Γ). Los comentarios pre-

vios garantizan que φ̃(Γ) no depende de la elección de v y, por tanto, φ̃ está bien
definida.

De nuevo, de forma sencilla se comprueba que M puede recubrirse por conjuntos del

tipo U′
S = Π(US) y que todos ellos, junto con las cartas ϕ−1

S : MS → US, proporcionan

un atlas diferenciable deM equivalente al obtenido en el apartado anterior.

iii) Por último, definiremos otro atlas en M que proporciona la misma estructura dife-

renciable que los anteriores y que nos será de utilidad más adelante (véase el final del

apartado 4.2).

De nuevo, supongamos que (M, g) es fuertemente causal, tomemos un entorno U
globalmente hiperbólico y causalmente convexo y una hipersuperficie de Cauchy S en
U que admita una parametrización global. Consideremos un campo vectorial sobre la
inclusión X : S → H+ ⊂ TM. Asimismo, definamos el conjunto

VS =
{

v ≡ (p, v) ∈ TM | p ∈ S, g(Xp, v) = −1, g(v, v) < 0
}

.

Nótese que las dos últimas condiciones de la expresión anterior implican que para cada

(p, v) ∈ VS se tiene que v es temporal y, de hecho, está en el mismo cono temporal que
Xp. Definimos entonces la aplicación fS : VS → US dada por fS(v) = v/

√
−g(v, v), que

es un difeomorfismo.

En consecuencia, la proyección Π : VS → M proporciona una nueva parametrización de

M. Además, es inmediato comprobar que estas aplicaciones definen un atlas diferen-
ciable enM que induce la misma estructura diferenciable que los anteriores.

Observaciones. i) Para construir el segundo y el tercer atlas diferenciable hemos necesi-
tado suponer que (M, g) es fuertemente causal. Sin embargo, como se mencionará en
la sección 4, esta condición es suficiente para que M admita estructura de variedad,

pero no es necesaria.

ii) Las estructuras diferenciables construidas no necesariamente serán de Hausdorff, lo que
śı puede conseguirse al exigir condiciones adicionales sobre la estructura causal, como

la hiperbolicidad global.
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2 Estructura simpléctica del espacio de geodésicas temporales

2.4. El espacio tangente T ΓM

Como consecuencia de la proposición 2.5 se tiene el siguiente resultado, que nos propor-

ciona una descripción de (TvH)⊥ que nos será de utilidad para describir TΓM.

Proposición 2.6. Sea v ∈ H y ξ ∈ (TvH)⊥. Entonces

Yξ ∈ J 0(γv) ∩ J tan(γv) = {aγ̇v | a ∈ R} =: J T(γv).

Además, dim
(
J T(γv)

)
= 1 y, en consecuencia, (TvH)⊥ ∼= J T(γv).

Demostración. Sea ξ ∈ (TvH)⊥. La proposición 2.5 nos garantiza la existencia de a ∈ R tal

que ξ = aχv. Como la aplicación dada por (2.4) es lineal, se tiene que Yξ = aYχv = aγ̇v, de

donde deducimos que Yξ ∈ J tan(γv).

Como dimJ tan(γv) = 2, solamente tenemos que demostrar que J tan(γv) ̸⊂ J 0(γv), lo
cual es inmediato pues, de hecho, definiendo Y(t) = t γ̇(t) se tiene que Y ∈ J tan(γv), y sin
embargo Y /∈ J 0(γv). ■

Llegados a este punto, tratemos de describir el espacio tangente a M en uno de sus

puntos, [γv], con v ∈ H+. Como expresábamos en las ecuaciones (2.9) y (2.12), se tendrá

T[γv]M = TΠ(v)

(
H+/

H⊥
)
∼= TvH/(TvH

)⊥ ∼=
J 0(γv)

J T(γv)
∼= J ⊥(γv), (2.13)

donde en el último isomorfismo hemos empleado la descomposición dada por la proposición

1.59, el segundo Teorema de Isomorf́ıa de Noether, y el hecho de que J ⊥(γv) ⊂ J 0(γv).
Nótese, que dimJ ⊥(γv) = 2n − 2, como esperábamos.

Esta descripción del espacio tangente puede obtenerse de manera alternativa y directa,

lo que nos dará una interpretación clara de su significado. Para ello, consideramos una cur-

va diferenciable Λ : I → M tal que Λ(0) = Γ = γ. Para cada s ∈ I, Λ(s) es una geodésica
temporal desparametrizada, que nosotros identificamos con una de sus representantes pa-

rametrizadas por el arco y dirigida al futuro, γs. De estas, recordamos, hay tantas como

traslaciones temporales, esto es, Λ(s) = [γs] = γs,b, ∀b ∈ R, donde γs,b(t) = γs(t + b). Di-
cho de otro modo, la elección de la curva representante no es única, sino que está dada salvo

traslación temporal.

Al ser Λ diferenciable, existirá una variación x de γ por geodésicas temporales de manera
que, definiendo3 γs = x(·, s), se tendrá que γs ∈ Λ(s), ∀s ∈ I. De hecho, por los motivos
discutidos en el párrafo precedente, para cada b ∈ R la variación xb dada por xb(·, s) = γs,b

también verificará dicha propiedad. Identificamos Λ(s) ≡ x(·, s).

Para estudiar TΓM supongamos que Λ es localmente inyectiva y veamos qué condiciones
debe cumplir su vector tangente Λ̇(0). Se tiene que(

Λ̇(0)
)
(t) =

(
d
ds

∣∣∣∣
0

Λ(s)
)
(t) ≡

(
d
ds

∣∣∣∣
0

x(·, s)
)
(t) = ∂sx(t, 0) := Y(t), ∀t ∈ (−δ, δ),

y en particular, Y es el campo variacional de x, luego un campo de Jacobi4 sobre γ.

3Aqúı estamos identificando a γs con su (única) extensión maximal.
4El dominio de Y será un subconjunto del de γ. Aśı, identificamos a Y con su (única) extensión como

campo de Jacobi sobre γ.
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2 Estructura simpléctica del espacio de geodésicas temporales

Por su parte, al ser x una variación geodésica por geodésicas temporales desparametriza-
das, y teniendo en cuenta que γ̇s(t) = ∂tx(t, s), se verifica g

(
γ̇s, γ̇s) = −1, ∀s y, por tanto

d
ds

∣∣∣∣
0

g
(
γ̇s, γ̇s) = 2g

(
Ds∂tx(t, 0), ∂tx(t, 0)

)
= 2g

(
Dt∂sx(t, 0), γ̇(t)

)
=

= 2g
(

DtY(t), γ̇(t)
)
= 2g

(
Y′(t), γ̇(t)

)
= 0, ∀t,

donde en la segunda igualdad hemos empleado el apartado i) de la proposición 1.50. Aśı,
hemos demostrado que Y = Λ̇(0) ∈ J 0(γ). En particular, podemos expresar Y = Ytan +Y⊥,
con Ytan ∈ J T(γv) e Y⊥ ∈ J ⊥(γ).

Al ser Y ∈ J 0(γ), se tiene que d
dt g

(
Y(t), γ̇(t)

)
= 0 y, por tanto, g

(
Y, γ̇

)
= b. Aśı, po-

demos expresar (véase la demostración de la proposición 1.59) Ytan = −bγ̇.

Ahora bien, no todas las variaciones x de γ por geodésicas temporales pueden ser aso-
ciadas con una curva diferenciable Λ : I → M, con Λ(0) = Γ, que sea localmente inyectiva.
Supongamos que Λ fuese constante en un entorno de 0. Se tendŕıa entonces que [γ] = [γs],
∀s ∈ J ⊂ I, o lo que es lo mismo, Im γ = Im γs, ∀s. En consecuencia, las geodésicas γs son

reparametrizaciones (traslaciones temporales pues, como siempre, consideramos que todas

están parametrizadas por el arco) de γ. Por supuesto, al tratarse de una curva constante
alrededor de 0, se debeŕıa tener Λ̇(0) = 0.

Sin embargo, definamos la variación x(t, s) = γ
(
t + h(s)

)
, donde h es diferenciable. En-

tonces podemos identificar Λ(s) = γh(s), ∀s. El campo variacional asociado a esta variación
es Y(t) = ḣ(0)γ̇(t) ∈ J T(γ). En resumen, si Λ es constante en un entorno de 0, entonces
Y ∈ J T(γ).

Por lo expuesto anteriormente, deberemos considerar que Y = Λ̇(0) ≡ 0, esto es, realmen-
te estamos trabajando en el espacio cociente J 0(γ)/J T(γ) ∼= J ⊥(γ). La aparición de campos
de Jacobi tangentes es, por tanto, solo un “artefacto”, producto de haber identificado clases

de equivalencia con una de sus representantes parametrizadas por el arco.

Por su parte, dadas dos γ1, γ2 ∈ Γ con γ2(t) = γ1(at + b), a ̸= 0, existe un isomorfismo
canónico

Θγ1→γ2 : J 0(γ1) → J 0(γ2)

Y1 7−→ Y2 ,
(2.14)

donde Y2(t) = Y1(at + b).

En consecuencia, tenemos que

TΓM ∼=
{
⟨Y⟩ = Y + J T(γ)

∣∣∣ Y ∈ J 0(γ)
}
∼= J ⊥(γ), (2.15)

donde γ ∈ Γ es cualquier geodésica. El isomorfismo (2.14) nos garantiza que para cualquier
elección de γ ∈ Γ, las descripciones de TΓM son equivalentes.

Denotaremos por ργ al isomorfismo ργ : J 0(γ)/J T(γ) → TΓM dado por (2.13). Asimismo,

denotaremos por W a los elementos de TΓM
Visto de manera equivalente, si trabajásemos con geodésicas maximales viéndolas como

aplicaciones (esto es, “no desparametrizadas”) y considerásemos las variaciones correspon-

dientes tendŕıamos que la parte tangencial del campo variacional solo mueve la parametriza-

ción, mientras que es la parte ortogonal la que mueve la geodésica.
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Notemos, por último, que con esta descripción de TΓM, la diferencial de Π : H+→ M
viene dada para cada v ∈ H+ y cada ξ ∈ TvH+ por

dvΠ(ξ) = ργv

(
⟨Yξ⟩

)
.

2.5. La forma simpléctica enM

Sea γ ∈ Γ cualquier geodésica parametrizada por el arco y dirigida al futuro y sean
W1, W2 ∈ TΓM. Sabemos que todo elemento Yi ∈ ρ−1

γ (Wi) puede expresarse de manera úni-

ca como Yi = Ai + Bi con Ai ∈ J ⊥(γ) y Bi ∈ J tan(γ) ∩ J 0(γ). Además, dos elementos
distintos de una misma clase diferirán exclusivamente en la parte tangencial. Denotemos por

ξ1, ξ2 ∈ TvH a los elementos tales que Yi = Yξi .

