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Resumen

En este trabajo se presenta, de forma medianamente autocontenida, un estudio sobre distintos
conjuntos de geodésicas en un espaciotiempo lorentziano (M, g) de dimensién n. Se presentan,
en primer lugar, algunos contenidos preliminares necesarios para el desarrollo posterior del trabajo.

En segundo lugar se discute, siguiendo resultados previos de otros autores, el conjunto M de las
geodésicas temporales desparametrizadas, esto es, geodésicas temporales salvo parametrizacion
afin. Bajo ciertas condiciones, se dota a dicho conjunto de estructura de variedad simpléctica
de dimension 2n — 2 y se da la expresién de la forma simpléctica natural inducida por la forma
simpléctica candnica del fibrado cotangente.

Posteriormente, también siguiendo estudios previos, se examina el conjunto N de las geodésicas
luminosas desparametrizadas y el conjunto N; de las geodésicas luminosas escaladas, esto es,
salvo traslacion del pardmetro. Bajo ciertas asunciones, se dota a ambos de estructura de variedad
diferenciable de dimensiones 2n — 3 y 2n — 2, respectivamente. Asimismo, se dota al segundo
de una estructura simpléctica que induce en el primero una estructura de contacto, de la que
se obtiene una forma de contacto y la expresién de los hiperplanos de contacto. Se demuestra,
ademds, que dicha estructura, al igual que las propia variedades N y N, depende exclusivamente
de la clase conforme de la métrica. Para desarrollar todos estos contenidos se presentan algunos
resultados previos sobre causalidad de espaciotiempos.

Finalmente, se estudia el espacio C de las geodésicas causales desparametrizadas que, bajo ciertas
hipétesis, es una variedad diferenciable con borde A e interior M. Se proporciona, localmente,
una 2-forma diferenciable en M que es conforme a la forma simpléctica natural y que se extiende
diferenciablemente a A/, también localmente, donde coincide con la diferencial exterior de una
forma de contacto. Se trata, por tanto, de una suerte de “relleno simpléctico conforme”, concepto
no encontrado en la literatura y que acunamos como novedoso.

Abstract

In this master thesis we present, in a reasonably self-contained way, a study of different sets of
geodesics in a Lorentzian spacetime (M, g) of dimension n. First, we present some preliminary
contents necessary for the further development of the work.

Secondly, following previous results from other authors, we discuss the set M of non-parametrized
timelike geodesics, that is, timelike geodesics except for affine reparametrizations. Under certain
assumptions, this set is given a 2n — 2-dimensional symplectic manifold structure and we also
give the expression of the natural symplectic form induced by the canonical symplectic form of
the cotangent bundle.

Subsequently, also following previous studies, the set A of non-parametrized lightlike geodesics
and the set N of scaled lightlike geodesics, that is, except for parameter translations, are
examined. Both are endowed, under certain conditions, with differentiable manifold structures
of dimensions 2n — 3 and 2n — 2, respectively. The latter is also endowed with a symplectic
structure which induces a contact structure in the former, from which a contact form and the
expression of the contact hyperplanes are obtained. It is also proved that this structure, as well
as the manifolds A and N; themselves, depend exclusively on the conformal class of the metric.
To develop all these contents, some previous results on spacetime causality are presented.

Finally, we study the space C of non-parametrized causal geodesics which, under certain hy-
potheses, is a differentiable manifold with boundary N and interior M. We provide, locally, a
new differentiable 2-form on M which is conformal to the natural symplectic form and which
extends differentiably to A/, locally, where it coincides with the exterior differential of the con-
tact form. It is, therefore, a kind of “conformal symplectic filling”, a concept not found in the
literature and which we coin as novel.
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Glosario de notacion

conjunto de geodésicas temporales desparametrizadas: {Im'y | v geod. temp. maximal}
conjunto de geodésicas luminosas despar. (rayos luz): {Im’y | v geod. lum. maximal}
conjunto de geodésicas luminosas escaladas

conjunto de geodésicas causales desparametrizadas: {Im'y | v geod. causal maximal}
conjunto de campos de Jacobi sobre una geodésica y (1.4.5)

conjunto de campos de Jacobi Y sobre v tales que g(Y’(0),7(0)) =0

conjunto de campos de Jacobi Y sobre  tales que Y = by para cierto b € R
conjunto de campos de Jacobi Y sobre 1y tales que g(Y(t),¥(t)) =0, Vt

conjunto de campos de Jacobi Y sobre vy tales que Y(t) = (at + b)j(t) para a,b € R
= {(YV)=Y+IT"(y) | Ye T (M}, veTl

= {(V)m =Y+ T (y) | Y€ T7)}, veT

={WMT=Y+JT(y) | YT}, v €T

elemento de Tr M

elemento de Tr N

elemento de Tr N

forma simp. candnica del fibrado cotangente; a partir del ap. 2.3, forma simp. en M
forma simpléctica en el fibrado tangente = §*w

aplicacién de Legendre

nueva 2-forma en M, conforme a w (4.3)

spray geodésico (1.60)

vectores temporales unitarios (2.8)

vectores luminosos (3.2)



Introduccion

El estudio de las geodésicas en variedades afines ha suscitado gran interés en la comuni-
dad matemidtica. La teoria de la Relatividad General y su descripcion de las trayectorias de
particulas (masivas o no) como geodésicas en un espaciotiempo lorentziano ha motivado que
su estudio en el marco de las variedades semiriemannianas sea especialmente rico.

Investigaciones de finales del siglo pasado (Low, 1989), (Low, 1990), (Beem et al., 1996)
comenzaron a considerar el conjunto de las geodésicas definidas en una variedad afin y apor-
taron condiciones suficientes para que dicho espacio admitiese una estructura de variedad
diferenciable. En otras palabras, en lugar de estudiar las propiedades de las geodésicas como
curvas, estudiaron las propiedades del conjunto formado por todas ellas.

Por supuesto, por los motivos ya mencionados, algunas de estas investigaciones prestaron
especial atencidon al caso semiriemanniano, donde ya se conocia la existencia de varios tipos
de geodésicas: las temporales, las espaciales y las luminosas. Para éstas Ultimas ya se sabia,
también, que son conformes, esto es, que métricas que difieran exclusivamente en un factor
de proporcionalidad (llamado factor conforme) tienen idénticas geodésicas luminosas.

El estudio del espacio de las geodésicas luminosas en un espaciotiempo lorentziano pro-
porciond interesantes resultados que relacionaron ciertas propiedades de dicho espacio con
la estructura causal del espaciotiempo. En particular, se demostré que la pseudoconvexidad
luminosa de un espaciotiempo es una condicidon necesaria y suficiente para que el espacio
de sus geodésicas luminosas, A/, admita estructura de variedad de Hausdorff (teor. 3.25).
Andlogo resultado se obtuvo para la pseudoconvexidad causal como condicidn necesaria y
suficiente para que el espacio de las geodésicas causales, C, admita estructura de variedad de
Hausdorff (teor. 4.3). Este dltimo resultado se traslada, por supuesto, al caso del espacio de
las geodésicas temporales, M, proporcionando una condicidn suficiente para que éste admita
una estructura de variedad de Hausdorff.

Una vez que se dispone de espacios de geodésicas que admiten estructura de variedad
(Hausdorff o no), se puede estudiar si éstos admiten alguna estructura adicional. En el caso
de las geodésicas de una variedad riemanniana o las geodésicas temporales o espaciales en una
variedad semiriemanniana se demostré (Carifiena et al., 1991) que éstos admiten estructura
de variedad simpléctica. Estudios mas recientes (Bautista et al., 2015b) proporcionaron una
construccion alternativa de dicha estructura simpléctica utilizando la reduccion simpléctica
generalizada. Esta construccién, la que seguiremos en el presente trabajo, fue estudiada para
el caso de las geodésicas temporales en el Trabajo Fin de Master (Gomez Zaragoza, 2020).

Por su parte, el ya mencionado estudio (Bautista et al., 2015b) demostré que el espacio
de geodésicas luminosas podia ser dotado de estructura de contacto inducida por la estructura
simpléctica del espacio de geodésicas luminosas escaladas. Esta construccién fue estudiada
en el Trabajo Fin de Master (Espinosa Ruiz, 2022).

En este trabajo se desarrollard la relacidén entre estas dos estructuras: la simpléctica del
espacio de geodésicas temporales, M, y la de contacto del espacio de geodésicas lumino-
sas, N. Dicha relacién se concretara la definicién local de una 2-forma diferenciable en M,
conforme a la forma simpléctica natural, y en su extensién local a N de manera que, en NV,
dicha extension coincida con la diferencial exterior de una forma de contacto. Finalmente, se
expondrdn algunos de los conceptos basicos sobre rellenos simplécticos y se dard la defini-
cién de un nuevo concepto de relleno: el de relleno simpléctico conforme, basandonos en los
resultados obtenidos para M y N



1 Conceptos previos

1. Conceptos previos

En esta seccidn se incluyen los conceptos necesarios para el desarrollo posterior del trabajo.
Se exponen todos ellos de manera lo mds breve y concisa posible, tratando de evitar las
demostraciones y remitiendo a la bibliografia correspondiente en cada caso.

A lo largo de todo el trabajo se presumirdan conocimientos basicos de topologia general y
variedades diferenciables, que pueden encontrarse en numerosas referencias, como (Warner,
1983), (Lee, 2012) o (Sanchez Caja et al., 2012). En cualquier caso, se hace necesaria la
siguiente observacién relativa a la propia definicidén de variedad diferenciable.

Las variedades diferenciables se definen como una variedad topoldgica dotada de una
estructura diferenciable. A su vez, las variedades topoldgicas se definen, en general, como
espacios topoldgicos localmente euclideos, Hausdorff (T,) y segundo axioma de numera-
bilidad (ANIl). En ocasiones se omite el requisito de ser T, o ANII, apareciendo ejemplos
“sofisticados” de variedades. Nosotros exigiremos siempre ambas propiedades, excepto cuan-
do tratemos con variedades cociente (véase la observacion previa a la definicion 1.16), en
cuyo caso omitiremos la exigencia de que sean Hausdorff.

Para trabajar con este tipo de variedades no Hausdorff se debe proceder con cautela,
pues algunos resultados que son validos para variedades Hausdorff dejan de ser ciertos, como
sucede para la existencia de particiones continuas de la unidad.

1.1. Fibrados vectoriales diferenciables. Distribuciones.

En este apartado introduciremos algunos conceptos fundamentales de las teorias de fibra-
dos vectoriales y de distribuciones. Asimismo, definiremos el concepto de foliaciéon y construi-
remos la variedad cociente por una distribucién regular. Todo ello nos servira en las secciones
2 y 3 para construir las variedades de geodésicas temporales o luminosas, respectivamente,
en un espaciotiempo lorentziano.

1.1.1. Fibrados diferenciables

Definicion 1.1. Un fibrado diferenciable es una 4-upla (M, B, p, F), donde
i) M, B, F son variedades diferenciables,
ii) 71: M — B es una sumersion sobreyectiva®,

iii) Alrededor de cada punto b € B existe un entorno abierto U C B y un difeomorfismo
Qu: 7'[*1(11) — U x F tal que el diagrama siguiente, en el que 11: U X F — U es la
proyeccién sobre la primera coordenada, es conmutativo:

7T —>LI><F
\lﬂ.’]

A cada M, = 7w 1(b) se le denomina fibra sobre b € B, y se tiene que M, = F, Vb € B. Por
ello, se suele decir que M (espacio total) es un fibrado diferenciable de B (espacio base) con

LEn realidad, esto no supone ninguna exigencia adicional, pues ambas cualidades vendrdn garantizadas por
la propiedad iii).
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fibra F. Por comodidad, en ocasiones diremos que 71: M — B es un fibrado diferenciable. Por
su parte, a @y se le suele denominar trivializacion local (de 7).

Si tenemos dos trivializaciones locales ¢y y @y con UNV # & podemos considerar la
aplicacién
puv =puo ey s (UNV) xF— (UNV) xF,
que es un difeomorfismo de la forma ¢uv (b, f) = (b, uv (b, f)). Asi, podemos definir
Suv: unv — lef(F)

dada por guv(b)(f) = @uv(b, f), Yb e UNV, f € F. Se suele denominar a dichas aplica-
ciones funciones de transicion.

Definicion 1.2. Sea (M, B, 7, F) un fibrado diferenciable. Una seccion local de 7t en un
entorno Uy, de b € B es una aplicacién diferenciable s: U, — M tal que 7mos = idy,. Una
seccion (global) de 7t es una seccién local definida en todo el conjunto B. Se denota al
conjunto de las secciones (globales) como T'(M).

1.1.2. Fibrados vectoriales diferenciables

Definicion 1.3. Sea (M, B, it, F) un fibrado y G < Homeo(F). Se dice que (M, B, t, F) tiene
una G-estructura si para cada b € B se tiene una identificacion de las fibras ¢,: F — M;, y
una trivializacién local @: 71 (U) — U x F de manera que la composicién ¢, = @y ©

FY% My l(U) 2% (by x F=F
verifica ¢, € G. A G se le denomina grupo de estructura del fibrado.

Nétese que sib € UNV C B, una posible identificacién es i, = q)‘jl‘{b - Asi, se tiene
una definicion equivalente exigiendo que ¢yv(b) € G para todo punto b € %l nv.

Definicién 1.4. Un fibrado vectorial diferenciable es un fibrado diferenciable (M, B, 7t, W) en
el que la fibra es un espacio vectorial sobre un cuerpo K, y que tiene grupo de estructura
G = GL(W). Se dice que el fibrado es de rango r = dimg (W).

En otras palabras, un fibrado vectorial diferenciable es un fibrado diferenciable en el que
las fibras son espacios vectoriales y la restriccién de las trivializaciones a cada una de ellas es
un isomorfismo de espacios vectoriales. En este trabajo consideraremos que dichos espacios
vectoriales son reales.

De forma natural, al conjunto de secciones de un fibrado vectorial se le puede dotar
de estructura de espacio vectorial y de médulo sobre C®(M). Un ejemplo fundamental es
el espacio de los campos vectoriales diferenciables en una variedad, que son justamente las
secciones del fibrado tangente.

Definicion 1.5. Sea 7t1: M — B un fibrado vectorial diferenciable y sea N C M una subva-
riedad regular (embebida) tal que para cada b € B, se tiene que N, = t~1(b) "' N es un
subespacio vectorial de My, = 7t~ 1(b). Si 7yt N — B es un fibrado vectorial diferenciable se
dice que es un subfibrado vectorial diferenciable de w: M — B.

Definicion 1.6. Dado un fibrado vectorial diferenciable (M, B, 7, W) y p € M, definimos
el subespacio vertical sobre p como V, = ker(d,m) = TyMgy(p) C TpM. La unidn disjunta
de estos espacios proporciona un subfibrado del fibrado tangente TM — M, denominado el
fibrado vertical de M:

VM= {(p,v) e TM | v € V,}.
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1.1.3. Distribuciones

El presente apartado, que serd imprescindible para realizar la definicién precisa de las
variedades de geodésicas temporales y luminosas, se ha extraido de (Lee, 2012, Cap. 19),
donde pueden encontrarse todas las demostraciones de los resultados aqui enunciados.

Definicién 1.7. Sea M una variedad diferenciable de dimensién m y sea n < m. Una distri-
bucion n-dimensional A es una asignacion p € M +— A, C T, M, donde A, es un subespacio
vectorial n-dimensional. Se dice que una distribucion es diferenciable si para cada p € M
existe un entorno U C M de p y existen n campos diferenciables Xy, ..., X, € X(M) tales
que Yy € U, se tiene que A, estd generado por {Xi(y),..., Xu(y)}.

De manera equivalente, podemos ver una distribucién diferenciable como un subfibrado
vectorial diferenciable del fibrado tangente 7r: TM — M, esto es, una subvariedad regular
A C TM de manera que A, = ' (p) NA C w~!(p) = T,M sea un subespacio vectorial y
Tat A — M vuelva a ser un fibrado vectorial diferenciable. En particular, el fibrado vertical
es también un ejemplo de distribucién diferenciable. En adelante, siempre que hablemos de
distribuciones entenderemos que éstas son diferenciables.

Se suele decir que un campo diferenciable X € X(M) estd en A si es una seccion diferen-
ciable de A, esto es, si X, € Ay, Vp € M. En tal caso, se denota X € T'(A). Por supuesto,
['(A) CT(TM) = X(M) es un subespacio vectorial.

Introducimos ahora dos conceptos sobre distribuciones diferenciables a priori muy distintos
que, como veremos a continuacion, estan intimamente ligados.

Definicion 1.8. Se dice que una distribucién A es involutiva si dados dos campos diferenciables
X,Y € T(A) se tiene que [X,Y] € T(A), esto es, si I'(A) C X(M) es un subdlgebra de Lie.

Definicion 1.9. Sea M una variedad de dimensién m y A una distribucion n-dimensional. Una
subvariedad inmersa N C M se dice integral si para cada y € N se tiene TyN = A,,. Se dice
que la distribucion es integrable si para todo punto p € M existe una variedad integral que lo
contiene.

El siguiente resultado, que relaciona los dos conceptos recién definidos, puede demostrarse
sin demasiada dificultad.

Proposicion 1.10. Toda distribucion integrable es involutiva.

Introducimos ahora un nuevo concepto, mdas restrictivo que el de integrabilidad de una
distribucién, que nos permitird enunciar uno de los teoremas centrales de este apartado.

Definicién 1.11. Un sistema local de coordenadas (p, U; ¢ = x!,...,x™) se dice que es plano
respecto a A si p(U) C R™ es un cubo y para cada p € U se tiene que Ay esta generado por
% p,...,% p Se dice que una distribucion A en M es completamente integrable si cada
punto p € M admite un sistema local de coordenadas plano respecto a A.

Por supuesto, toda distribucién completamente integrable es integrable, pues cada seccidn
del tipo x" ™! = ¢, ,1,...,x™ = ¢, para ciertas constantes ¢; € R, sera una variedad integral
de dicha distribucién. El siguiente teorema, de cardcter fundamental en el estudio de las
variedades diferenciables, nos proporciona la equivalencia entre los tres conceptos definidos
hasta el momento.
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Teorema 1.12 (Local de Frobenius). Toda distribucion involutiva es completamente integrable.

Una consecuencia del Teorema de Frobenius local es el teorema denominado de “estruc-
tura local de variedades integrales” que, grosso modo, garantiza que las variedades integrales
de una distribucién involutiva cortan a los sistemas de coordenadas planos en una unién
numerable abiertos disjuntos de secciones de dichos sistemas de coordenadas.

1.1.4. Foliaciones

Definicion 1.13. Una foliacion de M es una familia F de subvariedades n-dimensionales
conexas e inmersas en M que satisface las siguientes propiedades:

i) F es una particién disjunta de M, esto es, M = | |4cr A,

ii) Cada punto p € M admite un sistema local de coordenadas (p, U; ¢ = x!,...,x™) tal
que ¢(U) C R™ es un cubo y tal que cada variedad A € F o bien no interseca a U
o bien lo interseca en una unién numerable de secciones n-dimensionales dadas por
X"t =c,.q, ..., x™ = ¢y, para ciertos ¢j € R constantes. Se dice que dicho sistema
de coordenadas es plano respecto a F.

A las subvariedades A € F se les denomina hojas de la foliacién.

Los dos siguientes resultados nos muestran que las foliaciones estan en correspondencia
biunivoca con las distribuciones involutivas. De forma sencilla se puede demostrar el siguiente
resultado, que nos permitird asociar a cada foliacién una distribucién involutiva.

Proposicion 1.14. La coleccion de espacios tangentes a las hojas de una foliacion forma una
distribucion involutiva.

El resultado reciproco, consecuencia del Teorema de Frobenius local, es mucho mas pro-
fundo.

Teorema 1.15 (Global de Frobenius). Sea A una distribucion n-dimensional involutiva en M.
La familia Fa de las variedades integrales maximales conexas de A es una foliacion de M.

Dada una distribucién involutiva A C TM, podemos considerar la relacion de equivalencia
en M dada por
p~q <= JFE€ Fp|pqg€EF.

Podemos considerar asimismo el conjunto cociente M/~ = M/A = FA, que es un espacio
topoldgico con la topologia cociente. Se puede comprobar ademas (Palais, 1957, pag. 12)
que la proyeccién sobre el cociente ITp: M — M/A es una aplicacién abierta.

Observacion. Notese que el espacio topoldgico cociente recién definido no necesariamente
sera de Hausdorff (Ty).

En los siguientes parrafos definiremos la propiedad de regularidad de una distribucién invo-
lutiva A. Esto nos permitird dotar de una estructura de variedad diferenciable (no Hausdorff)
al espacio topoldgico M/a.

Definicion 1.16. Sea A C TM una distribucién involutiva n-dimensional. Se dice que un
sistema de coordenadas (p, U, p = Xl ., x™) es regular (respecto a A) si es plano respecto a
Ay cadahoja F € F, interseca a U en a lo sumo una seccién n-dimensional. Una hoja F € Fj
se dice regular si todo punto p € F admite un entorno coordenado regular. Andlogamente, la
distribucién A se dice regular si todas las hojas de F son regulares.
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El siguiente teorema, que culmina el presente apartado, serd de gran utilidad a la hora de
definir una estructura diferenciable en los conjuntos de geodésicas temporales y luminosas. La
demostracién, que requiere la introduccién de algunos conceptos previos, puede encontrarse
en (Palais, 1957, pags. 13-19) y en (Brickell et al., 1970, pags. 204-206).

Teorema 1.17. Sea A C TM una distribucion n-dimensional regular y sea (U; Q= xl L, x™)
un sistema de coordenadas regular respecto de A. Existe entonces una tnica parametrizacion
Py I (U) — R™" tal que

(puolla)(p) = (" (p),...,x"(p)), VpeU.

La coleccion de todos los sistemas de coordenadas (HA(U),gUu) constituye un atlas dife-
renciable de M/a que la convierte en una variedad diferenciable (no Hausdorff) de dimension
m — n. Ademadas, con dicha estructura diferenciable, la proyeccion 11 es una sumersion.

En general, dada una distribucidn regular A, siempre consideraremos que M/A esta do-
tada de la estructura diferenciable dada por el teorema anterior. Asi, diremos que ésta es la
estructura diferenciable natural de M/a.

