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Resumen · Abstract

Resumen

Un tensor métrico g de tipo (0, 2) en una variedad diferenciable M
se dice que cambia transversalmente de signatura, si en torno a ca-
da punto donde es degenerada, existe un sistema de coordenadas que
verifica que la diferencial de la función det (gij) en el punto no se
anula. Esta condición implica que el conjunto Σ en donde g es de-
generada es una hipersuperficie, la signatura cambia en una unidad
al atravesarla y se pide que el radical unidimensional en cada punto
p ∈ Σ sea siempre transverso a Σ. El objetivo de esta memoria es
estudiar las ĺıneas geodésicas que atraviesan Σ. Basado en el trabajo
de Kossowski y Kriele [3] quienes prueban que, bajo estas condicio-
nes, por cada punto de Σ atraviesa una única pregeodésica en la
dirección del radical y determinan las otras direcciones en las que
existen geodésicas que atraviesen la hipersuperficie.

Palabras clave: Tensor métrico – Signatura – Hipersuperficie –
Radical – Transverso – Geodésica



vi Resumen · Abstract

Abstract

A tensor field g of type (0, 2) on a smooth manifoldM is a transverse
type changing metric, if around each point where it is degenerate,
there exists a coordinate system such that the function det (gij) has
non-zero differential at the point. This condition implies that the set
Σ, where g is degenerate, is a hypersurface, the signature changes by
one unit upon crossing it, and the one-dimensional radical at each
point p ∈ Σ is always required to be transverse to Σ. The aim of
this work is to study the geodesic lines that cross Σ. Based on the
article of Kossowski and Kriele [3], who proved that, under these
conditions, through each point of Σ crosses a unique pregeodesic in
the direction of the radical, and they determine the other directions
in which there are geodesics crossing the hypersurface.

Keywords: Tensor field – Signature – Hypersurface – Radical –
Transverse – Geodesic
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Introducción

La geometŕıa semi-riemanniana es una extensión de la geometŕıa rieman-
niana que permite la existencia de métricas no definidas positivas. Esta rama
de la geometŕıa diferencial se ocupa de estudiar las propiedades y estructuras
de variedades diferenciales dotadas de un tensor métrico, que se conocen como
variedades semi-riemannianas.

Las geodésicas son curvas que hacen cŕıtica la longitud del camino entre
dos puntos en una variedad, generalizando la noción eucĺıdea de ĺınea recta. En
la geometŕıa semi-riemanniana, las geodésicas se definen como curvas con ace-
leración cero. Estas cobran especial importancia para comprender la estructura
de los espacios curvos y describir el movimiento de part́ıculas en estos espacios,
lo que tiene aplicaciones directas en la f́ısica, especialmente en la relatividad
general.

El propósito de esta memoria es estudiar las geodésicas de una variedad M
dotada de un tensor simétrico g de tipo (0, 2). Existe la posibilidad de que dicho
tensor g sea degenerado, aśı un punto x ∈M se dice singular si gx es degenerada
y denotamos por Σ al conjunto de todos los puntos singulares. De esta manera, g
induce sobre cada componente conexa de M \Σ una métrica semi-riemanniana.
Por otro lado, se dice que g es de tipo transverso si en torno a cada punto singular
existe un sistema local de coordenadas (xi) verificando que la diferencial de la
función det(gij) es no nula en dicho punto, donde g = gijdx

i⊗dxj es la expresión
local de g. Además, esta propiedad es independiente del sistema de coordenadas
tomado.

Como consecuencia, se deduce que si g es de tipo transverso, entonces Σ
es una hipersuperficie y se dice que M es un Σ-espacio. Bajo estas condiciones
se obtienen dos resultados fundamentales: la signatura cambia en una unidad
al atravesar Σ y para cada punto p ∈ Σ el subespacio radical Radp es unidi-
mensional. Asimismo, se exigirá que dicho radical sea siempre transverso a la
hipersuperficie Σ.



x Introducción

A partir de aqúı, como resultado del estudio de las ĺıneas geodésicas en M
como Σ-espacio, surge de manera natural la siguiente cuestión:

¿Existen ĺıneas geodésicas en M que atraviesen la hipersuperficie Σ?

Marek Kossowski y Marcus Kriele respondieron dicha pregunta en 1994
en su art́ıculo “Transverse, type changing, pseudo riemannian metrics and the
extendability of geodesics”, que hace uso de teoremas de variedades estables en
sistemas dinámicos (véase [3]). Esta memoria está basada en este trabajo y tiene
como principal objetivo dar respuesta a esa pregunta.

Para resolver el problema se estudian por separado las ĺıneas geodésicas
que atraviesan Σ en la dirección del radical y aquellas que atraviesan la hiper-
superficie en otra dirección transversal. Además, es importante resaltar que ha
sido necesaria la construcción de una determinada base móvil para resolver un
detalle incorrecto en el Teorema 1 de [3]. De esta manera, se obtienen los dos
teoremas esenciales del trabajo. El primero de ellos nos dice que la existencia
de geodésicas transversales que atraviesen Σ viene determinada por el valor de
un tensor I, en concreto, existirá una geodésica transversal a la hipersuperficie
Σ en p ∈ Σ si dicho tensor Ip se anula. Por otro lado, para todo punto p ∈ Σ
existe una pregeodésica que atraviesa Σ en dicho punto en la dirección radical.
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Preliminares

En este caṕıtulo, recordaremos toda la teoŕıa de variedades diferenciables
y sistemas dinámicos necesaria e introduciremos la geometŕıa semi-riemanniana
en la que se basa este trabajo (para más detalles, véase [5]).

1.1. Variedades diferenciables

Intuitivamente, sabemos que una variedad diferenciable M es un espacio
topológico que localmente es equivalente a Rm. Formalmente, es una variedad
topológica de dimensión m dotada de un atlas completo A.

Sea M una variedad diferenciable de dimensión m, recordamos que se de-
finen los vectores tangentes como operadores que actúan (como derivadas direc-
cionales) en el anillo de funciones F(M) = {f :M → R | f diferenciable}.

Definición 1.1. Sea x ∈ M , un vector tangente a M en x es una función real
v : F(M) −→ R tal que para todo λ, µ ∈ R y f, g ∈ F(M) cumple:

v(λf + µg) = λv(f) + µv(g),
v(fg) = v(f)g(p) + f(p)v(g).

El espacio tangente a M en x ∈M es el espacio vectorial

TxM = {v : F(M) −→ R | v es vector tangente a M en x}.

Las operaciones del espacio vectorial sobre TxM son las inducidas por la suma
de funciones reales y el producto por un número real de este tipo de funciones.

Sea (U,φ ≡ (x1, . . . , xm)) una carta en M tal que x ∈ U , definimos para
cada i ∈ {1, . . . ,m} los siguientes vectores tangentes a M en x

∂

∂xi

∣∣∣∣
x

: F(M) −→ R,
∂

∂xi

∣∣∣∣
x

(f) =
∂(f ◦ φ−1)

∂ri

∣∣∣∣
φ(x)

,
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para todo f ∈ F(M), donde r1, . . . , rm son las funciones coordenadas naturales
de Rm. Estos vectores determinan la base canónica{

∂

∂x1

∣∣∣∣
x

, . . . ,
∂

∂xm

∣∣∣∣
x

}
de TxM asociada a la carta (U,φ), es decir, para todo x ∈ M la dimensión
del espacio tangente TxM coincide con la dimensión de M . Además, para todo
v ∈ TxM se verifica que

v =
m∑
i=1

v(xi)
∂

∂xi

∣∣∣∣
x

.

Sean ahora M y N dos variedades diferenciables, f : M −→ N una
aplicación diferenciable y x ∈ M . Entonces, f induce una aplicación lineal
dfx : TpM −→ Tf(x)N entre los correspondientes espacios tangentes, definida
por

[(dfx)(v)](h) = v(h ◦ f)

para todo v ∈ TxM y h ∈ F(N). La aplicación dfx se denomina la diferencial de
f en x.

Por otro lado, el espacio cotangente T ∗
xM en el punto x de la variedad M

es el espacio vectorial dual de TxM , esto es,

T ∗
xM = {αx : TxM −→ R | αx es lineal}.

En lo que sigue, veremos que los espacios tangente y cotangente nos per-
miten definir los campos de vectores y las 1-formas, respectivamente.