A la vista de la ecuación (2.6), que da la expresión de la forma simpléctica en TM,
definimos una forma simpléctica en TΓM dada por:

ωΓ
(

W1, W2
)
= ωg(ξ1, ξ2) = g

(
Y′

1, Y2
)
− g

(
Y1, Y′

2
)
. (2.16)

Para que dicha forma bilineal esté bien definida, no deberá depender de los representantes

elegidos: ni de los campos de Jacobi Yi ∈ ρ−1
γ (Wi), ni de la geodésica γ ∈ Γ. Comprobemos

que, en efecto, esto es lo que sucede.

Por una parte, la independencia de la geodésica γ, representante de la clase Γ, es conse-
cuencia directa de la ecuación (2.5) y del hecho de que dos geodésicas parametrizadas por el

arco y dirigidas al futuro pertenecientes a una misma clase Γ diferirán exclusivamente en una
traslación del parámetro.

En cuanto a la independencia de los campos de Jacobi Y1 e Y2, representantes de las

clases ρ−1
γ (W1) y ρ−1

γ (W2), respectivamente, observemos que, al ser Bi ∈ J tan(γ) ∩ J 0(γ),
éstos deberán poder expresarse como Bi(t) = biγ̇(t). En consecuencia,

ωΓ
(

W1, W2
)
= g

(
A′

1, A2 + b2γ̇
)
− g

(
A1 + b1γ̇, A′

2
)
=

= g
(

A′
1, A2

)
− g

(
A1, A′

2
)
,

donde en la segunda igualdad hemos empleado que Ai ∈ J ⊥(γ) y, por tanto, g(A′
i , γ̇) = 0.

En conclusión, la forma bilineal definida depende exclusivamente de la parte ortogonal, esto

es, depende de las clases Wi y no de los representantes Yi.

Los razonamientos precedentes garantizan que la ecuación (2.16) está bien definida y es

una forma simpléctica enM.
Por su parte, dados v ∈ H y ξ1, ξ2 ∈ TvH, se tiene(
Π∗ω

)
(ξ1, ξ2) = ωΠ(v)

(
dvΠ(ξ1), dvΠ(ξ2)

)
= ω[γv]

(
ργ(⟨Yξ1⟩), ργ(⟨Yξ2⟩)

)
= ωg(ξ1, ξ2).

En otras palabras, la forma simpléctica recién definida es la única que verifica Π∗ω = ωg |H.
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3. Estructura de contacto del espacio de rayos de luz

En este caṕıtulo construiremos el espacio N de los rayos de luz de un espaciotiempo y lo
dotaremos de una estructura de variedad diferenciable de contacto inducida por la estructura

simpléctica deM.

3.1. Estructura causal de espaciotiempos

En primer lugar trataremos brevemente las nociones de clase conforme o estructura causal

(clásica) de espaciotiempos con el objetivo de introducir algunos de los niveles de la denomi-

nada escalera de causalidad o jerarqúıa causal de espaciotiempos que nos serán de utilidad

para garantizar que N admita una estructura de variedad (Hausdorff). Seguiremos para ello
la célebre revisión (Minguzzi et al., 2008), en la que se discuten los avances más recientes

del momento en dicha materia.

Comenzamos con algunas definiciones que nos permiten relacionar métricas lorentzianas

sobre una misma variedad y trasladar esta relación a la coincidencia entre sus conos de luz.

Definición 3.1. Se dice que dos métricas lorentzianas g, g̃ sobre una misma variedad dife-
renciable M son conformes si1 g̃ = e2ug, para cierta función diferenciable u : M → R.

Evidentemente, la relación “ser conformes” es una relación de equivalencia en el conjunto

de las métricas lorentzianas sobre una misma variedad. A las clases de equivalencia bajo

esta relación las denominamos clases conformes de métricas. Denotaremos por g a la clase

conforme de g, esto es, al conjunto

g =
{

g̃ = e2ug | u : M → R diferenciable
}

.

Nótese que el carácter causal de una curva diferenciable en una variedad lorentziana (M, g)
solamente depende de la clase conforme de la métrica g.

Pues bien, se tienen los siguientes dos resultados, que muestran la importancia de estudiar

los conos luminosos para obtener propiedades conformes, esto es, dependientes exclusivamen-

te de la clase conforme de g.

Lema 3.2. Sea (V, g) un espacio vectorial pseudoeucĺıdeo (def. 1.35) y sea b una forma
bilineal simétrica en V. Entonces son equivalentes:

i) Existe c ∈ R\{0} tal que b = cg,

ii) g(v, v) = 0 ⇐⇒ b(v, v) = 0.

Lema 3.3. Dos métricas lorentzianas g, g̃ sobre una variedad diferenciable de dimensión mayor
que 2 son conformes si, y solamente si tienen los mismos vectores luminosos.

Consideramos ahora el concepto “completo” de espaciotiempo, que incluye una estructura

adicional: la orientación temporal.

Definición 3.4. Un espaciotiempo es una variedad2 lorentziana conexa (M, g) temporalmente
orientada.

1El factor 2 se suele añadir para evitar la aparición de factores 1/2 en otras expresiones.
2Asumimos siempre que los espaciotiempos son variedades de Hausdorff, lo que refleja el principio de

localidad de las teoŕıas f́ısicas (Bautista et al., 2015a).
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Nótese que, en general, M no tendrá por qué ser orientable, propiedad que es lógicamente
independiente de la orientabilidad temporal.

Definición 3.5. Se dice que dos espaciotiempos (M, g) y (M, g̃) sobre la misma variedad
son puntualmente conformes si las métricas son conformes y las orientaciones temporales

coinciden en cada punto.

Nuevamente, la relación de conformalidad puntual de espaciotiempos es una relación de

equivalencia en el conjunto de los espaciotiempos definidos sobre una misma variedad. A las

clases de equivalencia bajo esta relación las denominamos clases puntualmente conformes de

espaciotiempos.

Definición 3.6. Se dice que dos espaciotiempos (M, g) y (M̃, g̃) son conformes si existe un
difeomorfismo ϕ : M → M̃ tal que los espaciotiempos (M, g) y (M, ϕ∗ g̃) con la orientación
temporal dada por el pull-back de la orientación temporal en M̃ son puntualmente conformes.

Nótese que la conformalidad puntual de espaciotiempos definidos sobre una misma varie-

dad es un caso particular de la conformalidad de espaciotiempos, sin más que tomar ϕ = Id.
De nuevo, la relación de conformalidad es una relación de equivalencia en el conjunto de todos

los espaciotiempos, lo que motiva la siguiente definición fundamental.

Definición 3.7. Se denomina clase conforme o estructura causal (clásica) de un espaciotiem-

po (M, g) a la clase de equivalencia
[
(M, g)

]
por la relación de conformalidad.

Nótese que dos espaciotiempos sobre la misma variedad que difieran exclusivamente en

su orientación temporal son, por definición, no puntualmente conformes. Puede comprobarse

que además, podŕıan ni siquiera ser conformes (Minguzzi et al., 2008), es decir, dos espacio-

tiempos sobre la misma variedad con orientaciones temporales opuestas pueden no tener la

misma estructura causal.

Por simplicidad, trabajaremos con las clases puntualmente conformes de espaciotiempos

definidos sobre una misma variedad M. Dado un espaciotiempo (M, g) denotamos a su clase
puntualmente conforme por (M, g). Cuando, de nuevo por simplicidad de nomenclatura, nos
refiramos a un espaciotiempo por (M, g) estaremos indicando que las propiedades se verifican
para cualquier espaciotiempo de dicha clase.

Por supuesto, el carácter causal y la dirección temporal de una curva causal α en un
espaciotiempo (M, g) solo depende de la clase puntualmente conforme (M, g). Aśı, una
curva causal (resp. luminosa, temporal) dirigida al futuro (resp. pasado) en un espaciotiempo

(M, g) lo seguirá siendo en todo espaciotiempo de la clase conforme (M, g).

Sin embargo, una geodésica γ en un espaciotiempo (M, g) podŕıa dejar de serlo en otro
espaciotiempo de la misma clase conforme. En otras palabras, el carácter geodésico de una

curva diferenciable no es un invariante conforme. Se tiene, no obstante, el siguiente resultado,

que puede encontrarse en (Candela et al., 2010, pág. 10) o (Minguzzi et al., 2008):

Teorema 3.8. Dos espaciotiempos puntualmente conformes admiten las mismas geodésicas

luminosas temporalmente orientadas. En consecuencia, el carácter de geodésica luminosa

(temporalmente orientada o no) es un invariante conforme.
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Definición 3.9. Sea (M, g) un espaciotiempo y p, q ∈ M. Se definen las siguientes relaciones
de causalidad :

i) Se dice que p precede cronológicamente a q, lo que se denota p ≪ q, si existe una
curva temporal dirigida al futuro γ : [a, b] → M tal que γ(a) = p y γ(b) = q.

ii) Se dice que p precede de manera estrictamente causal a q, lo que se denota p < q, si
existe una curva causal dirigida al futuro γ : [a, b] → M tal que γ(a) = p y γ(b) = q.

Para las siguientes definiciones consideraremos que una curva cerrada es una curva dife-

renciable α : [a, b] → M (como siempre, con α̇(t) ̸= 0, ∀t) tal que α(a) = α(b). En (Minguzzi
et al., 2008) se refieren a este concepto como loop.

Definición 3.10. Se dice que un espaciotiempo (M, g) es cronológico si no admite curvas
temporales cerradas o, equivalentemente, si la relación cronológica es irreflexiva, esto es,

p ≪ q =⇒ p ̸= q.

Definición 3.11. Un espaciotiempo (M, g) se dice causal si no admite curvas causales cerra-
das o, equivalentemente, si la relación causal estricta es irreflexiva, esto es, p < q =⇒ p ̸= q.

Definición 3.12. Sea (M, g) un espaciotiempo y V ⊂ M un subconjunto abierto. Se dice

que V es causalmente convexo (en M) si toda curva causal en M con extremos en V está
enteramente contenida en V.

Definición 3.13. Un espaciotiempo (M, g) se dice fuertemente causal en p si para todo
entornoU de p existe un entorno V ⊂ U de p que es causalmente convexo. Equivalentemente,
si todo entorno U de p admite un entorno V ⊂ U de p tal que toda curva causal dirigida
al futuro y con extremos en V está enteramente contenida en U. Se dice que (M, g) es
fuertemente causal si lo es en todos los puntos de M.