Se comprueba de manera sencilla que, en las condiciones del teorema anterior, para cada
p € M se tiene que ker(d,I15) = T,F = A, C T,M, donde F € F es la hoja que contiene
ap, estoes, F= Hgl (ITa(p)). En consecuencia, para cada p € M se tiene el isomorfismo
candnico

deAZ TPM/TPF — THA(p) <M/A)
1.2. Conexiones afines, derivada covariante y paralelismo

En este apartado introduciremos las conexiones lineales en un fibrado vectorial diferen-
ciable, con especial interés en las conexiones afines, asi como la derivada covariante y el
transporte paralelo. Estos conceptos son esenciales para dar, en este mismo apartado, la de-
finiciéon de geodésica afin, concepto central de este trabajo. Definiremos, asimismo, el tensor
de Riemann, que necesitaremos en el apartado 1.4.5 para introducir los campos de Jacobi.

1.2.1. Conexiones lineales y conexiones afines

En algunos textos se definen las conexiones lineales como un tipo especial de distribuciones
en el fibrado tangente que son complementarias al fibrado vertical. Se comprueba que estas
distribuciones estan en correspondencia biunivoca con las aplicaciones a las que nosotros
denominamos conexiones lineales en este trabajo (def. 1.18), de modo que puede verse a
ambas definiciones como equivalentes.

En nuestro caso no serd necesario entender las conexiones lineales como distribuciones, de
modo que evitaremos hacer dicha definicion. En cualquier caso, puede consultarse (Castrillon
et al., 2010, pdgs. 47-51), donde se dan ambas definiciones y se demuestra la correspondencia
entre ellas.

Definicion 1.18. Una conexion lineal en un fibrado vectorial real diferenciable (M, B, r, W)
es una aplicacion

V:X(B) xT'(M) — T(M), V(X,s) = Vxs,
que verifica:

i) V es R-bilineal,
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ii) Vix(s) = fVxs, Vf € C*(B), X € X(B), s € (M),

iii) Vx(fs) = X(f)s+ fVxs, Vf € C°(B), X € X(B), s € I'(M), lo que se conoce como
Regla de Leibnitz.

En particular, para el fibrado tangente TM — M se tiene que I'(TM) = X(M), luego una
conexién lineal en éste es una aplicacién V: X(M)? — X(M) que verifica las condiciones de
la definicién anterior. En este caso, se dice que V es una conexion afin en M.

Se puede comprobar que una conexion afin es localizable (Lee, 2018, Prop. 4.5), esto es,
el valor de VxY en un punto p € M solo depende de Xp y de los valores que Y tome en un
entorno® de p. En consecuencia, puede considerarse la actuacién de una conexién afin sobre
campos definidos no en toda la variedad, sino en un entorno coordenado de algin punto.

Dado un entorno coordenado (p, U; X!, ,X") y denotando 9; = %, podemos considerar
V5,9; € X(U). Asf, se podrd expresar en coordenadas locales como?
S k
k=1

para ciertas aplicaciones Fi-{]. € C*®(U) a las que denominaremos simbolos de Christoffel.

Dada una conexion afin en una variedad diferenciable podemos definir dos aplicaciones de
especial relevancia que se comprueba que son campos tensoriales* sobre dicha variedad:

Definicion 1.19. Sea V una conexién afin en M. Se define la torsion de V como el campo
tensorial (1,2)
T: X(M)? — X(M), (X,Y) — T(X,Y), (1.2)
dado por
T(X,Y)=VxY—-VyX—[XY].

Asimismo, se define el tensor de Riemann como el campo tensorial (1,3)
R: X(M)® — X(M), (X,Y,Z) — Rxy(Z) = R(X,Y)Z, (1.3)

dado por
ny(Z) = vayz — VvaZ — V[X,Y]Z.

Al igual que todo campo tensorial, el valor en un punto tanto de la torsién como del
tensor de Riemann depende Unicamente de los valores de los campos correspondientes en
dicho punto (véase la observacién posterior a la def. 1.28).

El tensor de Riemann se suele denominar tensor de curvatura de la variedad afin (M, V),
al ser un caso particular® de curvatura de un fibrado diferenciable dotado de una conexidn
de Ehresmann. En nuestro caso solo trabajaremos con el tensor de Riemann asociado a la
conexion de Levi-Civita (teor. 1.45).

2De hecho, esto puede mejorarse mas aun: (VXY),, solo depende de X, y de los valores que Y tome a lo
largo de una curva ¢ con ¥(0) = py 7(0) = X,.

3En la dltima igualdad estamos empleando el convenio de sumacion de Einstein, lo que continuaremos
haciendo a lo largo del trabajo.

4Véanse la def. 1.28 y el comentario previo a la def. 1.29.

5En este caso deberfamos ver R como una 2-forma en M valuada sobre TM. Véase (Kobayashi et al.,
1963) para una discusién detallada de las nociones de conexién y curvatura en fibrados diferenciables.
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1.2.2. Derivada covariante. Geodésicas afines

Definiciéon 1.20. Sea F: M — N una aplicacién diferenciable. Un campo vectorial sobre F
es una aplicacién Y: M — TN tal que moY = F, esto es, Y(p) € Tp(,)N, Vp € M.

Dada F: M — N diferenciable, el conjunto X(F) de los campos vectoriales sobre F tiene,
de forma natural, estructura de espacio vectorial sobre R y de médulo sobre C®(M).

Observacion. E/ hecho de que V (y, por tanto, R) sea localizable, nos permite considerar
la actuacion de éstos sobre campos vectoriales sobre una aplicacion, como hacemos en el
apartado iii) del siguiente teorema o en la proposicion 1.50. De hecho, (RxyZ), solamente
depende de los valores de Xy, Y, y Z, (véase la observacion posterior a la definicion 1.28).

Consideremos una curva diferenciable : I — M y un campo vectorial X € X(vy). Para
cada t € I, podemos considerar un entorno coordenado ('y(t),ll;q) = xl,...,x") y expresar
localmente X(t) = X'(t) 9;(t), donde 9;(t) = (9; o) (t). En particular, dada una curva di-
ferenciable v: I — M, su velocidad ¥ : I — TM es un campo vectorial a lo largo de y. En
consecuencia, también podemos expresar® localmente (t) = ' (t) 9;(t).

Teorema 1.21. Sea y: I — M una curva diferenciable. Una conexion afin V en M determina
un dnico operador B: %X(y) — X(v), denominado derivada covariante a lo largo de vy, que
verifica:

i) B es R-lineal,
i) 2(fX) = f'X+fB5, VfeC®(I), X € X(v),
iii) Si'Y € X(M), entonces B(Yoy) =V,Y.

En consecuencia, empleando las propiedades de la derivada covariante y la conexién se
obtiene la expresién local

0= G (XOA0) = T+ X0 Z60) =
= d;i ()3i(t) + X' (1) V5(9) = d;i(t) 3i(t) + X' (£)7 (1) Vg, (3) =

k . .
— (B O+ T aOX 070 %,

Por simplicidad, omitiremos la referencia expresa a la variable t siempre que sea posible y
. k , ., .
denotaremos X' = % y Xk = %. Notese que, de acuerdo con la expresidon anterior, en

general Xk #£ (X')k.

Como la velocidad de una curva v es un campo vectorial a lo largo de v, podemos definir
su aceleracion como la derivada covariante de su velocidad, esto es, 4" = %’)’/. Definimos
entonces uno de los objetos centrales de este trabajo, las geodésicas, como las curvas de
aceleracién nula:

Definicion 1.22. Un campo vectorial X € X(vy) se dice paralelo (a lo largo de 7y) si %X =0.
Se dice que una curva 1y es una geodésica (afin) si %"y = 0o, equivalentemente, si su velocidad
es un campo vectorial paralelo.

dvy!

1 TOUNY S
,---,7"), entonces se verifica 7' = -

6Sig=goy=(y
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Empleando la expresidon local de los parrafos precedentes se tiene que las geodésicas
(afines) son aquellas que verifican

VT =0, VK, (1.4)

lo que se traduce en un sistema de n ecuaciones diferenciales ordinarias de segundo orden
acopladas. Los teoremas de existencia y unicidad de soluciones maximales de ecuaciones
diferenciales nos permiten obtener el siguiente resultado (Lee, 2018, Teor. 4.27):

Teorema 1.23. Sea M una variedad diferenciable dotada de una conexion afin V. Para cada
p € My cadav € T,M existe una dnica geodésica maximal vy: I — M tal que y00)=py
7(0) = v. Denotamos a dicha geodésica por vy, o0, simplemente, 7.

En adelante, consideraremos exclusivamente geodésicas no constantes, que en virtud de
este teorema verifican que §(t) # 0, Vt € I. Observemos que, con esta convencidn, la ecua-
cion (1.4) impone ciertas restricciones a las reparametrizaciones de geodésicas: si h: | — I
es un difeomorfismo y y: I — M es una geodésica, se tiene que

4 = yoh es geodésica <= h(t) =at+b, Vt € ], para ciertos a,b € R, a # 0,

esto es, solamente las reparametrizaciones afines de geodésicas son geodésicas.
1.2.3. Transporte paralelo

De manera andloga a lo obtenido anteriormente para las geodésicas, la condiciéon local de
un campo paralelo X € X(1y) es

XF4+TEX'Y =0, vk

Asi, volvemos a tener un sistema de n ecuaciones diferenciales ordinarias acopladas, en esta
ocasion de primer orden. De nuevo, los resultados del ambito de las ecuaciones diferenciales
nos garantizan la existencia y unicidad de campos paralelos a lo largo de una curva, dada una
condicion inicial (Lee, 2018, Teor. 4.32):

Proposicion 1.24. Sea v: I — M una curva diferenciable, to € I y v € Tw(to)M- Existe un
tinico campo X paralelo a lo largo de vy tal que X(ty) = v.

Definicion 1.25. Sea : I — M una curva diferenciable y a,b € 1. Se define el transporte
paralelo a lo largo de v como la aplicacién

To: T,M — T,;myM, v+~ X(b), (1.5)
donde X es el tnico campo paralelo a lo largo de v con X(a) = v.

Lema 1.26. E/ transporte paralelo a lo largo de una curva es un isomorfismo’ vectorial.

El transporte paralelo a lo largo de una curva “conecta” espacios tangentes a la variedad
en puntos distintos. Esta interpretacién es justamente la que da nombre a la conexion. Asi, el
transporte paralelo permite comparar vectores de distintos espacios y “recuperar” la nocién
de derivada covariante a partir del transporte paralelo. En efecto, dada : I —+ M curva
diferenciable y X € X(vy), para cada tg € I se tiene:

to .
D8 g T

t—to t—1o

"Mds adelante podremos asegurar que, con la conexién de Levi-Civita, el transporte paralelo es una iso-
metria. Esto serd una consecuencia inmediata de la proposicién 1.46.
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A la vista de este resultado resulta evidente la razén de que la derivada covariante se
denomine asi. Aunque no se puede calcular directamente la “tasa de variacién” infinitesimal
de un campo a lo largo de una curva, pues vectores distintos perteneceran a espacios distintos,
trasladando paralelamente uno de ellos si que podemos calcular la diferencia entre ambos.

En otro orden de cosas, de la definicion de transporte paralelo, se tiene que si X € X(7)
es paralelo, entonces T2X(a) = X(b). En particular, si 7 es una geodésica, entonces

Toi(a) = 3(b),

luego % = (, como ya sabiamos.

Observacion. Notese que para definir los conceptos relacionados con el paralelismo no hemos
necesitado introducir el concepto de métrica. Por tanto, atn no podemos hablar de distancias
ni de minimizarlas. Sin embargo, mds adelante definiremos las geodésicas métricas como
aquellas curvas diferenciables que son puntos criticos del funcional energia y veremos que,
con una eleccion adecuada de la conexion, las geodésicas métricas coinciden con las geodésicas
afines. Véase el teorema 1.53.

1.3. Tensores, campos tensoriales y formas

En este apartado introducimos de forma breve los conceptos de campo tensorial y de
forma diferenciable, asi como la diferencial exterior y sus propiedades. Todo ello serd necesario
posteriormente para la definicién de las métricas semiriemannianas, las formas simplécticas
y las formas de contacto en una variedad diferenciable. En numerosas referencias puede
encontrarse documentacion adicional sobre estos conceptos, como en (O’Neill, 1983, Cap.
2) cuya exposicion sigue este texto, o (Lee, 2012, Cap. 12).

Definicion 1.27. Un tensor de tipo (r,s) sobre un espacio vectorial V(IR) es una aplicacién
R-multilineal

A (V)Y x VP — R
Al conjunto de los tensores de tipo (r,s) sobre V, que es un espacio vectorial sobre R, se le

denota por ZI(V). Si M es una variedad diferenciable, se puede considerar el (r,s)-fibrado
tensorial como el conjunto

Zi(M) = || ZH(T,M) = {(p, Ap) | Ap € ZH(T,M) } (1.6)
peM

dotado de la proyeccion natural 7w: Z! (M) — M.
Con las técnicas usuales se comprueba que el (7, s)-fibrado tensorial sobre M tiene una es-

tructura natural de variedad diferenciable que lo convierte en un fibrado vectorial diferenciable.
Por comodidad, denotaremos A, = (p, A,) € Z;(M).

Definicién 1.28. Sea M una variedad diferenciable. Un campo tensorial de tipo (r,s) es una
aplicacién C®(M)-multilineal

A: X (M) x X(M)* — C®(M).

Se suele decir que un campo tensorial de tipo (r,0) es r-contravariante, mientras que uno de
tipo (0,s) es s-covariante.

10
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Observemos que un campo tensorial de tipo (r,s) puede verse, de forma equivalente,
como una aplicacién diferenciable

A: M — TI(M)

esto es, una seccién diferenciable del (r,s)-fibrado tensorial. La relacién entre ambas defini-
ciones es

A(Gl,...,Gr,Xl,...,Xs)(p) — Ap(91|p,...,9r|p,X1|p,...,Xs|p),
donde 6" € X*(M), X; € X(M), Vi,j, p € M.

Observacion. Esta identificacion nos garantiza que el valor de un campo tensorial en un
punto depende tinicamente de los valores de sus “entradas” en ese punto. En otras palabras,
dados gol,. ., € T;M yvi,...,vs € TyM, se tiene que

Ap(q)l,...,q)r,vl,...,vs) = A(Gl,...,Or,Xl,...,Xs)(p),
para cualesquiera extensiones 6" € X*(M) de ¢' y X; € X(M) de v;.

Asimismo, cada aplicacion C®(M)-multilineal A: X(M)* — X(M) puede identificarse con
un campo tensorial A, de tipo (1,s), dado por

A(0,X1,...,X) = 0(A(Xy,..., X))

Definicion 1.29. Sean k,I,r,s € N y V un espacio vectorial real. Se define el producto
tensorial (de tensores) como la aplicacion

®: If (V) x IL(V) = I} 1(V), (A,B) — A®B,

dada por
(A &® B)(Ql,. . .,9k+r,7)1,. . .,Z)l+s) =

1 k k+1 k
:A(9 ,...,9 ,01,...,01) B(Q + ,...,9 +r,01+1,...,01+5),

y se define el producto tensorial (de campos tensoriales), como (A ® B), = A, ® By, para
p € My A,B campos tensoriales sobre M.

Definicion 1.30. Se dice que un tensor n-covariante A es completamente antisimétrico o
alternado si su signo cambia al intercambiar cualesquiera dos de sus argumentos, esto es, si

A(vl,...,vi,...,vj,...,Un) = —A(Z)l,...,U]',...,Ui,...,Un),
0, equivalentemente, si para toda permutacion o € S,;, se tiene
A(Ve(1)s -1 Vo(n)) = signo(c) A(v1, ..., 0n).

Al conjunto de los tensores n-covariantes alternados sobre V, que es un subespacio vec-
torial de Z0(V) se le denota por A™(V).

Si M es una variedad diferenciable de dimensién m, podemos considerar el conjunto

A'(M) = | | A(T,M), (1.7)
peM

que es un subfibrado de ZY(M) denominado el fibrado exterior de orden n. Llamaremos n-
formas (diferenciables) a los n-campos tensoriales alternados, esto es, a las secciones de
A"(M). Denotaremos por Q)"(M) al conjunto de n-formas sobre M.

11
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Introducimos ahora una manera de definir tensores alternados a partir de tensores co-
variantes cualesquiera. Esto nos serd de utilidad posteriormente para definir el denominado
producto exterior de tensores o de formas.

Definicion 1.31. Se define el operador antisimetrizador o alternador como la aplicacién
Alt: TV(V) — AN(V) c T(V),
dada por
Alt(A)(vq,...,0) = % ) signo(0) A(Ve(1)r -1 V()

toEeSy

Definicion 1.32. Se define el producto exterior de tensores covariantes alternados como la

aplicacién
A ARV x AL(V) = ALV, (A,B) = AAB,
dada por
(k1)
ANB= ¥l Alt(A ® B).

Andlogamente, se define el producto exterior de k-formas como la aplicacion
A: OF (M) x (M) — O (M), (w,n) = w7,

dada por (wAn)y = wp A1y, Vp € M.

El producto exterior recién definido convierte a los espacios vectoriales,
m
AV)=PA V) v oM =pParm),
k=0

donde m = dim V = dim M, en algebras asociativas graduadas.

Enunciamos, para concluir esta seccién, el siguiente teorema de existencia y unicidad de
la diferencial exterior, de caracter fundamental en la teoria de k-formas diferenciables. Su
demostracién puede encontrarse, entre otras muchas referencias, en (Lee, 2012, pag. 365).

Teorema 1.33. Sea M una variedad diferenciable. Para cada k € IN existe un tinico operador
d: QF(M) — QM1 (M), al que se denomina diferencial exterior, que verifica:

i) d es R-lineal,

ii) Siw e QN(M), 5 € Q(M), entonces d(w A1) =dw Ay + (=1 w Ady,
i) dod =0,
iv) Si f € Q%(M) = C®(M), entonces df es la diferencial ordinaria de f.

Definicién 1.34. Se dice que una n-forma w es cerrada si dw = 0, y que es exacta si existe
a € Q" 1(M) tal que da = w.

De la propiedad iii) del teorema anterior se deduce que toda forma exacta es cerrada.
1.4. Variedades semiriemannianas
Introducimos ahora las métricas y las variedades semiriemannianas, con especial atencion

a las variedades lorentzianas. Estas serdn justamente las que describan al espaciotiempo, el
ambiente en el que consideraremos las geodésicas temporales y luminosas.

12
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1.4.1. Espacios vectoriales pseudoeuclideos. Caracter causal de vectores

Definicién 1.35. Un espacio vectorial pseudoeuclideo es un espacio vectorial real V dotado
de una forma bilineal (esto es, un tensor 2-covariante) simétrica y no degenerada g.

Se dice que dos vectores u,v € V son ortogonales si g(u,v) = 0, lo que denotamos por
u L v. Se dice que una base B = {ey,...,e,} es ortonormal si [g(e;, ej)| = d;j, Vi, j.

Siguiendo la nomenclatura de (Javaloyes V. et al., 2010), definimos el caracter causal de
vectores en un espacio vectorial pseudoeuclideo como sigue:

Definicion 1.36. Sean V un espacio vectorial pseudoeuclideo y v € V un vector distinto de
cero. Decimos que

= v es temporal si g(v,v) <0, = v es luminoso si g(v,v) =0,

= v es espacial si g(v,v) >0, = v es causal si es luminoso o temporal.

Observacion. No hay una eleccion estandarizada sobre el caracter causal del vector cero.
Nosotros diremos, de nuevo siguiendo a (Javaloyes V. et al., 2010), quev € V es

= nulo si es luminoso o cero, m no causal si es espacial o cero,

m no espacial si es causal o cero.

Proposicion 1.37. Sea (V,g) un espacio vectorial pseudoeuclideo. Entonces V' admite una
base ortonormal. Ademds, todas las bases ortonormales de V tienen el mismo niimero de
vectores temporales. Llamamos a dicho nimero el indice de g y lo denotamos por v.

En el caso en que v =0 se tiene que la métrica es definida positiva y se dice que el
espacio es euclideo. Por otra parte, cuando n =dimV > 2y v # 0 la métrica es indefinida.
En particular, cuando v = 1 se dice que el espacio es lorentziano. En lo que resta de apartado
consideraremos que V es lorentziano de dimensidon mayor o igual que 2.

Proposicion 1.38. E/ conjunto de vectores temporales (resp. luminosos, causales) tiene 2
componentes conexas. A cada una de ellas la denominamos cono temporal (resp. luminoso,
causal). Ademas se tiene

i) Dos vectores u,v estan en el mismo cono temporal si, y sélo si g(u,v) < 0,
ii) Dos vectores independientes u, v estan en el mismo cono causal si, y sélo si g(u,v) < 0,

iii) Si u,v estan en el mismo cono temporal (resp. causal), entonces también lo estan
au + bv, para a,b > 0. En particular, cada cono temporal (resp. causal) es convexo.

Definicion 1.39. Una orientacion temporal de un espacio vectorial lorentziano V es una
eleccion de uno de los conos temporales (o, equivalentemente causales o luminosos) al que
se denominard cono futuro. Al otro cono se le denominard cono pasado.

Definicion 1.40. Sea W C V un subespacio vectorial. Se dice que

= W es temporal si (W, gw) es lorentziano o, equivalentemente, si W contiene al menos
un vector temporal,

» W es espacial si (W, gw) es euclideo,

= W es luminoso si (W, gw) es degenerado.

Lema 1.41. W es temporal <= W+ es espacial.

13
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1.4.2. Meétricas semiriemannianas. Orientacion temporal de variedades lorentzianas

Definiciéon 1.42. Sea M una variedad diferenciable. Una métrica semiriemanniana en M es
un campo tensorial 2-covariante simétrico y no degenerado de indice constante, esto es, una
aplicacion C®(M)-multilineal

g: X(M)? — C®(M),

de forma que para cada p € M, la forma bilineal
8p: TyM X TyM — R, 8p(Xp, Yp) = 8(X,Y)(p)
es simétrica y no degenerada, y todas ellas tienen el mismo indice v.

Se dice que (M, g) es una variedad semiriemanniana. Cuando la métrica induce en cada
punto una forma bilineal definida positiva (v = 0) se dice que ésta es riemanniana, y cuando
dim M > 2y g define una forma bilineal de indice v = 1, se dice que es lorentziana.

