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Resumen - Abstract

Resumen

Un tensor métrico g de tipo (0,2) en una variedad diferenciable M
se dice que cambia transversalmente de signatura, si en torno a ca-
da punto donde es degenerada, existe un sistema de coordenadas que
verifica que la diferencial de la funcion det (g;;) en el punto no se
anula. Esta condicion implica que el conjunto X en donde g es de-
generada es una hipersuperficie, la signatura cambia en una unidad
al atravesarla y se pide que el radical unidimensional en cada punto
p € X sea siempre transverso a . El objetivo de esta memoria es
estudiar las lineas geodésicas que atraviesan Y. Basado en el trabajo
de Kossowski y Kriele [3] quienes prueban que, bajo estas condicio-
nes, por cada punto de X atraviesa una unica pregeodésica en la
direccion del radical y determinan las otras direcciones en las que
existen geodésicas que atraviesen la hipersuperficie.

Palabras clave: Tensor métrico — Signatura — Hipersuperficie —
Radical — Transverso — Geodésica
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Resumen - Abstract

Abstract

A tensor field g of type (0,2) on a smooth manifold M is a transverse
type changing metric, if around each point where it is degenerate,
there exists a coordinate system such that the function det (g;;) has
non-zero differential at the point. This condition implies that the set
X, where g is degenerate, is a hypersurface, the signature changes by
one unit upon crossing it, and the one-dimensional radical at each
point p € X s always required to be transverse to Y. The aim of
this work s to study the geodesic lines that cross Y. Based on the
article of Kossowski and Kriele [3], who proved that, under these
conditions, through each point of X crosses a unique pregeodesic in
the direction of the radical, and they determine the other directions
in which there are geodesics crossing the hypersurface.

Keywords: Tensor field — Signature — Hypersurface — Radical —
Transverse — Geodesic
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Introduccion

La geometria semi-riemanniana es una extension de la geometria rieman-
niana que permite la existencia de métricas no definidas positivas. Esta rama
de la geometria diferencial se ocupa de estudiar las propiedades y estructuras
de variedades diferenciales dotadas de un tensor métrico, que se conocen como
variedades semi-riemannianas.

Las geodésicas son curvas que hacen critica la longitud del camino entre
dos puntos en una variedad, generalizando la nocién euclidea de linea recta. En
la geometria semi-riemanniana, las geodésicas se definen como curvas con ace-
leracién cero. Estas cobran especial importancia para comprender la estructura
de los espacios curvos y describir el movimiento de particulas en estos espacios,
lo que tiene aplicaciones directas en la fisica, especialmente en la relatividad
general.

El propdsito de esta memoria es estudiar las geodésicas de una variedad M
dotada de un tensor simétrico g de tipo (0, 2). Existe la posibilidad de que dicho
tensor g sea degenerado, asi un punto x € M se dice singular si g, es degenerada
y denotamos por X' al conjunto de todos los puntos singulares. De esta manera, g
induce sobre cada componente conexa de M \ X una métrica semi-riemanniana.
Por otro lado, se dice que g es de tipo transverso si en torno a cada punto singular
existe un sistema local de coordenadas (z') verificando que la diferencial de la
funcién det(g;;) es no nula en dicho punto, donde g = g;;da’ ® dz? es la expresion
local de g. Ademas, esta propiedad es independiente del sistema de coordenadas
tomado.

Como consecuencia, se deduce que si g es de tipo transverso, entonces Y
es una hipersuperficie y se dice que M es un X-espacio. Bajo estas condiciones
se obtienen dos resultados fundamentales: la signatura cambia en una unidad
al atravesar ) y para cada punto p € X el subespacio radical Rad, es unidi-
mensional. Asimismo, se exigira que dicho radical sea siempre transverso a la
hipersuperficie .



X Introduccién

A partir de aqui, como resultado del estudio de las lineas geodésicas en M
como X-espacio, surge de manera natural la siguiente cuestion:

¢ Eristen lineas geodésicas en M que atraviesen la hipersuperficie X 7

Marek Kossowski y Marcus Kriele respondieron dicha pregunta en 1994
en su articulo “Transverse, type changing, pseudo riemannian metrics and the
extendability of geodesics”, que hace uso de teoremas de variedades estables en
sistemas dindmicos (véase [3]). Esta memoria estd basada en este trabajo y tiene
como principal objetivo dar respuesta a esa pregunta.

Para resolver el problema se estudian por separado las lineas geodésicas
que atraviesan X en la direccién del radical y aquellas que atraviesan la hiper-
superficie en otra direccién transversal. Ademds, es importante resaltar que ha
sido necesaria la construccion de una determinada base movil para resolver un
detalle incorrecto en el Teorema 1 de [3]. De esta manera, se obtienen los dos
teoremas esenciales del trabajo. El primero de ellos nos dice que la existencia
de geodésicas transversales que atraviesen X' viene determinada por el valor de
un tensor I, en concreto, existird una geodésica transversal a la hipersuperficie
XY en p € X si dicho tensor I, se anula. Por otro lado, para todo punto p € X
existe una pregeodésica que atraviesa X' en dicho punto en la direccién radical.
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Preliminares

En este capitulo, recordaremos toda la teoria de variedades diferenciables
y sistemas dindmicos necesaria e introduciremos la geometria semi-riemanniana
en la que se basa este trabajo (para més detalles, véase [5]).

1.1. Variedades diferenciables

Intuitivamente, sabemos que una wvariedad diferenciable M es un espacio
topoldgico que localmente es equivalente a R™. Formalmente, es una variedad
topoldgica de dimensién m dotada de un atlas completo A.

Sea M una variedad diferenciable de dimensiéon m, recordamos que se de-
finen los vectores tangentes como operadores que actian (como derivadas direc-
cionales) en el anillo de funciones §(M) = {f : M — R | f diferenciable}.

Definicién 1.1. Sea x € M, un vector tangente a M en x es una funcién real
v:F(M) — R tal que para todo \,p € R y f,g € F(M) cumple:

= v(Af + pg) = Mo(f) + po(g),
= v(fg) =v(f)g(p) + f(p)v(g).

El espacio tangente a M en x € M es el espacio vectorial
T.M ={v:F(M) — R | v es vector tangente a M en z}.

Las operaciones del espacio vectorial sobre T, M son las inducidas por la suma
de funciones reales y el producto por un nimero real de este tipo de funciones.

Sea (U, = (x',...,2™)) una carta en M tal que z € U, definimos para
cada i € {1,...,m} los siguientes vectores tangentes a M en x
0 0 I(fop™h)
| F(M) —R . =
ox' | S(M) Toxt |, (£) ort (@) ’
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para todo f € (M), donde r!,... 7™ son las funciones coordenadas naturales
de R™. Estos vectores determinan la base candnica

o @
ozl N

e G
de T, M asociada a la carta (U, ), es decir, para todo = € M la dimensién
del espacio tangente T, M coincide con la dimension de M. Ademas, para todo

v € T, M se verifica que
v = g v(x") o

=1

x

Sean ahora M y N dos variedades diferenciables, f : M — N una
aplicacion diferenciable y z € M. Entonces, f induce una aplicacién lineal
dfy : TyM — Ty,)N entre los correspondientes espacios tangentes, definida
por

[(df2)(v)](h) = v(ho [)

para todo v € T, M y h € §F(N). La aplicacién df, se denomina la diferencial de
fenx.

Por otro lado, el espacio cotangente T M en el punto x de la variedad M
es el espacio vectorial dual de T, M, esto es,

oM ={o, : T,M — R | a, es lineal}.

En lo que sigue, veremos que los espacios tangente y cotangente nos per-
miten definir los campos de vectores y las 1-formas, respectivamente.

Definiciéon 1.2. Un campo de vectores V' en una variedad diferenciable M es
una aplicacion que asigna a cada punto x € M un vector apoyado en él, es decir,
V(x) =V, € T,M para todo x € M.

Si V' es un campo vectorial en M y f € F(M), entonces V(f) denota la
funcion real en M tal que para todo x € M viene dada por,

De esta manera, un campo de vectores V' es diferenciable si V(f) es dife-
renciable para todo f € F(M).

Al conjunto de todos los campos de vectores en M se le denota por
X(M). En particular, X(M) es un §(M)—moddulo con las operaciones (fV)(x) =
f@)V(z)y (V+W)(x)=V(x)+W(x), para todo f € F(M) y V,W € X(M).

En concreto, si (U, = (z',...,2™)) es una carta en M, entonces para
todo i € {1,...,m}, el campo de vectores a?ci en U que envia a cada x € U en
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9 . . .
357 |, €s el i-ésimo campo vectorial coordenado de ¢ y se sigue que para cada

campo vectorial V,

V=>" V)5

i=1

Ahora, podemos introducir las 1-formas, que no son mas que los objetos
duales de los campos de vectores.

Definicién 1.3. Una 1—forma 6 en una variedad M es una funcion que asigna
en cada punto x un elemento 0(x) := 0, del espacio cotangente T M.

Si 6 es una 1-forma en M y V € X(M), se denota por §(V) a la funcién
real en M tal que para todo x € M queda determinada por,

Luego, de forma andloga a X(M), el conjunto X*(M) de todas las 1—formas
en M es un §(M)-mdédulo.

Definicién 1.4. La diferencial de f € F(M) es la 1-forma df tal que, para todo
vector tangente v en M, se cumple que (df)(v) = v(f).

Dada (U, = (z',...,2™)) una carta en M, entonces tenemos las 1-
formas {dz',...,dz™} en U, que en cada punto x € U forman la base dual
B )
de {W‘x"“’ 82_7"|a:}7 esto es,
ari| (2] ) =5,
r\ 027 |,

Ademas, se sigue que toda 1-forma # viene dada por,

m a .
QZZQ(ami)dx.

=1

A continuacion, presentaremos el fibrado tangente de una variedad y recor-
daremos su estructura diferenciable.

Definicién 1.5. Sea M una variedad diferenciable de dimension m, se define el
fibrado tangente de M como la union de todos los espacios tangentes a M y se
denota T'M, esto es,

™ = | J T.M.

zeM



4 1 Preliminares

De esta manera, la aplicaciéon 7 : TM — M, dada por w(v) = x si
v € T, M, se denomina proyeccion canonica.