Evidentemente, todo espaciotiempo causal es cronológico. Además, se comprueba de

forma sencilla que todo espaciotiempo fuertemente causal es causal. Estos son tres ejemplos

de “escalones” de la escalera de causalidad. Pasamos a definir un cuarto, el más restrictivo

de todos ellos y que culmina dicha escalera. Definimos para ello el siguiente concepto, de

suma importancia: las hipersuperficies de Cauchy. Damos aqúı una definición, de entre varias

equivalentes, que no necesita la definición previa de los conceptos de dominio de dependencia,

horizonte de Cauchy o conjunto atemporal.

Definición 3.14. Una hipersuperficie de Cauchy en un espaciotiempo (M, g) es un subcon-
junto S ⊂ M al que toda curva temporal maximal interseca una única vez.

Definición 3.15. Un espaciotiempo (M, g) se dice globalmente hiperbólico si admite una
hipersuperficie de Cauchy (diferenciable espacial3).

Existen otras definiciones alternativas del concepto de espaciotiempo globalmente hi-

perbólico. Una de ellas involucra la compacidad de las intersecciones de futuros y pasados

causales de puntos distintos. La equivalencia entre ambas definiciones la proporciona el re-

nombrado teorema de Geroch (Minguzzi et al., 2008, Teors. 3.75 y 3.78).

3Se dice que una subvariedad S de M es espacial si para cada punto p ∈ S el espacio tangente TpS es un
subespacio espacial de Tp M (def. 1.40). Si una superficie de Cauchy diferenciable es espacial, entonces toda

curva causal maximal la intersecará una única vez (Minguzzi et al., 2008, pág. 44).
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3 Estructura de contacto del espacio de rayos de luz

Puede demostrarse (Minguzzi et al., 2008, Teor. 2.14), además, que dado un espacio-

tiempo (M, g) y un entorno U de un punto p, se puede encontrar un entorno V ⊂ U que sea
globalmente hiperbólico.

Al margen de la escalera de causalidad usual, existen otros conceptos relacionados con

la estructura causal de (M, g) como la pseudoconvexidad causal o luminosa (Beem et al.,
1987), que serán de utilidad más adelante.

Definición 3.16. Un espaciotiempo (M, g) se dice causalmente pseudoconvexo (resp. lumi-
nosamente pseudoconvexo) si para todo conjunto compacto K ⊂ M existe otro compacto

K′ ⊂ M tal que toda geodésica causal (resp. luminosa) con extremos en K está ı́ntegramente
contenida en K′.

Claramente, la pseudoconvexidad causal es una condición más fuerte que la pseudoconve-

xidad luminosa. Además, se tiene que la pseudoconvexidad luminosa es un invariante conforme

(teor. 3.8). Por último, se puede comprobar que la hiperbolicidad global implica la pseudo-

convexidad causal y, de hecho, con la definición alternativa mencionada anteriormente la

deducción es inmediata. La ubicación precisa de estos conceptos en la escalera de causalidad

se encuentra actualmente en discusión. Véase, por ejemplo, (Hedicke et al., 2021).

3.2. La variedad N de los rayos de luz en M

En este apartado buscamos construir el conjunto de las geodésicas luminosas maximales

desparametrizadas de un espaciotiempo (M, g) y dotarlo de estructura de variedad diferencia-
ble. El teorema 3.8 garantiza que este conjunto será un objeto conforme, esto es, dependerá

únicamente de la clase conforme g. En cualquier caso, emplearemos una métrica auxiliar

g ∈ g, como herramienta de trabajo.

De manera análoga a como hemos procedido en el apartado 2.3, consideramos en pri-

mer lugar el conjunto N ′ de todas las geodésicas luminosas maximales en M, es decir, las
geodésicas maximales γ tales que g

(
γ̇, γ̇

)
= 0.

Introducimos en N ′ la relación de equivalencia dada por γ1 ∼ γ2 ⇐⇒ Im γ1 = Im γ2 y,

de nuevo, consideramos el conjunto cociente N = N ′/∼. Denominamos geodésicas lumino-
sas maximales desparametrizadas, o simplemente rayos de luz, a las clases de equivalencia.

Claramente, se tiene

N ∼=
{

Im γ | γ es geodésica luminosa maximal
}

. (3.1)

Nuevamente, las clases de equivalencia Γ = [γ] están dadas por la ecuación (2.7). Sin
embargo, ahora no hay geodésicas parametrizadas por el arco, de modo que no hay repre-

sentantes “privilegiadas” de las clases de equivalencia. Dicho de otro modo, al trabajar con

geodésicas temporales y tomar como representantes naturales a las geodésicas parametriza-

das por el arco estábamos fijando el parámetro a y dejando libre el parámetro b en la ecuación
(2.7); ahora nos vemos en la obligación de dejar ambos parámetros “libres”.

Consideramos, de forma análoga a lo expuesto en el apartado 2.3, el conjunto

L =
{

v ≡ (p, v) ∈ TM | g(v, v) = 0, v ̸= 0}, (3.2)

que es una hipersuperficie de TM. Este tiene dos componentes conexas, L+ y L−, formadas
por los elementos v ∈ L que apuntan al futuro o al pasado, respectivamente.
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De nuevo, los resultados de las secciones 1.5.2 y 2.2 nos permiten considerar la distribu-

ción involutiva L⊥ωg , y el espacio cociente L/L⊥. Si L⊥ es regular entonces L/L⊥ admite una

estructura de variedad diferenciable que hace a la proyección una sumersión y una única forma

simpléctica ω tal que Π∗ω = ωg |L. Además, para cada v ∈ L se tendrá un isomorfismo

dvΠ : TvL/(TvL
)⊥ −→ TΠ(v)

(
L/L⊥

)
. (3.3)

Ahora bien, al contrario de lo que suced́ıa en la sección 2.3, en la que construimos una

aplicación con la que identificar M ≡ H+/H⊥, ahora no podremos identificar N con L+/L⊥,

pues no podremos construir una aplicación análoga a la de la ecuación (2.11), al no exis-

tir las curvas luminosas parametrizadas por el arco. En esta ocasión, la identificación será

con un nuevo conjunto, denominado de geodésicas luminosas maximales escaladas. Para la

construcción de este conjunto consideramos una nueva relación de equivalencia en N ′ dada
por

γ1 ∼s γ2 ⇐⇒ ∃ b ∈ R tal que γ1(t) = γ2(t + b), ∀t, (3.4)

y definimos Ns = N ′/∼s. Denotaremos por Γs = [γ]s ∈ Ns a las clases de equivalencia.

En otras palabras, ahora dos geodésicas estarán relacionadas si una se obtiene de la otra

por una traslación de su parámetro, mientras que para la definición de N las considerábamos
relacionadas si una se obteńıa a partir de la otra por medio de cualquier reparametrización.

En particular, ahora identificamos menos geodésicas, por lo que cabe esperar que el conjunto

cociente Ns sea “más grande”. En efecto, a lo largo de la presente sección veremos que,

bajo ciertas condiciones, Ns y N son variedades diferenciables de dimensión 2n − 2 y 2n − 3,
respectivamente.

Algunos resultados de la sección 2.3 pueden trasladarse directamente para el caso de las

geodésicas luminosas. Es el caso de las siguientes proposiciones, análogas a 2.2-2.5:

Proposición 3.17. Sea v ≡ (p, v) ∈ L. Entonces χ(p,v) ∈ TvL. En otras palabras, χ|L ∈ X(L),
luego χ|L genera una distribución unidimensional en L a la que denotamos por ⟨χ|L⟩.

Proposición 3.18. Sea v ∈ L. El campo de Jacobi Y ∈ J (γv) asociado a χ(p,v) es Y = γ̇v.

Proposición 3.19. Sea ξ ∈ TvL ⊂ TvTM. Entonces, el campo de Jacobi asociado Yξ verifica

g
(
Y′

ξ(0), v
)
= 0 y la aplicación

TvL ∋ ξ 7→ Yξ ∈ J 0(γv) =
{

Y ∈ J (γv)
∣∣ g

(
Y′(0), v

)
= 0

}
(3.5)

es un isomorfismo de espacios vectoriales.

Proposición 3.20. Para cada v ≡ (p, v) ∈ L se tiene que χ(p,v) ⊥ TvL. En consecuencia, L⊥
v

está generado por χ(p,v) y, por tanto, L⊥ ≡ ⟨χ|L⟩.

Al igual que suced́ıa en la sección 2.3, de la proposición 3.20 se deduce que el espacio

cociente L/L⊥ es el espacio de las variedades integrales maximales conexas de la distribución

⟨χ|L⟩, que son las imágenes de las aplicaciones α = (γ, γ̇), donde γ es una geodésica maximal,
que estén contenidas en L. Ahora, sin embargo, no podemos considerar una aplicación análoga
a la dada por (2.11), pues en este caso no disponemos de geodésicas parametrizadas por el

arco. Aśı, dos aplicaciones α1, α2 de la forma (1.14) correspondientes a geodésicas γ1, γ2 ∈ Γ
de la misma clase de equivalencia de N tendrán imágenes distintas a no ser que γ1 y γ2 estén

relacionadas por una traslación del parámetro, esto es, γ1 ∼s γ2 (3.4).
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En esta situación se hace patente que la correspondencia análoga4 a la dada por (2.11)

deberá serlo entre Ns y L/L⊥. En efecto, la aplicación

Ψs : Ns −→ L/L⊥

Γs 7−→ Im γ̇,
(3.6)

donde γ es cualquier geodésica en Γs, es claramente una biyección. Identificamos, por tanto,

L/L⊥ = L/⟨χ|L⟩ ≡ Ns, (3.7)

y concluimos que si ⟨χ|L⟩ = L⊥ es una distribución regular, entoncesNs admite una estructura

de variedad diferenciable simpléctica de dimensión 2n− 2. Nótese además que para cada v ∈ L
se tiene que Π(v) = Im γ̇v = Ψs

(
[γv]s

)
.

Por conveniencia futura, consideraremos el conjunto de las geodésicas luminosas maxima-

les escaladas dirigidas al futuro, al que denotaremos N+
s . Por supuesto, se tiene

N+
s ≡ L+/

L⊥ ⊂ L/L⊥ ≡ Ns,

y los resultados referentes a la estructura de variedad diferenciable se trasladan de manera

inmediata a N+
s .