Dado un entorno coordenado (p,U;x!,...,x"), para cada i,j € {1,...,n} denotamos

i U—=TR,  gii(q) = &4(3:(q),9;(q))-
Dado g € U y dados u,v € T, M, se tiene

8q(1,0) = g, (1'2i(q), v/3j(q)) = u'v/g;i(q).
Asi, la matriz §; = (gij(q))l.]. es la matriz de g; en la base (9;(q))..

Andlogamente, denotaremos (§;)~! = (gi/(q))l.]., de manera que también podemos ver
g": U — R como la aplicacién g — g (q).

Para lo que resta de apartado supondremos que M es una variedad lorentziana conexa.

Definicion 1.43. Una orientacion temporal de M es una aplicacion T que asigna a cada punto
p € M un cono temporal T, C T,M, de manera que para cada p € M exista un entorno
U C M de py un campo vectorial X € X(U) tal que X, € 15, Vg € U.

Notese que en esta definicion pueden sustituirse los conos temporales por luminosos o
causales obteniendo idéntico concepto de orientacién temporal.

Se tiene el siguiente resultado, que se demuestra haciendo uso de particiones diferenciables
de la unidad® (Javaloyes V. et al., 2010, Prop. 3.2):

Teorema 1.44. Una variedad lorentziana M admite una orientacion temporal si, y solamente si
admite un campo vectorial globalmente definido X € X(M) tal que X, es temporal, Vp € M.
En tal caso se dice que M es temporalmente orientable.

Una variedad lorentziana (conexa) temporalmente orientable admitird justamente dos
orientaciones temporales. Dada una de ellas, T, a los conos T, se les denominara conos
futuros y a los conos —1,, conos pasados. De igual modo, los elementos de un cono futuro
(resp. pasado) se dird que apuntan al futuro (resp. pasado).

Una curva diferenciable cuyos vectores tangentes sean todos temporales (resp. luminosos,
causales, espaciales) se dird que es temporal (resp. luminosa, causal, espacial). Si los vectores

8Para tener garantia de la existencia de éstas es necesario asumir que la variedad sea de Hausdorff y
paracompacta, lo cual es cierto en nuestro caso, pues las variedades (excepcién hecha de las variedades
cociente definidas en el apartado 1.1.4) las asumimos de Hausdorff y ANII. De hecho, la paracompacidad es
equivalente a la existencia en M de una métrica semiriemanniana (Marathe, 1972, Cor. 2).
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tangentes a una curva causal apuntan todos al futuro (resp. pasado) se dird que la curva
esta dirigida al futuro (resp. pasado). En general una curva diferenciable no tendra por qué
tener caracter causal bien definido, pues no todos sus vectores tangentes tendrdn que tener
el mismo caracter causal.

1.4.3. La conexion de Levi-Civita

En toda variedad semiriemanniana existe una tnica conexion que verifica dos propiedades
de la conexién euclidea®: ser libre de torsion y ser compatible con la métrica. Esto se expresa
en el siguiente resultado, cuya demostracion puede encontrarse en (Lee, 2018, Teor. 5.10).

Teorema 1.45 (Fundamental de la Geometria Semiriemanniana). Sea (M, g) una variedad
semieriemanniana. Existe una tinica conexion afin V. en M que verifica:

i) Es compatible con la métrica:

X(g(Y,2)) =g (VxY,Z)+g(Y,VxZ), VX,Y,Z e X(M),

ii) Es libre de torsién:

T(X,Y) = VxY —VyX—[X,Y] =0, VX, Y€ X(M).

Esta conexion, que se denomina conexién de Levi-Civita, estd caracterizada por la férmula
de Koszul:

28(VxY,Z) = X(g(Y,2)) = Z(8(X,Y)) + Y(g(X, Z2)) +g([X, Y], Z)+
+g([v, 2], X) —g([X, Z],Y).

Observamos en primer lugar que para una conexion libre de torsidn vy, en particular, para
la conexidon de Levi-Civita, los simbolos de Christoffel verifican l"i.‘]- = 1";‘1

Ademds, puede comprobarse que en un entorno coordenado (p, U; X, x™), los simbolos
de Christoffel pueden expresarse como

1 m(agﬂ _ 98ij , 9gi

k1
Li=38\ 557 o T 9

):U—>]R. (1.8)

En lo sucesivo consideraremos que M = (M,g,V) es una variedad semiriemanniana de
dimensién n dotada de la conexién de Levi-Civita.

Con la conexién de Levi-Civita (y, de hecho, con cualquier conexion compatible con la
métrica), la derivada temporal de la accion de la métrica sobre dos campos vectoriales sobre
una curva se comporta de manera natural satisfaciendo una suerte de “regla de Leibniz" para
el producto en la que la “derivada de un campo” es su derivada covariante. Esto se expresa en
el siguiente resultado, que se demuestra considerando las expresiones locales de los campos
y de la derivada covariante (Lee, 2018, Prop. 5.5).

Proposicion 1.46. Sea y: [ — M una curva diferenciable y sean X,Y € X(v). Para cada
t € I, se verifica

i (sx,v) =g (S 0,7 0) +(x00, 5 )

9En R” la conexién euclidea es la que, para las coordenadas usuales, verifica F;‘j =0, Vi jk.
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Corolario 1.46.1. Sea vy una geodésica. Entonces % g(,7) = 2g(%,7) =0.

En consecuencia, para una geodésica 1, se tiene que g, (7(t),7(t)) es constante en su
dominio y, por tanto, -y tiene cardcter causal bien definido. Se dird que -y es temporal (resp.
causal, luminosa, espacial) si lo es alguno de sus vectores tangentes.

En otro orden de cosas, con la conexién de Levi-Civita el tensor de Riemann R (def. 1.19)
satisface ciertas propiedades de simetria y antisimetria, ademds de una propiedad andloga a
la identidad de Jacobi, denominada identidad de Bianchi. Exponemos estas propiedades en el
siguiente resultado, cuya demostracion puede encontrarse en (Lee, 2018, Prop. 7.12), entre
otras referencias.

Proposicién 1.47. Con la conexion de Levi-Civita, el tensor de Riemann satisface las siguien-
tes propiedades, ¥X,Y,Z,W € X(M):

i) RxyZ = —RyxZ, y en particular Rxx =0,

it) §(RxyZ, W) = —g(Z, RxyW), y en particular g(RxyZ,Z) =0,

) §
iii) §(RxyZ, W) =g(RzwX,Y),
iv)

RxyZ +RzxY +RyzX =0, propiedad a la que se conoce como identidad de Bianchi.

A partir del tensor de Riemann (con la conexion de LC) se define una serie de conceptos
como la curvatura seccional, el tensor de Ricci, la curvatura de Ricci o la curvatura escalar.
En el caso de las variedades de dimension 2 (superficies diferenciables), la curvatura seccional
coincide con la ya conocida curvatura de Gauss, 1o que motiva que el tensor de Riemann sea
conocido como tensor de curvatura.

1.4.4. Variaciones de curvas

Introducimos ahora una herramienta auxiliar, las variaciones de curvas, que nos serd de
utilidad tanto para definir el siguiente concepto, los campos de Jacobi, como para dar una
relacion entre dos nociones de geodésica de distinta naturaleza, las geodésicas afines y las
geodésicas métricas. El contenido de este apartado se ha extraido de diversas fuentes, prin-
cipalmente de (O'Neill, 1983), (Janssen, 2020) y (Candela et al., 2010).

Definicion 1.48. Sea a: I — M una curva diferenciable con I = [a,b]. Una variacion de
« es una aplicacién diferenciable x: I x (—6,8) — M, para cierto § > 0, de manera que
x(t,0) = a(t), Vt € 1. Dada una variacién x de «, se definen:

» Para cada t € I, las curvas transversales como las aplicaciones x*: (—4,6) — M dadas
por x'(s) = x(t,s),

» Paracadas € (—4,0), las curvas longitudinales como las aplicaciones x°: I — M dadas
por X°(t) = x(t,s).

Una variacién x de a se dice de extremos fijos si x(a,s) = a(a), x(b,s) = a(b), Vs € (—4,9).

Definicion 1.49. El campo vectorial V sobre a dado por V(t) = g—’s‘(t,O) se denomina campo
variacional de x. Si cada una de las curvas longitudinales es una geodésica, se dice que x es
una variacion geodésica o una familia uniparamétrica de geodésicas.
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Obsérvese que V(t) es la velocidad inicial de la curva transversal xt. En particular, para
una variacién de extremos fijos se tendra que V(a) = V(b) = 0. Mas generalmente, pueden
considerarse los campos vectoriales tangentes a las curvas longitudinales o transversales

. d ox(t,s
asx(£,3) = %xt(s) o= és ) .
(£9) (£3)
. d ox(t,s)
ox(t,5) = —=x°(t) =
ey 9 iy

Estos campos son ejemplos de campos vectoriales sobre la variacion x, por lo que denotaremos
95X, 0¢x € X(x) (véase la definicidn 1.20).

A partir de la derivada covariante, definimos dos nuevos operadores 2, 2 x(x) — x(x)
dados por
DX(t,s)
dt

_ DX(t,3)
@)

DX(t,s)
f’ ds

_ DX(fs)
(£3) ds

§
Por simplicidad, denotaremos a los campos correspondientes D; X y D;X, respectivamente.

Se tiene entonces el siguiente resultado, cuya demostracion puede encontrarse en (O'Neill,
1983, Prop. 4.44), que nos sera de utilidad mas adelante para trabajar con campos de Jacobi.

Proposicion 1.50. S/ M estd dotada de la conexion de Levi-Civita, se verifica:
l) Dt asX = DS 8tx,
it) Si F € X(x), entonces D;DsF — DsDiF = R (09X, 9sx) F.

Definicion 1.51. Sea a: [a,b] — M una curva diferenciable. Se define su energia como

Ela] = % / " g (a(), (1)) .

Se puede ver entonces E como un funcional definido en cierto espacio de curvas diferencia-
bles'® w: [a,b] — M. En nuestro caso, consideraremos E como definida en el espacio X,
de las curvas diferenciables a: [a,b] — M tales que a(a) = p, a(b) =g, para dos puntos
prefijados p,q € M en una misma componente arcoconexa de M.

Definicion 1.52. Se dice que una curva a € X}, es una geodésica (métrica) si a es un

punto critico de E en X, .,.

Notemos, en primer lugar, que esta definicién no requiere que la variedad esté dotada de
una conexién afin, de modo que la definicién de geodésica métrica es, a priori, completamente
independiente de la definicidon de geodésica afin.

Si x: I x (—d,0) — M es una variacién de a, podemos definir la energia de las curvas
longitudinales de manera analoga y considerar

1 /b - . -
Ex: (_51 5) — IR/ EX(S) = E[Xs] = E/ gxs(f) (atX(t,S), atx(t/s))dt'

Pues bien, puede demostrarse que a € Xpﬁq es un punto critico de a en XP—W Si, y
solamente si E{(0) = 0, para toda variacién de extremos fijos x de a. Véanse (O'Neill, 1983,

10De hecho, no es necesario exigir diferenciabilidad en toda la curva. Véase (Candela et al., 2010). En
nuestro caso, no nos preocuparemos por esto, dado que para nosotros las geodésicas son diferenciables en
todo su dominio.
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Cap. 10) para una discusién mas detallada o (Candela et al., 2010) para un estudio en el
caso en que a las curvas no se les exige diferenciabilidad a trozos.

Concluimos este apartado con un resultado que muestra la relacién entre ambas nociones
de geodésica y la naturalidad de la conexién de Levi-Civita (Janssen, 2020, Sec. 7.6 y 8.1):

Teorema 1.53. Con la conexion de Levi-Civita, se tiene

. . Da
E(0) = 0, Vx variacion de extremos fijos de a <= d—f =0,

esto es, las geodésicas afines coinciden con las geodésicas métricas.

1.4.5. Campos de Jacobi

En este apartado, extraido principalmente de (O'Neill, 1983), se introduce el concepto de
campo de Jacobi, que serad de vital importancia para describir el espacio tangente al fibrado
tangente de una variedad. A su vez, éste serd necesario para la definicién de las variedades
de geodésicas temporales y luminosas en un espaciotiempo lorentziano.

Definicién 1.54. Sea M una variedad semiriemanniana y sea 7 una geodésica en M. Un
campo vectorial Y sobre v se dice de Jacobi si verifica la ecuacion de Jacobi:

D?Y )
Y = T Ryq(7)- (1.9)

Al ser la condicién de Jacobi lineal en Y, se tiene que el conjunto J (7y) de los campos de
Jacobi sobre una geodésica vy es un subespacio vectorial de X (7).

Como primer ejemplo de campo de Jacobi podemos considerar la velocidad ¥ € X(7y) de
7, que verifica (véase la propiedad i) de la proposicion 1.47) 4" =0 = R4(7).

De la proposicién 1.50 se deduce de manera sencilla el siguiente resultado:

Lema 1.55. E/ campo variacional de una variacion geodésica es un campo de Jacobi.

Este resultado da lugar a una interpretacion (O'Neill, 1983, pag. 216) que tiene impor-
tantes implicaciones en Relatividad General: |la desviacion geodésica. EI campo variacional
V describe grosso modo, la distancia entre dos geodésicas infinitesimalmente cercanas. De
manera analoga, su derivada covariante medira la velocidad relativa entre ambas geodésicas
y la segunda derivada covariante, la aceleracion entre éstas.

Al ser V un campo de Jacobi, se verificara % = Ryv47, luego dicha aceleracion estara
intimamente relacionada con la curvatura de la variedad a lo largo de la geodésica base.
Interpretando la ecuacién de Jacobi como una especie de Segunda Ley de Newton tenemos
que Ry47 cumple el papel de una fuerza, a la que se denomina fuerza de marea. Decimos
que esta interpretacion tiene importantes consecuencias en Relatividad General, pues permite
la descripcion de la gravedad a través de la curvatura del espaciotiempo. En este sentido, la

literatura fisica denomina a la ecuacion de Jacobi ecuacion de la desviacion geodésica.

Veamos ahora algunos resultados sobre existencia y unicidad de campos de Jacobi sobre
una geodésica.

Teorema 1.56. Sea y una geodésica con y(0) = p. Para cada v,w € T,M, existe un tinico
campo de Jacobi Y sobre «y que verifica Y(0) = v, Y'(0) = BX(0) = w.
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La demostracién de este resultado se basa en la obtencién de un sistema de ecuaciones
diferenciales de cuya solucién conocemos, por resultados conocidos, la existencia y unicidad.
Para la obtencién de dicho sistema se define una referencia movil ortonormal, esto es, una
base ortonormal en T, M que se traslada paralelamente a lo largo de -y. Posteriormente, para
cada t € I, se expresa Y (t) en dicha base y se obtienen las condiciones sobre sus coeficientes.

Corolario 1.56.1. E/ espacio vectorial J(y) de los campos de Jacobi sobre una geodésica
v: I — M es isomorfo a T,M x T,M, donde p = «y(0). En particular, se trata de un espacio
vectorial de dimension 2n.

Por otra parte, tenemos el siguiente resultado, reciproco del lema 1.55, que se demuestra
haciendo uso de la exponencial geodésica'' para definir una variacién geodésica cuyo campo
variacional es el buscado, lo que se demuestra a su vez empleando la unicidad de los campos
de Jacobi.

Proposicion 1.57. Sea y una geodésica e Y € J (). Entonces Y es el campo variacional de
una variacion geodésica (de y).

Lema 1.58. Dado Y € J (), se verifica g(Y(t),¥(t)) = at + b para ciertos a,b € R.

Demostracion. Se verifica

2 2
280, 10) = (52 0.10)) = s(Ruy 010, 50) =0, .10

donde en la dltima igualdad hemos empleado el apartado ii) de la proposicién 1.47. [ |

Proposicion 1.59. Dada una geodésica no nula*? «y, el espacio J (y) de los campos de Jacobi
sobre 7y puede expresarse como suma directa J (77) = T () & J+(vy), donde

T(y) ={Y €T(7) | Ja,b € R, Y(t) = (at +b)7(t), Vt},
TH) ={Y € T(v) [ g(Y(t),5(t)) =0, Vt}.
Demostracion. Sea Y € J% ()N J+ (). Se tiene entonces que Y (t) = (at +b)y(t) para

ciertos 4,b € R. En consecuencia, g(Y(t),7(t)) = (at +b)g(¥,7) =0, Vt, y al ser y no
nula, deberd sera = b =0, luego Y = 0.

Sea ahora Y € J(y) y sean a,b € R tales que g(Y(t),¥(t)) = at + b, Vt. Definimos los
campos Y@ (t) = (at +b) g(7,7) 1 (t) € T (y) e Y: =Y — Y € J+(9), con lo que
obtenemos la descomposicién buscada. |

1.4.6. EIl spray geodésico

La expresion local de las geodésicas (1.4) puede ser reescrita, de forma equivalente, como
un sistema de ecuaciones diferenciales de primer orden

. k k
Tr=AY
. L 1.11
{/\k = —T;AM. (L11)

11| 5 exponencial geodésica en p € M es una aplicacion exp,: U, C TyM — M, definida en el conjunto
Up = {v € TyM | 7y, esta definida en 1}, y dada por expp(v) = Ypo(1), Yo € Up.

12De acuerdo con los convenios expuestos en la definicién 1.36 v la observacién posterior, con esta nomen-
clatura hacemos referencia a que, para cada t, ¥(t) es no nulo, es decir, ni es cero ni es luminoso.
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Asociado a este sistema, en cada entorno coordenado ((p,v), u;xt, .. .,x”,yl, ... ,y”) de
TM, podemos definir un campo vectorial x € X(TM) dado por

1 k J

X(q,w):)((x,...,x”,yl,...,y”)=y o (1.12)

9
k i
—Fﬁ(q)yy’afyk

(q.w) (9.w)

Las curvas integrales a: I — TM de dicho campo serdn tales que, denotando ok = yk ow,

3 ) 2
i(t) = Xapy = aF — — T (a(t)) a'ad — (1.13)

a(t) k| ﬂ( ) k|
Asi, expresando B* = x* o, se deduce que pF =af y &F = —Tja’al. En resumen, las

coordenadas (ﬁk, ) de las curvas integrales de x verifican el sistema de ecuaciones diferen-
ciales (1.11) y, por tanto, las coordenadas B¥ verifican la ecuacién (1.4) de las geodésicas. El
razonamiento seguido se resume en el siguiente resultado (Geiges, 2008, pag. 26):

Proposicion 1.60. Sea (M, g, V) una variedad semiriemanniana. Existe entonces un tinico
campo vectorial x € X(TM) cuyas curvas integrales son las aplicaciones de la forma

w: ] —TM
t— (y(),7(t)) € T, M,

donde «y: I — M es una geodésica. En general, por comodidad denotaremos o = y. Deno-
minamos a x el spray geodésico de M.

(1.14)

Observacién. No se deben confundir las curvas integrales de x con las variedades integrales
de la distribucion unidimensional (x) generada por x en TM. Por supuesto, la imagen de
una curva de la forma (1.14) serd una variedad integral de (x). Reciprocamente, todas'3
las variedades integrales maximales conexas de (x) son imagen de alguna curva de la forma
(1.14). Denotemos por T a una de estas variedades integrales maximales conexas y tomemos
v = (p,v) €T. Entonces T =Im+,. Pero también'* se tiene T = Im+, donde vy es una
reparametrizacion de 7y, por traslacién del parametro.

1.5. Geometria simpléctica

La geometria simpléctica cubre un dmbito muy extenso de la geometria diferencial que
guarda gran relacién con la mecanica cldsica y, mds especificamente, con la mecanica analiti-
ca. En este trabajo no necesitaremos profundizar excesivamente en esta teoria, de modo
que introduciremos los conceptos necesarios de manera breve y concisa. Pueden consultarse
(Cannas da Silva, 2001), que realiza un estudio detallado, o (Arnold, 1997), que ofrece una
vision mds amplia de la relacién de la geometria simpléctica con la Fisica.

13Todo punto (p,v) € TM esta en una (tnica) variedad integral maximal conexa de (x). Ademds, por todo
punto (p,v) pasa una curva integral de x de la forma (1.14) (por ejemplo, tomando 7y = V(p,0))- Como dos
curvas integrales maximales o bien tienen igual imagen o bien no se cortan, se deduce el resultado.

14Nétese que aunque dos geodésicas tengan la misma imagen, esto es, cada una sea una reparametrizacién
(general) de la otra, las imagenes de las aplicaciones de la forma (1.14) correspondientes no tendrdn la misma
imagen a no ser que la reparametrizacion sea una traslacién del parametro.
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1.5.1. Espacios vectoriales simplécticos

Definiciéon 1.61. Una forma simpléctica w en un espacio vectorial V es una forma bilineal
antisimétrica'® y no degenerada, esto es,

w,w)=0,YVw eV < v=0.

Se dice que (V,w) es un espacio vectorial simpléctico.

Se comprueba sin dificultad que toda forma bilineal antisimétrica definida en un espacio
vectorial de dimension impar es degenerada. En consecuencia, un espacio vectorial simpléctico
necesariamente tendrd dimension par.

Lema 1.62. Sea (V,w) un espacio vectorial simpléctico. Existe una baseey, ..., eq, f1,..., fn
de V tal que

w(e,e) =w(fi, fj) =0,  wle, fj) = dj.

Definicion 1.63. Sea (V,w) un espacio vectorial simpléctico y W un subespacio vectorial
suyo. Se dice que W es

i) simpléctico si wwxw €s no degenerada,

ii) isotropo si wyw,w = 0 o, equivalentemente, si W C W,

)
iii) coisotropo si We C W,
)

iv) lagrangiano si es isétropo y coisétropo, esto es, si We = W,

Tomemos entonces (V,w) un espacio vectorial simpléctico de dimensién 2n 'y W un
subespacio vectorial coisétropo de dimensién m. El espacio ortogonal W« tendrd dimensién
2n — m al ser w no degenerada y al ser W coisétropo deberd suceder que n < m. Podemos
considerar el espacio cociente W/wt«, que tendrd dimensién 2(m —n) > 0. Se tiene entonces
el siguiente resultado, que puede demostrarse sin dificultad con las herramientas basicas del
algebra lineal.

Teorema 1.64 (Reduccién coisétropa). Sea (V,w) un espacio vectorial simpléctico y W un
subespacio vectorial coisotropo. La aplicacion

w: Wiylte x Wiyle — R, ([0], [w]) — w(v,w),

es una forma simpléctica en W/w-«. En particular, (W/Wiw,w) €es un espacio vectorial simplécti-
co de dimension 2(m — n).