Definición 1.2. Un campo de vectores V en una variedad diferenciable M es
una aplicación que asigna a cada punto x ∈M un vector apoyado en él, es decir,
V (x) := Vx ∈ TxM para todo x ∈M .

Si V es un campo vectorial en M y f ∈ F(M), entonces V (f) denota la
función real en M tal que para todo x ∈M viene dada por,

V (f)(x) = Vx(f).

De esta manera, un campo de vectores V es diferenciable si V (f) es dife-
renciable para todo f ∈ F(M).

Al conjunto de todos los campos de vectores en M se le denota por
X(M). En particular, X(M) es un F(M)−módulo con las operaciones (fV )(x) =
f(x)V (x) y (V +W )(x) = V (x) +W (x), para todo f ∈ F(M) y V,W ∈ X(M).

En concreto, si (U,φ ≡ (x1, . . . , xm)) es una carta en M , entonces para
todo i ∈ {1, . . . ,m}, el campo de vectores ∂

∂xi en U que env́ıa a cada x ∈ U en
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∂
∂xi

∣∣
x
es el i-ésimo campo vectorial coordenado de φ y se sigue que para cada

campo vectorial V ,

V =
m∑
i=1

V (xi)
∂

∂xi
.

Ahora, podemos introducir las 1-formas, que no son más que los objetos
duales de los campos de vectores.

Definición 1.3. Una 1−forma θ en una variedad M es una función que asigna
en cada punto x un elemento θ(x) := θx del espacio cotangente T ∗

xM .

Si θ es una 1-forma en M y V ∈ X(M), se denota por θ(V ) a la función
real en M tal que para todo x ∈M queda determinada por,

θ(V )(x) = θp(Vx).

Luego, de forma análoga a X(M), el conjunto X∗(M) de todas las 1−formas
en M es un F(M)-módulo.

Definición 1.4. La diferencial de f ∈ F(M) es la 1-forma df tal que, para todo
vector tangente v en M , se cumple que (df)(v) = v(f).

Dada (U,φ ≡ (x1, . . . , xm)) una carta en M , entonces tenemos las 1-
formas {dx1, . . . , dxm} en U , que en cada punto x ∈ U forman la base dual
de
{

∂
∂x1

∣∣
x
, . . . , ∂

∂xm

∣∣
x

}
, esto es,

dxi
∣∣
x

(
∂

∂xj

∣∣∣∣
x

)
= δij.

Además, se sigue que toda 1-forma θ viene dada por,

θ =
m∑
i=1

θ

(
∂

∂xi

)
dxi.

A continuación, presentaremos el fibrado tangente de una variedad y recor-
daremos su estructura diferenciable.

Definición 1.5. Sea M una variedad diferenciable de dimensión m, se define el
fibrado tangente de M como la unión de todos los espacios tangentes a M y se
denota TM , esto es,

TM =
⋃
x∈M

TxM.
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De esta manera, la aplicación π : TM −→ M , dada por π(v) = x si
v ∈ TxM , se denomina proyección canónica.

Además, sobre el fibrado tangente TM se puede definir una estructura
diferenciable de dimensión 2m. En efecto, sea {(Uα, φα ≡ (x1α, . . . , x

m
α ))}α∈A un

atlas de M . Consideramos los abiertos Ũα = π−1(Uα) ⊆ TM y las aplicaciones
φ̃α : π−1(Uα) −→ φα(Uα)× Rm ⊆ R2m dadas por

φ̃α(v) =
(
φα(π(v)), dx

1
α|π(v)(v), . . . , dxmα |π(v)(v)

)
.

Dicho de otro modo, si v ∈ TM está dado por

v =
m∑
i=1

viα
∂

∂xiα

∣∣∣∣
π(v)

,

entonces, φ̃α(v) = (φα(π(v)), v
1
α, . . . , v

m
α ).

Aśı, {(Ũα, φ̃α)}α∈A es un atlas de TM . Denotando dxiα := ẋiα las coordena-
das (x1α, . . . , x

m
α , ẋ

1
α, . . . , ẋ

m
α ) se denominan las coordenadas naturales en TM .

Por otro lado, se define una base móvil de M como un conjunto de m
campos vectoriales {e1, . . . , em}, tales que para cada punto x ∈ M , el conjunto
{e1(x), . . . , em(x)} es una base del espacio tangente TxM .

De esta manera, si para cada x ∈M tomamos un sistema local de coorde-
nadas (U,φ ≡ (x1, . . . , xm)) con x ∈ U y sea {e1, . . . , em} una base móvil de M ,
tal que para todo v ∈ TxM se tiene que

v =
m∑
a=1

ua(v)ea(x).

Entonces, surgen las coordenadas inducidas {x1, . . . , xm, u1, . . . , um} en el fibra-
do tangente TM , que llamaremos coordenadas mixtas.

Por último, recordaremos que a partir de los conjuntos X(M) y X∗(M) se
definen los campos tensoriales en una variedad.

Definición 1.6. Dados r, s ≥ 0 dos enteros, un campo tensorial A en una varie-
dad diferenciable M de tipo (r, s) sobre X(M) es una función F(M)-multilineal
A : X∗(M)r × X(M)s −→ F(M).

Al conjunto de todos los campos tensoriales de tipo (r, s) sobre M se le
denota por Irs (M), que es un F(M)-módulo. En particular, los tensores de tipo
(0, s) se llaman covariantes y los de tipo (r, 0), r ≥ 1, se llaman contravariantes.

Mientras que solo se pueden sumar tensores del mismo tipo, cualquier par
de tensores pueden ser multiplicados de la siguiente manera.
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Definición 1.7. Sean A ∈ Ar
s(M) y B ∈ Ir′s′ (M), se define el producto tensorial

de A y B como la aplicación A ⊗ B : X∗(M)r+r′ × X(M)s+s′ −→ F(M) dada
por,

(A⊗B)(θ1, . . . , θr+r′ , X1, . . . , Xs+s′) =

=A(θ1, . . . , θr, X1, . . . , Xs)B(θ1, . . . , θr
′
, X1, . . . , Xs′).

Nótese que A⊗B es un campo tensorial de tipo (r + r′, s+ s′).

1.2. Sistemas dinámicos

Una curva en una variedad diferenciable M es una aplicación diferenciable
γ : I −→ M , donde I es un intervalo abierto de R. Como subvariedad de R, I
tiene un sistema coordenado formado por la aplicación identidad u en I.

Definición 1.8. Dada γ : I −→M una curva, el vector velocidad de γ en t ∈ I
es

γ′(t) = dγ

(
d

du

∣∣∣∣
t

)
∈ Tγ(t)M.

En concreto, sea (U, (x1, . . . , xm)) una carta en M con γ(t) ∈ U , la expre-
sión coordenada de γ′(t) viene dada por,

γ′(t) =
m∑
i=1

d(xi ◦ γ)
du

∣∣∣∣
t

∂

∂xi

∣∣∣∣
γ(t)

.

Definición 1.9. Una curva γ : I −→ M es una curva integral de V ∈ X(M) si
para todo t ∈ I se verifica que,

γ′(t) = V (γ(t)).

También, se define una ĺınea integral de un campo V ∈ X(M) como una
subvariedad L de M de dimensión 1 tal que para todo x ∈ L con V (x) ̸= 0,
existe un entorno abierto L0 de L con x ∈ L0 y L0 = im γ, siendo γ una curva
integral de V .

Como consecuencia de escribir la condición anterior en coordenadas y por
el teorema de existencia y unicidad de soluciones de sistemas de ecuaciones
diferenciales de primer orden, se deduce el siguiente resultado.

Proposición 1.10. Si V ∈ X(M), entonces para todo punto x ∈ M existe un
intervalo I alrededor del 0 ∈ R y una única curva integral γ : I −→M de V tal
que γ(0) = x.
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Nótese que si γ es una curva integral de V , entonces t→ γ(t+ c) también
lo es.

Corolario 1.11. Si γ, β : I −→ M son curvas integrales de V tal que γ(a) =
β(a) para algún a ∈ I, entonces γ = β.

Además, se tiene el siguiente resultado que será de gran utilidad.

Lema 1.12. Sea γ : I −→M una curva integral de un campo V ∈ X(M) y Ṽ =
fV con f ∈ F(M) y f(x) ̸= 0 para todo x ∈M . Entonces, las curvas integrales
de los campos de vectores V y V ′ son las mismas salvo reparametrización, esto
es, que tienen las mismas ĺıneas integrables.