En cualquier caso, aún no hemos dado estructura de variedad al conjunto N de los rayos
de luz. Esto será lo que nos ocupará durante los siguientes párrafos, en los que identificaremos

N ≡ L+/⟨χ, ∆⟩, donde ∆ es el campo de Euler5.

Proposición 3.21. Sea (p, v) ∈ L. Entonces ∆(p,v) ∈ TvL. En otras palabras, ∆|L ∈ X(L).

Demostración. La curva fv : R → TM dada por fv(t) = etv está ı́ntegramente contenida en
L, para todo v ≡ (p, v) ∈ L. ■

Proposición 3.22. Los campos χ|L y ∆|L generan una distribución bidimensional involutiva
en L a la que denotamos por D = ⟨χ|L, ∆|L⟩.

Demostración. Las expresiones locales (1.12) y (3.8) del spray geodésico y el campo de

Euler nos garantizan que ∆(p,v) y χ(p,v) son linealmente independientes, ∀(p, v) ∈ L. Por su
parte, las proposiciones 2.2 y 3.21 nos aseguran que ∆|L, χ|L ∈ X(L). En consecuencia, ambos
campos definen una distribución bidimensional en L.

Sea entonces (p, v) ∈ L, con v = yi ∂
∂xi . Consideramos[

∆(p,v), χ(p,v)
]
=

[
vi ∂

∂yi , vk ∂

∂xk − Γk
rjv

rvj ∂

∂yk

]
= yi ∂

∂xi − Γk
ijy

iyj ∂

∂yk = χ(p,v) ∈ D,

con lo que D = ⟨χ|L, ∆|L⟩ es involutiva. ■

4Nótese que en este caso la correspondencia es con L/L⊥ y no con L+/L⊥. Si quisiéramos obtener una

correspondencia con L+/L⊥ debeŕıamos restringir Ns al conjunto de las geodésicas escaladas dirigidas al futuro, o

bien modificar la relación de equivalencia ∼s de modo que identificase geodésicas dadas por γ1(t) = γ2(±t+ b).
5El campo de Euler es el campo ∆ ∈ X(TM) dado para cada (p, v) ∈ TM por ∆(p,v) =

d
dt

∣∣
0(e

tv) = d0 fv
(

∂
∂t
)
,

donde fv(t) = etv, ∀t. Se verifica ḟv(s) = ∆ fv(s), esto es, las fv son las curvas integrales de ∆. Empleando las

coordenadas locales usuales en TM, en las que v = yi ∂
∂xi , la expresión local de ∆ viene dada por

∆(p,v) = yi ∂

∂yi

∣∣∣∣
(p,v)

∈ T(p,v)TM. (3.8)
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A la vista de estos resultados se tiene que (teor. 1.15) D induce una foliación en L y
podemos considerar el espacio cociente L/D = L/⟨χ|H , ∆|H⟩. Además, si la distribución D es
regular, entonces L/D admite una estructura de variedad diferenciable de dimensión 2n − 3
con respecto de la cual la proyección ΠD : L → L/D es una sumersión (teor. 1.17).

Describamos ahora las hojas (esto es, las variedades integrales maximales conexas) de

la foliación F inducida por D en L. Por comodidad, supondremos que el espaciotiempo M
es fuertemente causal (def. 3.13), condición suficiente pero no necesaria para garantizar la

regularidad de D.
Sea (p, v) ∈ L y llamemos A a la hoja de F que contiene a (p, v). Por supuesto, se

tendrá Im γ̇v, Im fv ⊂ A, al ser γ̇v y fv curvas integrales de χ y ∆ que pasan por (p, v). Las
imágenes de curvas de estos tipos son, grosso modo, el “esqueleto” de A, como se ilustra en
la figura 3.2.

Figura 1: Esquema de una hoja de la foliación F junto con algunas imágenes de curvas
integrales de χ y ∆. (Elaboración propia)

El teorema 1.15 nos garantiza, de nuevo, que cada una de las familias
{

Im γ̇v | (p, v) ∈ A
}

y
{

Im fv | (p, v) ∈ A
}
es una foliación de A de hojas unidimensionales. De hecho, para cada

(q, w) ∈ A se tiene6{
Im γ̇v | v ∈ A

}
=

{
Im γ̇v | v ∈ Im fw

}
=

{
Im γ̇ fw(t) | t ∈ R

}
,{

Im fv | v ∈ A
}
=

{
Im fv | v ∈ Im γ̇w

}
=

{
Im fγ̇w(t) | t ∈ D(γw)

}
,

(3.9)

donde D(γw) es el dominio de γw.

Aśı, empleando por ejemplo la igualdad superior, se tiene que

A =
⋃
t∈R

Im γ̇ fw(t) =
⋃
t∈R

Im γ̇etw =
⋃
t∈R

{(
γetw(s), γ̇etw(s)

) ∣∣ s ∈ D(γetw)
}
=

=
{(

γaw(s), γ̇aw(s)
) ∣∣ a ∈ R+, s ∈ D(γaw)

}
=

{(
γw(t), aγ̇w(t)

) ∣∣ a ∈ R+, t ∈ D(γw)
}

.

La condición de causalidad fuerte (def. 3.13) nos garantiza las hojas A ∈ F son efectiva-
mente subvariedades, al no permitir ni que las geodésicas causales tengan autointersecciones7

ni que existan “curvas causales casi cerradas” (Minguzzi et al., 2008, pág. 27).

A modo de comprobación, veamos que T(p,v)A ∈ ⟨χ(p,v), ∆(p,v)⟩, ∀(p, v) ∈ A. Para ello,
consideramos α : I → A tal que α(0) = (p, v), con v = yi ∂

∂xi . Esta curva estará dada por

α(t) =
(

γv
(

β(t)
)
, a(t) γ̇v

(
β(t)

))
,

6Es sencillo comprobar que las hojas A no tienen patoloǵıas como, por ejemplo, “agujeros”.
7Para esto solo es necesario requerir que M sea causal (def. 3.11).
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donde a : I → R+, β : I → D(γv) son diferenciables. Además, podemos suponer sin pérdida
de generalidad que a(0) = 1 y β(0) = 0. Se tiene entonces

α̇(t) = γ̇i(β(t)
)

β̇(t)
∂

∂xi

∣∣∣∣
α(t)

+ ȧ(t)γ̇i(β(t)
) ∂

∂yi

∣∣∣∣
α(t)

+ a(t)γ̈k(β(t)
)

β̇(t)
∂

∂yk

∣∣∣∣
α(t)

y, empleando la ecuación de las geodésicas (1.4) y las expresiones locales (1.12) y (3.8) del

spray geodésico y del campo de Euler, respectivamente, se tiene en particular,

α̇(0) = yi β̇(0)
∂

∂xi

∣∣∣∣
(p,v)

+ ȧ(0) yi ∂

∂yi

∣∣∣∣
(p,v)

− Γk
ij(p) yiyj β̇(0)

∂

∂yi

∣∣∣∣
(p,v)

=

= β̇(0) χ(p,v) + α̇(0)∆(p,v) ∈ ⟨χ(p,v), ∆(p,v)⟩,

como esperábamos, al ser A una variedad integral de D.
Ahora śı, estamos en disposición de establecer la relación entre N y L/D. Consideremos

Γ ∈ N . Si γ1 ∈ Γ, podemos considerar Aγ1 =
{(

γ1(t), aγ̇1(t)
) ∣∣ a ∈ R+, t ∈ D(γ1)

}
. Si otra

geodésica γ2 ∈ Γ puede expresarse como γ2(t) = γ1(ct + b) con c ∈ R+ y b ∈ R, se tendrá

Aγ1 = Aγ2 . Sin embargo, si γ3(t) = γ1(ct + b) con c ∈ R−, entonces será Aγ1 ̸= Aγ3 .

En otras palabras, dos geodésicas luminosas de una misma clase en N (esto es, relacio-
nadas entre śı por un cambio de parametrización general) definirán la misma hoja de F si,
y solamente si ambas tienen la misma dirección temporal, esto es, ambas están dirigidas al

futuro o al pasado. En conclusión, podemos definir la aplicación

Ψ : N −→ L+/
D

Γ 7−→ Aγ ,
(3.10)

donde γ es cualquier geodésica en Γ que esté dirigida al futuro. Evidentemente, Ψ es una
biyección, y podŕıamos haber construido una biyección análoga hacia L−/D considerando las
geodésicas dirigidas al pasado. De este modo, identificamos

L+/
D = L+/

⟨χ|L, ∆|L⟩ ≡ N , (3.11)

y deducimos que si D es regular, entonces N admite una estructura de variedad diferenciable
de dimensión 2n − 3 respecto de la cual la proyección Π : L+→ L+/D es una sumersión. Por
último, observemos que para cada v ∈ L+, Π(v) = Aγv = Ψ

(
[γv]

)
.

Como hemos mencionado anteriormente, la condición de causalidad fuerte nos permite

asegurar que las hojas de la foliación F inducida por D = ⟨χ|L, ∆|L⟩ en L son subvariedades
de L. También hemos mencionado que si D es regular, entonces N admitirá una estructura
de variedad diferenciable de dimensión 2n − 3. Pues bien, se tiene el siguiente teorema (Low,
2006, Teor. 1), que afirma que la condición de causalidad fuerte es suficiente para garantizar

la regularidad de dicha distribución.

Teorema 3.23. Sea (M, g) un espaciotiempo fuertemente causal de dimensión n. Entonces
N , el espacio de sus geodésicas luminosas desparametrizadas, hereda de TM una estructura
de variedad diferenciable de dimensión 2n − 3.

Sin embargo, la condición de causalidad fuerte no es necesaria para que N admita una

estructura de variedad diferenciable (Low, 1989): lo único que hay que exigir es que las

geodésicas luminosas no se aproximen a si mismas arbitrariamente cerca y de manera tangen-

cial. Por su parte, aun exigiendo que M sea fuertemente causal, no podemos garantizar que
N sea de Hausdorff. El siguiente teorema nos proporciona condiciones suficientes para ello.
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Teorema 3.24. Sea (M, g) fuertemente causal. Si N no es de Hausdorff, entonces M ad-

mitirá singularidades desnudas8 y, en particular, M no podrá ser globalmente hiperbólico.

Más intuitiva es la formulación contrarrećıproca, que garantiza que si M es globalmente

hiperbólico, entonces N es una variedad de Hausdorff. No obstante, de nuevo, la condición

es suficiente, pero no necesaria (Low, 2006). Se tiene, de hecho, el siguiente resultado (Low,

1990, pág. 948):

Teorema 3.25. Sea (M, g) un espaciotiempo fuertemente causal. Entonces N es una varie-
dad de Hausdorff si, y solamente si (M, g) es luminosamente pseudoconvexo.