Ademas, sobre el fibrado tangente T'M se puede definir una estructura

diferenciable de dimensién 2m. En efecto, sea {(Ua, 0o = (L, ..., 2™)) taca un

atlas de M. Consideramos los abiertos U, = 7Y U,) € TM y las aplicaciones
Do i T HUy) — 0a(Uy) x R™ C R*™ dadas por

@(U) = (QOOC(W(U)), dlex|7r(v)<v)’ s >d$gb|ﬂ'(v)(v)) :

Dicho de otro modo, si v € T'"M esta dado por

m
_ i
v = E U,
i=1

entonces, P, (v) = (pa(m(v)),vl, ... v™).

0
oxt

«

m(v)

Asi, {(Us, Pa) }aca es un atlas de TM. Denotando dz?, := 7!, las coordena-
das (z},...,2m &l ... &™) se denominan las coordenadas naturales en TM.

Por otro lado, se define una base movil de M como un conjunto de m
campos vectoriales {eq,...,e,}, tales que para cada punto x € M, el conjunto
{e1(x),...,en(x)} es una base del espacio tangente T, M.

De esta manera, si para cada x € M tomamos un sistema local de coorde-
nadas (U, = (z',...,2™)) con x € U y sea {ey,...,€,} una base mévil de M,
tal que para todo v € T,,M se tiene que

v = Z u®(v)eq(z).

Entonces, surgen las coordenadas inducidas {z!,..., 2™ u',... 4™} en el fibra-
do tangente T'M, que llamaremos coordenadas mixtas.

Por 1ltimo, recordaremos que a partir de los conjuntos X (M) y X*(M) se
definen los campos tensoriales en una variedad.

Definicién 1.6. Dados r,s > 0 dos enteros, un campo tensorial A en una varie-
dad diferenciable M de tipo (r,s) sobre X(M) es una funcion §(M)-multilineal
A X (M) x X(M)* — §(M).

Al conjunto de todos los campos tensoriales de tipo (r,s) sobre M se le
denota por Z (M), que es un §F(M)-mdédulo. En particular, los tensores de tipo
(0, s) se llaman covariantes y los de tipo (r,0), 7 > 1, se llaman contravariantes.

Mientras que solo se pueden sumar tensores del mismo tipo, cualquier par
de tensores pueden ser multiplicados de la siguiente manera.
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Definicién 1.7. Sean A € A%(M) y B € I7/ (M), se define el producto tensorial
de A y B como la aplicacion A ® B : ¥*(M)™" x X(M)*** — F(M) dada
por,

(A B)(0',.... 0" Xy, ... Xepy) =
=ABY,...,0", X1,..., X\)B(6,....0", X1,.... Xy).

Nétese que A ® B es un campo tensorial de tipo (r + 17, s+ ).

1.2. Sistemas dinamicos

Una curva en una variedad diferenciable M es una aplicacién diferenciable
v : I — M, donde I es un intervalo abierto de R. Como subvariedad de R, [
tiene un sistema coordenado formado por la aplicacién identidad w en 1.

Definicién 1.8. Dada v : I — M una curva, el vector velocidad de v ent € I

Vo =av (4

En concreto, sea (U, (z',...,2™)) una carta en M con (t) € U, la expre-
sién coordenada de +/(t) viene dada por,

Y=y 4o

=1

> S Ty(t)M-

t

0

i
, Oz

v(t)

Definicién 1.9. Una curva v : I — M es una curva integral de V- € X(M) si
para todo t € I se verifica que,

También, se define una linea integral de un campo V € X(M) como una
subvariedad L de M de dimensién 1 tal que para todo = € L con V(x) # 0,
existe un entorno abierto Ly de L con x € Ly y Ly = im~y, siendo v una curva
integral de V.

Como consecuencia de escribir la condicién anterior en coordenadas y por
el teorema de existencia y unicidad de soluciones de sistemas de ecuaciones
diferenciales de primer orden, se deduce el siguiente resultado.

Proposicién 1.10. Si V € X(M), entonces para todo punto x € M existe un
intervalo I alrededor del 0 € R y una unica curva integral v : I — M de V tal

que (0) =
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Nétese que si v es una curva integral de V', entonces t — (¢t 4 ¢) también
lo es.

Corolario 1.11. Si v, 8 : I — M son curvas integrales de V' tal que vy(a) =
B(a) para algin a € I, entonces v = f5.

Ademas, se tiene el siguiente resultado que serd de gran utilidad.

Lema 1.12. Sea vy : [ — M una curva integral de un campo V€ X(M) y V=
fV con feF(M) y f(x) #0 para todo x € M. Entonces, las curvas integrales
de los campos de vectores V' y V' son las mismas salvo reparametrizacion, esto
es, que tienen las mismas lineas integrables.

Demostracion. Sea ~y(t) una curva integral del campo de vectores V', sabemos
que v'(t) = V(7y(t)). Queremos encontrar una reparametrizacion ¢t = t(s) tal que
~(s) = (t(s)) sea curva integral del campo V = fV esto es,

7 (s) = V((s) = F(()V (F(s)). (1.1)

dt dt dt

S = VO, = VAR

() =/ (1(5)) -

Luego, para que se cumple (1.1) basta tomar

i(s) = / (s ds.
(]

Sea x € M y V € X(M), consideramos la coleccién de curvas integrales
v: I, — M de V tales que 0 € I, y 7(0) = z. Entonces, el Corolario 1.11
nos dice que v = 3 en I, N Iz. Luego, podemos considerar v, : I, — M curva
integral de V con 0 € I, y 7,(0) = x, donde

L=JL.
Y

La curva ~, se llama la curva integral mazximal de V por x.

Definicién 1.13. Un campo de vectores V € X(M) se dice completo si la curva
integral mazximal de V' que pasa por un punto cualquiera de M estd definida en
toda la recta real.

A continuacion, veremos como podemos representar todas las curvas inte-
grales de un campo vectorial completo dado en una tunica aplicacion.
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Definicién 1.14. El flujo de un campo vectorial completo V- en M es la aplica-
cion Y : M x R — M dada por

V(1) =7 (1), (1.2)
donde v, es la curva integral mazximal que comienza en x.

Por un lado, si x € M se mantiene constante, entonces (x,t) = ¥, (t) es
la curva integral 7,. Por otro lado, si t € R es constante, entonces obtenemos
una funcién ¢, : M — M.

Proposicién 1.15. 5t ¢ es el flujo de un campo vectorial completo, entonces:

w () es la aplicacion identidad en M.
= s 0 Yy = Psuy para todo s,t € R.
= Para todo t € R, 1, es un difeomorfismo con ;= 1)_,.

Sin embargo, en el caso de que el campo vectorial V' no sea completo
podemos definir ¢ : U x I — M un flujo local en V, dado también por la
ecuacién (1.2), donde U es un entorno de x en M e I un intervalo alrededor del
0 en R. Como consecuencia de la teoria de ecuaciones diferenciales, se tiene que
si U, I son suficientemente pequenos, entonces 1 es diferenciable.

Ademas, el siguiente resultado es analogo a la Proposicion 1.15, pero para
flujos locales.

Proposicién 1.16. Si ¢ : U x I — M es el flujo local de un campo vectorial,
entonces:

w () es la aplicacion identidad en U.
= s 0 Yy = Ysiy para todo s,t € I, siempre que s+t € I.
» Para todo t € I, ¢y : U — ¢ (U) es un difeomorfismo.

Sea Ve X(M)y:UxI— M el flujo local de V, si para todot € Iy
x € U se tiene que
dipy(x)V (z) =V (thi(2)),
entonces se dice que el campo V' es invariante por su flujo.

Sea V € X(M) un campo de vectores dado por V = >, V"% tal que
V(x¢) = 0, para cierto xy € M, es decir, xy es un punto singular de V. Se define

la linealizacién de V en x¢ como la aplicacion DV, : T,,M — T, ;M dada

por,
REARYE)
20 \ Qi 20 oxI

0 ,
DV’:):O (% ), V]E{l,,m}
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Ademsds, la linealizacién de V' en xy puede definirse de forma intrinseca
como

d
DVI,, (€)= 5| (dd,, (©).
t=0
para todo & € T,, M, donde 1 es el flujo local de V' (véase [1]).
En particular, sea £ = fj% € T,,M se tiene que,

v’ .0 oV’ -\ 0

— i 9 — il 2| =
v’ , 0 - 0

— J R — v — =

(&)-

o

, 0
= (dV ®%>

Por tanto, concluimos que,

) oV’ , 0
= v — = J -
o= (o 2 - (2] o) e 2

A continuacién, introducimos el siguiente teorema que posteriormente
tendra especial importancia.

o

Teorema 1.17. Sean V € X(M), v € M un punto singular, esto es, V(z) = 0,
y NT y N~ los subespacios vectoriales generados por los autovectores correspon-
dientes a los autovalores positivos y negativos, respectivamente, de la linealiza-
cion diagonalizable DV| . Entonces, existen subvariedades W+ y W~ invarian-
tes por el flujo de V con p e WT NW~. Ademds,

T,W+*=N* y T,W~ =N-.

Demostracion. Véase el Teorema 5.8 de [4].

1.3. Geometria Semi-Riemanniana

En esta seccion presentaremos la geometria semi-riemanniana. Esta rama
de las matematicas es una extensién de la geometria riemanniana que se ocupa
del estudio de variedades diferenciables dotadas de una métrica no necesaria-
mente positiva definida. Este tipo de geometria es crucial en la fisica tedrica,
especialmente en la teoria de la relatividad general.
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1.3.1. Variedades Semi-Riemannianas

Veremos que la geometria semi-riemanniana involucra un tipo particular
de (0,2)—tensor en espacios tangentes. En general, sea V un espacio vectorial
de dimensién n y b : V x V — R una forma bilineal en V' y simétrica, es decir,
b(v, w) = b(w,v) para todos v,w € V.

Definicién 1.18. Una forma bilineal simétrica b en V' es:

» Definida positiva (negativa) si para v # 0, entonces b(v,v) > 0 (b(v,v) < 0).

» Semidefinida positiva (negativa) si b(v,v) >0 (b(v,v) < 0) para todo v € V.

» No degenerada si se verifica que si b(v,w) = 0 para todo w € V, entonces
v=0.

Asi, podemos definir el indice de una forma bilineal simétrica.

Definicién 1.19. El indice v de una forma bilineal simétrica b en V' es el mayor
entero que sea la dimension de un subespacio W C V' en el que by es definida
negativa.

De este modo, 0 < v <nywv=0,siysdlo si, b es semidefinida positiva.

Por otro lado, si consideramos {ej,...,e,} una base de V, la matriz
(bij)nxn = b(€i, e;) se la llama la matriz de b relativa a {e;,...,e,}. Ademds,
como b es simétrica es claro que la matriz (b;;) también lo es. En particular, esta
matriz nos permite caracterizar la no degeneracion de b.