Demostración. Sea γ(t) una curva integral del campo de vectores V , sabemos
que γ′(t) = V (γ(t)). Queremos encontrar una reparametrización t = t(s) tal que

γ̃(s) = γ(t(s)) sea curva integral del campo Ṽ = fV , esto es,

γ̃′(s) = Ṽ (γ̃(s)) = f(γ̃(s))V (γ̃(s)). (1.1)

Pero, tenemos que,

γ̃′(s) = γ′(t(s))
dt

ds
= V (γ(t(s)))

dt

ds
= V (γ̃(s))

dt

ds
.

Luego, para que se cumple (1.1) basta tomar

t(s) =

∫ s

0

f(γ̃(s))ds.

□

Sea x ∈ M y V ∈ X(M), consideramos la colección de curvas integrales
γ : Iγ −→ M de V tales que 0 ∈ Iγ y γ(0) = x. Entonces, el Corolario 1.11
nos dice que γ = β en Iγ ∩ Iβ. Luego, podemos considerar γx : Ix −→ M curva
integral de V con 0 ∈ Ix y γx(0) = x, donde

Ix =
⋃
γ

Iγ.

La curva γx se llama la curva integral maximal de V por x.

Definición 1.13. Un campo de vectores V ∈ X(M) se dice completo si la curva
integral maximal de V que pasa por un punto cualquiera de M está definida en
toda la recta real.

A continuación, veremos como podemos representar todas las curvas inte-
grales de un campo vectorial completo dado en una única aplicación.
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Definición 1.14. El flujo de un campo vectorial completo V en M es la aplica-
ción ψ :M × R −→M dada por

ψ(x, t) = γx(t), (1.2)

donde γx es la curva integral maximal que comienza en x.

Por un lado, si x ∈ M se mantiene constante, entonces ψ(x, t) = ψx(t) es
la curva integral γx. Por otro lado, si t ∈ R es constante, entonces obtenemos
una función ψt :M →M .

Proposición 1.15. Si ψ es el flujo de un campo vectorial completo, entonces:

ψ0(x) es la aplicación identidad en M .
ψs ◦ ψt = ψs+t para todo s, t ∈ R.
Para todo t ∈ R, ψt es un difeomorfismo con ψ−1

t = ψ−t.

Sin embargo, en el caso de que el campo vectorial V no sea completo
podemos definir ψ : U × I −→ M un flujo local en V , dado también por la
ecuación (1.2), donde U es un entorno de x en M e I un intervalo alrededor del
0 en R. Como consecuencia de la teoŕıa de ecuaciones diferenciales, se tiene que
si U, I son suficientemente pequeños, entonces ψ es diferenciable.

Además, el siguiente resultado es análogo a la Proposición 1.15, pero para
flujos locales.

Proposición 1.16. Si ψ : U × I −→ M es el flujo local de un campo vectorial,
entonces:

ψ0(x) es la aplicación identidad en U .
ψs ◦ ψt = ψs+t para todo s, t ∈ I, siempre que s+ t ∈ I.
Para todo t ∈ I, ψt : U −→ ψt(U) es un difeomorfismo.

Sea V ∈ X(M) y ψ : U × I −→M el flujo local de V , si para todo t ∈ I y
x ∈ U se tiene que

dψt(x)V (x) = V (ψt(x)),

entonces se dice que el campo V es invariante por su flujo.

Sea V ∈ X(M) un campo de vectores dado por V =
∑

i V
i ∂
∂xi tal que

V (x0) = 0, para cierto x0 ∈M , es decir, x0 es un punto singular de V . Se define
la linealización de V en x0 como la aplicación DV |x0

: Tx0M −→ Tx0M dada
por,

DV |x0

(
∂

∂xj

∣∣∣∣
x0

)
=

(
∂V i

∂xj

∣∣∣∣
x0

)(
∂

∂xj

∣∣∣∣
x0

)
, ∀j ∈ {1, . . . ,m}.
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Además, la linealización de V en x0 puede definirse de forma intŕınseca
como

DV |x0
(ξ) =

d

dt

∣∣∣∣
t=0

(
dψt|x0

(ξ)
)
,

para todo ξ ∈ Tx0M , donde ψ es el flujo local de V (véase [1]).

En particular, sea ξ = ξj ∂
∂xj ∈ Tx0M se tiene que,

DV |x0
(ξ) =

(
∂V i

∂xj

∣∣∣∣
x0

)(
ξj

∂

∂xj

∣∣∣∣
x0

)
=

(
∂V i

∂xj

∣∣∣∣
x0

ξj

)
∂

∂xj

∣∣∣∣
x0

=

=

(
∂V i

∂xj

∣∣∣∣
x0

dxj(ξ)

)
∂

∂xj

∣∣∣∣
x0

= dV i
∣∣
x0
(ξ)

∂

∂xj

∣∣∣∣
x0

=

=

(
dV i ⊗ ∂

∂xj

)∣∣∣∣
x0

(ξ).

Por tanto, concluimos que,

DV |x0
=

(
dV i ⊗ ∂

∂xj

)∣∣∣∣
x0

=

(
∂V i

∂xj

∣∣∣∣
x0

dxj

)
⊗ ∂

∂xj

∣∣∣∣
x0

.

A continuación, introducimos el siguiente teorema que posteriormente
tendrá especial importancia.

Teorema 1.17. Sean V ∈ X(M), x ∈ M un punto singular, esto es, V (x) = 0,
y N+ y N− los subespacios vectoriales generados por los autovectores correspon-
dientes a los autovalores positivos y negativos, respectivamente, de la linealiza-
ción diagonalizable DV |x. Entonces, existen subvariedades W+ y W− invarian-
tes por el flujo de V con p ∈ W+ ∩W−. Además,

TpW
+ = N+ y TpW

− = N−.

Demostración. Véase el Teorema 5.8 de [4].

1.3. Geometŕıa Semi-Riemanniana

En esta sección presentaremos la geometŕıa semi-riemanniana. Esta rama
de las matemáticas es una extensión de la geometŕıa riemanniana que se ocupa
del estudio de variedades diferenciables dotadas de una métrica no necesaria-
mente positiva definida. Este tipo de geometŕıa es crucial en la f́ısica teórica,
especialmente en la teoŕıa de la relatividad general.
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1.3.1. Variedades Semi-Riemannianas

Veremos que la geometŕıa semi-riemanniana involucra un tipo particular
de (0, 2)−tensor en espacios tangentes. En general, sea V un espacio vectorial
de dimensión n y b : V × V −→ R una forma bilineal en V y simétrica, es decir,
b(v, w) = b(w, v) para todos v, w ∈ V .

Definición 1.18. Una forma bilineal simétrica b en V es:

Definida positiva (negativa) si para v ̸= 0, entonces b(v, v) > 0 (b(v, v) < 0).
Semidefinida positiva (negativa) si b(v, v) ≥ 0 (b(v, v) ≤ 0) para todo v ∈ V .
No degenerada si se verifica que si b(v, w) = 0 para todo w ∈ V , entonces
v = 0.

Aśı, podemos definir el ı́ndice de una forma bilineal simétrica.

Definición 1.19. El ı́ndice ν de una forma bilineal simétrica b en V es el mayor
entero que sea la dimensión de un subespacio W ⊂ V en el que b|W es definida
negativa.

De este modo, 0 ≤ ν ≤ n y ν = 0, si y sólo si, b es semidefinida positiva.

Por otro lado, si consideramos {e1, . . . , en} una base de V , la matriz
(bij)n×n = b(ei, ej) se la llama la matriz de b relativa a {e1, . . . , en}. Además,
como b es simétrica es claro que la matriz (bij) también lo es. En particular, esta
matriz nos permite caracterizar la no degeneración de b.

Proposición 1.20. Una forma bilineal simétrica es no degenerada, si y sólo si,
su matriz relativa a una base (por ende a cualquiera) es invertible.

De este modo, una forma bilineal g simétrica y no degenerada en un espacio
vectorial V se llama un producto escalar.