Cabŕıa preguntarse ahora por qué se ha hablado de causalidad de espaciotiempos al des-

cribir el espacio N de geodésicas luminosas, pero no se ha hecho lo propio al describir el

espacioM de las geodésicas temporales. Por supuesto, como ya mencionamos en el aparta-

do 3.1, dos espaciotiempos puntualmente conformes tienen las mismas curvas causales (resp.

temporales, luminosas) orientadas temporalmente. Sin embargo, también mencionamos que

el carácter geodésico de una curva no es un invariante conforme salvo en el caso de las

geodésicas luminosas (teor. 3.8).

En otras palabras, N es un objeto conforme, al contrario que M. En consecuencia, no
parece esperable que al imponer condiciones sobre la clase puntualmente conforme de (M, g),
por ejemplo, al situar a M en la escalera de causalidad, se pueda obtener algún resultado sobre
la posible estructura diferenciable deM. Las condiciones suficientes para garantizar queM
sea una variedad (Hausdorff o no) debeŕıan, en principio, ser condiciones sobre la variedad M
y/o sobre la métrica g, y no solo sobre la clase conforme de (M, g).

En este sentido, en (Low, 1990, Prop. 3.2) se demuestra que la pseudoconvexidad causal

es una condición suficiente y necesaria para que la variedad de las geodésicas causales C sea
de Hausdorff (sección 4.1) y, en consecuencia, es una condición suficiente para que la variedad

de geodésicas temporalesM sea de Hausdorff.

3.3. Los espacios tangentes TΓsNs y TΓN y la forma simpléctica en Ns

En este apartado describiremos los espacios tangentes a las variedades N y Ns empleando

las identificaciones (3.7) y (3.11). Para ello, presentaremos dos proposiciones análogas a la

proposición 2.6, teniendo en cuenta que en este caso no es posible emplear la descomposición

dada por la proposición 1.59, al estar trabajando con geodésicas luminosas.

Proposición 3.26. Sea v ∈ L y ξ ∈ (TvL)⊥ = ⟨χv⟩. Entonces Yξ = aγ̇v para cierto a ∈ R

y, por tanto9, (TvL)⊥ ∼= {aγ̇v | a ∈ R} =: J T(γv).

Demostración. Sea ξ ∈ (TvL)⊥ = ⟨χv⟩. Existe entonces a ∈ R tal que ξ = aχv. La proposi-

ción 3.18 garantiza que Yχv = γ̇v, de donde se deduce el resultado. ■

Proposición 3.27. Sea v ∈ L+ y sea ξ ∈ Tv A = ⟨χv, ∆v⟩ = Dv. Entonces Yξ ∈ J tan(γv) y,
por tanto, Dv = Tv A ∼= J tan(γv).

8Véanse (Low, 1989) y (Minguzzi et al., 2008, pág. 43).
9Nótese que ahora J T(γ) ̸= J tan(γ) ∩ J 0(γ) = J tan(γ).
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Demostración. Sea ξ ∈ Dv. Existen entonces a, b ∈ R tales que ξ = aχv + b∆v. Al ser lineal

la aplicación dada por (2.4), se tendrá que Yξ = aYχv + bY∆v . Además:

La proposición 3.18 nos garantiza que Yχv = γ̇v.

De (2.1)-(2.3), (3.8) se deduce que Y∆v(0) = 0 e Y′
∆v
(0) = v. Como tγ̇v ∈ J (γv)

verifica dichas condiciones, el teorema 1.56 nos garantiza que Y∆v = tγ̇v.

En conclusión, Yξ(t) = (a + tb)γ̇v(t), luego Yξ ∈ J tan(γv), como queŕıamos demostrar. El
isomorfismo Tv A ∼= J tan(γv) es consecuencia de la igualdad de dimensiones. ■

A la vista de estos resultados deducimos que

T[γv]sNs = TΠ(v)

(
L/L⊥

)
∼= TvL/(TvL

)⊥ ∼=
J 0(γv)

J T(γv)
, v ∈ L,

T[γv]N = TΠ(v)

(
L+/

D
)
∼= TvH/Tv A ∼=

J 0(γv)

J tan(γv)
, v ∈ L+.

(3.12)

Además, con una discusión similar a la realizada en la sección 2.4, esta vez considerando

exclusivamente variaciones por geodésicas luminosas, se obtienen las siguientes expresiones

análogas a (2.15), que también pueden obtenerse directamente de las expresiones anteriores:

TΓsNs ∼=
{
⟨Y⟩T = Y + J T(γ)

∣∣∣ Y ∈ J 0(γ)
}

, γ ∈ Γs, (3.13)

TΓN ∼=
{
⟨Y⟩tan = Y + J tan(γ)

∣∣∣ Y ∈ J 0(γ)
}

, γ ∈ Γ. (3.14)

Por coherencia con la notación del caso temporal, denotaremos por ργ a los isomorfismos

ργ : J 0(γ)/J tan(γ) → TΓN y ργ : J 0(γ)/J T(γ) → TΓsNs dados por (3.12). Asimismo, denotare-

mos a los elementos de los espacios tangentes por W tan ∈ TΓN y W T ∈ TΓsNs.

Al igual que razonamos en la sección 2.5, la expresión de la forma simpléctica ωg en TM
sugiere definir para cada W T

1 , W T
2 ∈ TΓsNs

ωΓs

(
W T

1 , W T
2
)
= ωg(ξ1, ξ2) = g

(
Y′

1, Y2
)
− g

(
Y1, Y′

2
)
.

donde Yi ∈ ρ−1
γ

(
W T

i
)
para cierto γ ∈ Γs y ξi ∈ TvL es tal que Yξi = Yi ∈ J 0(γ). La com-

probación de que esta aplicación está bien definida y es una forma simpléctica en Ns (y, por

tanto, la única) que verifica Π∗ω = ωg |L es análoga a la hecha en la sección 2.5.

Nótese que, a pesar de que la variedad Ns sea un objeto conforme, la forma simpléctica ω
recién definida (al igual que la forma simpléctica ωg en TM) depende de la elección concreta
de la métrica g ∈ g y, por tanto, no es un objeto conforme.

Observemos, por último, que al ser N+
s ⊂ Ns abierto, todos los resultados obtenidos para

Ns se trasladan inmediatamente a N+
s .

3.4. La variedad N como variedad de contacto

El objetivo de este apartado será dotar a N de una estructura de contacto, empleando

para ello los resultados 1.73 y 1.74. Comprobaremos, además, que aunque la forma simpléctica

ω en N+
s depende de la elección de la métrica auxiliar g ∈ g, la estructura de contacto será

un invariante conforme.
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Para evitar ambigüedades, en el resto de la sección diferenciaremos la notación de las

proyecciones denotando Π : L+→ L+/D ≡ N y Πs : L+→ L+/L⊥ ≡ N+
s . Nótese que, análo-

gamente a lo que suced́ıa en la sección 2.4, si ξ ∈ TvL, se verifica:

dvΠs(ξ) = ργv

(
⟨Yξ⟩T), dvΠ(ξ) = ργv

(
⟨Yξ⟩tan).

Veamos entonces que la forma simpléctica ω en N+
s es exacta. Para ello definiremos

una 1-forma θ en N+
s que verifique Π∗

s θ = θg |L+ y emplearemos la proposición 1.73, que nos

garantizará que ω = −dθ. Como en la sección anterior, la expresión (2.6) nos sugiere definir
para cada elemento W T ∈ TΓsN+

s ,

θΓs

(
W T) = θg(ξ) = g

(
γ̇, Y

)
,

donde γ ∈ Γs, Y ∈ ρ−1
γ

(
W T) y ξ ∈ Tγ̇(0)L+ es tal que Y = Yξ ∈ J 0(γ). Al igual que para las

formas bilineales definidas en los espacios tangentes deM y N+
s , esta aplicación estará bien

definida si no depende del campo Y ∈ ρ−1
γ

(
W T) ni de la geodésica γ ∈ Γs. Veamos que, en

efecto, esto es lo que sucede.

La independencia de la geodésica γ ∈ Γs se deduce del hecho de que dos geodésicas en Γs
difieren exclusivamente en una traslación del parámetro y del hecho de que al ser Y ∈ J 0(γ),
entonces g

(
γ̇(t), Y(t)

)
es constante. Por su parte, la independencia de Y ∈ ρ−1

γ

(
W T) es

consecuencia inmediata de la propia definición de θ, teniendo en cuenta que las geodésicas
de Γs son luminosas.

Asimismo, se verifica Π∗
s θ = θg |L+, pues para cada v ∈ L+ y cada ξ ∈ TvL+, se tiene(

Π∗
s θ
)

v(ξ) = θΠs(v)
(
dvΠs(ξ)

)
= θ[γv]s

(
ργv(⟨Yξ⟩)

)
= θg(ξ).

En conclusión, la proposición 1.73 nos garantiza que ω = −dθ y, en particular,
(
N+

s , ω
)

es exacta. Por supuesto, la 1-forma θ (al igual que θg) dependen de la elección concreta de

la métrica auxiliar g ∈ g.

Trataremos ahora de inducir en N una estructura de contacto, haciendo uso del teorema
1.74. Para ello, definimos en primer lugar la aplicación natural10

π : N+
s −→ N

Γs 7−→ Γ,

donde Γ es el único elemento de N que, como conjunto, contiene a Γs. Por una parte,

es evidente que π es sobreyectiva. Además, para cada v ∈ L+ se tiene que π
(
Πs(v)

)
=

π
(
[γv]s

)
= [γv] = Π(v), de modo que π ◦ Πs = Π . En otras palabras, el siguiente diagrama

es conmutativo:

L+ L+/
L⊥ ≡ N+

s

L+/
D ≡ N .

Π

Πs

π

10Nótese que podŕıamos haber definido la aplicación análoga tomando como dominio al conjunto Ns.
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En consecuencia, el siguiente diagrama de diferenciales es también conmutativo:

TvL+ TΠs(v)
L+/

L⊥ ≡ T[γv]sN+
s

TΠ(v)L
+/
D ≡ T[γv]N .

dvΠ

dvΠs

d[γv ]s π

Aśı, d[γv]s π ◦ dvΠs = dvΠ, y al ser Π una sumersión, deducimos que d[γv]s π debe ser
sobreyectiva, esto es, π es una sumersión. Además, de la conmutatividad de este diagrama
se deduce también que

d[γ]s π
(
ργv(⟨Y⟩T)

)
= ργv(⟨Y⟩).