Es sencillo comprobar que todo hiperplano de un espacio vectorial simpléctico es coisétro-
po. En consecuencia, el teorema anterior nos garantiza que si W C V es un hiperplano,
entonces (W/wiw,w) es un espacio vectorial simpléctico de dimensién 2n — 2.

El teorema 1.64, extraido de (Bautista et al., 2015b, pags. 23-24), es un caso particular
de la denominada reduccion simpléctica. Esta describe matematicamente cémo la existencia
de simetrias en un sistema mecanico permite reducir la dimensién del espacio de fases que lo
parametriza (Cannas da Silva, 2001, Parte IX).

150 lo que es lo mismo, un tensor 2-covariante y antisimétrico, esto es w € AZ(V).
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1.5.2. Variedades simplécticas

Definicién 1.65. Una forma simpléctica w en una variedad diferenciable M es una 2-forma
diferenciable cerrada y no degenerada, esto es, una aplicacién diferenciable

w: M — A*(M)

tal que dw = 0y para cada p € M se tiene que wy € AZ(TPM) es no degenerada. Se dice
que (M, w) es una variedad simpléctica.

Observaciéon. Dados V un espacio vectorial de dimension 2n y w una forma bilineal anti-
simétrica en V, se tiene que w es no degenerada si, y solamente si w" # 0. En consecuencia,
una forma simpléctica w en una variedad diferenciable de dimension 2n es una 2-forma dife-
renciable cerrada tal que w" no se anula en ningdn punto, esto es, para cadap € M, wz no es
idénticamente nula. En tal caso, decimos que w" es una forma de volumen. La existencia de
esta forma de volumen garantiza la orientabilidad de la variedad. En resumen, toda variedad
simpléctica es necesariamente orientable.

Vamos a introducir como primer ejemplo la denominada forma simpléctica candnica en el
fibrado cotangente de una variedad. Para ello, definiremos una 1-forma auxiliar, denominada
de Liouville o también potencial simpléctico, que nos permitird definir una forma simpléctica
como su derivada exterior.

Consideremos entonces M una variedad diferenciable y denotemos N = T*M a su fibrado
cotangente. La proyeccién® 7t: N — M es diferenciable, luego d7t: TN — TM. Cada punto
q € N serd un par (p, ¢p) con p=7t(q) € My ¢p € Ty M, esto es, ¢,: T,M — R.

Definicion 1.66. En las condiciones del parrafo anterior, se define la 1-forma de Liouville

como la aplicacién 8: N — T*N = A'(N) dada por 6, = O(p.9,) = Ppo dg7t € TyN:

N T M- R
q fr(q)M— pM :

Proposicion 1.67. La 2-forma w = —dB es una forma simpléctica en N = T*M a la que se
denomina forma simpléctica candnica del fibrado cotangente.

Ademas, puede comprobarse que, dado un entorno coordenado (p, U; xl,...,x”) en M,
y considerando las coordenadas naturales x1,...,x",61,...,0, en T*U, se puede expresar

0=Y 0dx' = w=Y dx'Adb;. (1.15)
i i

Para lo que resta de apartado se ha seguido una exposicidn similar a la de (Gémez Zara-
goza, 2020), realizando aqui demostraciones ligeramente distintas.

Proposicion 1.68. Sea (M, w) una variedad simpléctica y H una hipersuperficie suya. En-
tonces w induce una distribucion (diferenciable) 1-dimensional H-« en H dada por

Hle = (T,H)™ CT,H, VpeH. (1.16)

Demostracion. En primer lugar, al ser H una hipersuperficie y, por tanto, T,H C T,M un
hiperplano Vp € H, deducimos que T,H es coisotropo, luego (TPH)LW C TyH. Ademds,
dim(TpH)Lw =1 al ser w no degenerada. En resumen, H'« es una 1-distribucién en H.

16En adelante diferenciaremos la notacién w: TM — My 7: T*M — M para facilitar la lectura.
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Para comprobar que dicha distribucién es diferenciable consideramos un entorno coorde-
nado (p, u; xl,...,xmfl) de H y definimos la aplicacién diferenciable

f: TU — UxR"1
(g,0) — (q, (wy(o, al,q),...,wq(v,am_l,q))),

d

donde hemos denotado d;; = -

‘ . Definimos asimismo el conjunto
q

ker f = f~H(Ux {0}) = {(q,0) [ € U, f(q,0) = (4,0)}.

Con las técnicas habituales, se comprueba de manera sencilla que ker f es un subfibra-
do vectorial diferenciable del fibrado tangente TU — U C H, cuyas fibras son precisamente
(T,H)*«, Vq € U. De la arbitrariedad de p, se deduce el resultado buscado. [

Supongamos ahora que (M, w) es una variedad simpléctica y H una hipersuperficie suya.
Al ser la distribucién H+« 1-dimensional, en particular serd involutiva. En estas circunstancias,
el teorema 1.15 nos garantiza que la familia Fp.,, de variedades integrales maximales conexas
de H1« es una foliacién de H. Asi, podemos considerar el espacio cociente H/H' dotado de
la proyeccion Iy, : H — H/H*. Por simplicidad, denotaremos IT = Il., siempre que no
haya lugar a ambigiiedad.

Dado entonces un punto p € H, podemos considerar la hoja F = IT-}(TI(p)) C H que
lo contiene. Esta es la variedad integral maximal conexa de H« que contiene a p. En otras
palabras, se verifica T,F = (H,)*« = (T,H)"«, Vg € F. Ademés, F se representa en H/H"
por IT(p). Indistintamente se suele denominar a F y a II(p) la orbita de p, por lo que al
espacio H/H+« se le denomina espacio de dérbitas. Del teorema 1.17 se deduce el siguiente
resultado sobre este espacio, al requerir que la distribucién Ht« sea regular:

Corolario 1.68.1. Sea (M, w) una variedad simpléctica de dimension m y H una hipersuper-
ficie suya. Si la distribucion H'« es regular, entonces H/H'« admite una estructura natural
de variedad diferenciable (no necesariamente Hausdorff) de dimension m — 2 respecto de la
cual la proyeccion I1: H — H/H'« es una sumersion.

Al ser IT una sumersion, para cada p € H se tiene que de: T,H — Tn(p)H/le es
sobreyectiva. En consecuencia, de las consideraciones posteriores al teorema 1.17 y de las
previas al corolario 1.68.1 se tiene el isomorfismo candnico

di1: ToH/p p = ToH/ (7, 1) e — Ty H/H e (1.17)

Proposicion 1.69. En las condiciones del corolario anterior, w induce en H/H' una tinica
forma simpléctica @ tal que IT*@ = wyy, esto es'’, tal que para cada p € H y u,v € T,H
se verifica

wy(v,w) = Gry(p) (dpI1(v),dpIT(w)).

Demostracion. Para cada punto p € H, el teorema 1.64 nos garantiza que la aplicacion
wy: TH/(T,H)*e x TH/(T,H)*» — R dada por

@y ([v], [w]) = wp(o,w), Vv, w € T,H,

17] a notacién IT*@ es la estandar para el pull-back de una k-forma a través de una aplicacién diferenciable.
Por su parte, denotamos w|y = i*w, donde i: H < M es la inclusion.
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es una forma simpléctica en T,H/(1,H)*~. Teniendo en cuenta que el isomorfismo dplI1 estd
dado por [v] <+ dpIl(v), Yv € T,H, podemos trasladar esta forma simpléctica a Tri(pyH/H*
considerando

Wrip) (dpI1(v), dpll(w)) = @p([], [w]) = wp(v,w), Vo,w € T,H. (1.18)

En resumen, por el momento hemos demostrado que la asignacién
F 5~ A (1.19)
II(p) — Wry(p) '

estd bien definida. Asi, queda demostrar que dicha asignacién es una aplicacion diferenciable
y, por tanto, una 2-forma, asi como que ésta es cerrada y Unica.

La primera de las cuestiones es consecuencia de un resultado técnico® y del hecho de que
IT sea una sumersién y IT*@w = w|p Sea una forma diferenciable en H. Por su parte, que @
sea cerrada es consecuencia directa de las propiedades de la diferencial exterior con respecto
al pull-back:
Tdw = d(IT'@) = dw)y = d(i*w) = i*dw =0,
y, al ser dpI1 sobreyectiva Vp € H, se deduce que dw = 0, como queriamos demostrar.

Por ultimo, la unicidad de la forma simpléctica @ en H/H'« tal que Wy = IT*@ es con-
secuencia directa de que I sea una sumersién sobreyectiva. |

1.6. Geometria de contacto

Exponemos ahora una breve introduccion a la geometria de contacto, limitdndonos a
describir lo necesario para definir una estructura de contacto en la variedad de geodésicas
luminosas. Se sigue aqui la exposiciéon de (Cannas da Silva, 2001, Cap. 10), que puede con-
sultarse para un estudio introductorio, pero algo mas extenso.

Definicion 1.70. Sea M una variedad diferenciable de dimension m. Un elemento de contacto
es un par (p, Hp), donde p € My H, C Ty, M es un hiperplano. Se dice que p es el punto de
contacto y que Hy, es el hiperplano de contacto.

Un elemento de contacto determina, salvo multiplicaciéon por un escalar no nulo, una
forma lineal a: T,M — R cuyo nucleo es kera, = Hy.

Supongamos ahora que H es una distribucién diferenciable de dimension m — 1, esto
es, una distribucién de hiperplanos. Localmente, esta distribucion de hiperplanos podrd ser
expresada como el niicleo de una 1-forma a: M — T*M (Geiges, 2008, Lema 1.1.1). Esta,
evidentemente, no serd unica pues cualquier producto por una funcién diferenciable que no
se anule tendra el mismo ntcleo. Se dice que a es una 1-forma local asociada a H.

Definicion 1.71. Una estructura de contacto en una variedad diferenciable M es una distri-
bucién de hiperplanos H tal que para alguna (y, por tanto, para toda) 1-forma local asociada
® se tiene que doc‘H es no degenerada'®. Se dice que el par (M, H) es una variedad de con-
tacto, que a es una forma (local) de contacto y que H es una distribucién maximamente no
integrable.

18] ema: Sean M, N dos variedades diferenciables y @: M — N una sumersién. Sea asimismo w una forma
(no necesariamente diferenciable) en N. Si ¢*w es una forma diferenciable en M, entonces w es diferenciable.
9Esto es, (da)p: Hy x Hy — R es no degenerada para todo punto p en el dominio de «.
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Si H es una estructura de contacto en M, al ser dajy no degenerada (decimos, por
comodidad, que es simpléctica) la dimension de H,, sera necesariamente par, dim H, =2n.
Como ademds dim H, = dim M — 1, deducimos que dim M = m = 2n + 1y, en particular,
toda variedad de contacto tiene dimensién impar.

Consideramos el conjunto
ker(day) = {v € T,M | dap(v,w) =0, Vw € T,M}.

De nuevo, la no degeneracion de (day) |y, nos garantiza que H, Nker(day) = {0}. Ademds,
dimker(da,) # 0, pues en caso contrario du, serfa no degenerada y, en particular, M tendria
dimensién par. En consecuencia T,M = H, @ ker(da,).

La observacién posterior a la definicién 1.65 nos garantiza que la restriccion de (daj)"
H, no es idénticamente nula, de donde se deduce sin dificultad que a, A (dap)", definida en
Ty M, tampoco es idénticamente nula.

En general no tendra por qué existir una forma de contacto definida globalmente. La
obstruccién a dicha existencia es puramente topoldgica, pues se tiene

Ja forma de contacto global <= el fibrado vectorial TM/H es trivial. (1.20)

El fibrado TM/H es unidimensional, por lo que ser trivial es equivalente a ser orientable
(en el sentido de la orientabilidad de fibrados vectoriales). En general, si A es un subfibrado
vectorial de TM, se dice que A es coorientable si TM/A es trivial. Pueden consultarse (Cannas
da Silva, 2001) y (Geiges, 2008) para un estudio mds detallado de este asunto.

Se tiene el siguiente resultado, del que ya hemos probado la implicacién a la derecha, que
permite adoptar definiciones equivalentes de estructura de contacto:

Proposiciéon 1.72. Sea H una distribucion en M de dimension m — 1. Entonces

H es una estructura de contacto <= a A (da)" # 0, Vo forma local asociada a H.

Por su parte, & A (da)" es una forma de orden 2n + 1 = dim M. Por tanto, si H es una
estructura de contacto y a es una forma de contacto global, entonces a A (da)" es una forma
de volumen en My, en particular, M debera ser orientable.

Nos centramos ahora en varios resultados que proporcionan una interesante relacién entre
geometria simpléctica y de contacto. Esta relacién nos proporcionard, en el capitulo 3, la
estructura de contacto en la variedad de geodésicas luminosas. Ambos resultados, con los
que concluimos este capitulo, pueden encontrarse en (Bautista et al., 2015b, Teors. 5.1 y
5.2). La demostracién del segundo de ellos seguird una exposicién similar a la de (Espinosa
Ruiz, 2022, Teor. 4.3.2).

Proposicion 1.73. Sea (M, w) una variedad simpléctica y H una hipersuperficie suya. Supon-
gamos que H -« es una distribucion reqular y denotemos por & a la tinica forma simpléctica
en H/H* que verifica IT*w = i*w (Cor. 1.68.1 y Prop. 1.69). Si existe una 1-forma 6 en M tal
que w = —dB y existe una 1-forma 0 en H/H! tal que 10 = i*0 = 9|H, entonces @ = —de.

Demostracion. Las propiedades de la diferencial exterior con respecto al pull-back nos garan-
tizan que
T"'w =i*w =i*(—df) = —d(i"0) = —d(IT*9) = I1*(—d6),

de donde se deduce el resultado al ser IT una sumersién sobreyectiva. |
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Teorema 1.74. Sea (M, w) una variedad simpléctica exacta con w = —d6, N una variedad
de dimension dim N = dim M — 1 y t: M — N una sumersion sobreyectiva. Denotamos por
H a la distribucion en M dada por H, = ker(0,), Vp € M. Supongamos que para cada par
de puntos p1,p2 € M con 1t(p1) = t(p2) = q se tiene que d,, t(Hy,) = dp,m(Hp,) C T;N
es un hiperplano. Entonces se puede definir una estructura de contacto H en N dada por

Hy =dyn(Hy), Vq=mn(p)€N.

Demostracion. Al ser t: M — N una sumersién, se tiene que dim(kerd,m) =1. Como
dymt(Hp) C Tr(p)N es un hiperplano, entonces kerd,7t C Hy. Asimismo, se deduce que

(dp1) "' (Hr(p)) = Hp. En los siguientes parrafos veremos que, de hecho, kerd,m = H,,
y al tener ambos espacios igual dimensién bastard probar la inclusidon de izquierda a derecha.

Sea v € kerd,7. Queremos demostrar que wy(v,w) = 0, Yw € H, = ker@,. Se tiene:

wp(v,w) = —dby (v, w) = v(8pke0)) — w(6pf0]) — 6, ([v,w]), Yw € Hy,

donde los dos primeros términos del lado derecho se anulan al ser v,w € H, = ker0,. Asi,
solo necesitamos comprobar que GP([U, w]) =0, Vw € Hy, Vv € kerd,, para lo que nece-
sitaremos recurrir a resultados técnicos sobre flujos de campos vectoriales.

Para cada g € N denotamos a la fibra que se proyecta sobre g por F; = n_l(q). Conside-
ramos U C M abierto y X € X(U) un campo vectorial tal que X, € TpFr(p). Vp € U, esto
es, un campo tangente a las fibras de 7t. Por supuesto, se tiene que TpEr(p) = kerd,m.

Consideramos ¢¢: M — M el flujo?® de X y tomemos Y € X(U) un campo vectorial con
Y, € Hp, Vp € U. Como se tiene que
dq,t(p)r(o dp(,bt = dp(T[ o 4)1‘) = deL',

entonces d@(p)n(dpq)t(l/p)) =dpyn(Yy) € H,T(p) y de las observaciones iniciales se deduce
que
dpfpt(yp) € H(Pt(P)' Vt, ‘v’p

y, en particular, dg, ( ¢p_(Yy) € Hp.

Empleando la expresion del corchete de Lie como derivada de Lie se obtiene:

d o_(Yy) =Y,
Y Pe(p)P—t\1tp p
Xy Yp] = %136 t

€ H,,

de donde se deduce inmediatamente que 68, ([X,, Y,]) = 0, como queriamos demostrar.

Hemos demostrado, por tanto, que kerdpr( = HPL, Vp € M. Considerando la restriccion
(dp70) |1, : Hp = Tr(p)N, y al ser kerd,m C Hp, se tiene que

Hy/kerdyne = Hp/tt = dym(Hy) = Fgy).

Veamos ahora que existe una 1-forma local a asociada a la distribucion H que verifica que
d(x‘g es no degenerada. Para cada p € M y cada par de elementos ¢1,¢> € Hp/H; definimos

wp(G1,62) = wp(ur, uz), (1.21)

20E| flujo de un campo vectorial X € X(M) es una aplicacion ¢: I x M — M, con 0 € [ CR, tal que
¢(t,p) = ¢:(p) = a;f (1), donde a;f es la tnica curva integral de X que verifica a;(0) = p. En ocasiones se
denomina flujo de X a la aplicacién ¢r: M — M, p — ¢r(p).
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donde u; € ;. El teorema 1.64 garantiza que w, estd bien definida y es no degenerada.

Sea ahora 0: U C N — M una seccién local diferenciable de 7, esto es, 7r oo = idy.
Emplearemos ¢ para trasladar la forma bilineal w; a Hn(p), definiendo para cada g € U y
cada ¢, ¢, € Hy

Wg(81,62) = Wo(yg)(81,82), (1.22)

donde ¢; = d,,,7(&;), siendo d,, 7t el isomorfismo entre Hotg/HY,) ¥ Hq. De nuevo, es inme-
diato que @, es no degenerada, Vq € U.

Por otra parte, 0*6 es una 1-forma diferenciable en U que verifica —d(c*8) = —o*df =
0*w. Ademds, para cada g € U C N y cada par wy, wp € TyN se tiene

(U*w)q(wlr w2) = Wy (g) (dqa(wl), dq(T(ZUz>),

y de la independencia de u; € ¢; en (1.21) deducimos que (0*w)y = @ en el dominio de o.
Por su parte,

ker(070); = {w € TyN | 0, (dgo(w)) =0} = {w € TyN | dyo(w) € Hy(q)} = Hy.

En conclusién, —c*@ es una 1-forma local asociada a H cuya diferencial, restringida a H,
es w, que es no degenerada. La existencia de secciones locales de 7t alrededor de cada punto
de N concluye la demostracion. |

Obsérvese que a lo largo de la demostracién hemos empleado una herramienta auxiliar, la
seccion local o de 7t, de cuya eleccion dependen las formas bilineales @, y la 1-forma ¢*6. Sin
embargo, se razona sin demasiada dificultad que la estructura de contacto H es independiente
de la eleccién de la seccion o.
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2. Estructura simpléctica del espacio de geodésicas temporales

En este apartado trataremos de describir el espacio M de las geodésicas temporales de
una variedad lorentziana conexa M temporalmente orientada de dimensidon n, esto es, un
espaciotiempo n-dimensional (def. 3.4). Veremos que, bajo ciertas condiciones, M admite
una estructura de variedad diferenciable de dimensién 2n — 2 a la que se puede dotar de una
forma simpléctica, partiendo de la de TM (seccién 2.2).

2.1. Descripcion del espacio tangente T,,T M con campos de Jacobi

Sea (p,v) =v € TM. Sabemos que el fibrado tangente es una variedad diferenciable
de dimensién 2n. Su espacio tangente en v serd un espacio vectorial de dimensién 2n que
podemos identificar, via el corolario 1.56.1, con el espacio J () de campos de Jacobi sobre
una geodésica. En este apartado construiremos un isomorfismo natural de manera explicita
entre ambos espacios y, por lo tanto, un isomorfismo T,TM = T,M x T, M.

De una parte, tenemos
T,TM = {¢ = &(0) | «: ] — TM diferenciable con a(0) = v},
donde una curva diferenciable a: ] — TM es un campo vectorial sobre f = o «.

De otra parte, consideramos 7,: I — M la lnica geodésica maximal tal que y(0) = py
¥(0) = v. Esta puede expresarse (Lee, 2018, Prop. 5.19) como 7,(t) = expp(tv), Vtel.

Dado ahora ¢ € T,TM, consideramos una curva diferenciable a: ] — TM con «(0) = v
y &(0) = ¢ y definimos la aplicacién

Xq: [=6,0] X [—¢,€] — M, Xa(t,5) = expy ) (ta(s)) = Yas) (1),

donde los intervalos [—6,5] C Iy [—¢,€] C J seran lo suficientemente estrechos como para
que la exponencial esté siempre bien definida.

Se tiene entonces que X4 (f,0) = 15(t), Vt € [—4,0]. Ademds, X} (t) = 7,(5)(t), luego x;
es una geodésica. En resumen, x, es una variacion geodésica de 7.

Consideramos el campo variacional Y, de x, que, de acuerdo con el lema 1.55, es un
campo de Jacobi. Se verifica

(0= FH00 = | ewyy 0= 1| ple)=pO €M
, DY, D D D , (2.1)
V(0= T (0) = 7 (3x) (0,0) = 2 (0a) 00) = 7| als) =2'(0) € TyM,

donde en la segunda linea hemos empleado la proposicién 1.50 y hemos sustituido

d
9rx,(0,8) = 7

i expy s (ta(s)) = a(s).