Proposicién 1.20. Una forma bilineal simétrica es no degenerada, si y sélo si,
su matriz relativa a una base (por ende a cualquiera) es invertible.

De este modo, una forma bilineal g simétrica y no degenerada en un espacio
vectorial V' se llama un producto escalar.

Asi, diremos que dos vectores v, w € V son ortogonales si g(v,w) = 0y que

1/2

un vector u € V' es unitario si su norma |g(u,u)|’", es 1, es decir, g(u,u) = £1.

Por tanto, como es usual, un conjunto de vectores unitarios ortogonales dos
a dos se dicen ortonormales, y para n = dim V', cualquier conjunto de n vectores
ortonormales en V' es necesariamente una base de V. Ademas, sabemos que todo
espacio V' # 0 dotado de un producto escalar tiene una base ortonormal.

En consecuencia, la matriz de g relativa a una base ortonormal {e,. .., e,}
de V' es diagonal. De hecho,
glei,e;) = 6,65, donde ¢; =g(ej,e;) = £1.

Definicién 1.21. La signatura de g se define como (e1,...,€,) donde los vec-
tores de la base ortonormal se reordenan convenientemente para que los signos
negativos (si los hay) queden primero.
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Normalmente, se refiere al indice v del producto escalar g de V' como el indi-
ce de V' y se escribe v = Ind V. De hecho, la signatura de g viene caracterizada
por su indice.

Proposicién 1.22. Para cualquier base ortonormal{ey,...,e,} de V el nimero
de signos negativos en la signatura (e1,...,&,) de g es el indice v de V.

Ahora, estamos en condiciones de introducir las definiciones necesarias para
presentar las variedades semi-riemannianas.

Definicién 1.23. Un tensor métrico g en una variedad diferenciable M de di-
mension m es un (0,2)—tensor simétrico y no degenerado de indice constante.

En otras palabras, un tensor métrico g € Z3(M) que asigna diferenciable-
mente a cada punto x € M un producto escalar g, : T,M x T,M — R y el
indice de g, es el mismo para todo x € M.

Definicién 1.24. Una variedad semi-riemanniana es una variedad diferenciable
M dotada de un tensor métrico g.

En realidad, una variedad semi-riemanniana es un par ordenado (M, g) de
manera que dos tensores métricos en la misma variedad determinan diferentes
variedades semi-riemannianas. No obstante, la denotaremos simplemente como
la variedad diferenciable M.

Dada una variedad semi-riemanniana (M, ¢g) de dimensién m, se llama indi-
ce de M al valor v del indice constante de g con 0 < v < m. En particular, si
v = 0 decimos que M es una variedad riemanniana, mientras que si v = 1y
m > 2 decimos que M es una variedad lorentziana.

Sea (U, = (z',...,2™)) una carta en M, entonces las componentes del
tensor métrico en U son,

P S R D
gl]_g 0:5“(9.%] I _Za]_m-

De esta forma, para dos campos vectoriales V = > V* 8‘; yW=> W/ %
se tiene que

gV, W) =" gi VWY (1.3)

Como g es no degenerado, sabemos que para todo x € U la matriz (g;;(z))
es invertible, cuya matriz inversa denotaremos por (¢%(z)). Como consecuencia
de los calculos de los términos de la matriz inversa se sigue que las funciones g%
son diferenciables en U. Ademds, debido a la simetria de g tenemos que g;; = g;;
y por tanto, ¢ = ¢’* para todos 1 < i,j < m. Por tltimo, el tensor métrico ¢
en U se escribe como,
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g = Zgij dz' @ da’ .
La siguiente definicion categoriza a los diferentes tipos de vectores tangentes
a M en lo que se llama su cardcter causal.

Definicién 1.25. Un vector v tangente a M es:

» Espacial: si g(v,v) >0 o0v=0.
» Nulo: si g(v,v) =0 yv #£0.
» Temporal: si g(v,v) < 0.

1.3.2. La conexion de Levi-Civita

Sean V' y W dos campos vectoriales en una variedad semi-riemanniana
M. El objetivo de esta seccién es definir un nuevo campo vectorial en M, que
denotaremos VW y cuyo valor en cada punto z mida la variaciéon de W en la
direccién de V.

Definicién 1.26. Una conexion V en una variedad diferenciable M es una fun-

cion V : X(M) x X(M) — X(M) tal que:

(D1) VyW es §(M)—lineal respecto a V.
(D2) VW es R—lineal respecto a W.
(D3) Ny (fW) = (VHW + fVyW para todo f € F(M).

VW se llama la derivada covariante de W con respecto a V' para la conexion

V.

Proposicién 1.27. Sea M una variedad semi-riemanniana . Si'V € X(M), sea
V* la 1—forma en M tal que

VH(X) =g(V,X), VX e€ZX(M).

Entonces, la funcion V. — V* es un isomorfismo §(M)—lineal de X(M) en

De esta forma, en geometria semi-riemanniana podemos libremente trans-
formar un campo vectorial en una 1—forma y viceversa. Los pares correspon-
dientes V' <— V* contienen exactamente la misma informacién y se dice que
son métricamente equivalentes.

Teorema 1.28. En una variedad semi-riemanniana M existe una unica cone-
xion V tal que

(D4) [V, W] =VyvW —VwV, para todos VW € X(M).
(D5) Xg(V.W) = g(VxV, W)+ g(V,VxW), para todos V,W, X € X(M).
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V se llama la conexion de Levi-Civita de M y viene caracterizada por la formula
de Koszul:
29(Vy W, X) =Vg(W, X) + Wy(X, V) — Xg(V, W)

— g(V,[W, X)) + g(W,[X, V]) + g(X, [V, W]) (1.4)

A continuacién, podemos introducir la conexién dual.

Definicién 1.29. Se define la conexion dual V* : X(M) x X(M) — X*(M) tal
que para todo VW, X € X(M),

(VW) (X) =3 (Vg(W, X) +Wg(X,V) = Xg(V,W)
—g(V,[W, X]) + g(W, [X, V]) + g(X, [V, IW]))

Noétese que la conexién dual V* estd bien definida para métricas degenera-
das en las que la conexion V no tiene por qué existir. Sin embargo, en el caso
de que existan ambas, como consecuencia de la férmula de Koszul, para todo
V,W, X € X(M) se tiene que

(ViW)(X) = g(Vy W, X).

Definicién 1.30. Sea {z*,..., 2™} un sistema coordenado en un entorno U en
una variedad semi-riemanniana M. Los simbolos de Christoffel de sequnda es-
pecie para este sistema coordenado son las funciones reales I'" en U tales que

]

) . 0 .
P — p— .. — < < .
Ve, (8xj) Zk Ly g 1stism

o 91 _ -
527> 5.7) = 0, se sigue

Cabe destacar que como resultado de (D4) y de que |

0 0
V% (%) - V% (8371)

En particular, el siguiente resultado nos dice cémo vienen determinados los
simbolos de Christoffel de segunda especie.

que

k _ 1k
y por ello [77 = 1I7.

Proposicién 1.31. Para un sistema coordenado {z',... ™} en U,
: i 0 ) ) _o
()V o (X075 ) = S0 (55 + 32, TEW) 5%
(i) Filj' = %ank (% + aii - ai«i)
Observamos que teniendo en cuenta la propiedad (D1), el apartado (i) de
la proposicion anterior nos permite calcular Vi,W en cada entorno coordenado,

mientras que el apartado (ii) es la descripcién en coordenadas de como el tensor
métrico determina la conexion de Levi-Civita.
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Definicién 1.32. Sea {z',..., 2™} un sistema coordenado en un entorno U en
una variedad semi-riemanniana M. Los simbolos de Christoffel de primera es-
pecie para este sistema coordenado son las funciones reales I,;; en U tales que

Fhij = Zghkﬁ;
3

Como consecuencia de la Proposiciéon 1.31 se deduce que,

L (Ogjn | Ogin  Ogij
Ty = = (22 _29u )
M (8931 * Oz Ozl

Ademas,

0 0
R _— — < .1 < m.
Thij g(Vaii (8xj)’8xh>’ 1<h,i,7<m

En efecto,

o\ o\ L0 0N = (O O
g (V (a) a_) =9 (Zf7a—> =219 (a axh> -
k

Por tanto, en el caso de que existan V y V*, en términos de una carta
(U, = (21,...,2")) la conexién dual puede ser descrita de la forma

Bz 83’5‘7 Z Ejkdx
De hecho, se tiene que

(Viw) (o) =2 (72 (55) ) -

o . 9gjn . O0gin  0gs
= Lhiy = 2 (axi + oxi  Oxzh )’

Por otro lado, la derivada covariante Vy se puede extender para operar
sobre tensores arbitrarios.

Definicién 1.33. Sea V' un campo vectorial en una variedad semi-riemanniana

M. Se llama la derivada covariante (de Levi-Civita) a la unica derivacion ten-
sortal en M tal que

» Vyf =V para todo f € F(M).
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» Vy W es la conezion de Levi-Civita para todo W € X(M).

Ahora, sea A un (r, s)—tensor en M, entonces el campo tensorial Vi A es
§(M)—lineal en V € X(M). Luego, tiene sentido la siguiente definicidn.

Definicién 1.34. La diferencial covariante de un (r,s)—tensor A en M es el
(r,s+ 1) tensor VA tal que

(VAYG,...,0", X1,..., X, V) = (VyA) O, ....0", X1,...,X,)
para todos V, X; € X(M) y 67 € X*(M).

En particular, en el caso de los tensores de tipo (0, 0), es decir, las funciones
f € F(M), su diferencial covariante es su diferencial usual df € X*(M) ya que,
para todo V' € X(M),

(VAWV)=Vvf=Vi=df{V)

Definicién 1.35. Un campo tensorial A se dice paralelo si su derivada cova-
riante es nula, esto es, VxA =0 para todo X € X(M).

Por ejemplo, se prueba que el tensor métrico g es paralelo.

1.3.3. Transporte paralelo
Sea M una variedad semi-riemanniana.

Definicién 1.36. Un campo vectorial Z a la largo de una curva diferenciable
a I — M es una aplicacion Z : I — TM tal que m o Z = «, donde
w:TM — M es la proyeccion canonica.

Es decir, Z asigna diferenciablemente a cada t € I un vector tangente a M
en aft), esto es, Z(t) € ToyM. Ademas, se tiene que el conjunto X(«) de todos
los campos vectoriales en « es un §(I)—mdédulo.