Por otra parte, si γ ∈ Γ e Y1, Y2 ∈ J 0(γ) son tales que A = Y1 − Y2 ∈ J tan(γ), en-
tonces g

(
γ̇(0), A(0)

)
= 0. En consecuencia, g

(
γ̇(0), Y(0)

)
toma el mismo valor para todo

representante Y ∈ ρ−1
γ

(
W tan). En otras palabras, para γ ∈ Γs se tiene

dΓs π
(

W T
1
)
= dΓs π

(
W T

2
)
= W tan =⇒ θΓs

(
W T

1
)
= θΓs

(
W T

2
)
. (3.15)

Supongamos ahora dos elementos distintos Γ1s, Γ2s ∈ Ns tales que π (Γ1s) = π (Γ2s), y
tomemos W T

i ∈ TΓisNs. Entonces, aunque se verifique dΓ1s π(W T
1 ) = dΓ2s π(W T

2 ), se tendrá,
en general, que θΓ1s(W T

1 ) ̸= θΓ2s(W T
2 ), lo que no nos permite definir una 1-forma en N de

forma inmediata.

Sin embargo, para cada Γ ∈ N podemos escoger una representante γ ∈ Γ y, por tanto,
un único elemento Γs ∈ Ns que nos permita definir dicha 1-forma.

Tomamos, para ello, un campo vectorial auxiliar sobre la inclusión X : S → H ⊂ TM,
cuya existencia está garantizada por ser M temporalmente orientable (teor. 1.44). Además,

supondremos, por simplicidad11, que el espaciotiempo (M, g) es globalmente hiperbólico y que
S ⊂ M es una hipersuperficie de Cauchy diferenciable y espacial cualquiera. Al ser S espacial,
toda curva causal maximal la intersecará una única vez.

Tomamos una geodésica α ∈ Γ ∈ M∪N , esto es, una geodésica causal. Existe entonces
un único t1 tal que α(t1) = p ∈ S. Ya sabemos que toda curva γ ∈ Γ puede expresarse como
γ(t) = γa,b(t) = α(at + b), para ciertos a ∈ R∗, b ∈ R. En particular, γa,b(0) = α(b) y, por
tanto, p = γa,t1(0) ∈ S, ∀a ∈ R∗.

Consideramos entonces g
(
γ̇a,t1(0), Xp

)
= ag

(
α̇(t1), Xp

)
. Al ser Xp temporal, se tiene

12

que g
(
α̇(t1), Xp

)
̸= 0. En consecuencia, existe un único a ∈ R∗ tal que g

(
γ̇a,t1(0), Xp

)
= −1.

En resumen, para cada Γ ∈ M∪N existe una única geodésica γ ∈ Γ tal que

p = γ(0) ∈ S y g
(
γ̇(0), Xp

)
= −1. (3.16)

Aśı, todo elemento Γ ∈ M∪N está canónicamente representado por una única geodésica

γ ∈ Γ: aquella que verifica (3.16). En consecuencia, podemos identificar γ ≡ Γ.

11Relajando esta hipótesis a la causalidad fuerte se podŕıa hacer un estudio análogo considerando entornos

globalmente hiperbólicos alrededor de cada punto (Minguzzi et al., 2008) y, por tanto, con superficies de

Cauchy locales.
12Utilizamos aqúı los siguientes resultados: (1a) Dos vectores x, y ∈ τp tienen la misma orientación si, y

solo si g(x, y) < 0. En consecuencia (1b), si x, y ∈ τp, entonces g(x, y) ̸= 0. (2) Si x, y ∈ Tp M son causales e
independientes, entonces g(x, y) ̸= 0 (Javaloyes V. et al., 2010).
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Nótese12 que, además, esta geodésica tiene la misma orientación temporal que la de Xp
que, sin pérdida de generalidad, podemos suponer futura.

Ahora śı, podemos definir una 1-forma θ en N dada para cada Γ ∈ N por

θΓ(W tan) = θΓs

(
W T), (3.17)

donde Γs es la geodésica luminosa escalada que contiene a la única geodésica γ ∈ Γ que
verifica (3.16), yW T ∈ TΓsNs es cualquier elemento tal que dΓs π

(
W T) = W tan. En particular,

para γ ∈ Γs, se verifica θΓs =
(
π∗θ

)
Γs
. Nótese, no obstante, que la 1-forma θ recién definida

depende del campo auxiliar X tomado para seleccionar a la representante γ ∈ Γ (3.16).

Consideremos ahora

HΓs = ker θΓs =
{

W T ∈ TΓsNs

∣∣∣ g
(
γ̇, Y

)
= 0, ∀γ ∈ Γs, Y ∈ ρ−1

γ

(
W T)}, (3.18)

que proporciona una distribución de hiperplanos H en Ns. En los siguientes párrafos deducire-

mos que, a pesar de que θ dependa de la elección de la métrica auxiliar g ∈ g, la distribución

de hiperplanos H recién obtenida depende exclusivamente de la estructura conforme g.

En primer lugar, sabemos (3.8) que dos métricas conformes g, g̃ admiten las mismas
geodésicas luminosas. Aśı, si tenemos un campo de Jacobi Y respecto de g y consideramos
una variación geodésica por geodésicas luminosas cuyo campo variacional sea Y, ésta será
también una variación geodésica por geodésicas luminosas para la métrica g̃. En consecuencia,
Y también es un campo de Jacobi respecto de g̃, de donde se concluye inmediatamente el
resultado.

De consideraciones precedentes se puede deducir sin gran dificultad que

π
(
Γ1s

)
= π

(
Γ2s

)
= Γ =⇒ dΓ1s π

(
HΓ1s

)
= dΓ2s π

(
HΓ2s

)
:= HΓ. (3.19)

El teorema 1.74 nos garantiza entonces que H es una estructura de contacto en N . De
hecho, es inmediato comprobar que HΓ = ker θΓ, esto es, la distribución de hiperplanos H
está generada por θ o, dicho de otro modo, θ es una 1-forma asociada a ésta. En consecuencia,
ni siquiera habŕıa sido necesario emplear el mencionado teorema. Nótese además que, aunque

θ dependa de la elección del campo auxiliar X, la distribución de hiperplanos H no depende
de dicha elección.

En todo caso, podemos expresar los hiperplanos de contacto como

HΓ = ker θΓ =
{

W tan ∣∣ g
(
γ̇, Y

)
= 0, ∀γ ∈ Γ, Y ∈ ρ−1

γ

(
W tan)} =

=
{

W tan ∣∣ ρ−1
γ

(
W tan) ⊆ J ⊥(γ), ∀γ ∈ Γ

}
.

(3.20)

De forma análoga al caso de la distribución de hiperplanos H en Ns, puede demostrarse

que, a pesar de que θ dependa de la métrica auxiliar g ∈ g, la estructura de contacto H
recién obtenida depende exclusivamente de la estructura conforme g. Esta propiedad puede

demostrarse de manera alternativa empleando el concepto de cielo S(p) de un punto p ∈ M.
Véase (Bautista et al., 2015a).

Nótese, además, que el teorema 1.74 nos proporcionaba las 1-formas de contacto como
−σ∗ θ̃, donde σ es una sección de π. En general, la elección de la sección σ proporcionará
diferentes formas de contacto, aunque todas ellas definan una misma estructura de contacto.

Sin embargo, en este caso todas las formas de contacto coinciden, como consecuencia de las

ecuaciones (3.15) y (3.19).
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Observemos, asimismo, que la 1-forma de contacto θ está globalmente13 definida. En
particular, el fibrado vectorial TN/H es trivial (1.20) o, equivalentemente, la estructura de

contacto H es coorientable. En consecuencia, θ ∧
(
dθ

)m
es una forma de volumen en N , de

donde se deduce que N es orientable, algo que ya sab́ıamos al ser N = ∂M (véase 4.1).

Notemos, por último, que al ser ω = −dθ y θΓs =
(
π∗θ

)
Γs
para Γs ⊂ Γ conteniendo a la

única representante γ ∈ Γ que verifica (3.16), se tiene que

ωΓs = −dθΓs = −d
(
π∗θ

)
Γs
= π∗(−dθ

)
Γs

. (3.21)

13Si hubiéramos trabajado con un espaciotiempo fuertemente causal y, por tanto, con superficies de Cauchy

locales, habŕıamos definido formas de contacto θ locales alrededor de cada punto, todas ellas asociadas a la
estructura de contacto H.
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4. Relleno simpléctico de N

En este caṕıtulo abordaremos, por fin, el objetivo central del presente trabajo: el estudio

de la relación entre la estructura simpléctica deM y la estructura de contacto de N .
Para ello, consideraremos en primer lugar un nuevo espacio, el de las geodésicas causales,

aśı como algunas propiedades que garantizan que pueda ser dotado de estructura de varie-

dad. Posteriormente, construiremos una nueva forma simpléctica enM conforme a la forma

canónica obtenida en el apartado 2.5. Seguidamente, demostraremos que ésta se extiende a

los hiperplanos de contacto de N proporcionando una 2-forma que coincide con la forma de
contacto definida por (3.17). Y por último, repasaremos algunos de los conceptos clásicos de

relleno simpléctico (fuerte/débil) y daremos uno nuevo, el de relleno simpléctico conforme,

que se ajusta a nuestros resultados.

4.1. El espacio C de las geodésicas causales

Construimos aqúı el conjunto de las geodésicas causales maximales desparametrizadas en

M, de manera análoga a la hecha en los apartados 2.3 y 3.2. Consideramos en primer lugar
el conjunto C ′ de todas las geodésicas causales maximales en M, es decir, las geodésicas
maximales γ tales que g

(
γ̇, γ̇

)
≤ 0. Introducimos en C ′ la relación de equivalencia dada por

γ1 ∼ γ2 ⇐⇒ Im γ1 = Im γ2 y consideramos el conjunto cociente C = C ′/∼. Denominamos
geodésicas causales maximales desparametrizadas a las clases de equivalencia. Claramente,

se tiene

C = M⊔N ∼=
{

Im γ | γ es geodésica causal maximal
}

. (4.1)

Al contrario de lo que suced́ıa para el espacio N de las geodésicas luminosas, que era

un objeto conforme, este nuevo espacio no lo es, pues el carácter de geodésica temporal

depende de la elección concreta de la métrica dentro de una clase conforme. De este modo,

en adelante la elección de la métrica no será meramente auxiliar, lo que se explicita al denotar

a los espaciotiempos por (M, g) en lugar de (M, g).