Aśı, diremos que dos vectores v, w ∈ V son ortogonales si g(v, w) = 0 y que

un vector u ∈ V es unitario si su norma |g(u, u)|1/2, es 1, es decir, g(u, u) = ±1.
Por tanto, como es usual, un conjunto de vectores unitarios ortogonales dos

a dos se dicen ortonormales, y para n = dimV , cualquier conjunto de n vectores
ortonormales en V es necesariamente una base de V . Además, sabemos que todo
espacio V ̸= 0 dotado de un producto escalar tiene una base ortonormal.

En consecuencia, la matriz de g relativa a una base ortonormal {e1, . . . , en}
de V es diagonal. De hecho,

g(ei, ej) = δijεj donde εj = g(ej, ej) = ±1.

Definición 1.21. La signatura de g se define como (ε1, . . . , εn) donde los vec-
tores de la base ortonormal se reordenan convenientemente para que los signos
negativos (si los hay) queden primero.
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Normalmente, se refiere al ı́ndice ν del producto escalar g de V como el ı́ndi-
ce de V y se escribe ν = IndV . De hecho, la signatura de g viene caracterizada
por su ı́ndice.

Proposición 1.22. Para cualquier base ortonormal {e1, . . . , en} de V el número
de signos negativos en la signatura (ε1, . . . , εn) de g es el ı́ndice ν de V .

Ahora, estamos en condiciones de introducir las definiciones necesarias para
presentar las variedades semi-riemannianas.

Definición 1.23. Un tensor métrico g en una variedad diferenciable M de di-
mensión m es un (0, 2)−tensor simétrico y no degenerado de ı́ndice constante.

En otras palabras, un tensor métrico g ∈ I02 (M) que asigna diferenciable-
mente a cada punto x ∈ M un producto escalar gx : TxM × TxM −→ R y el
ı́ndice de gx es el mismo para todo x ∈M .

Definición 1.24. Una variedad semi-riemanniana es una variedad diferenciable
M dotada de un tensor métrico g.

En realidad, una variedad semi-riemanniana es un par ordenado (M, g) de
manera que dos tensores métricos en la misma variedad determinan diferentes
variedades semi-riemannianas. No obstante, la denotaremos simplemente como
la variedad diferenciable M .

Dada una variedad semi-riemanniana (M, g) de dimensiónm, se llama ı́ndi-
ce de M al valor ν del ı́ndice constante de g con 0 ≤ ν ≤ m. En particular, si
ν = 0 decimos que M es una variedad riemanniana, mientras que si ν = 1 y
m ≥ 2 decimos que M es una variedad lorentziana.

Sea (U,φ ≡ (x1, . . . , xm)) una carta en M , entonces las componentes del
tensor métrico en U son,

gij = g

(
∂

∂xi
,
∂

∂xj

)
, 1 ≤ i, j ≤ m.

De esta forma, para dos campos vectoriales V =
∑
V i ∂

∂xi y W =
∑
W j ∂

∂xj

se tiene que

g(V,W ) =
∑

gijV
iW j. (1.3)

Como g es no degenerado, sabemos que para todo x ∈ U la matriz (gij(x))
es invertible, cuya matriz inversa denotaremos por (gij(x)). Como consecuencia
de los cálculos de los términos de la matriz inversa se sigue que las funciones gij

son diferenciables en U . Además, debido a la simetŕıa de g tenemos que gij = gji
y por tanto, gij = gji para todos 1 ≤ i, j ≤ m. Por último, el tensor métrico g
en U se escribe como,
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g =
∑

gij dx
i ⊗ dxj.

La siguiente definición categoriza a los diferentes tipos de vectores tangentes
a M en lo que se llama su carácter causal.

Definición 1.25. Un vector v tangente a M es:

Espacial: si g(v, v) > 0 o v = 0.
Nulo: si g(v, v) = 0 y v ̸= 0.
Temporal: si g(v, v) < 0.

1.3.2. La conexión de Levi-Civita

Sean V y W dos campos vectoriales en una variedad semi-riemanniana
M . El objetivo de esta sección es definir un nuevo campo vectorial en M , que
denotaremos ∇VW , y cuyo valor en cada punto x mida la variación de W en la
dirección de Vx.

Definición 1.26. Una conexión ∇ en una variedad diferenciable M es una fun-
ción ∇ : X(M)× X(M) −→ X(M) tal que:

(D1)∇VW es F(M)−lineal respecto a V .
(D2)∇VW es R−lineal respecto a W .
(D3)∇V (fW ) = (V f)W + f∇VW para todo f ∈ F(M).

∇VW se llama la derivada covariante de W con respecto a V para la conexión
∇.

Proposición 1.27. Sea M una variedad semi-riemanniana . Si V ∈ X(M), sea
V ∗ la 1−forma en M tal que

V ∗(X) = g(V,X), ∀X ∈ X(M).

Entonces, la función V 7−→ V ∗ es un isomorfismo F(M)−lineal de X(M) en
X∗(M).

De esta forma, en geometŕıa semi-riemanniana podemos libremente trans-
formar un campo vectorial en una 1−forma y viceversa. Los pares correspon-
dientes V ←→ V ∗ contienen exactamente la misma información y se dice que
son métricamente equivalentes.

Teorema 1.28. En una variedad semi-riemanniana M existe una única cone-
xión ∇ tal que

(D4) [V,W ] = ∇VW −∇WV , para todos V,W ∈ X(M).
(D5) Xg(V,W ) = g(∇XV,W ) + g(V,∇XW ), para todos V,W,X ∈ X(M).
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∇ se llama la conexión de Levi-Civita de M y viene caracterizada por la fórmula
de Koszul:

2g(∇VW,X) =V g(W,X) +Wg(X, V )−Xg(V,W )

− g(V, [W,X]) + g(W, [X, V ]) + g(X, [V,W ])
(1.4)

A continuación, podemos introducir la conexión dual.

Definición 1.29. Se define la conexión dual ∇∗ : X(M)×X(M) −→ X∗(M) tal
que para todo V,W,X ∈ X(M),

(∇∗
VW )(X) =1

2
(V g(W,X) +Wg(X, V )−Xg(V,W )

−g(V, [W,X]) + g(W, [X, V ]) + g(X, [V,W ]))

Nótese que la conexión dual ∇∗ está bien definida para métricas degenera-
das en las que la conexión ∇ no tiene por qué existir. Sin embargo, en el caso
de que existan ambas, como consecuencia de la fórmula de Koszul, para todo
V,W,X ∈ X(M) se tiene que

(∇∗
VW )(X) = g(∇VW,X).

Definición 1.30. Sea {x1, . . . , xm} un sistema coordenado en un entorno U en
una variedad semi-riemanniana M . Los śımbolos de Christoffel de segunda es-
pecie para este sistema coordenado son las funciones reales Γ k

ij en U tales que

∇ ∂

∂xi

(
∂

∂xj

)
=
∑
k

Γ k
ij

∂

∂xk
, 1 ≤ i, j ≤ m.

Cabe destacar que como resultado de (D4) y de que [ ∂
∂xi ,

∂
∂xj ] = 0, se sigue

que

∇ ∂

∂xi

(
∂

∂xj

)
= ∇ ∂

∂xj

(
∂

∂xi

)
y por ello Γ k

ij = Γ k
ji.

En particular, el siguiente resultado nos dice cómo vienen determinados los
śımbolos de Christoffel de segunda especie.

Proposición 1.31. Para un sistema coordenado {x1, . . . , xm} en U ,

(i) ∇ ∂

∂xi

(∑
j W

j ∂
∂xj

)
=
∑

k

(
∂Wk

∂xi +
∑

j Γ
k
ijW

j
)

∂
∂xk .

(ii) Γ k
ij =

1
2

∑
n g

kn
(

∂gjn
∂xi + ∂gin

∂xj − ∂gij
∂xn

)
.

Observamos que teniendo en cuenta la propiedad (D1), el apartado (i) de
la proposición anterior nos permite calcular ∇VW en cada entorno coordenado,
mientras que el apartado (ii) es la descripción en coordenadas de como el tensor
métrico determina la conexión de Levi-Civita.
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Definición 1.32. Sea {x1, . . . , xm} un sistema coordenado en un entorno U en
una variedad semi-riemanniana M . Los śımbolos de Christoffel de primera es-
pecie para este sistema coordenado son las funciones reales Γhij en U tales que

Γhij =
∑
k

ghkΓ
k
ij.

Como consecuencia de la Proposición 1.31 se deduce que,

Γhij =
1

2

(
∂gjh
∂xi

+
∂gih
∂xj
− ∂gij
∂xh

)
.