A continuacién, veremos que existe una manera natural de definir un campo
vectorial Z’ que mida la variacién del campo vectorial Z € X(«).

Proposicion 1.37. Sea o : [ — M una curva en una variedad semi-riemanniana

\4

M. Entonces, existe una tinica funcion de X(a) en X(«a) tal que Z —— Z' = 37,

llamada derivada covariante inducida, verificando que,

(i) (aZy 4+ bZy) = aZ} + bZ), para todo a,b € R.

(it) (hZ) = (%)Z + hZ', para todo h € F(I).

i11) (V) (t) = VeV, para todot € I yV € X(M).
(t)

Ademas,
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(iv) & (g(Z1, Z2)) = 9(Z, Za) + (21, Z}).

En concreto, Z’ esta completamente determinado por la conexién de Levi-

Civita V de la siguiente manera,
dz’
7' = Y ) 1.5
S g, 27 (o) iR
"

En el caso particular de que Z = o la derivada Z’ = " se llama la
aceleracion de la curva a.

Definicién 1.38. Un campo vectorial Z € X(«) se dice que es paralelo a lo largo
de o si Z' = 0.

Observamos que introduciendo los simbolos de Christoffel a la férmula coor-
denada (1.5) se sigue que,

Z,:;{dZ Z xooz J}% (1.6)

En consecuencia, la expresion (1.6) nos dice que la ecuacién Z' = 0 es equi-
valente a un sistema de ecuaciones diferenciales ordinarias lineales. Por tanto, a
partir de teorema fundamental de existencia y unicidad para dichos sistemas de
ecuaciones deducimos el siguiente resultado.

Proposicién 1.39. Dada una curva o : I — M, sea a € I y z € Tyq)M.
Entonces, eziste un unico campo vectorial paralelo Z en « tal que Z(a) = z.

Ahora, utilizando la notaciéon de la proposiciéon previa estamos en condi-
ciones de definir el trasporte paralelo.

Definicién 1.40. Sea b € I, se define el transporte paralelo sobre o de p = a(a)
a g = a(b) como la funcion

P="P(a): T,M — T,M

que envia a cada z € T,M a Z(b) € T, M.

1.3.4. Geodésicas

En esta subseccion vamos a generalizar la nocién Euclidea de linea recta
para variedades semi-riemannianas.

Definicién 1.41. Una geodésica en una variedad semi-riemanniana M es una
curva vy : I — M cuyo campo vectorial ' es paralelo, es decir, si su aceleracion
es cero, v" = 0.
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En consecuencia, una curva geodésica v tiene un comportamiento bastante
uniforme. Ademas, toda curva constante en M es trivialmente una geodésica.

El siguiente resultado se obtiene como consecuencia de aplicar la ecuacién
(1.6) a

,  x—~d(@hon) 0
V_Zk: dt 89&16%()

Corolario 1.42. Sea {z',..., 2™} un sistema coordenado en U C M. Una curva
v en U es una geodésica de M, si y sélo si, sus funciones coordenadas x* o
vem’ﬁcan las sz'guz'entes ecuaciones geodésicas:

(zF o 'y d(z' o ’y d(z? o~
+E At >:0, 1<k<m.
dt
Para simplificar la notaci(')n, normalmente escribiremos las funciones coor-
denadas de v como z' en lugar de x* o~. Por tanto, las ecuaciones geodésicas se
reescriben como:

d?a” dxt da’
+y P =0, 1<k<m. 1.7
dt? sz: Yodt dt - (17)
Asi, si ‘
dz’ ,
=z', 1<i<m,
dt
entonces,
di——ZF%w 1<k<m
dt T K -
De esta forma, en las coordenadas naturales {z!,... a™ 2! ... 2™} del

fibrado tangente T'M, se tiene que una curva 7(t) es geodésica en M, si y s6lo
si, (7(t),~/(t)) es curva integral del campo I en T'M dado por,
0

k i.:.7
Jl'l’]@, (18)

i7j7k
que se conoce como spray geodésico.

Si v, € T, M, entonces,

0
1(vy) = W, (vs) Z "(v2)d (v,) Dik €T, (TM),

1,3,k

donde ¥, : T,M — T, (T'M) es el monomorfismo dado por

9] o)
Lo (890" z) ~ or ;

Vg

1< <m.

) — —
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Lema 1.43. Sean 11 y 1T los campos en T'M dados por,

H:ZIaxi—]}jxﬂ@ y I =1I+fV

irjok
donde f € F(M) y V es el campo de Liowville definido como V =3, x'ka%k.

Entonces, las proyecciones a M de las lineas integrales de I y II son las mismas.

Demostracion. Sea (t) la proyecciéon a M de una curva integral del campo I1,
es decir, que verifica las ecuaciones geodésicas,

d*z* & dx® dz’

k(x(t .

az T G

Buscamos un cambio de parametro t = ¢(s) tal que 7(s) = y(t(s)) sea la

proyeccién a M de una curva integral del campo I, esto es, que 7 verifique las
ecuaciones,

~0. (1.9)

A2k dx® dx? dz*
Ik S = =0. 1.10
FEa s(r(s)) T s + f(z(s)) 7 (1.10)
Notese que,
da*  da* dt Pak Pk (dE\? Lt
ds  dt ds ° ds2  de  \ds dt ds?

Asi, sustituyendo en (1.10) se sigue que,

Pk (dt\?  drt d2t de' dad [dt\® dak  dt
= -~ 4Tk i e -~ .2 0.
pre (d5> T e Iy (ds) UCSrraln

Ahora, aplicando (1.9) obtenemos que,

dz®  d?*t dzF  dt
o ae T =
Luego,

d’t / dt
a2/ ds = —f(x(s)),

In (?) —— [ statspas.

Por tanto, el cambio de parametro queda completamente determinado por,

" o (— / f(x(s))ds) ,

de forma que 7 es la proyecciéon a M de una curva integral de 1.

es decir,
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A continuacion, presentamos el siguiente resultado que nos dice cémo viene
dado el spray geodésico II en coordenadas mixtas.

Lema 1.44. El spray geodésico en las coordenadas miztas viene dado por el
campo

0 0
o a, b c_ a. b
II = E eyt m— — Lutu’—,
- ox ou
a,ob,c

donde e, = ega% y los IS, denotan los simbolos de Chritoffel respecto a la

y N C
referencia {ey, ..., en}, esto es, V., ep = I'Se..

Demostracion. En primer lugar, tenemos en cuenta que si e, = e?%, enton-
ces las coordenadas naturales y las coordenadas mixtas de & € T,M vienen
relacionadas mediante la siguiente relaciéon matricial,

Sean X = u(X)e,, Y = u®(Y)ey y IS, los simbolos de Chritoffel respecto
a la referencia {eq, ..., e, }. Aplicando las propiedades de V se deduce que,
VY = {X(w(Y)) +u*(X)u"(Y)I5} e (1.11)

De este modo, si 7y es una curva en M con v = u®(v')e,(7y), sabemos que ~y
es geodésica si Vv = 0. Luego, tomando X =Y =~ en (1.11) tenemos que,

V' = {W + (u* o7 )(u’ o) (fb(v)} e.(v) =0.

Es decir, v es geodésica si verifica las siguientes ecuaciones geodésicas,

d(uf o)

o+ W'o)W o) (), e=1,...,m.

a._ ,a ! du® __ C ,,a,,b 0 (A — 0,0 (A) o0 ;
Denotando u® := u® o+, dado que T~ = —Iguu’ y 2%(y') = u’(y')ej, conclui-
mos que el spray geodésico en coordenadas mixtas viene dado por,

g

Nuevamente, el teorema de existencia y unicidad para ecuaciones diferen-
ciales ordinarias nos permite deducir el siguiente resultado.
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Lema 1.45. St v € T, M, entonces existe un intervalo I alrededor del 0 y una
unica geodésica v : I — M tal que v(0) =z y +'(0) = v.

Por tanto, diremos que v es la geodésica que empieza en x con velocidad
inicial v.

Lema 1.46. Sean «, 3 : I — M geodésicas. Si existe a € I tal que o/(a) =
B'(a), entonces a = 3.

Proposicién 1.47. Dado un vector tangente v € T, M , entonces existe una uni-
ca geodésica vy, en M tal que

(i) La velocidad inicial de v, es v, esto es, 7¥'(0) = v.
(ii) El dominio I, de 7y, es el mayor posible. Es decir, si a : J — M es una
geodésica con velocidad inicial v, entonces J C I, y a = 7y,

El apartado (7i) de la proposicién previa da sentido a la siguiente definicién.

Definicién 1.48. La geodésica vy, se llama geodésica maximal o geodésica inez-
tendible. En particular, una variedad semi-riemanniana para la que toda geodési-
ca maximal esta definida en todo R se dice geodésicamente completa o solo com-
pleta.

Podemos observar que dada esta definicién, si quitamos un punto x de una
variedad completa M, entonces M \ {z} ya no es completa, pues las geodésicas
que antes pasaban por x estan obligadas a parar.

Definicién 1.49. Una curva o en M se dice espacial si todos sus vectores ve-
locidad o'(s) son espaciales. Andlogamente, se define para vectores velocidad
temporales y nulos.

En general, una curva « no tiene por qué tener alguno de estos caracteres
causales. Sin embargo, una geodésica v si deberd tener alguno de ellos por ser
~" paralelo y el trasporte paralelo preserva el tipo causal de los vectores.

Proposicién 1.50. Sea v : I — M wuna geodésica no constante. Una repara-
metrizacion yo h : J — M es una geodésica, si y solo si, h es de la forma
h(t) = at + b, con a,b € R.

El resultado previo muestra como las parametrizaciones de geodésicas tie-
nen un significado geométrico.

Definiciéon 1.51. Una pregeodésica es una curva que se puede reparametrizar
para que sea geodésica.
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Sabemos que si un sistema de ecuaciones diferenciales ordinarias de se-
gundo orden esta dado por funciones diferenciables, entonces sus soluciones son
diferenciables independientemente del parametro, valores iniciales y valores ini-
ciales en las primeras derivadas. Como consecuencia de aplicar este resultado a
las ecuaciones geodésicas obtenemos la siguiente proposicion.

Proposicién 1.52. Sea v € TM, entonces existe un entorno N de v en TM y
un intervalo I alrededor del 0 tal que (w,s) — Y, (s) es una funcion diferen-
ciable bien definida de N x I en M.
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Meétricas con cambio transversal de signatura:
Lineas geodésicas

En este capitulo vamos a considerar una variedad diferenciable M conexa
y de dimensién m dotada de un (0,2)—tensor simétrico. Asi, el objetivo serd
estudiar las geodésicas que atraviesan la hipersuperficie X' determinada por los
puntos donde dicho tensor degenera.