Veamos ahora que el campo de Jacobi recién definido no depende de la eleccion de la
curva «. Se verifica, por una parte,

pO) = 5

S (700 &) (s) = d7ty(0) (2(0)) = d7(Z). (2.2)
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Por otra parte, en un entorno coordenado ((p,v), u; xl,...,x”,yl,...,y”) de TM pode-

mos expresar ¢ = (71,..., 7", ¢&%,...,8") y a(s) = (B'(s),..., B"(s),al(s),...,a"(s)). Em-

pleando la expresiéon local de la derivada covariante, se deduce que

£ (0) = (i(0) + T4 (B0)a (0 (0)) 8(0) = (& + T4 (p)o'y) -2 23)

(pv)

En resumen, Y,(0) e Y;(0) no dependen de la curva a, sino dnicamente de (p,v) y ¢.
Ahora, el teorema 1.56 nos garantiza que el campo de Jacobi Y, tampoco depende de a, pues
éste esta caracterizado por sus valores en 0. Denotamos, por tanto, Yz = Y,. Asi, hemos
demostrado que la siguiente aplicacién estd bien definida

T, TM 3§ — Yz € T (70). (2.4)

De manera rutinaria se comprueba que esta aplicacion es lineal. Ademads, las expresiones
de Yz(0) e Yz(0) nos garantizan su inyectividad. Al tener ambos espacios la misma dimension,
deducimos que se trata de un isomorfismo de espacios vectoriales.

2.2. Estructura simpléctica de T M

En una variedad semiriemanniana (M, g) podemos considerar la siguiente aplicacién dife-
renciable, denominada de Legendre

g: TM — T*M,
(p.0) = (p, &p(0,7)),
que nos proporciona un isomorfismo (¢, idy;) de fibrados vectoriales diferenciables.

A través del pull-back, |la aplicacién de Legendre permite trasladar la 1-forma de Liouville
(véase la definicion 1.66) al fibrado tangente, definiendo 6, = ¢*60: TM — T*TM, esto es,
para cada (p,v) € TM ycada ¢ € T(p,0)TM, se tiene que

(05) 0 (@) = 0, ¢ ) (43(0)) = 850, (37 0.48) () = gy (0,87(2)),

donde en la dltima igualdad hemos empleado que d7t o dg = drr.

De nuevo, en un entorno coordenado ((p, ), U;x!,...x ”,yl, . ,y”) de TM podemos
expresar v = v ;€T,My ¢ = 1718?(, + Cl d ¢ T,TM. En consecuencia, se puede expresar

(98)(;7,7;)((’:) = Qg(‘:) = gp (U axzrr/ E)xl) =v U]gljl
donde hemos empleado que drt(&) = 11]'%. De este modo, se puede expresar localmente
0 = gij yldx'.

Andlogamente, podemos trasladar al fibrado tangente la forma simpléctica candnica w en

A

el fibrado cotangente definiendo wy = ¢*w: TM — A?(TM), esto es, para cada (p,v) € TM
y cada 1,62 € T(p) TM,

(@Ws) () (61,82) = wg(81,82) = © (y(0) (d8(¢1),d8(22))-
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Las propiedades de la diferencial exterior con respecto al pull-back nos garantizan que
we =§'w=g"(—df) = —d(§*0) = —db,,

luego en particular, wg es una 2-forma exacta. La no degeneracion de w nos garantiza que
wg es también no degenerada. En resumen, (TM, wg) es una variedad simpléctica exacta de
dimension 2n.

De la expresion local de 6, se deduce la de wg como
aglj
oxk

Proposicién 2.1. Seav = (p,v) € TM, §,81,G52 € T,TM e Yg, Yg,, Y, € T (7o) los campos
de Jacobi sobre 7y, asociados. Entonces

wg = —dby = —d(g;j ydx') = yldx' A dgij + gijdxi/\ dy/ =y =Ldx' A dx* + gi]-dxi/\ dy/.

d
(80 (0, Y (1) — (¥, (1), Y4,(1) ) = 0. (25)
Ademads, se tienen las siguientes identidades:
Bg((:) =8p (Z), YC(O))I y wg(élz 62) = g(Yé],Ygz) — g(Ygl,Yéz). (2_6)

Demostracion. La primera identidad se demuestra de manera sencilla empleando las simetrias
del tensor de Riemann (prop. 1.47). Igualmente, la segunda identidad se deduce directamente
de consideraciones previas, recordando que Yz(0) = drt(g).

Por su parte, para demostrar la tercera identidad necesitamos hacer uso de la expresion
local de wy. Asf, para &, = ’7rax/ +§r E € T,TM, r € {1,2}, se tiene:

wg(81,82) = 0/ (85, + 8 T%) (mins — msn¥) + g (i) — ms) =
= Vg Tk + Vg Bk — gulymhnk — ol B + g3 (b — b)) =
= gij(’h@'z + T0° ’71’72) 8U(’72§J +v rks’72’71)
ng( N, (& + T ’72)ax1> gP( b, (61 + Do) 5 ) =
= 8p(Yz,(0), Y,(0)) — gy (Yz,(0), Y, (0)).

2.3. La variedad M de las geodésicas temporales en M

En este apartado queremos construir el conjunto de las geodésicas temporales maxi-
males desparametrizadas en M = (M, g, V) y dotarlo de estructura de variedad diferenciable
simpléctica. Para ello, consideramos en primera instancia el conjunto M’ de todas las geodési-
cas temporales maximales en M, esto es, las geodésicas maximales <y tales que g("y, "y) < 0.

Introducimos en M’ la relacién de equivalencia dada por 41 ~ 72 <= Imy; =Im7,y
consideramos el conjunto cociente M = M’/ ~ inducido en M’ por dicha relacién. Diremos
que las clases de equivalencia [y] = {¥: I — M geodésica temporal maximal | Im§ = Im '}

L Aqui empleamos la expresién local de los simbolos de Christoffel (1.8) para obtener la identidad:

93ij
Tx; = gsiri]' + gjsrir
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2 Estructura simpléctica del espacio de geodésicas temporales

son geodésicas temporales maximales desparametrizadas. De modo equivalente, podemos ver

M = {Im7 | 7 es geodésica temporal maximal}.

Dos geodésicas 71,72 € [y] se diferencian exclusivamente en un cambio de parametri-
zacion, en otras palabras, [y] es una geodésica “salvo parametrizacion”. Ademas, sabemos
que las Unicas reparametrizaciones de geodésicas que son geodésicas son las afines (véase la
discusién posterior al teorema 1.23). Asi, se tiene

V] ={yoh|h:]—=s1, h(t)=at+b,abecR}. (2.7)

En particular, en cada clase de equivalencia existen geodésicas ;, que decimos que estan
parametrizadas por el arco o por el tiempo propio, tales que g("yb, 'yb) = —1. Por simplicidad,
siempre consideraremos a una de estas geodésicas como representante natural® de su clase
de equivalencia. Ademas, para no hacer referencia a ninglin representante de las clases de
equivalencia, denotaremos por I" a los elementos de M.

Consideramos ahora el conjunto
H={v=(pv) e TM|g(v,0) = -1}, (2.8)

que es una hipersuperficie de TM. Los resultados de las secciones 1.5.2 y 2.2 nos permiten
considerar la distribuciéon unidimensional (y, por tanto, involutiva) H'<s, donde wg es la
forma simpléctica canénica de TM, asi como el espacio cociente H/HL. Sabemos que si H+
es regular entonces H/H' admitird una estructura de variedad diferenciable que hard que la
proyeccién sea una sumersion, y una unica forma simpléctica w tal que IT*w = We - De
hecho, para cada v € H se tendrd un isomorfismo

doIT: ToH/(1, 1) — Ty (H/HQ (2.9)

El conjunto H tiene dos componentes conexas, H" y H~, formadas por los elementos
v € H que apuntan al futuro o al pasado, respectivamente, separadas por la seccion cero del
fibrado tangente. Al ser las componentes conexas abiertas en H, los resultados 2.2-2.5 siguen
siendo ciertos al reemplazar H por HT o H™ y considerar la distribucién H* restringida al
conjunto correspondiente, que denotamos por simplicidad de la misma manera.

Pues bien, mas adelante identificaremos M = H/HL, empleando como herramienta el
spray geodésico, lo que dotard a M de la estructura de variedad simpléctica buscada. Para
ello, necesitamos considerar los siguientes resultados previos:

Proposicién 2.2. Sea (p,v) € H. Entonces X(p,,) € ToH. En otras palabras, x|z € X(H) y,
por tanto, x|z genera una distribucion unidimensional en H, a la que denotamos por ()(‘ H)-

Demostracion. Tomemos (p,v) € H y consideremos v la tnica geodésica maximal en M tal
que v(0) = p y 7(0) = v. Entonces, g(,7) = —1 vy, en consecuencia, la curva a: [ - H
dada por a = (7, ) esta bien definida y verifica a(0) = (p,v) y &(0) = X(p,0)- [

Proposicién 2.3. Sea (p,v) € H. El campo de Jacobi Y € J (7y) asociado a x(,.) € ToH
esY =g, € T ().

2Hay tantas geodésicas parametrizadas por el arco como posibles traslaciones temporales, esto es, del tipo
Yp(t) = y(t+Db), b € R. Asi, la eleccién de la geodésica representante no es candnica.
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2 Estructura simpléctica del espacio de geodésicas temporales

Demostracion. De las expresiones locales (1.12) y (2.1)-(2.3) del spray geodésico y del campo
de Jacobi asociado a un elemento ¢ € T,TM se deduce que si Y € J () es el campo de
Jacobi asociado a x(;,) € T, H, entonces

Y(0) = drt(x(po) = 0, Y'(0) = 0.

Como ¥, € J(y») también verifica dichas condiciones, la unicidad dada por el teorema
1.56 nos proporciona el resultado buscado. [ |

Proposicion 2.4. Sea ¢ € T,H C T,TM. Entonces, el campo de Jacobi asociado Y; verifica
8(Y#(0),v) = 0. De hecho, la aplicacion

TLH2 & Yr € T%(70) ={Y € T(70) | g(Y'(0),0) =0} (2.10)
es un isomorfismo de espacios vectoriales.
Demostracion. Sabemos que g(Yz(0),v) = g(a/(0),v), donde a: I — TM es cualquier curva

tal que (0) =v = (p,v) y &(0) = ¢&. En particular, podemos tomar a« de manera que para
cada t € I, se verifique a(t) € H. Asi, se tiene

g(a(t),a(h) = ~1, vt = g(@(t),a(t)) =0, % = g(«(0),a(0)) = g(«/(0),0) = 0.

Ademds, al estar un campo de Jacobi Y determinado por los valores de Y(0) y Y’(0),
imponer una condicién lineal sobre las coordenadas de este Ultimo vector reduce la dimensién
en 1. Asi, dim 7°(v,) = dim J (7,) — 1 =2n—1 = dim T, H.

Como T,TM > ¢ +— Yz € J (7o) es un isomorfismo, y la imagen de T, H por éste estd
contenida en J%(7,), la igualdad de dimensiones nos garantiza el resultado. |

Proposicion 2.5. Para cada v = (p,v) € H, se tiene que X(
mensional, H;- estard generado por X(
distribuciones coinciden.

po) L ToH. Al ser H unidi-

po)- En consecuencia, H = (x|y), esto es, ambas

Demostracion. Sean (p,v) € Hy ¢ € T,H. Por la proposicién anterior, sabemos que el cam-
po de Jacobi asociado a x(,,,) €s 7- En consecuencia, se verifica

wWg(X(po), ) = 8(340), Y¢ (0)) — 8(7(0), Y¢(0)) = =8(v,¥z(0)) =0,

donde en la dltima igualdad hemos empleado la proposicién 2.4. |

A la vista de este resultado, deducimos que si @ = (7, ) es una curva integral de x, esto
es, Xa(t) = &(t), entonces se verifica

ti((t) € (Ta(t)H)J_, Vt.

De la proposiciéon anterior deducimos que el espacio cociente H/H* es el espacio de las
Orbitas de la distribucion (X|H>, esto es, el conjunto de sus variedades integrales maximales
conexas. Estas, como comentamos en la observacién posterior a la proposiciéon 1.60, son
las imagenes de las aplicaciones & = (7, ), donde 7 es una geodésica maximal, que estén
contenidas en H. En otras palabras, los elementos de H/HL son de la forma Im ¥, donde -y
es una geodésica temporal maximal parametrizada por el arco.

Tratamos en los siguientes parrafos de establecer la conexion entre M y H/HL que, como
habiamos avanzado, se traducird en la identificacion M = H*/gt.
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Dada una geodésica temporal desparametrizada, T = [}] € M, ya sabemos que todas
las geodésicas y € T pueden expresarse como y(t) = y(at +b), con a,b € R, a # 0. Si solo
consideramos las que estan parametrizadas por el arco, fijaremos el valor de |a|, pero no el
de b. Asi, tendremos “dos familias” de geodésicas temporales maximales parametrizadas por
el arco: unas dirigidas al futuro, {'Y”'b}beuz' y otras dirigidas al pasado, {'y_”'b}bGR

Las aplicaciones & = (v, ) correspondientes a distintas geodésicas de una misma familia
tendran igual imagen. Por el contrario, las correspondientes a familias distintas tendran dis-
tintas imdgenes. De este modo, a la hora de asociar a cada elemento [¥] € M un elemento
Im € H/HL no solo hay que tener en cuenta la parametrizacién por el arco, sino también la
orientacién temporal de las curvas.

Asi las cosas, podemos considerar la aplicacion
+
O: M — H'/yL

(2.11)
I' — Im+,

donde 7y es cualquier geodésica maximal en I' que esté parametrizada por el arco y dirigida al
futuro. Esta aplicacién es claramente una biyeccién, por los comentarios realizados hasta el
momento, lo que nos permite identificar

H+/HL = H+/<X|H> =M, (2.12)

con lo que, como ya anunciamos, si <X\H> = H* es una distribucién regular, entonces M
admitird una estructura de variedad diferenciable simpléctica de dimensién 2n — 2.

Observemos, ademds, que dado un elemento v € HY, se tiene que I1(v) € H'/H podra
expresarse como I1(v) = Im ,. En consecuencia, IT(v) = ®([7]).

Por dltimo, construiremos explicitamente la estructura diferenciable de M. Daremos, para
ello, tres atlas diferenciables equivalentes:

i) El primero de ellos es el proporcionado por el teorema 1.17 (véase (Brickell et al., 1970,
pag. 205)). Supongamos que la distribucion <)(|H) es regular y tomemos un sistema de
coordenadas regular (U, ¢ = x!,...,x2""1) en H*. Denotamos U’ = I1(U) C M. Al
ser (U, ¢) regular, cada hoja T interseca a U en a lo sumo una seccién unidimensional,
esto es, IT"H(I') N U es de la forma ¢! (I x {a}), para cierto I C R conexo y cierto
a € R?"~2. En resumen, tenemos el siguiente diagrama:

UcHt — % R x R 2

nl [

Definimos entonces ¢(I') = p2(¢(v)), donde v € IT"!(T'). Los comentarios preceden-
tes nos garantizan que ¢ estd bien definida. Con cierta dificultad puede demostrarse que
los sistemas coordenados (U’, ¢) forman un atlas diferenciable (véase la mencionada
referencia).

ii) De forma alternativa, supongamos que (M, g) es fuertemente causal (def. 3.13). Dado
un punto de M, consideremos un entorno suyo U globalmente hiperbdlico y causal-
mente convexo (en M). Ademds, consideremos una hipersuperficie de Cauchy S (def.
3.14) en U. Restringiendo el entorno lo suficiente puede conseguirse que S admita una
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2 Estructura simpléctica del espacio de geodésicas temporales

parametrizacion global ¢s. Definimos
Us={v=(pv) EH" |pe S} XSxR"

Se tiene que dim Ug = 2n — 2. Ademas, al ser U causalmente convexo, toda curva
temporal dirigida al futuro corta a S a lo sumo en un punto. Asi, se tiene el siguiente
diagrama:

Usc HF — % 5 xR+

donde ¢ es una parametrizacién de S.

Definimos entonces @(I') = (¢ x id) (¢(v)), donde v € II"}(T). Los comentarios pre-
vios garantizan que @(I') no depende de la eleccion de vy, por tanto, ¢ esta bien
definida.

De nuevo, de forma sencilla se comprueba que M puede recubrirse por conjuntos del
tipo Ug = II(Us) y que todos ellos, junto con las cartas gbgl: Mg — Us, proporcionan
un atlas diferenciable de M equivalente al obtenido en el apartado anterior.

iii) Por Ultimo, definiremos otro atlas en M que proporciona la misma estructura dife-
renciable que los anteriores y que nos sera de utilidad mas adelante (véase el final del
apartado 4.2).

De nuevo, supongamos que (M, g) es fuertemente causal, tomemos un entorno U
globalmente hiperbdlico y causalmente convexo y una hipersuperficie de Cauchy S en
U que admita una parametrizacién global. Consideremos un campo vectorial sobre la
inclusion X: S — H™ C TM. Asimismo, definamos el conjunto

Vs={v=(pv)eTM|peS, g(X,v)=-1,g(v,v) <0}.

Nétese que las dos dltimas condiciones de la expresion anterior implican que para cada
(p,v) € Vs se tiene que v es temporal y, de hecho, estd en el mismo cono temporal que
X,. Definimos entonces la aplicacién fs: Vs — Us dada por fs(v) =v/\/=g(v,0), que
es un difeomorfismo.

En consecuencia, la proyeccion IT: Vg — M proporciona una nueva parametrizacién de
M. Ademis, es inmediato comprobar que estas aplicaciones definen un atlas diferen-
ciable en M que induce la misma estructura diferenciable que los anteriores.

Observaciones. i) Para construir el segundo y el tercer atlas diferenciable hemos necesi-
tado suponer que (M, g) es fuertemente causal. Sin embargo, como se mencionard en
la seccion 4, esta condicion es suficiente para que M admita estructura de variedad,
pero no es necesaria.

ii) Las estructuras diferenciables construidas no necesariamente seran de Hausdorff, lo que
si puede consequirse al exigir condiciones adicionales sobre la estructura causal, como
la hiperbolicidad global.
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2.4. El espacio tangente Tr M

Como consecuencia de la proposicion 2.5 se tiene el siguiente resultado, que nos propor-
ciona una descripcién de (T,H)* que nos sera de utilidad para describir Tr M.

Proposicién 2.6. Seav € H y & € (T,H)*. Entonces
Ye € T%70) N T (70) = {a0 | 2 € R} =t T (7).
Ademds, dim (7T (7y,)) =1y, en consecuencia, (T,H)* = T (v,).

Demostracion. Sea ¢ € (TZ,H)l. La proposicién 2.5 nos garantiza la existencia de a € R tal
que ¢ = ax,. Como la aplicacién dada por (2.4) es lineal, se tiene que Yz = aYy, = a7y, de
donde deducimos que Yz € J (7).

Como dim J%"(vy,) = 2, solamente tenemos que demostrar que J%(y,) ¢ J°(74), lo
cual es inmediato pues, de hecho, definiendo Y(t) = ty(t) se tiene que Y € J%(~y,), y sin
embargo Y & J°(7»). |

Llegados a este punto, tratemos de describir el espacio tangente a M en uno de sus
puntos, [v,], con v € HT. Como expresdbamos en las ecuaciones (2.9) y (2.12), se tendra

0
+ ~ ~ ‘7 ~
Ty M = o) (H /) = ToH/(7, 1) - = T) & 7y, (213)
T (7o)
donde en el Ultimo isomorfismo hemos empleado la descomposicién dada por la proposicion
1.59, el segundo Teorema de Isomorfia de Noether, y el hecho de que J+(v5) € J%(70)-

Nétese, que dim J+(7y,) = 2n — 2, como esperdbamos.

Esta descripcion del espacio tangente puede obtenerse de manera alternativa y directa,
lo que nos dard una interpretacién clara de su significado. Para ello, consideramos una cur-
va diferenciable A: I — M tal que A(0) =T = +. Para cada s € I, A(s) es una geodésica
temporal desparametrizada, que nosotros identificamos con una de sus representantes pa-
rametrizadas por el arco y dirigida al futuro, 4°. De estas, recordamos, hay tantas como
traslaciones temporales, esto es, A(s) = [y°] = 7*Y, Vb € R, donde ¥*t(t) = 9*(t +b). Di-
cho de otro modo, la eleccién de la curva representante no es Unica, sino que estd dada salvo
traslacion temporal.

Al ser A diferenciable, existird una variacion x de 7y por geodésicas temporales de manera
que, definiendo® * = x(,s), se tendrd que 7* € A(s), Vs € I. De hecho, por los motivos
discutidos en el parrafo precedente, para cada b € R la variacién x? dada por xb(-,s) = 'ys'b
también verificara dicha propiedad. Identificamos A(s) = x(-,s).

Para estudiar Tr M supongamos que A es localmente inyectiva y veamos qué condiciones
debe cumplir su vector tangente A(0). Se tiene que

o0 - (1] a0)0= (4

y en particular, Y es el campo variacional de x, luego un campo de Jacobi* sobre Y.

x(-,s)> (F) = 9ex(t,0) := Y(F), Vte (=3,06),
0

3Aqui estamos identificando a ¢° con su (linica) extensién maximal.
4El dominio de Y serd un subconjunto del de . Asi, identificamos a Y con su (linica) extensién como
campo de Jacobi sobre 7.
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Por su parte, al ser x una variaciéon geodésica por geodésicas temporales desparametriza-
das, y teniendo en cuenta que §°(t) = 9;x(t,s), se verifica g(¥°,7°) = —1, Vs y, por tanto

(jS . g(,)-/s’ 75) = zg(Dsatx(t/ 0)/atx(tr0)) = zg (Dtasx(tl 0)/ ’Y(t)> =
=2g(DeY (), 7(t)) = 28(Y'(t),¥(t)) =0, ¥,

donde en la segunda igualdad hemos empleado el apartado i) de la proposicién 1.50. Asi,
hemos demostrado que Y = A(0) € J°(y). En particular, podemos expresar Y = Y®n 4 Y+,
con Y ¢ 7T(y) e Y+ € T+ ().

Al ser Y € J%(7), se tiene que 4 g(Y(t),7(t)) =0y, por tanto, g(Y,7) = b. Asf, po-
demos expresar (véase la demostracién de la proposicién 1.59) Y@ = —p+.

Ahora bien, no todas las variaciones x de 7y por geodésicas temporales pueden ser aso-
ciadas con una curva diferenciable A: I — M, con A(0) =T, que sea localmente inyectiva.
Supongamos que A fuese constante en un entorno de 0. Se tendria entonces que [y] = [y°],
Vs € ] C I, olo que es lo mismo, Imy = Im+®, Vs. En consecuencia, las geodésicas ® son
reparametrizaciones (traslaciones temporales pues, como siempre, consideramos que todas
estan parametrizadas por el arco) de 7. Por supuesto, al tratarse de una curva constante
alrededor de 0, se deberia tener A(0) = 0.