Además,

Γhij = g

(
∇ ∂

∂xi

(
∂

∂xj

)
,
∂

∂xh

)
, 1 ≤ h, i, j ≤ m.

En efecto,

g

(
∇ ∂

∂xi

(
∂

∂xj

)
,
∂

∂xh

)
= g

(∑
k

Γ k
ij

∂

∂xk
,
∂

∂xh

)
=
∑
k

Γ k
ij g

(
∂

∂xk
,
∂

∂xh

)
=

=
∑
k

ghkΓ
k
ij = Γhij.

Por tanto, en el caso de que existan ∇ y ∇∗, en términos de una carta
(U,φ ≡ (x1, . . . , xn)) la conexión dual puede ser descrita de la forma

∇∗
∂

∂xi

∂

∂xj
=
∑
k

Γijkdx
k.

De hecho, se tiene que(
∇∗

∂

∂xi

∂

∂xj

)(
∂

∂xh

)
= g

(
∇ ∂

∂xi

(
∂

∂xj

)
,
∂

∂xh

)
=

= Γhij =
1

2

(
∂gjh
∂xi

+
∂gih
∂xj
− ∂gij
∂xh

)
.

Por otro lado, la derivada covariante ∇V se puede extender para operar
sobre tensores arbitrarios.

Definición 1.33. Sea V un campo vectorial en una variedad semi-riemanniana
M . Se llama la derivada covariante (de Levi-Civita) a la única derivación ten-
sorial en M tal que

∇V f = V para todo f ∈ F(M).
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∇VW es la conexión de Levi-Civita para todo W ∈ X(M).

Ahora, sea A un (r, s)−tensor en M , entonces el campo tensorial ∇VA es
F(M)−lineal en V ∈ X(M). Luego, tiene sentido la siguiente definición.

Definición 1.34. La diferencial covariante de un (r, s)−tensor A en M es el
(r, s+ 1) tensor ∇A tal que

(∇A)(θ1, . . . , θr, X1, . . . , Xs, V ) = (∇VA)(θ
1, . . . , θr, X1, . . . , Xs)

para todos V,Xi ∈ X(M) y θj ∈ X∗(M).

En particular, en el caso de los tensores de tipo (0, 0), es decir, las funciones
f ∈ F(M), su diferencial covariante es su diferencial usual df ∈ X∗(M) ya que,
para todo V ∈ X(M),

(∇f)(V ) = ∇V f = V f = df(V ).

Definición 1.35. Un campo tensorial A se dice paralelo si su derivada cova-
riante es nula, esto es, ∇XA = 0 para todo X ∈ X(M).

Por ejemplo, se prueba que el tensor métrico g es paralelo.

1.3.3. Transporte paralelo

Sea M una variedad semi-riemanniana.

Definición 1.36. Un campo vectorial Z a la largo de una curva diferenciable
α : I −→ M es una aplicación Z : I −→ TM tal que π ◦ Z = α, donde
π : TM −→M es la proyección canónica.

Es decir, Z asigna diferenciablemente a cada t ∈ I un vector tangente a M
en α(t), esto es, Z(t) ∈ Tα(t)M . Además, se tiene que el conjunto X(α) de todos
los campos vectoriales en α es un F(I)−módulo.

A continuación, veremos que existe una manera natural de definir un campo
vectorial Z ′ que mida la variación del campo vectorial Z ∈ X(α).

Proposición 1.37. Sea α : I −→M una curva en una variedad semi-riemanniana
M . Entonces, existe una única función de X(α) en X(α) tal que Z 7−→ Z ′ = ∇Z

dt
,

llamada derivada covariante inducida, verificando que,

(i) (aZ1 + bZ2)
′ = aZ ′

1 + bZ ′
2, para todo a, b ∈ R.

(ii) (hZ)′ = (dh
dt
)Z + hZ ′, para todo h ∈ F(I).

(iii) (Vα)
′(t) = ∇α′(t)V , para todo t ∈ I y V ∈ X(M).

Además,
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(iv) d
dt
(g(Z1, Z2)) = g(Z ′

1, Z2) + g(Z1, Z
′
2).

En concreto, Z ′ está completamente determinado por la conexión de Levi-
Civita ∇ de la siguiente manera,

Z ′ =
∑
i

dZi

dt

∂

∂xi

∣∣∣∣
α

+
∑
i

Zi∇α′

(
∂

∂xi

)
. (1.5)

En el caso particular de que Z = α′ la derivada Z ′ = α′′ se llama la
aceleración de la curva α.

Definición 1.38. Un campo vectorial Z ∈ X(α) se dice que es paralelo a lo largo
de α si Z ′ = 0.

Observamos que introduciendo los śımbolos de Christoffel a la fórmula coor-
denada (1.5) se sigue que,

Z ′ =
∑
k

{
dZk

dt
+
∑
i,j

Γ k
ij

d(xi ◦ α)
dt

Zj

}
∂

∂xk
. (1.6)

En consecuencia, la expresión (1.6) nos dice que la ecuación Z ′ = 0 es equi-
valente a un sistema de ecuaciones diferenciales ordinarias lineales. Por tanto, a
partir de teorema fundamental de existencia y unicidad para dichos sistemas de
ecuaciones deducimos el siguiente resultado.

Proposición 1.39. Dada una curva α : I −→ M , sea a ∈ I y z ∈ Tα(a)M .
Entonces, existe un único campo vectorial paralelo Z en α tal que Z(a) = z.

Ahora, utilizando la notación de la proposición previa estamos en condi-
ciones de definir el trasporte paralelo.

Definición 1.40. Sea b ∈ I, se define el transporte paralelo sobre α de p = α(a)
a q = α(b) como la función

P = P b
a(α) : TpM −→ TqM

que env́ıa a cada z ∈ TpM a Z(b) ∈ TqM .

1.3.4. Geodésicas

En esta subsección vamos a generalizar la noción Eucĺıdea de ĺınea recta
para variedades semi-riemannianas.

Definición 1.41. Una geodésica en una variedad semi-riemanniana M es una
curva γ : I −→M cuyo campo vectorial γ′ es paralelo, es decir, si su aceleración
es cero, γ′′ = 0.
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En consecuencia, una curva geodésica γ tiene un comportamiento bastante
uniforme. Además, toda curva constante en M es trivialmente una geodésica.

El siguiente resultado se obtiene como consecuencia de aplicar la ecuación
(1.6) a

γ′ =
∑
k

d(xk ◦ γ)
dt

∂

∂xi
∈ X(γ).

Corolario 1.42. Sea {x1, . . . , xm} un sistema coordenado en U ⊂M . Una curva
γ en U es una geodésica de M , si y sólo si, sus funciones coordenadas xk ◦ γ
verifican las siguientes ecuaciones geodésicas:

d2(xk ◦ γ)
dt2

+
∑
i,j

Γ k
ij(γ)

d(xi ◦ γ)
dt

d(xj ◦ γ)
dt

= 0, 1 ≤ k ≤ m.

Para simplificar la notación, normalmente escribiremos las funciones coor-
denadas de γ como xi en lugar de xi ◦ γ. Por tanto, las ecuaciones geodésicas se
reescriben como:

d2xk

dt2
+
∑
i,j

Γ k
ij

dxi

dt

dxj

dt
= 0, 1 ≤ k ≤ m. (1.7)

Aśı, si
dxi

dt
= ẋi, 1 ≤ i ≤ m,

entonces,
dẋk

dt
= −

∑
i,j

Γ k
ijẋ

iẋj 1 ≤ k ≤ m.

De esta forma, en las coordenadas naturales {x1, . . . , xm, ẋ1, . . . , ẋm} del
fibrado tangente TM , se tiene que una curva γ(t) es geodésica en M , si y sólo
si, (γ(t), γ′(t)) es curva integral del campo Π en TM dado por,

Π =
∑
i,j,k

ẋi
∂

∂xi
− Γ k

ij ẋ
iẋj

∂

∂ẋk
, (1.8)

que se conoce como spray geodésico.