2.1. Meétricas que cambian transversalmente de
signatura

Sea M una variedad diferenciable y conexa y g : X(M) x X(M) — F(M)
un (0, 2)—tensor simétrico. Entonces, para todo punto x € M se tiene que

9 =g(x) : T,M x T,M — R

es la forma bilineal simétrica inducida en el espacio tangente T,M. De esta
forma, la siguiente definicion se obtiene como consecuencia de la posibilidad de
que g, sea degenerada.

Definicién 2.1. Un punto x € M se dice singular si g, es degenerada, en caso
contrario diremos que x es un punto ordinario.

Denotamos por Y al conjunto de puntos singulares. Asi, X' es un conjunto

cerrado de M. De esta forma, el conjunto de puntos ordinarios M \ X es un
abierto de M.

Definicién 2.2. El orden de degeneracion de un punto x € M es la dimension
del subespacio radical

Rad, = {v e T, M | g.(v,u) =0,Vu e T, M} C T,M.

Por ende, es claro que los puntos ordinarios de M son de orden nulo.
Ademas, el tensor g induce sobre cada componente conexa N de M \ X una
métrica semi-riemanniana.
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En concreto, podemos escribir el conjunto de puntos singulares como
¥ —{pe M | Rad, # {0},

Sea p € X un punto singular y (U, = (2',...,2™)) un sistema local de

coordenadas con p € U. Entonces, el conjunto 2’NU se describe como el conjunto
de ceros de la funcion

G,=det(g): U —R, abe{l,...,m},
donde g, son las componentes de g respecto a .

Definicién 2.3. Un punto singular p € X se dice reqular si es reqular para la
funcion G, es decir, si dG,(p) # 0.

Notese que las condiciones de singularidad y regularidad no dependen de
la carta . De hecho, se tiene el siguiente resultado.

Proposicién 2.4. Sea p € X un punto reqular y {ey,..., ey} una base maovil
respecto a la cual la matriz asociada a la métrica es (Gap)ape(r,...m}- Entonces,

det(gan)(p) =0y d(det(gas))(p) # 0.

Demostracién. Seap € Xy (U, = (x',...,2™)) un sistema local de coordena-

das con p € U, por ser p un punto regular, sabemos que

det(gy,)(p) =0 'y d(det(g,))(p) # 0.
gl fy {e®) - en )},

(92,(p)) = P(p) - (gar(p)) - P*(p)-

,,,,,

9

Sea P(p) la matriz cambio de base entre { pr

sabemos que,

Por tanto,
det(g5,)(p) = det P(p) - det(gas)(p) - det P*(p).

Luego, dado que det P(p),det P*(p) # 0, por ser P(p) una matriz cambio de
base y que det(g7,)(p) = 0, se deduce que det(gqp)(p) = 0. Ademas,

d(det(g3,))(p) =d(det P)(p) - det(ga)(p) - det P'(p)+
+det P(p) - d(det(gap))(p) - det P'(p)+
+det P(p) - det(gap) (p) - d(det P')(p) =

= det P(p) - d(det(gas))(p) - det P'(p).

Asi, ya que d(det(g%,))(p) # 0, concluimos que d(det(gap))(p) # 0.
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De este modo, la siguiente definicién nos da una caracterizacién de la métri-
ca g.

Definicién 2.5. La métrica g se dice de tipo transverso si para todo p € X N U
se tiene que p es un punto regular.

En concreto, si la métrica es de tipo transverso, como consecuencia del
Teorema de la Funcion Implicita, se deduce que X' es una hipersuperficie de M,
esto es, una subvariedad de M de dimensiéon m — 1.

En la situacién anterior se dice que (M, g) es un espacio semi-riemanniano
singular y X su hipersuperficie singular. Para simplificar diremos que M es un
XY —espacio. En particular, M es de radical transverso en p € X, si Rad, N
T,Y = {0}, en este caso X hereda en torno a p una estructura de variedad
semi-riemanniana. Mientras que si Rad, C 7, para p € X, se dice que M es
de radical tangente en p.

En lo que sigue supondremos siempre que M es un X' —espacio de radical
transverso a la hipersuperficie .

A continuacion, veamos dos propiedades interesantes que tiene M como
) —espacio.

Lema 2.6. Sea M un X —espacio. Entonces alrededor de cada punto p € X
existe una base movil {e,...,e,} respecto de la cual la matriz asociada a la
métrica es diagonal. Ademds, se tiene que:

(1) El subespacio radical Rad, es unidimensional, esto es, dim Rad, = 1.
(ii) El punto p estd en la frontera topoldgica de exactamente dos componentes
conexas M+ y M~, y se cumple que

Ind(M~™) = Ind(M*) + 1.

Demostracion. Sea p € X, consideramos {e1(p),...,e-(p), er11(D),-..,em(p)}
una base de T),M respecto a la cual la matriz asociada a la métrica es

p1r oo 0o 0
(9ab(P))apeqt,omy = | Yprd 8 = O
o 0 1o 0
con p; # 0 para todo j € {1,...,7}. Esto nos dice que la dimensién del subes-

pacio radical Rad, es s :=m —r.

A continuacién, extendemos dicha base diferenciablemente a una base movil
{e1,.. . €r €11, ...,n}. Ademds, sin pérdida de generalidad, podemos suponer
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que el subespacio S = (ey,...,e,) es siempre no singular. En consecuencia, a
partir de ¢; = e; definimos los campos,

j—1

~ g(€j> éZ) ~ .
;i =e; — ~—=¢&;, j€{2,...,r}
! ! Zz:; g(ei7 6i) ’
De esta forma, obtenemos el conjunto de campos {éy,...,é,} verificando
que,
fi=9(¢;,¢;) #0,
~ ~ ~ g(eja él) ~ ~
i €i) = i, €) — ————=g(€i,e;) =0,
g<ej 6@) .g(ej 61) g(ei,ei)g(ez 6,)
para todos 7,5 € {1,...,7}. Ahora, tomamos {e,;1,...,e,} base de S*. Luego,
la matriz asociada a la métrica respecto a la base mévil {é1,...,é.,€,01,...,€em}
es de la forma,
fi o 0 0 - 0
(ab)ape(t,my = | Lt p—
(AN PARISAS

En particular, h;;(p) = 0, para todos i,j € {1,...,s}. Ademds, se cumple que
fi(p) = p; # 0 para todo j € {1,...,r}. En efecto,

1

Mé- €; — S Mé _
1 g(éi,e) 7 Z 5. 6. Z) (p)

J
, i1 9(617 61)

fi(p) = g(&;,¢;)(p) =g (ej -

1=

= g(ej. €)(p) =

ya que para todo i € {1,...,j7 — 1} se tiene que g(e;,&)(p) = 0, por ser é;
combinacién de los campos eq,...,e;j_q y verificarse que g(e;,e;)(p) = 0 para
cualquier ¢ € {1,...,7 —1}.

En lo que sigue, veremos que s = 1. Por ser M un X' —espacio sabemos que
det (gap)(p) = 0y d(det (gap))(p) # 0. En concreto, se tiene que

det (gap) = f1+ ..« fr-det H.
donde H = (hyj)ijeqi,...sy con H(p) = (0); jequ,...s3 v det H(p) = 0. Por tanto,

d(det (gu)) =d(f1 - ... f,-det H) =
—dfy- o frodet H 4+ fi-dfs- farnoo- fr-det H 4 ---
oot free fooy o dfy o det H+ fy ... f, - d(det H).
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En consecuencia,

0 # d(det (gap))(p) = fr(p) - .. - fr(p) - d(det H)(p) = pu1 - ... - p1 - d(det H)(p),

de donde se sigue que d(det H)(p) # 0. Sin embargo, esto no es posible si s > 2,
ya que en tal caso si det H(p) = 0, se deduce que d(det H)(p) = 0.

Por tanto, se concluye que s = 1, es decir, el subespacio radical Rad,
es unidimensional y la matriz asociada a la métrica respecto a la base movil
{€1,...,€r,€r11,..., 6} es una matriz diagonal de la forma

(.é;;)a,be{l,...,m} -

Aqui, sabemos que f,,(p) = 0y df.(p) # 0. Por ende, concluimos que f,
cambia de signo en un entorno de p € Y. Asi que, el punto p € X' se encuentra
en la frontera topoldgica de dos componentes conexas Mt y M~ en las que la
signatura de g cambia en una unica unidad, esto es,

Ind (M) =Ind (M*) + 1.
0

Aplicando este resultado, se dice que el X —espacio M es de Lorentz-
Riemann si M \ X tiene dos componentes conexas M™T riemanniana y M~
Lorentziana.

v Rad,,

M-

Figura 2.1. Hipersuperficie X

Definicién 2.7. Sea p € X' se define el tensor simétrico
I,: T,M x T,M x Rad, — R
como,
Ly (up, wp, 1) = (Vi W)(R)
donde U,W, R € X(M) tales que U(p) = u,, W(p) = w, y R(p) = 1.
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Nétese que I, estd bien definido ya que sabemos que la conexién dual V*
funciona para métricas degeneradas.

En lo que sigue, a menos que el indice que se repita sea m, para simplificar
usaremos la notacion de Einstein eliminando el signo de sumatorio y entendiendo
que en la expresién resultante un indice indica la suma sobre todos los posibles
valores del mismo. Ademas, tendremos en cuenta el siguiente convenio de indices:
i,j,ke{l,....m—1}ya,be,de{l,...,m}.

Ahora, para p € X tomamos un sistema local de coordenadas (U,p =
(x',...,2™)) con p € U C M tal que 2™ = 0 es una ecuacién simple de X

y una base mévil {eq,..., ey}, tal que para todo v € Uy & € T,M, £ =
u(&)eq(r). Esto es, {x!,... ;2™ ul ... u™} son las coordenadas mixtas en el

fibrado tangente T'M.

En particular, veremos que debemos escoger dicha base mévil {ey, ..., e}
verificando ciertas propiedades. Para ello, veamos primero el siguiente resultado
previo.

Lema 2.8. Sea f : I. — R una funcion de clase C* con k > 1 definida en
I. .= (—¢,¢) para e >0 y f(0) = 0. Entonces, la funcion

o(t) = / f'(st)ds

de clase CF=1 werifica que f(t) = tp(t) y p(0) = f(0).