Se tiene el siguiente resultado que proporciona condiciones suficientes para que C admita
estructura de variedad diferenciable (Low, 1990, Prop. 2.1).

Proposición 4.1. Sea (M, g) un espaciotiempo fuertemente causal. Entonces C admite una
estructura natural de variedad diferenciable con borde ∂C = N e interior int C = M.

Al igual que suced́ıa en el apartado 3.2, la condición de causalidad fuerte no es necesaria

para que C admita una estructura de variedad diferenciable y no es suficiente para garantizar
que dicha estructura sea de Hausdorff. Nótese, además, que las condiciones de Hausdorff de

M y N son independientes: existen espaciotiempos en los que M es de Hausdorff pero N
no lo es, y viceversa.

Se tienen, no obstante, los siguientes resultados (Low, 1990), análogos a los teoremas

3.24 y 3.25. Nótese que, en este caso, la métrica no es meramente auxiliar.

Teorema 4.2. Sea (M, g) fuertemente causal. Si C no es de Hausdorff, entonces M admite
singularidades desnudas y, en particular, M no es globalmente hiperbólico.

En consecuencia, la hiperbolicidad global vuelve a ser condición suficiente para que C sea
de Hausdorff. Sin embargo, esta condición es, de nuevo, no necesaria.

Teorema 4.3. Sea (M, g) un espaciotiempo fuertemente causal. Entonces C es una variedad
de Hausdorff si, y solamente si (M, g) es causalmente pseudoconvexo.
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4.2. Una nueva 2-forma simpléctica enM

De nuevo11, por simplicidad, supondremos que el espaciotiempo (M, g) es globalmente
hiperbólico y que S ⊂ M es una hipersuperficie de Cauchy diferenciable y espacial cualquiera.

En el apartado 2.5 construimos la forma simpléctica natural ω enM (2.16). Para ello,

tomamos una descripción del espacio tangente TΓM ∼= J ⊥(γ), donde γ ∈ Γ era cualquier
geodésica parametrizada por el arco y dirigida al futuro (2.15). Sin embargo, la elección de

γ ∈ Γ podŕıa haberse hecho de distinta forma, lo que podŕıa proporcionar nuevas formas en
M empleando la misma expresión (2.16). Pues bien, en este apartado construiremos una

nueva forma ω̃ enM conforme1 a ω que, como veremos posteriormente, es compatible con
la estructura de contacto de N .
Recordemos (2.14) que para cada par de elementos γ, α ∈ Γ con γ(t) = α(at+ t1), exist́ıa

un isomorfismo canónico
Θα→γ : J 0(α) → J 0(γ)

Yα 7−→ Yγ ,

donde Yγ(t) = Yα(at + t1). Veamos que, además, Θ = Θα→γ verifica Θ
(
J ⊥(α)

)
= J ⊥(γ).

En efecto, sea Yα ∈ J ⊥(α). Consideramos Θ
(
Yα

)
∈ J 0(γ). Se tiene entonces

g
(
Θ(Yα), γ̇

)
= g

(
Yγ(t), γ̇(t)

)
= a g

(
Yα(at + t1), α̇(at + t1)

)
= 0,

y de la inyectividad de Θ se deduce la igualdad buscada.

Por su parte, la ecuación (2.13) proporcionaba isomorfismos ργ : J ⊥(γ) → TΓM, y
ρα : J ⊥(α) → TΓM. En conclusión, se tiene el siguiente diagrama de isomorfismos:

J ⊥(α) J ⊥(γ)

TΓM,
ρα

Θ

ργ

que nos permite seguir identificando TΓM ∼= J ⊥(γ) ∼= J ⊥(α). Además, el isomorfismo ργ

puede obtenerse también de la manera alternativa expuesta tras la ecuación (2.13).

En adelante, reservaremos la notación γ para la única representante de Γ ∈ C dada por la
ecuación (3.16). Con ella, podemos definir una nueva 2-forma2,3 ω̃ en M, dada para cada
W1, W1 ∈ TγM por

ω̃γ

(
W1, W2

)
= g

(
Y′

1, Y2
)
− g

(
Y1, Y′

2
)
, (4.2)

donde Yi ∈ ρ−1
γ (Wi) ⊂ J 0(γ). La demostración de la independencia de los representantes es

análoga a la de la sección 2.5. En ocasiones, denotaremos a esta forma por ω̃M.

Veamos que esta nueva forma es conforme a la forma simpléctica natural ω, esto es, que
existe µ : M → R+ diferenciable tal que ω = µω̃. Para ello, denotamos por γ a la represen-
tante canónica de Γ dada por (3.16) y por α a la única representante de Γ parametrizada por
el arco y dirigida al futuro tal que α(0) = γ(0).

1Análogamente a lo definido para métricas, se dice que dos formas ω, ω̃ enM son conformes si ω̃ = µω,
para cierta función diferenciable µ : M → R+. Nótese que, aunque ω sea una forma simpléctica, ω̃ no tendrá
por qué serlo, ya que es posible que no sea cerrada.
2Aunque la expresión sea la misma que (2.16), ahora, al tomar una representante dada por una parametri-

zación distinta, esta forma no necesariamente coincidirá con aquella.
3Nótese que, de haber trabajado con un espaciotiempo fuertemente causal, la definición de ω̃ sólo podŕıa

hacerse localmente.
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4 Relleno simpléctico de N

Se podrá expresar α(t) = γ(at) para cierto a ∈ R+. En consecuencia, se tendrá

−1 = g
(
α̇(t), α̇(t)

)
= a2 g

(
γ̇(t), γ̇(t)

)
=⇒ a =

√
−1

g(γ̇, γ̇)
:= |γ̇|−1 .

Sean ahora Yi ∈ ρ−1
γ (Wi) ⊂ J 0(γ). Los elementos Zi := Θγ→α(Yi) ∈ J 0(α), que están

dados por Zi(t) = Yi(at) (2.14), verifican Zi ∈ ρ−1
α (Wi). Por tanto, podemos expresar

ω
(

W1, W2
)
= g

(
Z′

1, Z2
)
− g

(
Z1, Z′

2
)
= g

(
aY′

1, Y2
)
− g

(
Y1, aY′

2
)
= a ω̃

(
W1, W2

)
.

En consecuencia, se verifica ω = aω̃, esto es, las formas simplécticas ω y ω̃ son con-
formes, con factor4 conforme µ : M → R+ dado por µ(γ) = aγ = |γ̇|−1. El hecho de que

esta aplicación sea diferenciable no es en absoluto inmediato. Sin embargo, esto se puede

demostrar estudiando las parametrizaciones ψS de M construidas al final del apartado 2.3.

En efecto, dada una hipersuperficie local de Cauchy S, se tiene que la aplicación

hS : VS → R

v 7→ g(v, v)−1

es diferenciable. En consecuencia, la aplicación hS ◦ ψ−1
S : MS → R es también diferenciable.

Notamos, por último, que hS ◦ ψ−1
S = µ|MS

, de donde concluimos la diferenciabilidad de µ.

4.3. M como relleno simpléctico de N

La ecuación (4.2) permite extender ω̃ a los hiperplanos de contacto HΓ ≡ Hγ (3.20) de

N . En efecto si W tan
1 , W tan

2 ∈ Hγ veamos que

ω̃γ

(
W tan

1 , W tan
2

)
= g

(
Y′

1, Y2
)
− g

(
Y1, Y′

2
)

(4.3)

es independiente de los representantes Yi ∈ ρ−1
γ

(
W tan

i

)
. Supongamos que Yi, Ỹi ∈ ρ−1

γ

(
W tan

i

)
.

Podrá expresarse entonces Yi = Ỹi + Ai, donde Ai ∈ J tan(γ). De este modo, se puede ex-
presar Ai(t) = (ai + bit)γ̇(t) y se tiene

g
(
Y′

1, Y2
)
− g

(
Y1, Y′

2
)
= g

(
Ỹ′

1 + A′
1, Ỹ2 + A2

)
− g

(
Ỹ1 + A1, Ỹ′

2 + A′
2
)
=

= g
(
Ỹ′

1, Ỹ2
)
− g

(
Ỹ1, Ỹ′

2
)
,

donde en la segunda igualdad hemos utilizado que g
(
Ỹ′

i , Aj
)
= 0, al ser Ỹi ∈ J 0(γ), que

g
(
Ỹi, A′

j
)
= 0, al ser Ỹi ∈ J ⊥(γ), y que g

(
A′

i, Aj
)
= 0, al ser γ una geodésica luminosa.

En los siguientes párrafos construiremos una extensión de ω̃ a todo el espacio tangente
TγN . Para ello, consideremos un campo vectorial X ∈ X(C). Su flujo ϕX está definido, en
su dominio, por ϕX (γ, s) = Γs, donde s 7→ Γs es la curva integral maximal de X tal que
Γ0 = Γ ≡ γ. Los teoremas de diferenciabilidad del flujo (Lafuente, 2013) nos garantizan que
el dominio D(ϕX ) es abierto y que en él el flujo es una aplicación diferenciable.

El flujo da lugar a una variación geodésica xγ(t, s) = Γs(t) ≡ γs(t), donde γs ∈ Γs es la

única geodésica que verifica (3.16). Aśı, podemos considerar su campo variacional

Yγ =
∂xγ

∂s

∣∣∣∣
s=0

∈ J (γ) (4.4)

que, por construcción, verifica Yγ ∈ ρ−1
γ (Xγ).

4Nótese, de nuevo, que de haber trabajado con un espaciotiempo fuertemente causal, µ estaŕıa definida
sólo localmente. Nótese, además, que el valor de µ depende de la elección del campo auxiliar X (3.16).
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4 Relleno simpléctico de N

Hasta ahora hemos exigido, por comodidad, que el espaciotiempo fuese globalmente hi-

perbólico. Sin embargo, relajando dicha hipótesis a la causalidad fuerte del espaciotiempo se

obtienen resultados análogos, trabajando con superficies de Cauchy locales. De este modo,

se obtendrán 1-formas de contacto θ, aplicaciones µ y 2-formas ω̃ locales.

Dicho esto, enunciamos el siguiente resultado en el caso fuertemente causal:

Teorema 4.4. Sea (M, g) un espaciotiempo fuertemente causal. Para cada γ0 ≡ Γ0 ∈ N
existe un entorno U de Γ0 en C en el que µ (y, por tanto, ω̃) está definida, tal que para todo
par de campos diferenciables X ,Y ∈ X(U), se tiene que la aplicación f : U → R dada por

f (γ) = ω̃
(
Xγ, Yγ

)
= g

(
Y′

γ, Ŷγ

)
− g

(
Yγ, Ŷ′

γ

)
, (4.5)

donde Yγ, Ŷγ están construidos con el procedimiento anterior, es diferenciable.