Si vx ∈ TxM , entonces,

Π(vx) = Ψvx(vx)−
∑
i,j,k

Γ k
ij ẋ

i(vx)ẋ
j(vx)

∂

∂ẋk

∣∣∣∣
vx

∈ Tvx(TM),

donde Ψvx : TxM −→ Tvx(TM) es el monomorfismo dado por

Ψvx

(
∂

∂xi

∣∣∣∣
x

)
=

∂

∂xi

∣∣∣∣
vx

, 1 ≤ i ≤ m.
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Lema 1.43. Sean Π y Π̃ los campos en TM dados por,

Π =
∑
i,j,k

ẋi
∂

∂xi
− Γ k

ij ẋ
iẋj

∂

∂ẋk
y Π̃ = Π + fV

donde f ∈ F(M) y V es el campo de Liouville definido como V =
∑

k ẋ
k ∂
∂ẋk .

Entonces, las proyecciones aM de las ĺıneas integrales de Π y Π̃ son las mismas.

Demostración. Sea γ(t) la proyección a M de una curva integral del campo Π,
es decir, que verifica las ecuaciones geodésicas,

d2xk

dt2
+ Γ k

ij(x(t))
dxi

dt

dxj

dt
= 0. (1.9)

Buscamos un cambio de parámetro t = t(s) tal que γ̃(s) = γ(t(s)) sea la

proyección a M de una curva integral del campo Π̃, esto es, que γ̃ verifique las
ecuaciones,

d2xk

ds2
+ Γ k

ij(x(s))
dxi

ds

dxj

ds
+ f(x(s))

dxk

ds
= 0. (1.10)

Nótese que,

dxk

ds
=
dxk

dt
· dt
ds

y
d2xk

ds2
=
d2xk

dt2
·
(
dt

ds

)2

+
dxk

dt
· d

2t

ds2
.

Aśı, sustituyendo en (1.10) se sigue que,

d2xk

dt2
·
(
dt

ds

)2

+
dxk

dt
· d

2t

ds2
+ Γ k

ij(x(s))
dxi

dt
· dx

j

dt
·
(
dt

ds

)2

f(x(s))
dxk

dt
· dt
ds

= 0.

Ahora, aplicando (1.9) obtenemos que,

dxk

dt
· d

2t

ds2
+ f(x(s))

dxk

dt
· dt
ds

= 0.

Luego,
d2t

ds2

/
dt

ds
= −f(x(s)),

es decir,

ln

(
dt

ds

)
= −

∫
f(x(s))ds.

Por tanto, el cambio de parámetro queda completamente determinado por,

dt

ds
= exp

(
−
∫
f(x(s))ds

)
,

de forma que γ̃ es la proyección a M de una curva integral de Π̃.
□
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A continuación, presentamos el siguiente resultado que nos dice cómo viene
dado el spray geodésico Π en coordenadas mixtas.

Lema 1.44. El spray geodésico en las coordenadas mixtas viene dado por el
campo

Π =
∑
a,b,c

eabu
b ∂

∂xa
− Γ c

abu
aub

∂

∂uc
,

donde eb = eab
∂

∂xa y los Γ c
ab denotan los śımbolos de Chritoffel respecto a la

referencia {e1, . . . , em}, esto es, ∇eaeb = Γ c
abec.

Demostración. En primer lugar, tenemos en cuenta que si eb = eab
∂

∂xa , enton-
ces las coordenadas naturales y las coordenadas mixtas de ξ ∈ TxM vienen
relacionadas mediante la siguiente relación matricial, ẋ1(ξ)

...
ẋm(ξ)

 =

 e11 · · · e1m
...

. . .
...

em1 · · · emm


u1(ξ)

...
um(ξ)

 .

Sean X = ua(X)ea, Y = ub(Y )eb y Γ
c
ab los śımbolos de Chritoffel respecto

a la referencia {e1, . . . , em}. Aplicando las propiedades de ∇ se deduce que,

∇XY =
{
X(uc(Y )) + ua(X)ub(Y )Γ c

ab

}
ec (1.11)

De este modo, si γ es una curva en M con γ′ = ua(γ′)ea(γ), sabemos que γ
es geodésica si ∇γ′γ′ = 0. Luego, tomando X = Y = γ′ en (1.11) tenemos que,

∇γ′γ′ =

{
d(uc ◦ γ′)

dt
+ (ua ◦ γ′)(ub ◦ γ′)Γ c

ab(γ)

}
ec(γ) = 0.

Es decir, γ es geodésica si verifica las siguientes ecuaciones geodésicas,

d(uc ◦ γ′)
dt

+ (ua ◦ γ′)(ub ◦ γ′)Γ c
ab(γ), c = 1, . . . ,m.

Denotando ua := ua ◦ γ′, dado que duc

dt
= −Γ c

abu
aub y ẋa(γ′) = ub(γ′)eab , conclui-

mos que el spray geodésico en coordenadas mixtas viene dado por,

Π = eabu
b ∂

∂xa
− Γ c

abu
aub

∂

∂uc
.

□

Nuevamente, el teorema de existencia y unicidad para ecuaciones diferen-
ciales ordinarias nos permite deducir el siguiente resultado.
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Lema 1.45. Si v ∈ TxM , entonces existe un intervalo I alrededor del 0 y una
única geodésica γ : I −→M tal que γ(0) = x y γ′(0) = v.

Por tanto, diremos que γ es la geodésica que empieza en x con velocidad
inicial v.

Lema 1.46. Sean α, β : I −→ M geodésicas. Si existe a ∈ I tal que α′(a) =
β′(a), entonces α = β.

Proposición 1.47. Dado un vector tangente v ∈ TxM , entonces existe una úni-
ca geodésica γv en M tal que

(i) La velocidad inicial de γv es v, esto es, γ′(0) = v.
(ii) El dominio Iv de γv es el mayor posible. Es decir, si α : J −→ M es una

geodésica con velocidad inicial v, entonces J ⊂ Iv y α = γv |J .

El apartado (ii) de la proposición previa da sentido a la siguiente definición.

Definición 1.48. La geodésica γv se llama geodésica maximal o geodésica inex-
tendible. En particular, una variedad semi-riemanniana para la que toda geodési-
ca maximal está definida en todo R se dice geodésicamente completa o solo com-
pleta.

Podemos observar que dada esta definición, si quitamos un punto x de una
variedad completa M , entonces M \ {x} ya no es completa, pues las geodésicas
que antes pasaban por x están obligadas a parar.

Definición 1.49. Una curva α en M se dice espacial si todos sus vectores ve-
locidad α′(s) son espaciales. Análogamente, se define para vectores velocidad
temporales y nulos.

En general, una curva α no tiene por qué tener alguno de estos caracteres
causales. Sin embargo, una geodésica γ si deberá tener alguno de ellos por ser
γ′ paralelo y el trasporte paralelo preserva el tipo causal de los vectores.

Proposición 1.50. Sea γ : I −→ M una geodésica no constante. Una repara-
metrización γ ◦ h : J −→ M es una geodésica, si y sólo si, h es de la forma
h(t) = at+ b, con a, b ∈ R.

El resultado previo muestra como las parametrizaciones de geodésicas tie-
nen un significado geométrico.

Definición 1.51. Una pregeodésica es una curva que se puede reparametrizar
para que sea geodésica.
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Sabemos que si un sistema de ecuaciones diferenciales ordinarias de se-
gundo orden está dado por funciones diferenciables, entonces sus soluciones son
diferenciables independientemente del parámetro, valores iniciales y valores ini-
ciales en las primeras derivadas. Como consecuencia de aplicar este resultado a
las ecuaciones geodésicas obtenemos la siguiente proposición.

Proposición 1.52. Sea v ∈ TM , entonces existe un entorno N de v en TM y
un intervalo I alrededor del 0 tal que (w, s) 7−→ γw(s) es una función diferen-
ciable bien definida de N × I en M .



2

Métricas con cambio transversal de signatura:

Ĺıneas geodésicas

En este caṕıtulo vamos a considerar una variedad diferenciable M conexa
y de dimensión m dotada de un (0, 2)−tensor simétrico. Aśı, el objetivo será
estudiar las geodésicas que atraviesan la hipersuperficie Σ determinada por los
puntos donde dicho tensor degenera.

2.1. Métricas que cambian transversalmente de
signatura

Sea M una variedad diferenciable y conexa y g : X(M) × X(M) → F(M)
un (0, 2)−tensor simétrico. Entonces, para todo punto x ∈M se tiene que

gx = g(x) : TxM × TxM −→ R

es la forma bilineal simétrica inducida en el espacio tangente TxM . De esta
forma, la siguiente definición se obtiene como consecuencia de la posibilidad de
que gx sea degenerada.