Demostracion. Definimos u := st y fijado ¢ consideramos fi(s) = f(st). Enton-
ces,

/0 %ds = fi(8)[22y = fi(1) — £(0) = f(t) — f(0) = F(b).

No obstante,

_ 4 du = tf'(st).

5 du|, ds|,

Por ende, f(t) = fol tf'(st)ds = to(t) y es claro que p(0) = f/(0).

df,
ds

g

A continuacion, tal y como anticipdbamos, veamos qué condiciones debe-
mos imponer sobre la base movil {ey, ..., en}.

Proposiciéon 2.9. Sea p € X, existe un entorno U de M con p € U y una base
movil {e1,...,en} en €l verificando las siguientes propiedades:

(i) Los campos {ei, ... ,em_1} son tangentes a X NU.
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(ii) La matriz asociada a la métrica respecto dicha base es de la forma

0
(gab)a,be{17,_,7m} — (gij)i,je{l,...,m—l}(:]
0o --- 0 ‘T

(111) Para todo i € {1,...,m — 1}, se cumple que g(em, [em,e;]) = 0.

Demostracion. Sabemos que X' es una hipersuperficie de M, asi que considera-
mos (X, (z!,...,2™71)) una carta de X'y un campo é,, tal que para todo p € ¥
se verifique que é,,(p) € Rad,.
Ademas, fijado py € X consideramos 1 : U x I — M el flujo local de é,,
por pg € U y aplicando la Proposiciéon 1.16 sabemos que:
» Para todo t € I, el subconjunto ¢;(U) es un abierto de M de forma que la

aplicacion ¢, : U — M; es un difeomorfismo.
» Para todo p € U se tiene que 1, := 7, es curva integral de ¢€,, por p, es decir,

¥p(0) =p
A continuacién, considerando la aplicacién v, y teniendo en cuenta que
¥ (po,0) = po queremos ver que la aplicacién

dw’(po,o) . TPOZ X R H TPOM

es no singular. En efecto, si £ € T, X y a : J — X es una curva en Y
verificando que a(0) = pg y o/(0) = &, tomamos la curva a(t) = («(t),0) con
%’t:o& = (£,0) por lo que,

d - d
W) (60) = | w(@(1) = | w(a(t),0) =
t=0 t=0
d d
- % t=0 ”Va(t)(()) - E t=0 O‘@) B 57
d d
d1/1|(p0,o) (0,1) = at ¥(po,t) = i Tpo (1)
t=0 t=0

= 75, (0) = € (po)-

Por tanto, como consecuencia del Teorema de la Funcion Inversa se deduce
que existen )y abierto de X' con pg € Xy, My abierto de M y ¢ > 0 tal que
W Yo x I. — My es un difeomorfismo y denotemos X := 1, (Xp).

De este modo, para todo z € My consideramos v~ (z) = (p, t) para ciertos
p € Yoyt e l. Asi, definimos 2™(x) := t. En consecuencia, hemos obtenido

una carta (Mo, (x',...,2™)) de M dada por,
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o'(x) =2 (m(7 () v a™(z) = m((2))

donde m : Yoy x I, — Xy y my : Xy X I. —> I, son las proyecciones sobre la
primera y la segunda componente, respectivamente.

Figura 2.2. Difeomorfismo ¢ : Xy x I. — M)

En lo que sigue tomamos los campos

0 - 0

— - em = .
oxt Y ox™

Como consecuencia, dado que X = {z™ = 0}, se cumple (i), ya que los
campos e; son tangentes a X' N U pues,

€;

m o m a o a m\ __
dz"™(e;) = dx <8x2> _&ci(x )=0.

Por otro lado, la matriz asociada a g respecto de la base {e1,...,en_1,mn}
es de la forma,

91im
(gab)a,be{l,...,m} = (gij)i,je{l,...,m—l}
Im—1m
9im ' Gm—-1m Imm

Pero, en concreto, sabemos que,

(gab) |xm=O =
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Por tanto, aplicando el Lema 2.8, tenemos que existen funciones h,(z*, x™), con
a € {1,...,m}, tales que gum(z', ™) = x™h,(z', ™). Entonces, la matriz (gq)
se reescribe de la siguiente manera,

l’mhl
(ab)ape(t,...my = G)isetn...m-) o
T hm—l
x"hy - xmhm_l‘ z™h,,

A continuacién, debemos modificar el campo e, para que sea ortogonal a
todos los e;. Para ello, definimos e,, como sigue,

Em = P;€; + é\m = Pj€; + 890_""

para ciertas funciones ¢;. Ademads, para que e,,(p) con p € X esté en la direccién
del radical Rad,, debemos imponer que,
¢j|xm=0 = 0

Luego, teniendo en cuenta de nuevo el Lema 2.8, se sigue que existen fun-
ciones 1; tales que ¢; = 2™1);, es decir,

Ahora, exigiendo la condicién de ortogonalidad, esto es, g(e;, e,,) = 0 para
todo ¢ € {1,...,m — 1}, obtenemos que,

glei, em) = gles, x™Pje; +em) = a™ig(ei, €5) + glei, em) =
= 2" ;955 + «"hi = 2" (955 + hi) = 0.

Por ende, ¥;g;;+ h; = 0, es decir, ¥; = —(gi;) "' hi. As{ e, queda completamente
determinado por dichas funciones y, denotando 7 := gy, se verifica (7).

Por dltimo, veamos que (ii7) es cierto, esto es, g(€m, [em, €;]) = 0. Para ello,
teniendo en cuenta (i7), basta ver que el campo e, e;] estd generado unicamente

por los campos {e1, ..., em_1} = {32, ..., 5m2— }. En efecto,
' 0 .
[ema ei] = [€m7 61’] ($J>% + [em, @i] (.Qﬁm)ax—m = [em, 61'](%'])@,

ya que se cumple lo siguiente,

[em, el (2™) = em(ei(a™)) — ei(em(2™)) =
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En lo que sigue, consideraremos la base mévil {ey,...,e,} definida en la
Proposicién 2.9. En concreto, X' viene dado por 7(x) = 0. Por otro lado, sea
p € X el radical Rad, queda determinado por e,,(p). Ademds, como la métrica
g es de tipo transverso sabemos que

d7—|p 7& 0 vy det ((hij)i,je{l,...,mfl}) 7& 0.

2.2. Geodésicas transversales

A continuacién, comenzaremos a estudiar la existencia de geodésicas que
atraviesen la hipersuperficie J. Este es un problema que surge de manera natural
como consecuencia de la importancia de las curvas geodésicas en la geometria
semi-riemanniana.

Para ello, recordamos que el Lema 1.44 nos dice que el spray geodésico en
coordenadas mixtas viene dado por el campo,

0
I = efu’— — I'uu
x

%F mab S€ Sigue que,

Ahora, aplicando que I} = ¢ o = """ L oy =

0 , 0 1 0
_ a,,b i a, b a, b
II = eju Fpa I'yuu vl ;Fmabu U Jum
En particular, sean x € U y & € T, M, tenemos que Il aplicado a & es de
la forma,

i a a ]' a a
(&) = We(&) — Thu(E)u’(€) e . - %Fmbu (u’(¢) N . (2.1)
En efecto,
0 0
We(€) = i"(§) 5—| = epu’(§) —| .
¢ e M

donde ¥, : T,M — T¢(TM) es el isomorfismo dado por,
0 0

W . - :

¢ (895@ x) Oxt

Ahora, por fin estamos en condiciones de presentar el teorema que le da
nombre a esta seccion.

1<t <m.

Y

3

Teorema 2.10. Sea M un X—espacio, p € X y v, € T,M \ T,X. Entonces,
existe una geodésica v con v (0) = vy, si y sélo si, L,(vy,vp,1,) = 0 para algin
rp € Rad, con 1, # 0.
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Demostracion. Veamos cada una de las implicaciones por separado.

13 7
=

Podemos asumir sin pérdida de generalidad que dr(v,) < 0. Luego, para
r €Uy e T, M la ecuacién (2.1) nos dice que el spray geodésico viene
dado por,

0 1 “ 0
% . — @Fmabu (é)ub(é) am

ou™

I1(€) = We(&) — Lyu (E)u’(€) :
3
Ahora, teniendo en cuenta que 7(p) = 0y que

Lna = 9(Ve, €0, €m) = Hp<€a(p)v es(p), em(p))

para todo p € X, concluimos que para que exista I1(v,) debe cumplirse que,

Fmabua(vp)ub(vp) = I, (ea(p), es(p), em(p))u“(vp)ub(vp) = L,(vp, vp, €m(p)) = 0.

Es decir, I,(vp, vp, €m(p)) = 0 con e, (p) € Rad, tal y cémo queriamos de-
mostrar.

Para probar el reciproco definimos el campo
S = (tomll,
donde 7 : T'M — M es la proyeccion candnica. Por tanto,

0
out ¢

0

— Dnapu®(§)u’(€) Jum

S(&) = T(2)Pe(€) — (2) [yu (§)u’(€)

3
En particular, el Lema 1.12 nos dice que Il y S tienen las mismas curvas

integrales salvo reparametrizacion siempre que 7o # 0.
Dado que (7 om)(v,) = 7(p) = 0 y que por hipdtesis
Fmabua(vp)ub(vp) = ]Ip(vpv Up, em(p)) = 07
se deduce que S(v,) = 0. Por tanto, linealizamos S en v, y obtenemos,
i, a b a
DS|UP =(drom,) & | ¥, (vp) — Ly (vp)u (vp)%
0

J— a b —_—
d (Fm‘lbu u ) |Up ® oum

)
Up

donde d denota la diferencial exterior.

El primer objetivo de la prueba consiste en hallar los autovalores y autovec-
tores de DS |Up. Para ello, previamente observamos que,
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En efecto,

(Tt (€0(€)) = Tonnt“(€) + Tt (€) =
= (Lomb + Linbm) ub(g) =
= (mei + Fmim) l(f) + 2memum(§> =
= ep(T)u™(§) = d7(§).