Sin embargo, definamos la variacion x(t,s) = (t + h(s)), donde h es diferenciable. En-
tonces podemos identificar A(s) = ’yh(s), Vs. El campo variacional asociado a esta variacién
es Y(t) = h(0)¥(t) € JT(7). En resumen, si A es constante en un entorno de 0, entonces
Y e T (y).

Por lo expuesto anteriormente, deberemos considerar que Y = A(0) = 0, esto es, realmen-
te estamos trabajando en el espacio cociente J°(v)/J7(y) & jL('y). La aparicién de campos
de Jacobi tangentes es, por tanto, solo un “artefacto”, producto de haber identificado clases
de equivalencia con una de sus representantes parametrizadas por el arco.

Por su parte, dadas dos 71,72 € T con 7 (t) = y1(at +b), a # 0, existe un isomorfismo

canonico o .
®’71—>72: J (’)’1) —-J (')’2)

(2.14)
Yl — Yz,
donde Y(t) = Yi(at+b).
En consecuencia, tenemos que
nmM={(Y)=Y+J7(v) | Ye T (0] =T (), (2.15)

donde v € T es cualquier geodésica. El isomorfismo (2.14) nos garantiza que para cualquier
eleccion de v € T, las descripciones de Tt M son equivalentes.

Denotaremos por p,, al isomorfismo o, : 7°(7) /7" () — TrM dado por (2.13). Asimismo,
denotaremos por W a los elementos de Tr M

Visto de manera equivalente, si trabajdsemos con geodésicas maximales viéndolas como
aplicaciones (esto es, "no desparametrizadas”) y considerdsemos las variaciones correspon-
dientes tendriamos que la parte tangencial del campo variacional solo mueve la parametriza-
cion, mientras que es la parte ortogonal la que mueve la geodésica.
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Notemos, por ultimo, que con esta descripciéon de Tr M, la diferencial de IT: HT — M
viene dada para cadav € H'y cada ¢ € T,H™ por

dvn(g) = P%(<YC>)'
2.5. La forma simpléctica en M

Sea v €T’ cualquier geodésica parametrizada por el arco y dirigida al futuro y sean
Wy, wh € Tr M. Sabemos que todo elemento Y; € p;l(‘Wi) puede expresarse de manera ni-

ca como Y; = A; + B; con A; € J+(7v) y Bi € T (y) N J%(y). Ademss, dos elementos
distintos de una misma clase diferirdn exclusivamente en la parte tangencial. Denotemos por
¢1,¢2 € TyH a los elementos tales que Y; = Yg,.

A la vista de la ecuacién (2.6), que da la expresion de la forma simpléctica en TM,
definimos una forma simpléctica en Tr M dada por:

wr (M, W) = we(81,82) = g(Y1, Y2) —g(Y1,Y3). (2.16)

Para que dicha forma bilineal esté bien definida, no deberd depender de los representantes
elegidos: ni de los campos de Jacobi Y; € p;l(‘Wi), ni de la geodésica v € I'. Comprobemos
que, en efecto, esto es lo que sucede.

Por una parte, la independencia de la geodésica -y, representante de la clase I', es conse-
cuencia directa de la ecuacién (2.5) y del hecho de que dos geodésicas parametrizadas por el
arco y dirigidas al futuro pertenecientes a una misma clase I' diferirdn exclusivamente en una
traslacion del pardmetro.

En cuanto a la independencia de los campos de Jacobi Y7 e Ys, representantes de las
clases p. ' (1) y p; ' (Wh), respectivamente, observemos que, al ser B; € J'(v) N J°(y),
éstos deberan poder expresarse como B;(t) = b;(t). En consecuencia,

wr(m, wh) = g(A}, A2+ bry) — g(A1+ b1y, Ay) =
- g( ;JAZ) _8(A1/A12)1

donde en la segunda igualdad hemos empleado que A; € J+ () v, por tanto, g(A!,7) = 0.
En conclusién, la forma bilineal definida depende exclusivamente de la parte ortogonal, esto
es, depende de las clases %: y no de los representantes Y;.

Los razonamientos precedentes garantizan que la ecuacion (2.16) estad bien definida y es
una forma simpléctica en M.

Por su parte, dados v € Hy ¢1,¢» € T,H, se tiene
(IT"w) (81, 62) = wr(o) (doT1(81), doT1(E2)) = Wiy, (04 (Y1), 04 ((Yzr))) = wy(81, 82)-

En otras palabras, la forma simpléctica recién definida es la tUnica que verifica IT*w = We -
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3. Estructura de contacto del espacio de rayos de luz

En este capitulo construiremos el espacio N de los rayos de luz de un espaciotiempo y lo
dotaremos de una estructura de variedad diferenciable de contacto inducida por la estructura
simpléctica de M.

3.1. Estructura causal de espaciotiempos

En primer lugar trataremos brevemente las nociones de clase conforme o estructura causal
(clasica) de espaciotiempos con el objetivo de introducir algunos de los niveles de la denomi-
nada escalera de causalidad o jerarquia causal de espaciotiempos que nos serdan de utilidad
para garantizar que N admita una estructura de variedad (Hausdorff). Seguiremos para ello
la célebre revision (Minguzzi et al., 2008), en la que se discuten los avances mas recientes
del momento en dicha materia.

Comenzamos con algunas definiciones que nos permiten relacionar métricas lorentzianas

sobre una misma variedad y trasladar esta relacion a la coincidencia entre sus conos de luz.

Definicion 3.1. Se dice que dos métricas lorentzianas g, g sobre una misma variedad dife-
renciable M son conformes sit § = e**g, para cierta funcién diferenciable u: M — R.

Evidentemente, la relacién “ser conformes” es una relacién de equivalencia en el conjunto
de las métricas lorentzianas sobre una misma variedad. A las clases de equivalencia bajo
esta relacién las denominamos clases conformes de métricas. Denotaremos por g a la clase
conforme de g, esto es, al conjunto

g={g=¢"g|u: M — R diferenciable}.
Notese que el caracter causal de una curva diferenciable en una variedad lorentziana (M, g)

solamente depende de la clase conforme de la métrica g.

Pues bien, se tienen los siguientes dos resultados, que muestran la importancia de estudiar
los conos luminosos para obtener propiedades conformes, esto es, dependientes exclusivamen-
te de la clase conforme de g.

Lema 3.2. Sea (V,g) un espacio vectorial pseudoeuclideo (def. 1.35) y sea b una forma
bilineal simétrica en V. Entonces son equivalentes:

i) Existe c € R\{0} tal que b = cg,
ii) g(v,v) =0 < b(v,v) =0.

Lema 3.3. Dos métricas lorentzianas g, g sobre una variedad diferenciable de dimension mayor
que 2 son conformes si, y solamente si tienen los mismos vectores luminosos.

Consideramos ahora el concepto “completo” de espaciotiempo, que incluye una estructura
adicional: la orientacién temporal.

Definicion 3.4. Un espaciotiempo es una variedad? lorentziana conexa (M, g) temporalmente
orientada.

LE| factor 2 se suele afiadir para evitar la aparicién de factores 1/2 en otras expresiones.
2Asumimos siempre que los espaciotiempos son variedades de Hausdorff, lo que refleja el principio de
localidad de las teorfas fisicas (Bautista et al., 2015a).
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Noétese que, en general, M no tendra por qué ser orientable, propiedad que es I6gicamente
independiente de la orientabilidad temporal.

Definicién 3.5. Se dice que dos espaciotiempos (M, g) y (M, g) sobre la misma variedad
son puntualmente conformes si las métricas son conformes y las orientaciones temporales
coinciden en cada punto.

Nuevamente, la relacion de conformalidad puntual de espaciotiempos es una relacién de
equivalencia en el conjunto de los espaciotiempos definidos sobre una misma variedad. A las
clases de equivalencia bajo esta relacién las denominamos clases puntualmente conformes de
espaciotiempos.

Definicién 3.6. Se dice que dos espaciotiempos (M, g) y (M, g) son conformes si existe un
difeomorfismo ¢: M — M tal que los espaciotiempos (M, g) y (M, ¢*g) con la orientacion

temporal dada por el pull-back de la orientacién temporal en M son puntualmente conformes.

Nétese que la conformalidad puntual de espaciotiempos definidos sobre una misma varie-
dad es un caso particular de la conformalidad de espaciotiempos, sin mds que tomar ¢ = Id.
De nuevo, la relacién de conformalidad es una relacién de equivalencia en el conjunto de todos
los espaciotiempos, lo que motiva la siguiente definicion fundamental.

Definicion 3.7. Se denomina clase conforme o estructura causal (cldsica) de un espaciotiem-
po (M, g) a la clase de equivalencia [(M, g)] por la relacién de conformalidad.

Nétese que dos espaciotiempos sobre la misma variedad que difieran exclusivamente en
su orientacién temporal son, por definicién, no puntualmente conformes. Puede comprobarse
que ademas, podrian ni siquiera ser conformes (Minguzzi et al., 2008), es decir, dos espacio-
tiempos sobre la misma variedad con orientaciones temporales opuestas pueden no tener la
misma estructura causal.

Por simplicidad, trabajaremos con las clases puntualmente conformes de espaciotiempos
definidos sobre una misma variedad M. Dado un espaciotiempo (M, g) denotamos a su clase
puntualmente conforme por (M, g). Cuando, de nuevo por simplicidad de nomenclatura, nos
refiramos a un espaciotiempo por (M, g) estaremos indicando que las propiedades se verifican
para cualquier espaciotiempo de dicha clase.

Por supuesto, el cardcter causal y la direccién temporal de una curva causal a en un
espaciotiempo (M, g) solo depende de la clase puntualmente conforme (M, g). Asi, una
curva causal (resp. luminosa, temporal) dirigida al futuro (resp. pasado) en un espaciotiempo
(M, g) lo seguira siendo en todo espaciotiempo de la clase conforme (M, g).

Sin embargo, una geodésica -y en un espaciotiempo (M, g) podria dejar de serlo en otro
espaciotiempo de la misma clase conforme. En otras palabras, el cardcter geodésico de una
curva diferenciable no es un invariante conforme. Se tiene, no obstante, el siguiente resultado,
que puede encontrarse en (Candela et al., 2010, pag. 10) o (Minguzzi et al., 2008):

Teorema 3.8. Dos espaciotiempos puntualmente conformes admiten las mismas geodésicas
luminosas temporalmente orientadas. En consecuencia, el cardcter de geodésica luminosa
(temporalmente orientada o no) es un invariante conforme.
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Definicion 3.9. Sea (M, g) un espaciotiempo y p,q € M. Se definen las siguientes relaciones
de causalidad:

i) Se dice que p precede cronolégicamente a q, lo que se denota p < g, si existe una
curva temporal dirigida al futuro y: [a,b] — M tal que y(a) = py v(b) =4.

ii) Se dice que p precede de manera estrictamente causal a gq, lo que se denota p < g, si
existe una curva causal dirigida al futuro -y: [a,b] — M tal que y(a) = py v(b) = 4.

Para las siguientes definiciones consideraremos que una curva cerrada es una curva dife-
renciable a: [a,b] — M (como siempre, con &(t) # 0, Vt) tal que a(a) = a(b). En (Minguzzi
et al., 2008) se refieren a este concepto como loop.

Definicion 3.10. Se dice que un espaciotiempo (M, g) es cronoldgico si no admite curvas
temporales cerradas o, equivalentemente, si la relacién cronoldgica es irreflexiva, esto es,

p<Lqg = p#q.

Definicion 3.11. Un espaciotiempo (M, g) se dice causal si no admite curvas causales cerra-
das o, equivalentemente, si la relacién causal estricta es irreflexiva, estoes, p < g = p # 4.

Definicion 3.12. Sea (M, g) un espaciotiempo y V C M un subconjunto abierto. Se dice
que V' es causalmente convexo (en M) si toda curva causal en M con extremos en V estd
enteramente contenida en V.

Definicion 3.13. Un espaciotiempo (M, g) se dice fuertemente causal en p si para todo
entorno U de p existe un entorno V. C U de p que es causalmente convexo. Equivalentemente,
si todo entorno U de p admite un entorno V C U de p tal que toda curva causal dirigida
al futuro y con extremos en V estd enteramente contenida en U. Se dice que (M, g) es
fuertemente causal si lo es en todos los puntos de M.

Evidentemente, todo espaciotiempo causal es cronolégico. Ademads, se comprueba de
forma sencilla que todo espaciotiempo fuertemente causal es causal. Estos son tres ejemplos
de “escalones” de la escalera de causalidad. Pasamos a definir un cuarto, el mas restrictivo
de todos ellos y que culmina dicha escalera. Definimos para ello el siguiente concepto, de
suma importancia: las hipersuperficies de Cauchy. Damos aqui una definicién, de entre varias
equivalentes, que no necesita la definicién previa de los conceptos de dominio de dependencia,
horizonte de Cauchy o conjunto atemporal.

Definicion 3.14. Una hipersuperficie de Cauchy en un espaciotiempo (M, g) es un subcon-
junto S C M al que toda curva temporal maximal interseca una lnica vez.

Definicion 3.15. Un espaciotiempo (M, g) se dice globalmente hiperbdlico si admite una
hipersuperficie de Cauchy (diferenciable espacial3).

Existen otras definiciones alternativas del concepto de espaciotiempo globalmente hi-
perbdlico. Una de ellas involucra la compacidad de las intersecciones de futuros y pasados
causales de puntos distintos. La equivalencia entre ambas definiciones la proporciona el re-
nombrado teorema de Geroch (Minguzzi et al., 2008, Teors. 3.75 y 3.78).

3Se dice que una subvariedad S de M es espacial si para cada punto p € S el espacio tangente T)S es un
subespacio espacial de T,M (def. 1.40). Si una superficie de Cauchy diferenciable es espacial, entonces toda
curva causal maximal la intersecard una Unica vez (Minguzzi et al., 2008, pag. 44).
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Puede demostrarse (Minguzzi et al., 2008, Teor. 2.14), ademads, que dado un espacio-
tiempo (M, g) y un entorno U de un punto p, se puede encontrar un entorno V C U que sea
globalmente hiperbdlico.

Al margen de la escalera de causalidad wusual, existen otros conceptos relacionados con
la estructura causal de (M, g) como la pseudoconvexidad causal o luminosa (Beem et al.,
1987), que serdn de utilidad mas adelante.

Definicién 3.16. Un espaciotiempo (M, g) se dice causalmente pseudoconvexo (resp. lumi-
nosamente pseudoconvexo) si para todo conjunto compacto K C M existe otro compacto
K’ C M tal que toda geodésica causal (resp. luminosa) con extremos en K esta integramente
contenida en K'.

Claramente, la pseudoconvexidad causal es una condicidon mas fuerte que la pseudoconve-
xidad luminosa. Ademas, se tiene que la pseudoconvexidad luminosa es un invariante conforme
(teor. 3.8). Por dltimo, se puede comprobar que la hiperbolicidad global implica la pseudo-
convexidad causal y, de hecho, con la definicién alternativa mencionada anteriormente la
deduccién es inmediata. La ubicacién precisa de estos conceptos en la escalera de causalidad
se encuentra actualmente en discusién. Véase, por ejemplo, (Hedicke et al., 2021).

3.2. La variedad N de los rayos de luz en M

En este apartado buscamos construir el conjunto de las geodésicas luminosas maximales
desparametrizadas de un espaciotiempo (M, g) y dotarlo de estructura de variedad diferencia-
ble. El teorema 3.8 garantiza que este conjunto serd un objeto conforme, esto es, dependerd
Gnicamente de la clase conforme g. En cualquier caso, emplearemos una métrica auxiliar
g € g, como herramienta de trabajo.

De manera andloga a como hemos procedido en el apartado 2.3, consideramos en pri-
mer lugar el conjunto N/ de todas las geodésicas luminosas maximales en M, es decir, las
geodésicas maximales 7y tales que g(7,7) = 0.

Introducimos en N la relacién de equivalencia dada por 91 ~ 72 <= Im7y; =Im7,y,
de nuevo, consideramos el conjunto cociente A/ = N’/ ~. Denominamos geodésicas lumino-
sas maximales desparametrizadas, o simplemente rayos de luz, a las clases de equivalencia.
Claramente, se tiene

N = {Imv | v es geodésica luminosa maximal}. (3.1)

Nuevamente, las clases de equivalencia I' = [y] estan dadas por la ecuacién (2.7). Sin
embargo, ahora no hay geodésicas parametrizadas por el arco, de modo que no hay repre-
sentantes “privilegiadas” de las clases de equivalencia. Dicho de otro modo, al trabajar con
geodésicas temporales y tomar como representantes naturales a las geodésicas parametriza-
das por el arco estdabamos fijando el parametro a y dejando libre el pardmetro b en la ecuacién
(2.7); ahora nos vemos en la obligacion de dejar ambos pardmetros “libres”.

Consideramos, de forma analoga a lo expuesto en el apartado 2.3, el conjunto
L={v=(pv)eTM|g(v,v) =0, v #0}, (3.2)

que es una hipersuperficie de TM. Este tiene dos componentes conexas, L™ y L, formadas
por los elementos v € L que apuntan al futuro o al pasado, respectivamente.
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De nuevo, los resultados de las secciones 1.5.2 y 2.2 nos permiten considerar la distribu-
cién involutiva L*«s, y el espacio cociente L/L. Si Lt es regular entonces L/Lt admite una
estructura de variedad diferenciable que hace a la proyeccién una sumersién y una tnica forma
simpléctica w tal que IT"w = W1 Ademas, para cada v € L se tendra un isomorfismo

d,I1: TUL/(TUL)i — T (L/Ll). (3.3)

Ahora bien, al contrario de lo que sucedia en la seccién 2.3, en la que construimos una
aplicacién con la que identificar M = H*/H', ahora no podremos identificar N/ con L*/L*,
pues no podremos construir una aplicacién andloga a la de la ecuacién (2.11), al no exis-
tir las curvas luminosas parametrizadas por el arco. En esta ocasion, la identificacion serd
con un nuevo conjunto, denominado de geodésicas luminosas maximales escaladas. Para la
construccién de este conjunto consideramos una nueva relacién de equivalencia en N/ dada
por

71 ~s 12 <= 3b € R tal que y1(t) = 12(t+b), Vi, (3.4)

y definimos Ny = N'/~,. Denotaremos por T's = [y]s € N; a las clases de equivalencia.

En otras palabras, ahora dos geodésicas estaran relacionadas si una se obtiene de la otra
por una traslacion de su parametro, mientras que para la definicién de AV las considerdbamos
relacionadas si una se obtenia a partir de la otra por medio de cualquier reparametrizacion.
En particular, ahora identificamos menos geodésicas, por lo que cabe esperar que el conjunto
cociente N sea “mds grande”. En efecto, a lo largo de la presente seccién veremos que,
bajo ciertas condiciones, N5 y N son variedades diferenciables de dimensién 2n — 2y 2n — 3,
respectivamente.

Algunos resultados de la seccién 2.3 pueden trasladarse directamente para el caso de las
geodésicas luminosas. Es el caso de las siguientes proposiciones, andlogas a 2.2-2.5:

Proposicion 3.17. Seav = (p,v) € L. Entoncesx(p/v) € T,L. En otras palabras, XL € X(L),
luego X1 genera una distribucion unidimensional en L a la que denotamos por <)(| L)

Proposicion 3.18. Sea v € L. El campo de Jacobi Y € J(vy,) asociado a X(po) €Y = Yo

Proposicion 3.19. Sea ¢ € T,L C T, TM. Entonces, el campo de Jacobi asociado Y verifica
8(Y#(0),v) =0 y /a aplicacicn

T,L3&— Y € T(70) = {Y e T(70) | §(Y'(0),0) =0} (3.5)
es un isomorfismo de espacios vectoriales.

Proposicién 3.20. Para cadav = (p,v) € L se tiene que X () L ToL. En consecuencia, Ly
estd generado por X, ¥, por tanto, Lt = (X|L)-

Al igual que sucedia en la seccién 2.3, de la proposicién 3.20 se deduce que el espacio
cociente L/LL es el espacio de las variedades integrales maximales conexas de la distribucion
()(‘L), que son las imagenes de las aplicaciones a« = (v, ), donde -y es una geodésica maximal,
que estén contenidas en L. Ahora, sin embargo, no podemos considerar una aplicacién andloga
a la dada por (2.11), pues en este caso no disponemos de geodésicas parametrizadas por el
arco. Asi, dos aplicaciones a1,y de la forma (1.14) correspondientes a geodésicas 1,72 € T
de la misma clase de equivalencia de N tendran imdgenes distintas a no ser que 71 y 2 estén
relacionadas por una traslacién del pardmetro, esto es, 1 ~s 72 (3.4).
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En esta situacién se hace patente que la correspondencia anéloga® a la dada por (2.11)
deberd serlo entre N y L/L+. En efecto, la aplicacién

I's — Im1, '

donde 7 es cualquier geodésica en I'y, es claramente una biyeccién. Identificamos, por tanto,
Lt =Y =N (3.7)

y concluimos que si <X\L> = L1 es una distribucién regular, entonces A, admite una estructura
de variedad diferenciable simpléctica de dimensién 2n — 2. Nétese ademas que para cadav € L
se tiene que I1(v) = Imjy = ¥s([70]s)-

Por conveniencia futura, consideraremos el conjunto de las geodésicas luminosas maxima-
les escaladas dirigidas al futuro, al que denotaremos N/". Por supuesto, se tiene

Nr=Llprclyr =N,

y los resultados referentes a la estructura de variedad diferenciable se trasladan de manera
inmediata a ;.

En cualquier caso, atin no hemos dado estructura de variedad al conjunto A de los rayos
de luz. Esto serd lo que nos ocupard durante los siguientes parrafos, en los que identificaremos
N = L*/(x,n), donde A es el campo de Euler®.

Proposicién 3.21. Sea (p,v) € L. Entonces A,y € ToL. En otras palabras, A, € X(L).

Demostracion. La curva f,: R — TM dada por f,(t) = e'v estd integramente contenida en
L, para todo v = (p,v) € L. |

Proposicion 3.22. [os campos X|L ¥ D generan una distribucion bidimensional involutiva
en L a la que denotamos por D = (x|, A1)

Demostracion. Las expresiones locales (1.12) y (3.8) del spray geodésico y el campo de
Euler nos garantizan que A(p,v) Y X(p0) SON linealmente independientes, V(p,v) € L. Por su
parte, las proposiciones 2.2 y 3.21 nos aseguran que A|L,X|L € X(L). En consecuencia, ambos
campos definen una distribucion bidimensional en L.