Definición 2.1. Un punto x ∈ M se dice singular si gx es degenerada, en caso
contrario diremos que x es un punto ordinario.

Denotamos por Σ al conjunto de puntos singulares. Aśı, Σ es un conjunto
cerrado de M . De esta forma, el conjunto de puntos ordinarios M \ Σ es un
abierto de M .

Definición 2.2. El orden de degeneración de un punto x ∈ M es la dimensión
del subespacio radical

Radx = {v ∈ TxM | gx(v, u) = 0, ∀u ∈ TxM} ⊂ TxM.

Por ende, es claro que los puntos ordinarios de M son de orden nulo.
Además, el tensor g induce sobre cada componente conexa N de M \ Σ una
métrica semi-riemanniana.
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En concreto, podemos escribir el conjunto de puntos singulares como

Σ = {p ∈M | Radp ̸= {0}}.

Sea p ∈ Σ un punto singular y (U,φ ≡ (x1, . . . , xm)) un sistema local de
coordenadas con p ∈ U . Entonces, el conjunto Σ∩U se describe como el conjunto
de ceros de la función

Gφ = det (gφab) : U −→ R, a, b ∈ {1, . . . ,m},

donde gφab son las componentes de g respecto a φ.

Definición 2.3. Un punto singular p ∈ Σ se dice regular si es regular para la
función Gφ, es decir, si dGφ(p) ̸= 0.

Nótese que las condiciones de singularidad y regularidad no dependen de
la carta φ. De hecho, se tiene el siguiente resultado.

Proposición 2.4. Sea p ∈ Σ un punto regular y {e1, . . . , em} una base móvil
respecto a la cual la matriz asociada a la métrica es (g̃ab)a,b∈{1,...,m}. Entonces,

det(g̃ab)(p) = 0 y d(det(g̃ab))(p) ̸= 0.

Demostración. Sea p ∈ Σ y (U,φ ≡ (x1, . . . , xm)) un sistema local de coordena-
das con p ∈ U , por ser p un punto regular, sabemos que

det(gφab)(p) = 0 y d(det(gφab))(p) ̸= 0.

Sea P (p) la matriz cambio de base entre
{

∂
∂x1

∣∣
p
, . . . , ∂

∂xm

∣∣
p

}
y {e1(p), . . . , em(p)},

sabemos que,
(gφab(p)) = P (p) · (g̃ab(p)) · P t(p).

Por tanto,
det(gφab)(p) = detP (p) · det(g̃ab)(p) · detP t(p).

Luego, dado que detP (p), detP t(p) ̸= 0, por ser P (p) una matriz cambio de
base y que det(gφab)(p) = 0, se deduce que det(g̃ab)(p) = 0. Además,

d(det(gφab))(p) =d(detP )(p) · det(g̃ab)(p) · detP
t(p)+

+ detP (p) · d(det(g̃ab))(p) · detP t(p)+

+ detP (p) · det(g̃ab)(p) · d(detP t)(p) =

=detP (p) · d(det(g̃ab))(p) · detP t(p).

Aśı, ya que d(det(gφab))(p) ̸= 0, concluimos que d(det(g̃ab))(p) ̸= 0.
□
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De este modo, la siguiente definición nos da una caracterización de la métri-
ca g.

Definición 2.5. La métrica g se dice de tipo transverso si para todo p ∈ Σ ∩ U
se tiene que p es un punto regular.

En concreto, si la métrica es de tipo transverso, como consecuencia del
Teorema de la Función Impĺıcita, se deduce que Σ es una hipersuperficie de M ,
esto es, una subvariedad de M de dimensión m− 1.

En la situación anterior se dice que (M, g) es un espacio semi-riemanniano
singular y Σ su hipersuperficie singular. Para simplificar diremos que M es un
Σ−espacio. En particular, M es de radical transverso en p ∈ Σ, si Radp ∩
TpΣ = {0}, en este caso Σ hereda en torno a p una estructura de variedad
semi-riemanniana. Mientras que si Radp ⊂ TpΣ para p ∈ Σ, se dice que M es
de radical tangente en p.

En lo que sigue supondremos siempre que M es un Σ−espacio de radical
transverso a la hipersuperficie Σ.

A continuación, veamos dos propiedades interesantes que tiene M como
Σ−espacio.

Lema 2.6. Sea M un Σ−espacio. Entonces alrededor de cada punto p ∈ Σ
existe una base móvil {e1, . . . , em} respecto de la cual la matriz asociada a la
métrica es diagonal. Además, se tiene que:

(i) El subespacio radical Radp es unidimensional, esto es, dim Radp = 1.
(ii) El punto p está en la frontera topológica de exactamente dos componentes

conexas M+ y M−, y se cumple que

Ind (M−) = Ind (M+) + 1.

Demostración. Sea p ∈ Σ, consideramos {e1(p), . . . , er(p), er+1(p), . . . , em(p)}
una base de TpM respecto a la cual la matriz asociada a la métrica es

(gab(p))a,b∈{1,...,m} =


µ1 ··· 0

...
...

...
0 ··· µr

0 ··· 0
...
...

...
0 ··· 0

0 ··· 0
...
...

...
0 ··· 0

0 ··· 0
...
...

...
0 ··· 0


con µj ̸= 0 para todo j ∈ {1, . . . , r}. Esto nos dice que la dimensión del subes-
pacio radical Radp es s := m− r.

A continuación, extendemos dicha base diferenciablemente a una base móvil
{e1, . . . , er, er+1, . . . , em}. Además, sin pérdida de generalidad, podemos suponer
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que el subespacio S = ⟨e1, . . . , er⟩ es siempre no singular. En consecuencia, a
partir de ẽ1 = e1 definimos los campos,

ẽj = ej −
j−1∑
i=1

g(ej, ẽi)

g(ẽi, ẽi)
ẽi, j ∈ {2, . . . , r}.

De esta forma, obtenemos el conjunto de campos {ẽ1, . . . , ẽr} verificando
que,

fj := g(ẽj, ẽj) ̸= 0,

g(ẽj, ẽi) = g(ej, ẽi)−
g(ej, ẽi)

g(ẽi, ẽi)
g(ẽi, ẽi) = 0,

para todos i, j ∈ {1, . . . , r}. Ahora, tomamos {er+1, . . . , em} base de S⊥. Luego,
la matriz asociada a la métrica respecto a la base móvil {ẽ1, . . . , ẽr, er+1, . . . , em}
es de la forma,

(g̃ab)a,b∈{1,...,m} =


f1 ··· 0

...
...

...
0 ··· fr

0 ··· 0
...
...

...
0 ··· 0

0 ··· 0
...
...

...
0 ··· 0

h11 ··· h1s

...
...

...
hs1 ··· hss


En particular, hij(p) = 0, para todos i, j ∈ {1, . . . , s}. Además, se cumple que
fj(p) = µj ̸= 0 para todo j ∈ {1, . . . , r}. En efecto,

fj(p) = g(ẽj, ẽj)(p) = g

(
ej −

j−1∑
i=1

g(ej, ẽi)

g(ẽi, ẽi)
ẽi, ej −

j−1∑
i=1

g(ej, ẽi)

g(ẽi, ẽi)
ẽi

)
(p) =

= g(ej, ej)(p) = µj

ya que para todo i ∈ {1, . . . , j − 1} se tiene que g(ej, ẽi)(p) = 0, por ser ẽi
combinación de los campos e1, . . . , ej−1 y verificarse que g(ej, ei)(p) = 0 para
cualquier i ∈ {1, . . . , j − 1}.

En lo que sigue, veremos que s = 1. Por ser M un Σ−espacio sabemos que
det (g̃ab)(p) = 0 y d(det (g̃ab))(p) ̸= 0. En concreto, se tiene que

det (g̃ab) = f1 · . . . · fr · detH.

donde H = (hij)i,j∈{1,...,s} con H(p) = (0)i,j∈{1,...,s} y detH(p) = 0. Por tanto,

d(det (g̃ab)) =d(f1 · . . . · fr · detH) =

=df1 · f2 · . . . · fr · detH + f1 · df2 · f3 · . . . · fr · detH + · · ·
· · ·+ f1 · . . . · fr−1 · dfr · detH + f1 · . . . · fr · d(detH).
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En consecuencia,

0 ̸= d(det (g̃ab))(p) = f1(p) · . . . · fr(p) · d(detH)(p) = µ1 · . . . · µr · d(detH)(p),

de donde se sigue que d(detH)(p) ̸= 0. Sin embargo, esto no es posible si s ≥ 2,
ya que en tal caso si detH(p) = 0, se deduce que d(detH)(p) = 0.