Noétese que hemos aplicado la férmula de Koszul (1.4) para determinar I,
Fmim y mem7 esto €s,

1

_g(emv [eiv €m]) + g(€i7 [€m7 em]) + g(em7 [emv el])) -

:%€i<7) +g(em, em, &) =

:g(emv [ema 61]) - Oa
1

_g(ei> [emv eM]) + g(emv [€m7 61]) + g(em, [ei7 em])) =
1
ziei(r) =0,

1

_g(ema [6m7 em]) + g<€m: [ema em]) + g(ema [€m7 em])) =
1
:§em(7').
Aqui, hemos utilizado que [e,,, e,,] = 0y la Proposicién 2.9, que nos dice que
Gim = Gmi = 07 g(€m7 [€m7 ez]) =0 y 61‘(7'> =0.
Como consecuencia, realicemos el calculo de los siguiente autovalores y au-

tovectores:

_0_
’ Oum
—dr(v,) > 0. En efecto, dado que m, (3%

e En primer lugar es un autovector de DS |Up con autovalor positivo

o ) = 0, se tiene que,

a m
i) \ o\ 9
s, (g ) =~ o) b, (1) g =
) . )
= aum (Fmabu (Up)ub(vp)) au_m =
= —dr())

oum’
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e Por otro lado, para cualquier

0 0
XeD —{g}’u vp) | UPGTZ} @Span{aul,...,aum_l},

existe un C'(X) € R tal que X +C(X) 52 es un autovector de DS, con
autovalor 0. Efectivamente,

DS, (X +C(X)52:) =(drom.) (X + C(X)5%) (¥, (v,) — Thyu(vy)u(vy) 52)

Lnavt®u”) b, (X + C(X) gy) g =

mabM)\vp (X)

—d(
(
(X) 79 (Dnavu (vp)ub(vp)) afm —
(
C(X

mabu u ) ‘vp X) .

ou™m

YT (v,) 52 = 0.

Nétese que m, (5%) =0y (dr om.) (X) = dr(w) =0 con w € T, X. Por
tanto, el C(X) € R buscado es,

d (Fmabuaub) o, (X)

CX)=- dr(vp)

Asf que, la aplicacion D — ker(DS]Up) tal que X —s X + C(X)auim es
un monomorfismo y se tiene que

dim ker(DS|, ) > dim D = 2m — 2.

e Por tdltimo, para calcular el autoespacio generalizado asociado a autova-
lores negativos observamos que,

DS]UP (!Pvp(vp) I
=(d7 o m,) (va(vp) FZ

—d (Fmabu“ub) |, (%p (vp)
ZdT(Up) (va (Up> - Fcib ( p)ub(vp) a(zz')

—d (Fmabuaub) |op (va (vp) — Fébua(“p)“b(”p)%) auim'

En consecuencia, existe ky € R tal que

) (va abu (Up)ub(vp)%)

vp)u’ (V) 74 ) B =

v ="y, (v,) — [u*(vy)u’(vy) 2 + koys € T, TM

a

es un autovector de DS|, con autovalor negativo dr(v,) < 0, esto es,

DS|% (%p(vp) — Ihu(vy)u’ (v >8u1 + ko aum) =

. 2.2
=dr(vp) (vap (0p) — Doy (vp)u’ (vp) 5 o T koauim) : 22
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En efecto, por un lado,

DS|,, (W, (vp) — Ly (vp)u" (vp) 3 + kozos) =
=d7(vp) (%p@p) - Féb“a@p)“b@p)aii)
—d (Fmabuaub) |vp (va (Up> - Fébu%l}p)ub(vp)%) Buim
— kodT(vy) 52

ou™”

Mientras que, por otro lado,

dr(vp) (vap (vp) — Féb“a(vp)“b(%)azi + koauim) =
:dT(Up) (!pvp (Up) - F;bu“(vp)ub(vp)aii) + kOdT(Up)auim'

Por ello, para que se verifique (2.2) debe cumplirse que,

kod7 (vp) 5o = — d (Dmapt ) [, (W, (vp) — Loy (0p)u”(0) 507 ) 5o

— kodT(vp) 7%

ou™

Asi que, el kg € R deseado es,

b d (Domapt®®) |o, (P, (vp) — Ly (vp)u’ (vp) o) _
0 2d7(vp)
1

- QC (2o, () — Fibua(vp)ub@z?)i) :

a o
De hecho, nétese que m.(v) = v, ya que m, (¥, (v,)) = v, y T (3%) = 0.
Finalmente, de aqui concluimos que
T,,TM =N"& N’ @ N,

donde N~ y NT denotan los autoespacios generalizados de autovalores de
DS ]Up negativos y positivos, respectivamente. Mientras que N es el au-
toespacio de autovalor 0. Como resultado del estudio realizado previamen-
te y dado que dim T, TM = 2m, sabemos que dim N~ = dimN* = 1y
dim N° = 2m — 2.

A continuacién, aplicando el Teorema 1.17 se deduce que existen subvarie-
dades Wy v W, de T'"M que son invariantes por el flujo de S y satisfacen que
T,,We=N~"yT,W,=NT.

En particular, Wy es una curva inmersa diferenciable que interseca las fibras
sobre X' transversalmente en v, y existe una parametrizacion regular v, (t) de
W en torno a v, tal que v1(0) = v, y 71(0) = v. De esta forma, consideramos
9 := m oy, la proyeccién de 7, verificando que
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72(0) = (m o 1)(0) = 7(71(0)) = 7(vp) = p,
72(0) = (w071)'(0) = m(71(0)) = 7. () = vp.

En concreto, se tiene que 7, es una linea pregeodésica sobre M. Esto se debe
a que W es linea integral del campo Sy, en consecuencia, también lo es del
campo II. Por tanto, basta tener en cuenta que las lineas integrales de I se
proyectan en lineas geodésicas sobre M.

Ademés, el Teorema 7 de [2] y que L,(vy, vy, 7,) = 0 nos dice que existe un
unico campo vectorial diferenciable y paralelo P sobre 72 y P(0) = v,.

Por otro lado, se verifica que P es tangente a 7, en todo punto. En efecto,
basta considerar que si 7, es pregeodésica y P es un campo vectorial paralelo
a lo largo de 79, entonces el dngulo que forma P(t) con v4(t) es constante .
Luego,

o —
—

a0 = 1m(P(D), /(1)) = (:5) = 0.

t—0

De este modo, podemos parametrizar v, para obtener una curva
v:(—g,e) — M

para algin € > 0 con v = P, esto es, 7(0) = p y 7/ (0) = v,. Por tanto,
concluimos que la curva ~ es la geodésica buscada.

O

Figura 2.3. Curva geodésica v con 7'(0) = v,

2.3. Geodésicas radicales

Nétese que en el Teorema 2.10, el vector v, € T,M \ T,X no pertenece al
espacio radical Rad,. Pues en ese caso, se tendria que v, = Ae,,(p) para cierto
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A € R\{0}. En consecuencia, I,(v,, v, €, (p)) # 0. En efecto, aplicado la formula
de Koszul (1.4) se deduce que,

L, (vp, Up, €m(p)) = Lp(Aem(p), Aem(p), em(p)) = )‘Z]Ip(em(p)v em(p), em(p)) =
>\2

= N29(Verlms €m) = >en(T) = 2dr(en(p)) = Adr(v,) # 0.

De esta manera, en el siguiente teorema estudiamos que ocurre en el caso
de que v, € Rad,, es decir, que las geodésicas atraviesen la hipersuperficie X' en
la direccién del subespacio radical.

Teorema 2.11. Sea M un X —espacio con radical transverso en p € . Enton-
ces, sir, € Rad,, existe una curva diferenciable pregeodésica v con v(0) = p y

7' (0) = 7.

Demostracion. En primer lugar, ndtese que vamos a utilizar la misma notacion
y coordenadas en T'M que en la prueba del Teorema 2.10.

Como sabemos que el vector e,,(p) genera al radical Rad,, asumimos que
rp, = Aep(p) para cierto A € R\ {0}, esto es,

u'(r,) =0 vy u™(r,) =\

Ademds, podemos suponer sin pérdida de generalidad que dr(r,) < 0y
L(rp, 7p, €m(p)) # 0.

A continuacién, para todo x € M definimos la funcién

h(z) = %dT()\em(:U))

y consideramos el siguiente campo vectorial desplazado,

56 = S() + he'© | o E€TM

Nétese que las proyecciones a M de las lineas integrales de los campos S ,
Sy II son las mismas. Pues, por el Lema 1.43 lo son las de Il y Il = I + %V

y por el Lema 1.12 los campos S =7l y IT tienes las mismas lineas integrales
en TM\ 7= 1(X).

De este modo, S (rp) = 0. Efectivamente,

S(rp) =S(rp) + h(p)u®(ry)

=71(p)¥, (r,) — 7( )Fi u®(r )ub(r ) i — Lpapu®(r )ub(r ) i +
=T\P)¥r,\Tp D)L ap P P out mab P p dum

Tp Tp
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a a J—
+ h(p)u®(r,) B § —
9, A2 9,
_ )2 - —
— >\ mem 8um . + 2 dT(€m<p)> aum .
A2 0 N 0
=5 | oo gy =0

Tp

En consecuencia, podemos linealizar el campo S en 7, es decir,

DS

~(arom)® (1,0 = T (1)

Tp

—d (Fmabuaub) |r, ® 8%” . +d (hu®) |, ® aia . —
=(drom,)® (LPT (rp) — )\QF;;mi.) — d (Dpapuu®) |, @ 9
r ou' P oum -
+ h(p)du'(r,) ® i + h(p)du™(r,) ® 9 + Adh(p) ® 9
ou? ou™ ou™

Tp Tp Tp

Ahora, nos interesa calcular los autovalores y autovectores de D.S
Tp

= En primer lugar, veamos que %

um

con autovalor
Tp
) = 0, se deduce que,

es un autovector de DS

9

ou™

positivo —2d7(r,) > 0. Teniendo en cuenta que T, (

DS

)0 0) (5 ) s+ 10000 (50 ) o

ou™ ) du™
- auim (Fmabu“(rp)ub(rp)) o
4 h) g (0 o b g (47 (1y) 5
FA (b)) 5o =
= () s hp) o = (—dr(ry) - h(p) o =
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= Por otro lado, para todo w, € T,X, ¥, (w,) es un autovector de DS| con
Tp
autovalor 0. Recordando que

0

(1) = () o
y que d1(w,) = 0 para todo w, € T,X, es claro que,

DS

(W, (wp)) = 0.

Tp

» Ademds, para todo j € {1,...,m — 1} se tiene que % es un autovector

de DS| con autovalor negativo %dr(rp) < 0. Como antes, aplicando que

p

8 .
Ty (%) = 0, se sigue que,

DS

9., (%) = —d (o) |, (i)im

Notese que, aplicando la Proposicion 2.9 obtenemos que,

a a a
ul (Fmabu (Tp)ub(rp)) :Fmibub<7"p> + Lnaitt (rp) =
= (Fmia + Fmai) ua(rp) -
=)\ (Fmim + mez) -
=Ag(em, [em, ei]) = 0.
» Por tltimo, existen c!,...,c™ ! € R tales que

_ k
77—4—/7«;0(7”}) +c %
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es autovector de DS|  con autovalor negativo dr(r,) < 0.