Sea entonces (p,v) € L, con v = yi%. Consideramos

ia k d k _.r..j i J ki, d
[A(p,v)l)((p,v)] = Ua—yilv W—Frjv U]Tyk :y@—rijyy]ai;l/lc :X(p,v) €D,

con lo que D = (x|, A|.) es involutiva. [

4Nétese que en este caso la correspondencia es con L/t y no con Lt/rt. Si quisiéramos obtener una
correspondencia con L*/L' deberiamos restringir Ns al conjunto de las geodésicas escaladas dirigidas al futuro, o
bien modificar la relacién de equivalencia ~5 de modo que identificase geodésicas dadas por y1 (t) = v2(£t +b).
SEl campo de Euler es el campo A € X(TM) dado para cada (p,v) € TM por A, ) = £,(eo) =dofo(2),
donde fy(t) = e'v, Vt. Se verifica fy(s) = Ag (s). esto es, las fy son las curvas integrales de A. Empleando las

coordenadas locales usuales en TM, en las que v = ¥ aii

, la expresion local de A viene dada por

9
Ay =y | €T, TM. (3.8)
o) =Y 57 (p.)

P Wl 7
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A la vista de estos resultados se tiene que (teor. 1.15) D induce una foliacién en Ly
podemos considerar el espacio cociente L/D = L/(x\y,Ay). Ademds, si la distribucion D es
regular, entonces L/D admite una estructura de variedad diferenciable de dimensién 2n — 3
con respecto de la cual la proyeccién Ilp: L — L/D es una sumersion (teor. 1.17).

Describamos ahora las hojas (esto es, las variedades integrales maximales conexas) de
la foliacién F inducida por D en L. Por comodidad, supondremos que el espaciotiempo M
es fuertemente causal (def. 3.13), condicion suficiente pero no necesaria para garantizar la
regularidad de D.

Sea (p,v) € L y llamemos A a la hoja de F que contiene a (p,v). Por supuesto, se
tendrd Im j,, Im f, C A, al ser 7, y f, curvas integrales de x y A que pasan por (p,v). Las
imagenes de curvas de estos tipos son, grosso modo, el “esqueleto” de A, como se ilustra en
la figura 3.2.

Figura 1. Esquema de una hoja de la foliacién F junto con algunas imagenes de curvas
integrales de x y A. (Elaboracién propia)

El teorema 1.15 nos garantiza, de nuevo, que cada una de las familias {Im 7, | (p,v) € A}
y {Imfv | (p,v) € A} es una foliacién de A de hojas unidimensionales. De hecho, para cada
(g,w) € A se tiene®

{Imy, |ve A} = {Im7j, |velmfy, } = {Im"yfw(t) |t e ]R},
{Imfv |ve A} = {Imfv v e Im'yw} = {Imf"yw(t) | te D(')’w)}/

donde D(y) es el dominio de 7.

(3.9)

Asi, empleando por ejemplo la igualdad superior, se tiene que

A= U Im'j’fw(t) = U Im')./efw = U {(’)’efw(s)/’yg‘zv('g)) } S D(’Yetw)} =

teR teR teR
_ {(%w(s),%w(s)) laeRY, s € D(%w)} - {(’yw(t),a"yw(t)) laeRY, te D('yw)}.

La condicién de causalidad fuerte (def. 3.13) nos garantiza las hojas A € F son efectiva-
mente subvariedades, al no permitir ni que las geodésicas causales tengan autointersecciones’
ni que existan “curvas causales casi cerradas’ (Minguzzi et al., 2008, pdg. 27).

A modo de comprobacién, veamos que T, A € (X(p0), Dipo)) V(p,v) € A. Para ello,

consideramos a: I — A tal que a(0) = (p,v), con v = y'-%. Esta curva estara dada por

w .

a(t) = (71:(B()), a(t) 72 (B(H)) ),

6Es sencillo comprobar que las hojas A no tienen patologias como, por ejemplo, “agujeros” .
"Para esto solo es necesario requerir que M sea causal (def. 3.11).
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donde a: I — R, B: I — D(7,) son diferenciables. Ademas, podemos suponer sin pérdida
de generalidad que a(0) =1y B(0) = 0. Se tiene entonces

, 0
+a(t)7' (B(t) 5
a(t) (B(®) dy a(t) a(t)

y, empleando la ecuacién de las geodésicas (1.4) y las expresiones locales (1.12) y (3.8) del
spray geodésico y del campo de Euler, respectivamente, se tiene en particular,

+a(t) (1) B(E) jyk

() =7 (B D) o

+a(0)y' =
(po) (

AT
= :B(O) X(po) + a(O) A(p,v) € <X(p,v)/ A(p,v))t

como esperdbamos, al ser A una variedad integral de D.

£(0) =y B(0)

ox

(po)

i d
)—T?j(r))yy’ﬁ(o) o

Ahora si, estamos en disposicién de establecer la relacién entre Ny L/D. Consideremos
I' € N.Siy; €T, podemos considerar A, = {(71(t),a11(t)) | a € R, t € D(11)}. Siotra
geodésica 1, € T puede expresarse como 72(t) = y1(ct+b) con c € RT y b € R, se tendra
A, = A,,. Sin embargo, si y3(t) = y1(ct +b) con c € R™, entonces serd A, # A,,.

En otras palabras, dos geodésicas luminosas de una misma clase en N (esto es, relacio-
nadas entre si por un cambio de parametrizacion general) definiran la misma hoja de F si,
y solamente si ambas tienen la misma direccion temporal, esto es, ambas estan dirigidas al
futuro o al pasado. En conclusién, podemos definir la aplicacion

Y: N — L+/D

(3.10)
I — A,,

donde <y es cualquier geodésica en I' que esté dirigida al futuro. Evidentemente, ¥ es una
biyeccién, y podriamos haber construido una biyeccion andloga hacia L~/D considerando las
geodésicas dirigidas al pasado. De este modo, identificamos

LD = L, 8) =N, (3.1)

y deducimos que si D es regular, entonces N/ admite una estructura de variedad diferenciable
de dimensién 2n — 3 respecto de la cual la proyeccién IT: L™ — L/D es una sumersién. Por
tltimo, observemos que para cada v € L, IT(v) = A,, = ¥ ([70)).

Como hemos mencionado anteriormente, la condicidon de causalidad fuerte nos permite
asegurar que las hojas de la foliacion F inducida por D = <X\L1A|L> en L son subvariedades
de L. También hemos mencionado que si D es regular, entonces N admitird una estructura
de variedad diferenciable de dimension 2n — 3. Pues bien, se tiene el siguiente teorema (Low,
2006, Teor. 1), que afirma que la condicién de causalidad fuerte es suficiente para garantizar
la regularidad de dicha distribucién.

Teorema 3.23. Sea (M, g) un espaciotiempo fuertemente causal de dimension n. Entonces
N, el espacio de sus geodésicas luminosas desparametrizadas, hereda de TM una estructura
de variedad diferenciable de dimension 2n — 3.

Sin embargo, la condicién de causalidad fuerte no es necesaria para que N admita una
estructura de variedad diferenciable (Low, 1989): lo Unico que hay que exigir es que las
geodésicas luminosas no se aproximen a si mismas arbitrariamente cerca y de manera tangen-
cial. Por su parte, aun exigiendo que M sea fuertemente causal, no podemos garantizar que
N sea de Hausdorff. El siguiente teorema nos proporciona condiciones suficientes para ello.
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Teorema 3.24. Sea (M, g) fuertemente causal. Si N no es de Hausdorff, entonces M ad-
mitird singularidades desnudas® y, en particular, M no podrd ser globalmente hiperbdlico.

M3s intuitiva es la formulaciéon contrarreciproca, que garantiza que si M es globalmente
hiperbdlico, entonces N es una variedad de Hausdorff. No obstante, de nuevo, la condicién
es suficiente, pero no necesaria (Low, 2006). Se tiene, de hecho, el siguiente resultado (Low,
1990, pdg. 948):

Teorema 3.25. Sea (M, g) un espaciotiempo fuertemente causal. Entonces N es una varie-
dad de Hausdorff si, y solamente si (M, g) es luminosamente pseudoconvexo.

Cabria preguntarse ahora por qué se ha hablado de causalidad de espaciotiempos al des-
cribir el espacio N de geodésicas luminosas, pero no se ha hecho lo propio al describir el
espacio M de las geodésicas temporales. Por supuesto, como ya mencionamos en el aparta-
do 3.1, dos espaciotiempos puntualmente conformes tienen las mismas curvas causales (resp.
temporales, luminosas) orientadas temporalmente. Sin embargo, también mencionamos que
el caracter geodésico de una curva no es un invariante conforme salvo en el caso de las
geodésicas luminosas (teor. 3.8).

En otras palabras, N es un objeto conforme, al contrario que M. En consecuencia, no
parece esperable que al imponer condiciones sobre la clase puntualmente conforme de (M, ),
por ejemplo, al situar a M en la escalera de causalidad, se pueda obtener algln resultado sobre
la posible estructura diferenciable de M. Las condiciones suficientes para garantizar que M
sea una variedad (Hausdorff o no) deberian, en principio, ser condiciones sobre la variedad M
y/o sobre la métrica g, y no solo sobre la clase conforme de (M, g).

En este sentido, en (Low, 1990, Prop. 3.2) se demuestra que la pseudoconvexidad causal
es una condicién suficiente y necesaria para que la variedad de las geodésicas causales C sea
de Hausdorff (seccion 4.1) y, en consecuencia, es una condicion suficiente para que la variedad
de geodésicas temporales M sea de Hausdorff.

3.3. Los espacios tangentes Tt N y Tt y la forma simpléctica en N

En este apartado describiremos los espacios tangentes a las variedades N y N empleando
las identificaciones (3.7) y (3.11). Para ello, presentaremos dos proposiciones andlogas a la
proposicion 2.6, teniendo en cuenta que en este caso no es posible emplear la descomposicion
dada por la proposicion 1.59, al estar trabajando con geodésicas luminosas.

Proposicion 3.26. Seave L y ¢ € (T,L)*" = (xo). Entonces Yz = aty, para cierto a € R
y, por tanto®, (T,L)* = {aj, | a € R} =: T (7).

Demostracion. Sea ¢ € (T,L)* = (x,). Existe entonces a € R tal que & = ax,. La proposi-
cion 3.18 garantiza que Y, = ., de donde se deduce el resultado. [ |

Proposicién 3.27. Seav € L* y sea § € ToA = (X0, A0) = Dy. Entonces Yz € T (7o) v,
por tanto, Dy = Ty A = T (7,).

8Véanse (Low, 1989) y (Minguzzi et al., 2008, pag. 43).
9Nétese que ahora JT(7) # T2 (v) N T(7) = T2 (7).
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3 Estructura de contacto del espacio de rayos de luz

Demostracion. Sea ¢ € D,. Existen entonces a,b € R tales que = ax, + bA,. Al ser lineal
la aplicacién dada por (2.4), se tendra que Yz = aYy, + bY,,. Ademds:

= La proposicion 3.18 nos garantiza que Yy, = 7y.

= De (2.1)-(2.3), (3.8) se deduce que Ya,(0) =0 e Y (0) =v. Como ty, € T (7o)
verifica dichas condiciones, el teorema 1.56 nos garantiza que Ya, = 5.

En conclusion, Yg(t) = (a+ tb)¥(t), luego Yz € T2 (7,), como queriamos demostrar. El
isomorfismo T, A = J'%(+,) es consecuencia de la igualdad de dimensiones. |

A la vista de estos resultados deducimos que

~Y ~ \70 ")/Z)
3.12
~ ~Y jo ,)/U
T[ryv]./\/’ = TH(Z)) <L+/D> = TZ}H/T_UA = ‘7’@111((,),3)’ v E L+'

Ademads, con una discusion similar a la realizada en la seccién 2.4, esta vez considerando
exclusivamente variaciones por geodésicas luminosas, se obtienen las siguientes expresiones
analogas a (2.15), que también pueden obtenerse directamente de las expresiones anteriores:

T N2{ T =Y+77() | yed(n}, ver, (3.13)

TN = {(Y)ta“ =Y+ 7% (v) ( Y € Jo(v)}, vel. (3.14)

Por coherencia con la notacién del caso temporal, denotaremos por p.,, a los isomorfismos
Py TN/ T () = TtN Yy py: T(0)/T7(7) — Tr, Ns dados por (3.12). Asimismo, denotare-
mos a los elementos de los espacios tangentes por Wt ¢ TTN y wT ¢ Tr Ns.

Al igual que razonamos en la seccion 2.5, la expresion de la forma simpléctica wg en TM
sugiere definir para cada ‘WlT, ‘WZT € Trs/\/s

wr, (W, W) = wg(81,62) = g (Y1, Y2) —g(Y1, Ys).

donde Y; € p; (W) para cierto v € Ts y &; € T,L es tal que Yz, = Y; € J°(7). La com-
probacién de que esta aplicacién estd bien definida y es una forma simpléctica en N (y, por
tanto, la Unica) que verifica IT*w = Wg, €S analoga a la hecha en la seccion 2.5.

Nétese que, a pesar de que la variedad N; sea un objeto conforme, la forma simpléctica w
recién definida (al igual que la forma simpléctica wg en TM) depende de la eleccidn concreta
de la métrica g € g y, por tanto, no es un objeto conforme.

Observemos, por dltimo, que al ser N;- C N abierto, todos los resultados obtenidos para
N se trasladan inmediatamente a A"

3.4. La variedad V' como variedad de contacto

El objetivo de este apartado serd dotar a ' de una estructura de contacto, empleando
para ello los resultados 1.73 y 1.74. Comprobaremos, ademds, que aunque la forma simpléctica
w en N depende de la eleccién de la métrica auxiliar g € g, la estructura de contacto serd
un invariante conforme.
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Para evitar ambigiiedades, en el resto de la seccién diferenciaremos la notacién de las
proyecciones denotando IT: LT — L*/p = N y I1s: LT — LY/1t = Nt Nétese que, andlo-
gamente a lo que sucedia en la seccién 2.4, si ¢ € T, L, se verifica:

doTT5(8) = 0o, ((YO)T),  doTI(E) = Py, ((Ye)"™™).

Veamos entonces que la forma simpléctica w en N, es exacta. Para ello definiremos
una 1-forma 6 en J\/';r que verifique 170 = 98|L+ y emplearemos la proposicién 1.73, que nos
garantizara que w = —d6f. Como en la seccién anterior, la expresion (2.6) nos sugiere definir
para cada elemento W' € Tr N,

or, (W) = 0,(8) = g(7,Y),

donde y € Ts, Y € o, 1 (W) y & € Ty gLt es tal que Y = Yz € J°(7). Aligual que para las
formas bilineales definidas en los espacios tangentes de M y N, esta aplicacién estara bien
definida si no depende del campo Y € p;l(‘WT) ni de la geodésica v € I';. Veamos que, en
efecto, esto es lo que sucede.

La independencia de la geodésica v € I's se deduce del hecho de que dos geodésicas en I';
difieren exclusivamente en una traslacién del parametro y del hecho de que al ser Y € jo(v),
entonces g((t),Y(t)) es constante. Por su parte, la independencia de Y € p;'(W") es
consecuencia inmediata de la propia definicion de 6, teniendo en cuenta que las geodésicas
de I's son luminosas.

Asimismo, se verifica 1170 = Qg\ﬁ’ pues para cada v € LTy cada & € T,L, se tiene
(1150) ,(§) = b1, o) (doILs(8)) = Oy, (07, ((Y2))) = 65(2).-

En conclusién, la proposicién 1.73 nos garantiza que w = —d6 y, en particular, (N, w)
es exacta. Por supuesto, la 1-forma @ (al igual que Bg) dependen de la eleccién concreta de
la métrica auxiliar g € g.

Trataremos ahora de inducir en A una estructura de contacto, haciendo uso del teorema
1.74. Para ello, definimos en primer lugar la aplicacién natural®
m: NF— N
I's — T,
donde T es el tnico elemento de N que, como conjunto, contiene a I's. Por una parte,
es evidente que 7T es sobreyectiva. Ademds, para cada v € L™ se tiene que N(Hs(v)) =

7t([v0]s) = [70] = I1(v), de modo que oIl = IT. En otras palabras, el siguiente diagrama
es conmutativo:

L+ I N L+/LJ_ E'/\/s+

Rln

L'p = N.

10NGtese que podriamos haber definido la aplicacién andloga tomando como dominio al conjunto N.
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En consecuencia, el siguiente diagrama de diferenciales es también conmutativo:

T,Lt —2 s Ty o L/t = Ty, N
ld[%]sn
d,IT

+ —
T U)L /D = T['YU]N'

d["r] o dylly = d,I1, y al ser IT una sumersién, deducimos que d[ ., 7T debe ser
sobreyectlva esto es, 71 es una sumersion. Ademads, de la conmutatividad de este diagrama

se deduce también que
d11, 7 (07, (N)T)) = oy, ((Y)).

Por otra parte, si y €T e Y1, Y2 € J%(7y) son tales que A=Y — Yo € J%(y), en-
tonces g((0), A(0)) = 0. En consecuencia, g(7(0),Y(0)) toma el mismo valor para todo
representante Y € p;l(wfan). En otras palabras, para ¢ € I se tiene

dr,e(w) = dr,m(wy) = we = or (wl) =or, (ny). (3.15)

Supongamos ahora dos elementos distintos T'ys, Tps € N tales que 7t (T'y5) = 7w (Tps),
tomemos ‘WiT € Tr, N;. Entonces, aunque se verifique drlsrf(‘wlT) = dFZST((’WZT), se tendra,
en general, que Or, (W) # 6r,. (W), lo que no nos permite definir una 1-forma en N de
forma inmediata.

Sin embargo, para cada I' € N podemos escoger una representante oy € I' y, por tanto,
un unico elemento I's € A que nos permita definir dicha 1-forma.

Tomamos, para ello, un campo vectorial auxiliar sobre la inclusion X: S — H C TM,
cuya existencia estd garantizada por ser M temporalmente orientable (teor. 1.44). Ademas,
supondremos, por simplicidad!!, que el espaciotiempo (M, g) es globalmente hiperbdlico y que
S C M es una hipersuperficie de Cauchy diferenciable y espacial cualquiera. Al ser S espacial,
toda curva causal maximal la intersecard una Unica vez.

Tomamos una geodésicaw € I' € M UN, esto es, una geodésica causal. Existe entonces
un dnico #; tal que a(t;) = p € S. Ya sabemos que toda curva 7 € T’ puede expresarse como
Y(t) = 4% (t) = a(at +b), para ciertos a € R*, b € R. En particular, v**(0) = a(b) y, por
tanto, p = ¥ (0) € S, Va € R*.

Consideramos entonces g(4%/1(0), X,) = ag(i(t1), Xp). Al ser X, temporal, se tiene!?
que g(@(t1), Xp) # 0. En consecuencia, existe un tinico a € R* tal que g(7*"1(0), X,) = —1.

En resumen, para cada I' € M U N existe una tnica geodésica v € T tal que

p=70)es vy g(7(0),X,) = -1 (3.16)

Asi, todo elemento I' € M UN estd candnicamente representado por una lnica geodésica
v € I': aquella que verifica (3.16). En consecuencia, podemos identificar v =T.

11 Relajando esta hipétesis a la causalidad fuerte se podria hacer un estudio analogo considerando entornos
globalmente hiperbdlicos alrededor de cada punto (Minguzzi et al, 2008) y, por tanto, con superficies de
Cauchy locales.

12Utilizamos aqui los siguientes resultados: (1a) Dos vectores X,y € Tp tienen la misma orientacion si, y
solo si g(x,y) < 0. En consecuencia (1b), si x,y € T, entonces g(x,y) # 0. (2) Si x,y € T,M son causales e
independientes, entonces g(x,y) # 0 (Javaloyes V. et al., 2010).
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Noétese!? que, ademds, esta geodésica tiene la misma orientacién temporal que la de Xy
que, sin pérdida de generalidad, podemos suponer futura.

Ahora si, podemos definir una 1-forma 6 en A dada para cada I' € A/ por
Or(wh) = or, (w'), (3.17)

donde Iy es la geodésica luminosa escalada que contiene a la Unica geodésica v € I' que
verifica (3.16), y WT € Tr N es cualquier elemento tal que dr 7t (WT) = W', En particular,
para v € T, se verifica 0r, = (n*@)rs. Notese, no obstante, que la 1-forma @ recién definida
depende del campo auxiliar X tomado para seleccionar a la representante v € I' (3.16).

Consideremos ahora

Hr, = kerfr, = {wT € TN,

g(1Y) =0, vy er, Yep (W},  (318)

que proporciona una distribucién de hiperplanos H en Nj. En los siguientes parrafos deducire-
mos que, a pesar de que 6 dependa de la eleccién de la métrica auxiliar g € g, la distribucion
de hiperplanos H recién obtenida depende exclusivamente de la estructura conforme g.

En primer lugar, sabemos (3.8) que dos métricas conformes g,g admiten las mismas
geodésicas luminosas. Asi, si tenemos un campo de Jacobi Y respecto de ¢ y consideramos
una variacion geodésica por geodésicas luminosas cuyo campo variacional sea Y, ésta serd
también una variacién geodésica por geodésicas luminosas para la métrica g. En consecuencia,
Y también es un campo de Jacobi respecto de g, de donde se concluye inmediatamente el
resultado.

De consideraciones precedentes se puede deducir sin gran dificultad que

71(1"15) = ﬂ(rzs) =T — drlsﬂ'(Hrls) = drzsﬂ'(Hrzs) = Hr. (3.19)

El teorema 1.74 nos garantiza entonces que H es una estructura de contacto en A/. De
hecho, es inmediato comprobar que Hr = kerfr, esto es, la distribucién de hiperplanos H
estd generada por 6 o, dicho de otro modo, 6 es una 1-forma asociada a ésta. En consecuencia,
ni siquiera habria sido necesario emplear el mencionado teorema. Nétese ademds que, aunque
0 dependa de la eleccién del campo auxiliar X, la distribucién de hiperplanos H no depende
de dicha eleccién.