Demostración. De la diferenciabilidad del flujo se deduce que la aplicación (4.4) proporciona

aplicaciones diferenciables

γ 7→ Yγ(0) ∈ TM, y γ 7→ Y′
γ(0) ∈ TM,

y análogamente para Ŷ. ■

Nótese, en primer lugar, que la aplicación (4.5), al igual que µ, depende del campo vectorial
auxiliar X tomado para escoger la geodésica γ ∈ Γ (3.16).

Nótese además que, si hubiésemos exigido en el teorema 4.4 que el espaciotiempo fuese

globalmente hiperbólico, entonces tanto µ como ω̃ estaŕıan globalmente definidas y tendŕıamos
el siguiente corolario:

Corolario 4.4.1. Sea (M, g) un espaciotiempo globalmente hiperbólico. Para todo par de
campos diferenciables X ,Y ∈ X(C), se tiene que la aplicación (4.5), definida en C, es dife-
renciable.

Por otra parte, observemos que aunque para definir la aplicación (4.5) hayamos necesitado

considerar campos diferenciables X ,Y ∈ X(U), es inmmediato comprobar que, en cada punto
γ ∈ U, la definición es independiente de las extensiones X e Y de W tan

1 = Xγ y W tan
2 = Yγ.

En consecuencia, para cada γ ∈ C tenemos una forma bilineal ω̃γ. Al ser (4.5) diferencia-

ble para cualesquiera campos diferenciables X ,Y ∈ X(U), deducimos5 que ω̃ es un campo
tensorial en U que, por supuesto, es antisimétrico. Estudiemos ahora la relación entre estas
nuevas formas y la estructura de contacto de N .
Tomemos, para γ ∈ U ∩N , dos vectores W tan

1 , W tan
2 ∈ TγN . Denotemos γ ∈ Γs ∈ N+

s .

En particular, se tiene π(Γs) = Γ ≡ γ. Tomemos los campos de Jacobi Yi ∈ ρ−1
γ (W tan

i ) dados
por el procedimiento anterior (4.4) y denotemos W T

i = ργ(⟨Yi⟩T), de donde deducimos que
dΓs π(W T

i ) = W tan
i . Se tiene entonces (3.21):

ω̃γ(W tan
1 , W tan

2 ) = g
(
Y′

1, Y2
)
− g

(
Y1, Y′

2
)
= ωΓs

(
W T

1 , W T
2
)
=

(
−dθ

)
γ

(
W tan

1 , W tan
2

)
.

De la arbitrariedad de γ ∈ U ∩N y de W tan
1 , W tan

2 ∈ TγN se deduce que

ω̃|U∩N = −dθ. (4.6)

5Lema: sea ω̃ : M → I0
2 (M) (véase la notación de 1.27) tal que ω̃p ∈ I0

2 (Tp M), ∀p y tal que para todo
par de campos X, Y ∈ X(M) la aplicación p → ω̃p(Xp, Yp) es diferenciable. Entonces ω̃ es un campo tensorial.
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4 Relleno simpléctico de N

En resumen hemos definido, en un entorno U de cada geodésica γ ∈ C, una 2-forma ω̃
que, en U ∩M es conforme a la forma simpléctica natural ω, y en U ∩N coincide, salvo el
signo, con la diferencial exterior de la forma de contacto global encontrada en la sección 3.

4.4. Rellenos simplécticos

En esta sección se recopilan los conceptos elementales sobre rellenos simplécticos siguien-

do, fundamentalmente, los textos (Eliashberg, 1991), (McDuff, 1991).

Consideremos en primer lugar (N, H) una variedad de contacto que, por simplicidad,
asumiremos coorientable (véase el apartado 1.6). Sea α una forma de contacto asociada a H
que, por tanto, puede definirse globalmente. Cualquier otra forma de contacto α̃ asociada a
H estará dada por α̃ = f α para cierta función diferenciable f que no se anule.

En consecuencia, (dα̃)|H = f (dα)|H. Decimos entonces que (dα̃)|H y (dα)|H están en la
misma clase conforme simpléctica. En otras palabras, la clase conforme simpléctica de (dα)|H
depende únicamente de H, por lo que la denotamos CS(H). Nótese que, si N es conexa,

CS(H) = CS+(α) ⊔ CS−(α),

donde CS±(α) =
{

f (dα)|H | ± f > 0
}
son las clases conformes simplécticas orientadas de H.

Al ser H coorientable, sabemos que N es orientable y una orientación suya estará dada
por la elección de una clase conforme simpléctica orientada de H. Sin pérdida de generalidad,
denotaremos por CS+(H) a la clase escogida.

Definición 4.5. Se dice que una variedad simpléctica compacta (M, ω) es un relleno simplécti-
co (fuerte) de una variedad de contacto (N, H) si N = ∂M y existe una forma de contacto
α en N tal que ω|N = dα. Se dice que (N, H) es simplécticamente rellenable si admite un
relleno simpléctico (fuerte).

Definición 4.6. Sea (M, ω) una variedad simpléctica compacta y sea N una componente6

de ∂M dotada de una estructura de contacto coorientable H = ker α. Escogemos la clase
conforme simpléctica orientada CS+(H) que induzca en N la misma orientación que ω. Se
dice entonces que ω domina a H si para cada x ∈ N, la restricción ω|Hx está en CS+(H).
Se dice que N es de tipo contacto si admite una estructura de contacto dominada por ω.

En un principio se pensaba que una noción de relleno simpléctico más débil que el de

la definición 4.5 pod́ıa hacerse definiendo un “relleno simpléctico débil” de una variedad de

contacto (N, H) como una variedad simpléctica compacta (M, ω) tal que N = ∂M es de tipo
contacto. Cuando la dimensión de M es 4, este nuevo concepto es efectivamente más débil
que el anterior. Sin embargo, para dimensiones superiores, ambos conceptos son equivalentes,

como muestra el siguiente teorema (McDuff, 1991, Lema 2.1):

Teorema 4.7. Sea (M, ω) una variedad simpléctica compacta con dim M ≥ 6. Una compo-
nente N del borde de M es de tipo contacto si, y solo si existe una forma de contacto α en
N tal que ω|N = dα. En tal caso, decimos que N es una componente convexa de ∂M.

Investigaciones más recientes (Massot et al., 2013, pág. 293) han aportado nuevas defini-

ciones de relleno simpléctico débil que para variedades de dimensión 6 o superior proporciona
un concepto estrictamente más débil que el de relleno simpléctico fuerte y para variedades

de dimensión 4 se reduce al concepto de relleno simpléctico débil definido a partir de la
dominación de una estructura de contacto.

6Esto es, N es unión de componentes conexas de ∂M.

56



4 Relleno simpléctico de N

4.5. Un nuevo concepto de relleno simpléctico

Siguiendo el resultado del teorema 4.4, se propone la siguiente definición:

Definición 4.8. Decimos que una variedad simpléctica (M, ω) es un relleno simpléctico con-
forme de una variedad de contacto (N, H) si se verifican las siguientes condiciones

i) N = ∂M,

ii) Para cada p ∈ N existe un entorno U de p en M ∪ N y una función diferenciable
µ : U ∩ M → R+ tal que µω se extiende diferenciablemente a U, y

iii) La extensión coincide en U ∩ N con la diferencial exterior de una forma de contacto.

Esta definición se puede escribir de forma equivalente como:

Definición 4.9 (Reformulación def. 4.8). Decimos que una variedad simpléctica (M, ω) es
un relleno simpléctico conforme de una variedad de contacto (N, H) si N = ∂M y para cada
p ∈ N existe un entorno U de p en M ∪ N, una función diferenciable µ : U ∩ M → R+

y una 1-forma de contacto θ en U ∩ N tales que para cualesquiera campos diferenciables
X, Y ∈ X(U) se tiene que la aplicación f : U → R dada por

f (q) =

{
µ(q)ωq(Xq, Yq), si q ∈ U ∩ M,
(dθ)q

(
Xq, Yq

)
, si q ∈ U ∩ N,

es diferenciable.

En conclusión, con esta nueva nomenclatura, los resultados de la sección 4.3 se resumen

en el siguiente teorema:

Teorema 4.10. Sea (M, g) un espaciotiempo fuertemente causal. Entonces (M, ω) es un
relleno simpléctico conforme de (N , H).

Recuérdese que, si exigiésemos que el espaciotiempo fuese globalmente hiperbólico, en-

tonces tanto la aplicación µ como la 1-forma de contacto θ estaŕıan globalmente definidas.

57



5 Conclusiones

5. Conclusiones

El apartado 4.3 culmina con los dos resultados centrales del presente trabajo: el teorema

4.4, que afirma que las 2-formas locales ω̃ en M, conformes a la forma simpléctica ω, se
extienden localmente a N , y los comentarios posteriores junto con la ecuación (4.6), que
garantizan que la extensión coincide en N , salvo signo, con la diferencial exterior de la forma
de contacto dada en la sección 3.

Las secciones siguientes revisan el concepto de relleno simpléctico en la literatura e intro-

ducen un concepto ligeramente distinto, el de relleno simpléctico conforme que, hasta donde

el autor tiene conocimiento, no se encuentra en la literatura. Éste permite reenunciar los

resultados del apartado 4.3 de manera compacta, obteniendo el teorema 4.10, un resultado

que, de nuevo de acuerdo con el conocimiento actual del autor, tampoco se encuentra en la

literatura.

En futuros trabajos se podŕıa abordar diversas materias relacionadas con estos resultados,

como por ejemplo:

i) Dar una interpretación f́ısica a la forma simpléctica ω, a la 2-forma ω̃ y a la estructura
de contacto H.

ii) Construir los espacios de geodésicasM, N y C, aśı como sus estructuras adicionales,
para el caso de modelos de espaciotiempos concretos empleados en Relatividad General

Matemática. De especial interés podŕıan ser el espacio de Minkowski, el de Sitter y

el anti-de Sitter, que proporcionan modelos de espaciotiempo de curvatura constante

cero, positiva y negativa, respectivamente.

iii) Estudiar la relación entre el concepto de relleno simpléctico conforme y los distintos
tipos de relleno simpléctico dados en la literatura.

iv) Profundizar en el análisis de la relación entre la estructura de contacto y el cielo de un
observador (Bautista et al., 2015a).

Algunos de estos aspectos ya están siendo estudiados lo que, previsiblemente, podŕıa dar

lugar a la publicación de un art́ıculo de investigación.
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