Tp

DS| (W, (1) + ¢ 5ix) =(dr o m.) (¥, (ry) + 5o ) (B, (1) = ML)
—d (Fmabuaub) |y (!prp (rp) + aak) agm
+h(p)du(ryp) (T, (rp) + ¢ 50x) 5
+ h(p)du™ (1) (B, () + " 55) G
+ AdR(p) (¥, (rp) + ¢ 5) gom =
=dr(rp) (T, (rp) = N Dpmr)
— 5% (Dnavu® (rp)u’ (1)) 5%
+ h(p)c auk( "(ry)) 57
+ h(p ) aur (W"(1p)) gom
+ A 50 (h(p)) 5o =
:M&ﬁ( (rp) — Vﬁm%J+h()%%:
=dr(rp) (T, (rp) + (5¢" = N Tm) gur) -
Luego, para los valores c* = —2)\2I'% "k € {1,...,m — 1}, se cumple lo que
queremos.

Ademés, nétese que m,(n) = r,, pues 7, (¥, (rp)) =71, y ™ (3%) = 0.

Finalmente, recopilando todo lo obtenido hasta ahora tenemos que
T, TM =N-& N @ NT,

donde N~ y Nt denotan los autoespacios generalizados de autovalores de DS |y
negativos y positivos, respectivamente. Mientras que N O es el autoespacio de
autovalor 0. En concreto, hemos deducido que dim N C=m—-1,dim Nt =1y
dim N~ = m, siendo dr(r,) el autovalor mas negativo.

Por tanto, sea Y el autoespacio asociado al autovalor dr(r,), aplicando el
argumento que se muestra en el Teorema 2 de [3], deducimos que existe una
subvariedad L invariante por el flujo de S tal que r, € Ly T, L =Y.

Ahora, consideramos 7(t) una parametrizacién regular de L en un entorno
de r, con ¥(0) =, y 7/(0) = 7. Entonces, la proyeccién v = m o7 de 7y define
una parametrizacion regular de L = 7(L) en torno a p verificando que

7(0) = 7(3(0)) = 7 (rp) = p,
7'(0) = m(7(0)) = ma(n) = 7,
En consecuencia, la proyeccion L de L determina una curva diferenciable

pregeodésica v con y(0) =p y 7'(0) = 7.
O
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2.4. Ejemplos de geodésicas

En esta seccién tomaremos diferentes métricas en R? y hallaremos las
geodésicas en cada uno de los casos, estudiando asi aquellas que puedan atravesar
la hipersuperficie formada por los puntos en los que la métrica degenera.

Ejemplo 2.12. Consideramos en R? la métrica

(10
que es singular en X' = {(x,y) € R? | y = 0} y en donde el vector que determina
al radical es a% transverso a X'

Calculando los stmbolos de Christoffel en R? \ X obtenemos que

1
F111:F121:F112:F122:F212:0 y F222:2_'
Y
Por tanto, deducimos que las ecuaciones de las geodésicas en R?\ X vienen dadas
por el siguiente sistema de ecuaciones diferenciales,

z =0,
Lo
— ()2 =0
cuya solucién es,
x(t) = at + b,

y(t) = ¢ (3t +d)3

para ciertos a,b,c,d € R. De esta forma, si buscamos una geodésica y(t) con
condiciones iniciales v(0) = (zo,v0) y 7' (0) = (ug, vg), se deduce que

% Vo % ng
a = Uog, b:f,Eo, C=1Yy (E) y d:'l}_
0

con vy # 0. Asi, la geodésica v viene determinada por

1709\ 5 2y 3
0

y su velocidad en cada punto es

1 2 2 -3
v(t) = (uo, 2y5 <@>3 (3t+ ﬂ) ) .
2 Vo
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Figura 2.4. Geodésicas en R? con la métrica g

En concreto, algunos ejemplos generales de pedazos de geodésicas llegando
a tocar X, pero sin atravesarla, vienen representados en la Figura 2.4.

En particular, si uy = 0 obtenemos geodésicas verticales en la direccién del
radical de la forma

1 2 20\ 3
V() = | w0, u§ (%)3 (3t+ ﬂ) ,

Vo

que cortan a X en ty = —3%‘;, pero no la atraviesan. No obstante, los pedazos de
geodésicas verticales en y > 0 e y < 0 pegan diferenciablemente atravesando X,
véase la Figura 2.5.

Figura 2.5. Geodésicas radicales

Sin embargo, aunque toda geodésica en la forma general corta a X' en

ty = —g%g, pegar dos pedazos de geodésicas generales en y > 0 e y < 0 no
produce una linea diferenciable, ya que 7/(t) no es diferenciable en t, = —g%g,

véase la Figura 2.6.
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Yo

N

Figura 2.6. Geodésicas en R? con la métrica ¢

En consecuencia, deducimos que las tnicas geodésicas que atraviesan la
hipersuperficie X' son las geodésicas verticales, es decir, las geodésicas radicales.
Luego, segiin el Teorema 2.10, esto nos dice que sea p € X', no existe un vector

2 _ .
tangente v, € T,R* \ T,,X tal que L,(v,,v,,7,) = 0, para algin r, € Rad, con

_ 0 _ 9 0 :
rp, # 0. En efecto, sea 1, = a—y‘p Y Up = %|p + 05, ‘9—y‘p se tiene que

I(vp, vp, 1) = g(vvpvarp) =

— 5_22_1_0[6_&3_'_&8_52_}_68_&&_'_ 8_63 g —
—J 2y Oy Ox Ox Ox Oy Oy Ox oyoy’ oy/)
B 0B op
=3 +a837y+58y .

Teniendo en cuenta que p € X, esto es, p es de la forma p = (9, yo) con
yo = 0, se sigue que L, (vy, v,,1,) = 0, siy sélo si, B, = 0. Es decir, v, = 8%}17 €
T, pero esto no es posible ya que hemos dicho que v, € T,R? \ T,X.

En general, no es sencillo encontrar ejemplos de métricas que nos permitan
hallar las expresiones explicitas de las geodésicas. No obstante, a continuacion
presentamos un ejemplo en el que representemos geodésicas que atraviesan la
hipersuperficie X' en una direccién distinta a la del radical.

Ejemplo 2.13. Tomamos en R? la métrica
g= (ey 0)
0y
que es singular en X = {(z,y) € R? | y = 0} y en donde el vector que determina
al radical es a% transverso a .
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Los simbolos de Christoffel en R? \ X' vienen dados por

Yy
€ 1

1
I =TL="1,=0, TI}= ~2 ry = Sy = 5

u uacion 5si n uedan rmin r
Luego, las ecuaciones de las geodésicas en R?\ X quedan dete adas po
el siguiente sistema de ecuaciones diferenciales,

1
1 ) ey 2
_ N =0
j 2y(y) 2y()

Sin embargo, aunque es complicado encontrar la expresion explicita de las
geodésicas, el Teorema 2.10 nos da la condicion de existencia de geodésicas que
atraviesan Y en una direccién distinta a la del radical. En efecto, sea p € X'y

los vectores r, = 8% , € Rad, y v, = %|p+,@p a% , € T,R*\ T,,X se tiene que

[(vp, vp, 1) = g(vvpvpvrp) =

_ 9 20 | P20 P20 | 0ad | 080 , gdad , 380 0 _
_9<aﬁaz ooy toyay T oy T Yarar T Xy 8y3$+58y8y’8y>_

Por tanto, teniendo en cuenta que p € Y implica que p es de la forma

p = (%0, Yo) con yo = 0, se deduce que I,(v,, v,,7,) = 0, si y sélo si, a, = £05,. Es

decir, existird una geodésica que atraviese X en la direccién de v, € T,R*\ T, X%,
si y sélo,

9]

= (X _
P ox

0
j:ap—
p Ay

Up :
p

Finalmente, veamos una representacion de las geodésicas en este ejemplo.
En primer lugar, en la Figura 2.7 vemos geodésicas que no atraviesan Y. Por
otro lado, en la Figura 2.8 se representan geodésicas radicales. Por ultimo, en
la Figura 2.9 observamos geodésicas transversales, que atraviesan X' en una
direccion distinta a la del radical.
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/

Figura 2.7. Geodésicas que no atraviesan X

Figura 2.8. Geodésicas radicales

Figura 2.9. Geodésicas transversales



Conclusiones

En esta memoria hemos estudiado las geodésicas que atraviesan la hipersu-
perficie X’ determinada por los puntos en los que la métrica g es degenerada. Este
problema lo hemos abordado diferenciando dos casos fundamentales: las geodési-
cas radicales, que atraviesan la hipersuperficie en la direccién del subespacio
radical y las geodésicas transversales que lo hacen en otra direccion transversal.

Cabe destacar que para el desarrollo de estos resultados ha sido necesaria
la construccién previa de una base mévil {ey, ..., e, } de M verificando ciertas
propiedades.

Por un lado, la existencia de las geodésicas transversales esté condicionada
por el valor del tensor I. Por otro lado, para determinar las geodésicas radicales
partimos de un campo radical e,,, es decir, un campo en M tal que e,,(p) €
Rad, para todo p € X, y construimos en T'M el campo S = 7II + hV siendo
h = %em(T), T = g(em, en) y donde IT denota al spray geodésico y V' el campo

de Liouville. Asi, S tiene a 7p = Aey(p) como punto singular para todo p € X\

De esta manera, se ha conseguido encontrar para cada p € X una linea
L, invariante por el flujo de S con r, € L, univocamente determinada y que
varia diferenciablemente con p € Y. En consecuencia, se prueba entonces que
L, = m(L,) es una linea pregeodésica que atraviesa X en la direccién del radical,
esto es, T, L, = Rad,.

En el futuro seria interesante explorar en nuevas direcciones. En particular,
con la familia de lineas L, con p € X se construye una carta (z°,2™) en un
entorno U de M tal que p € U, a esta carta se le denomina carta normal, de
forma que la matriz asociada a la métrica respecto a ella es de la forma

(gab)a,be{l,...,m} =

y las lineas z* := z*(p), 2™ := t, para todo p € X, constituyen la familia de las
lineas radicales. En estas condiciones, se prueba que la linea pregeodésica radical
L, que atraviesa X’ por el punto p es esencialmente tnica.
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