En todo caso, podemos expresar los hiperplanos de contacto como

ﬁl" = kerér = {Wtan | g(’y,Y) =0,Vyerl,Ye p;l(wtan)} =

3.20
— {Wtan | pl;l(wtan) C jl(’)’), V")/ c r}‘ ( )

De forma analoga al caso de la distribucién de hiperplanos H en N, puede demostrarse
que, a pesar de que 6 dependa de la métrica auxiliar g € g, la estructura de contacto H
recién obtenida depende exclusivamente de la estructura conforme g. Esta propiedad puede
demostrarse de manera alternativa empleando el concepto de cielo S(p) de un punto p € M.
Véase (Bautista et al., 2015a).

Nétese, ademds, que el teorema 1.74 nos proporcionaba las 1-formas de contacto como
—0*0, donde ¢ es una seccién de 7. En general, la eleccién de la seccidon o proporcionard
diferentes formas de contacto, aunque todas ellas definan una misma estructura de contacto.
Sin embargo, en este caso todas las formas de contacto coinciden, como consecuencia de las
ecuaciones (3.15) y (3.19).
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Observemos, asimismo, que la 1-forma de contacto 6 estd globalmente!3 definida. En
particular, el fibrado vectorial TN'/H es trivial (1.20) o, equivalentemente, la estructura de
contacto H es coorientable. En consecuencia, 6 A (d@)m es una forma de volumen en N, de
donde se deduce que N es orientable, algo que ya sabiamos al ser N' = oM (véase 4.1).

Notemos, por dltimo, que al ser w = —df y Or, = (7*0) para I'; C T conteniendo a la
dnica representante oy € T' que verifica (3.16), se tiene que
wr, = —dfr, = —d(7*0) . = " (—d6) . (3.21)

135 hubiéramos trabajado con un espaciotiempo fuertemente causal y, por tanto, con superficies de Cauchy
locales, habriamos definido formas de contacto 6 locales alrededor de cada punto, todas ellas asociadas a la
estructura de contacto H.
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4. Relleno simpléctico de N/

En este capitulo abordaremos, por fin, el objetivo central del presente trabajo: el estudio
de la relacién entre la estructura simpléctica de M vy la estructura de contacto de N

Para ello, consideraremos en primer lugar un nuevo espacio, el de las geodésicas causales,
asi como algunas propiedades que garantizan que pueda ser dotado de estructura de varie-
dad. Posteriormente, construiremos una nueva forma simpléctica en M conforme a la forma
candnica obtenida en el apartado 2.5. Seguidamente, demostraremos que ésta se extiende a
los hiperplanos de contacto de N proporcionando una 2-forma que coincide con la forma de
contacto definida por (3.17). Y por Ultimo, repasaremos algunos de los conceptos clasicos de
relleno simpléctico (fuerte/débil) y daremos uno nuevo, el de relleno simpléctico conforme,
que se ajusta a nuestros resultados.

4.1. El espacio C de las geodésicas causales

Construimos aqui el conjunto de las geodésicas causales maximales desparametrizadas en
M, de manera andloga a la hecha en los apartados 2.3 y 3.2. Consideramos en primer lugar
el conjunto C’ de todas las geodésicas causales maximales en M, es decir, las geodésicas
maximales -y tales que g(’y, '}/) < 0. Introducimos en C’ la relacién de equivalencia dada por
Y1 ~ 72 <= Im<; =Im, y consideramos el conjunto cociente C = €'/ ~. Denominamos
geodésicas causales maximales desparametrizadas a las clases de equivalencia. Claramente,
se tiene
C =MUN == {Imv | 7 es geodésica causal maximal}. (4.1)

Al contrario de lo que sucedia para el espacio N de las geodésicas luminosas, que era
un objeto conforme, este nuevo espacio no lo es, pues el caracter de geodésica temporal
depende de la eleccién concreta de la métrica dentro de una clase conforme. De este modo,
en adelante la eleccion de la métrica no sera meramente auxiliar, lo que se explicita al denotar
a los espaciotiempos por (M, g) en lugar de (M, g).

Se tiene el siguiente resultado que proporciona condiciones suficientes para que C admita
estructura de variedad diferenciable (Low, 1990, Prop. 2.1).

Proposicion 4.1. Sea (M, g) un espaciotiempo fuertemente causal. Entonces C admite una
estructura natural de variedad diferenciable con borde oC = N e interior intC = M.

Al igual que sucedia en el apartado 3.2, la condicién de causalidad fuerte no es necesaria
para que C admita una estructura de variedad diferenciable y no es suficiente para garantizar
que dicha estructura sea de Hausdorff. Notese, ademas, que las condiciones de Hausdorff de
M y N son independientes: existen espaciotiempos en los que M es de Hausdorff pero N/
no lo es, y viceversa.

Se tienen, no obstante, los siguientes resultados (Low, 1990), andlogos a los teoremas
3.24 y 3.25. Notese que, en este caso, la métrica no es meramente auxiliar.

Teorema 4.2. Sea (M, g) fuertemente causal. Si C no es de Hausdorff, entonces M admite
singularidades desnudas y, en particular, M no es globalmente hiperbdlico.

En consecuencia, la hiperbolicidad global vuelve a ser condicién suficiente para que C sea
de Hausdorff. Sin embargo, esta condiciéon es, de nuevo, no necesaria.

Teorema 4.3. Sea (M, g) un espaciotiempo fuertemente causal. Entonces C es una variedad
de Hausdorff si, y solamente si (M, g) es causalmente pseudoconvexo.
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4.2. Una nueva 2-forma simpléctica en M

De nuevo'!, por simplicidad, supondremos que el espaciotiempo (M, g) es globalmente
hiperbdlico y que S C M es una hipersuperficie de Cauchy diferenciable y espacial cualquiera.

En el apartado 2.5 construimos la forma simpléctica natural w en M (2.16). Para ello,
tomamos una descripcion del espacio tangente Tr M = JL('y), donde ¥ € T era cualquier
geodésica parametrizada por el arco y dirigida al futuro (2.15). Sin embargo, la eleccién de
v € I' podria haberse hecho de distinta forma, lo que podria proporcionar nuevas formas en
M empleando la misma expresion (2.16). Pues bien, en este apartado construiremos una
nueva forma @ en M conforme! a w que, como veremos posteriormente, es compatible con
la estructura de contacto de N

Recordemos (2.14) que para cada par de elementos y,a € I con y(t) = a(at+t1), existia
un isomorfismo candnico

Ousqy: T (a) = T°(7)
Y, — Y.,

donde Y, (t) = Yy(at +t;). Veamos que, ademds, © = @,_,, verifica @ (J*(a)) = T+ (7).
En efecto, sea Y, € J*(a). Consideramos O(Yq) € J(7). Se tiene entonces
g(O(Ya), 1) = 8(Yy(t), 7(t)) = ag(Yalat + t1), d(at + t1)) =0,
y de la inyectividad de ® se deduce la igualdad buscada.

Por su parte, la ecuacién (2.13) proporcionaba isomorfismos p.: T+H(y) = TtM, y
pa: J+(a) — Tr M. En conclusién, se tiene el siguiente diagrama de isomorfismos:

(a) e T
o
T M,

que nos permite seguir identificando TrM = J4(7y) = J+(a). Ademds, el isomorfismo p,
puede obtenerse también de la manera alternativa expuesta tras la ecuacion (2.13).

J

7)

En adelante, reservaremos la notacién 7y para la tnica representante de I' € C dada por la
ecuacién (3.16). Con ella, podemos definir una nueva 2-forma®2 @ en M, dada para cada
wy, W € T, M por

Wy (M, ma) = g(¥1,Y2) —g(N1, Y3), (4.2)

donde Y; € p;l(‘Wi) C J(7y). La demostracién de la independencia de los representantes es
andloga a la de la seccion 2.5. En ocasiones, denotaremos a esta forma por wu.

Veamos que esta nueva forma es conforme a la forma simpléctica natural w, esto es, que
existe p: M — R diferenciable tal que w = pw. Para ello, denotamos por 7y a la represen-
tante candnica de I' dada por (3.16) y por « a la tnica representante de I' parametrizada por
el arco y dirigida al futuro tal que a(0) = y(0).

1 Andlogamente a lo definido para métricas, se dice que dos formas w,@ en M son conformes si @ = Hw,
para cierta funcién diferenciable y: M — RT. Nétese que, aunque w sea una forma simpléctica, @ no tendrd
por qué serlo, ya que es posible que no sea cerrada.

2Aunque la expresién sea la misma que (2.16), ahora, al tomar una representante dada por una paramettri-
zacion distinta, esta forma no necesariamente coincidird con aquella.

3Nétese que, de haber trabajado con un espaciotiempo fuertemente causal, la definicién de @ sélo podria
hacerse localmente.
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Se podré expresar a(t) = -y(at) para cierto a € R™. En consecuencia, se tendra

-1
—1=g(at),at) =a*g(7(t),7(t)) = a= /= |7]"".
g(@(t),a(t) =a*g(1(0), 1) = a = |y =1l
Sean ahora Y; € p; (W) C J°(7). Los elementos Z; := @, 4(Y;) € J°(«), que estdn

dados por Z;(t) = Yi(at) (2.14), verifican Z; € p;'(W}). Por tanto, podemos expresar
w(m, wh) = g(Z1,Z2) — §(Z1,Z3) = g(aY1,Y2) —g(Y1,aYy) = aw(mwh, wh).

En consecuencia, se verifica w = ad, esto es, las formas simplécticas w y @ son con-
formes, con factor* conforme u: M — RT dado por u(7y) = a, = |4|~!. El hecho de que
esta aplicacion sea diferenciable no es en absoluto inmediato. Sin embargo, esto se puede
demostrar estudiando las parametrizaciones s de M construidas al final del apartado 2.3.

En efecto, dada una hipersuperficie local de Cauchy S, se tiene que la aplicacion
hs: Vs — R
v+ g(v,0)7!

es diferenciable. En consecuencia, la aplicacién hg o 1p§1: M — R es también diferenciable.
Notamos, por dltimo, que hg o lpgl = J| M. de donde concluimos la diferenciabilidad de p.

4.3. M como relleno simpléctico de N/

La ecuacién (4.2) permite extender @ a los hiperplanos de contacto Hr = H,, (3.20) de
N . En efecto si ‘Wfan, ‘Wzta“ € H. veamos que

O (W, W) = ¢(Y1,Y2) — (Y1, Y3) (4.3)

es independiente de los representantes Y; € p- ! (W/"). Supongamos que Y;, Y € ot (wren).
Podrd expresarse entonces Y; = Y; + A;, donde A; € J%(vy). De este modo, se puede ex-
presar A;(t) = (a; + bit)y(t) y se tiene

s(YL,Y2) —g(Y1,v3) = g(Y]{ + A}, Yo+ AQ) s(V1+ A1, Y+ A}) =

=8(V,¥2) — (%1, Y3),

donde en la segunda |gualdad hemos utilizado que g( Aj) =0, al ser Yi S jo(v), que
g(Y,,A ) =0, al ser Y, e 71 (7). vy que g(A}, Aj) =0, aI ser oy una geodésica luminosa.

En los siguientes parrafos construiremos una extensién de @ a todo el espacio tangente
T, N. Para ello, consideremos un campo vectorial X € X(C). Su flujo ¢ estd definido, en
su dominio, por ¢x(7y,s) =1I%, donde s+— I® es la curva integral maximal de X" tal que
I'Y =T = 4. Los teoremas de diferenciabilidad del flujo (Lafuente, 2013) nos garantizan que
el dominio D(¢x) es abierto y que en él el flujo es una aplicacién diferenciable.

El flujo da lugar a una variacién geodésica X, (t,s) = I'*(t) = 9°(t), donde ¢* € I® es la
lnica geodésica que verifica (3.16). Asi, podemos considerar su campo variacional

_ 9y
Y, =7 _C J(7) (4.4)

que, por construccion, verifica Yo, € p;l(é‘(ﬂ,).

4Nétese, de nuevo, que de haber trabajado con un espaciotiempo fuertemente causal, u estarfa definida
sélo localmente. Nétese, ademas, que el valor de u depende de la eleccién del campo auxiliar X (3.16).
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Hasta ahora hemos exigido, por comodidad, que el espaciotiempo fuese globalmente hi-
perbdlico. Sin embargo, relajando dicha hipdtesis a la causalidad fuerte del espaciotiempo se
obtienen resultados andlogos, trabajando con superficies de Cauchy locales. De este modo,
se obtendran 1-formas de contacto 6, aplicaciones u y 2-formas w locales.

Dicho esto, enunciamos el siguiente resultado en el caso fuertemente causal:
Teorema 4.4. Sea (M,g) un espaciotiempo fuertemente causal. Para cada yog=Tp € N

existe un entorno U de T’y en C en el que u (y, por tanto, w) esta definida, tal que para todo
par de campos diferenciables X,) € X(U), se tiene que la aplicacion f: U — R dada por

flr) =@ (X, ¥y) =8(Y}. Yy) —g(Ya, X)), (4.5)
donde Y., 177 estdn construidos con el procedimiento anterior, es diferenciable.

Demostracion. De la diferenciabilidad del flujo se deduce que la aplicacién (4.4) proporciona
aplicaciones diferenciables

v —Y,(0) € TM, y =Y (0)€TM,
y analogamente para Y. [ |

Notese, en primer lugar, que la aplicacién (4.5), al igual que y, depende del campo vectorial
auxiliar X tomado para escoger la geodésica v € T' (3.16).

Noétese ademds que, si hubiésemos exigido en el teorema 4.4 que el espaciotiempo fuese
globalmente hiperbdlico, entonces tanto p como w estarian globalmente definidas y tendrfamos
el siguiente corolario:

Corolario 4.4.1. Sea (M, g) un espaciotiempo globalmente hiperbdlico. Para todo par de
campos diferenciables X, € X(C), se tiene que la aplicacion (4.5), definida en C, es dife-
renciable.

Por otra parte, observemos que aunque para definir la aplicacion (4.5) hayamos necesitado
considerar campos diferenciables X', ) € X(U), es inmmediato comprobar que, en cada punto
v € U, la definicién es independiente de las extensiones X e ) de ‘Wfan =4,y r1/1/2’“"“ =V,.

En consecuencia, para cada o € C tenemos una forma bilineal .. Al ser (4.5) diferencia-
ble para cualesquiera campos diferenciables X, Y € X(U), deducimos® que @ es un campo
tensorial en U que, por supuesto, es antisimétrico. Estudiemos ahora la relacién entre estas
nuevas formas y la estructura de contacto de N

Tomemos, para v € UNN, dos vectores w", wi* € T, N'. Denotemos 7y € T € N
En particular, se tiene 7t(I's) = T = <. Tomemos los campos de Jacobi Y; € p;l(flfl/ita“) dados
por el procedimiento anterior (4.4) y denotemos W = p, ((Y;)T), de donde deducimos que
dr,t(wT) = whn. Se tiene entonces (3.21):

G (W, ) = (Y], V2) — (2, Y2) = cor, () = (—dB). (wfo, uto).
De la arbitrariedad de vy € UNN y de W, Wi € T, N se deduce que

C(N)‘UQN = —d6. (4.6)

SLema: sea @: M — Z9(M) (véase la notacién de 1.27) tal que @, € Z9(T,M), Vp y tal que para todo
par de campos X, Y € X(M) la aplicacién p — @wp(Xp,Yp) es diferenciable. Entonces @ es un campo tensorial.
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4 Relleno simpléctico de N

En resumen hemos definido, en un entorno U de cada geodésica 7y € C, una 2-forma @
que, en U N M es conforme a la forma simpléctica natural w, y en UNN coincide, salvo el
signo, con la diferencial exterior de la forma de contacto global encontrada en la seccién 3.

4.4. Rellenos simplécticos

En esta seccidn se recopilan los conceptos elementales sobre rellenos simplécticos siguien-
do, fundamentalmente, los textos (Eliashberg, 1991), (McDuff, 1991).

Consideremos en primer lugar (N, H) una variedad de contacto que, por simplicidad,
asumiremos coorientable (véase el apartado 1.6). Sea « una forma de contacto asociada a H
que, por tanto, puede definirse globalmente. Cualquier otra forma de contacto @ asociada a
H estara dada por @ = fa para cierta funcién diferenciable f que no se anule.

En consecuencia, (d&)y = f(da)y. Decimos entonces que (da)y y (da)y estdn en la
misma clase conforme simpléctica. En otras palabras, la clase conforme simpléctica de (dzx)|H
depende tnicamente de H, por lo que la denotamos CS(H). Nétese que, si N es conexa,

CS(H) = CS*(w) LU CS(a),
donde CS*(a) = {f(da)y | £f > 0} son las clases conformes simplécticas orientadas de H.

Al ser H coorientable, sabemos que N es orientable y una orientacion suya estard dada
por la eleccién de una clase conforme simpléctica orientada de H. Sin pérdida de generalidad,
denotaremos por CS*(H) a la clase escogida.

Definicion 4.5. Se dice que una variedad simpléctica compacta (M, w) es un relleno simplécti-
co (fuerte) de una variedad de contacto (N, H) si N = dM vy existe una forma de contacto
a en N tal que wyy = da. Se dice que (N, H) es simplécticamente rellenable si admite un
relleno simpléctico (fuerte).

Definicion 4.6. Sea (M, w) una variedad simpléctica compacta y sea N una componente®
de dM dotada de una estructura de contacto coorientable H = kera. Escogemos la clase
conforme simpléctica orientada CS*(H) que induzca en N la misma orientacién que w. Se
dice entonces que w domina a H si para cada x € N, la restriccién wy, estd en CS™(H).
Se dice que N es de tipo contacto si admite una estructura de contacto dominada por w.

En un principio se pensaba que una nocién de relleno simpléctico mas débil que el de
la definicion 4.5 podia hacerse definiendo un “relleno simpléctico débil” de una variedad de
contacto (N, H) como una variedad simpléctica compacta (M, w) tal que N = dM es de tipo
contacto. Cuando la dimensién de M es 4, este nuevo concepto es efectivamente mds débil
que el anterior. Sin embargo, para dimensiones superiores, ambos conceptos son equivalentes,
como muestra el siguiente teorema (McDuff, 1991, Lema 2.1):

Teorema 4.7. Sea (M, w) una variedad simpléctica compacta con dim M > 6. Una compo-
nente N del borde de M es de tipo contacto si, y solo si existe una forma de contacto « en
N tal que WiN = du. En tal caso, decimos que N es una componente convexa de oM.

Investigaciones mas recientes (Massot et al., 2013, pag. 293) han aportado nuevas defini-
ciones de relleno simpléctico débil que para variedades de dimensién 6 o superior proporciona
un concepto estrictamente mas débil que el de relleno simpléctico fuerte y para variedades
de dimensién 4 se reduce al concepto de relleno simpléctico débil definido a partir de la
dominacién de una estructura de contacto.

6Esto es, N es unién de componentes conexas de oM.

56



4 Relleno simpléctico de N

4.5. Un nuevo concepto de relleno simpléctico

Siguiendo el resultado del teorema 4.4, se propone la siguiente definicién:

Definicion 4.8. Decimos que una variedad simpléctica (M, w) es un relleno simpléctico con-
forme de una variedad de contacto (N, H) si se verifican las siguientes condiciones

i) N =0M,

ii) Para cada p € N existe un entorno U de p en MU N vy una funcién diferenciable
pu: UNM — RT tal que pw se extiende diferenciablemente a U, y

iii) La extension coincide en U N N con la diferencial exterior de una forma de contacto.

Esta definicidon se puede escribir de forma equivalente como:

Definicion 4.9 (Reformulacién def. 4.8). Decimos que una variedad simpléctica (M, w) es
un relleno simpléctico conforme de una variedad de contacto (N, H) si N = 0M y para cada
p € N existe un entorno U de p en MU N, una funcién diferenciable yu: UN M — R
y una 1-forma de contacto 8 en U N N tales que para cualesquiera campos diferenciables
X,Y € X(U) se tiene que la aplicacién f: U — R dada por

Flq) = u(q) we(Xy,Yy), sigelUnM,
Y7\ @0),(x,,Y,), sigeunN,

es diferenciable.

En conclusién, con esta nueva nomenclatura, los resultados de la seccion 4.3 se resumen
en el siguiente teorema:

Teorema 4.10. Sea (M, g) un espaciotiempo fuertemente causal. Entonces (M, w) es un
relleno simpléctico conforme de (N, H).

Recuérdese que, si exigiésemos que el espaciotiempo fuese globalmente hiperbdlico, en-
tonces tanto la aplicacién u como la 1-forma de contacto 6 estarian globalmente definidas.
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5. Conclusiones

El apartado 4.3 culmina con los dos resultados centrales del presente trabajo: el teorema
4.4, que afirma que las 2-formas locales w en M, conformes a la forma simpléctica w, se
extienden localmente a NV, y los comentarios posteriores junto con la ecuacién (4.6), que
garantizan que la extensién coincide en AV, salvo signo, con la diferencial exterior de la forma
de contacto dada en la seccion 3.

Las secciones siguientes revisan el concepto de relleno simpléctico en la literatura e intro-
ducen un concepto ligeramente distinto, el de relleno simpléctico conforme que, hasta donde
el autor tiene conocimiento, no se encuentra en la literatura. Este permite reenunciar los
resultados del apartado 4.3 de manera compacta, obteniendo el teorema 4.10, un resultado
que, de nuevo de acuerdo con el conocimiento actual del autor, tampoco se encuentra en la
literatura.

En futuros trabajos se podria abordar diversas materias relacionadas con estos resultados,
como por ejemplo:

i) Dar una interpretacion fisica a la forma simpléctica w, a la 2-forma @ y a la estructura
de contacto H.

i) Construir los espacios de geodésicas M, Ny C, asi como sus estructuras adicionales,
para el caso de modelos de espaciotiempos concretos empleados en Relatividad General
Matematica. De especial interés podrian ser el espacio de Minkowski, el de Sitter y
el anti-de Sitter, que proporcionan modelos de espaciotiempo de curvatura constante
cero, positiva y negativa, respectivamente.

iii) Estudiar la relacién entre el concepto de relleno simpléctico conforme y los distintos
tipos de relleno simpléctico dados en la literatura.

iv) Profundizar en el andlisis de la relacidn entre la estructura de contacto y el cielo de un
observador (Bautista et al., 2015a).

Algunos de estos aspectos ya estan siendo estudiados lo que, previsiblemente, podria dar
lugar a la publicacién de un articulo de investigacion.
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