Por tanto, se concluye que s = 1, es decir, el subespacio radical Radp

es unidimensional y la matriz asociada a la métrica respecto a la base móvil
{ẽ1, . . . , ẽr, er+1, . . . , em} es una matriz diagonal de la forma

(g̃ab)a,b∈{1,...,m} =


f1 ··· 0

...
...

...
0 ··· fm−1

0
...
0

0 ··· 0 fm

 .

Aqúı, sabemos que fm(p) = 0 y dfm(p) ̸= 0. Por ende, concluimos que fm
cambia de signo en un entorno de p ∈ Σ. Aśı que, el punto p ∈ Σ se encuentra
en la frontera topológica de dos componentes conexas M+ y M− en las que la
signatura de g cambia en una única unidad, esto es,

Ind (M−) = Ind (M+) + 1.

□

Aplicando este resultado, se dice que el Σ−espacio M es de Lorentz-
Riemann si M \ Σ tiene dos componentes conexas M+ riemanniana y M−

Lorentziana.

M+

M−

Σ

Radp

p

Figura 2.1. Hipersuperficie Σ

Definición 2.7. Sea p ∈ Σ se define el tensor simétrico

Ip : TpM × TpM × Radp −→ R

como,
Ip(up, wp, rp) = (∇∗

UW )(R)

donde U,W,R ∈ X(M) tales que U(p) = up, W (p) = wp y R(p) = rp.
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Nótese que Ip está bien definido ya que sabemos que la conexión dual ∇∗

funciona para métricas degeneradas.

En lo que sigue, a menos que el ı́ndice que se repita sea m, para simplificar
usaremos la notación de Einstein eliminando el signo de sumatorio y entendiendo
que en la expresión resultante un ı́ndice indica la suma sobre todos los posibles
valores del mismo. Además, tendremos en cuenta el siguiente convenio de ı́ndices:
i, j, k ∈ {1, . . . ,m− 1} y a, b, c, d ∈ {1, . . . ,m}.

Ahora, para p ∈ Σ tomamos un sistema local de coordenadas (U,φ ≡
(x1, . . . , xm)) con p ∈ U ⊂ M tal que xm = 0 es una ecuación simple de Σ
y una base móvil {e1, . . . , em}, tal que para todo x ∈ U y ξ ∈ TxM , ξ =
ua(ξ)ea(x). Esto es, {x1, . . . , xm, u1, . . . , um} son las coordenadas mixtas en el
fibrado tangente TM .

En particular, veremos que debemos escoger dicha base móvil {e1, . . . , em}
verificando ciertas propiedades. Para ello, veamos primero el siguiente resultado
previo.

Lema 2.8. Sea f : Iε −→ R una función de clase Ck con k ≥ 1 definida en
Iε := (−ε, ε) para ε > 0 y f(0) = 0. Entonces, la función

φ(t) =

∫ 1

0

f ′(st)ds

de clase Ck−1 verifica que f(t) = tφ(t) y φ(0) = f ′(0).

Demostración. Definimos u := st y fijado t consideramos ft(s) = f(st). Enton-
ces, ∫ 1

0

dft
ds
ds = ft(s)|s=1

s=0 = ft(1)− ft(0) = f(t)− f(0) = f(t).

No obstante,
dft
ds

∣∣∣∣
s

=
df

du

∣∣∣∣
st

du

ds

∣∣∣∣
s

= tf ′(st).

Por ende, f(t) =
∫ 1

0
tf ′(st)ds = tφ(t) y es claro que φ(0) = f ′(0).

□

A continuación, tal y cómo anticipábamos, veamos qué condiciones debe-
mos imponer sobre la base móvil {e1, . . . , em}.

Proposición 2.9. Sea p ∈ Σ, existe un entorno U de M con p ∈ U y una base
móvil {e1, . . . , em} en él verificando las siguientes propiedades:

(i) Los campos {e1, . . . , em−1} son tangentes a Σ ∩ U .
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(ii) La matriz asociada a la métrica respecto dicha base es de la forma

(gab)a,b∈{1,...,m} =

 (gij)i,j∈{1,...,m−1}

0
...
0

0 · · · 0 τ

 .

(iii) Para todo i ∈ {1, . . . ,m− 1}, se cumple que g(em, [em, ei]) = 0.

Demostración. Sabemos que Σ es una hipersuperficie de M , aśı que considera-
mos (Σ0, (x

1, . . . , xm−1)) una carta de Σ y un campo ẽm tal que para todo p ∈ Σ
se verifique que ẽm(p) ∈ Radp.

Además, fijado p0 ∈ Σ consideramos ψ : U × I −→ M el flujo local de ẽm
por p0 ∈ U y aplicando la Proposición 1.16 sabemos que:

Para todo t ∈ I, el subconjunto ψt(U) es un abierto de M de forma que la
aplicación ψt : U −→Mt es un difeomorfismo.
Para todo p ∈ U se tiene que ψp := γp es curva integral de ẽm por p, es decir,
ψp(0) = p.

A continuación, considerando la aplicación ψ|U∩Σ y teniendo en cuenta que
ψ(p0, 0) = p0 queremos ver que la aplicación

dψ|(p0,0) : Tp0Σ × R −→ Tp0M

es no singular. En efecto, si ξ ∈ Tp0Σ y α : J −→ Σ es una curva en Σ
verificando que α(0) = p0 y α′(0) = ξ, tomamos la curva α̃(t) = (α(t), 0) con
d
dt

∣∣
t=0

α̃ = (ξ, 0) por lo que,

dψ|(p0,0) (ξ, 0) =
d

dt

∣∣∣∣
t=0

ψ(α̃(t)) =
d

dt

∣∣∣∣
t=0

ψ(α(t), 0) =

=
d

dt

∣∣∣∣
t=0

γα(t)(0) =
d

dt

∣∣∣∣
t=0

α(t) = ξ,

dψ|(p0,0) (0, 1) =
d

dt

∣∣∣∣
t=0

ψ(p0, t) =
d

dt

∣∣∣∣
t=0

γp0(t) =

= γ′p0(0) = ẽm(p0).

Por tanto, como consecuencia del Teorema de la Función Inversa se deduce
que existen Σ0 abierto de Σ con p0 ∈ Σ0, M0 abierto de M y ε > 0 tal que
ψ : Σ0 × Iε −→M0 es un difeomorfismo y denotemos Σt := ψt(Σ0).

De este modo, para todo x ∈M0 consideramos ψ−1(x) = (p, t) para ciertos
p ∈ Σ0 y t ∈ Iε. Aśı, definimos xm(x) := t. En consecuencia, hemos obtenido
una carta (M0, (x

1, . . . , xm)) de M dada por,
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xi(x) = xi(π1(ψ
−1(x))) y xm(x) = π2(ψ

−1(x))

donde π1 : Σ0 × Iε −→ Σ0 y π2 : Σ0 × Iε −→ Iε son las proyecciones sobre la
primera y la segunda componente, respectivamente.

M0

Σ0

Σt

p

x

γp

Figura 2.2. Difeomorfismo ψ : Σ0 × Iε →M0

En lo que sigue tomamos los campos

ei =
∂

∂xi
y êm =

∂

∂xm
.

Como consecuencia, dado que Σ = {xm = 0}, se cumple (i), ya que los
campos ei son tangentes a Σ ∩ U pues,

dxm(ei) = dxm
(
∂

∂xi

)
=

∂

∂xi
(xm) = 0.

Por otro lado, la matriz asociada a g respecto de la base {e1, . . . , em−1, êm}
es de la forma,

(gab)a,b∈{1,...,m} =

 (gij)i,j∈{1,...,m−1}

g1m
...

gm−1m

g1m · · · gm−1m gmm

 .

Pero, en concreto, sabemos que,

(gab)|xm=0 =

 (gij(x
k, 0))

0
...
0

0 · · · 0 0

 .
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Por tanto, aplicando el Lema 2.8, tenemos que existen funciones ha(x
i, xm), con

a ∈ {1, . . . ,m}, tales que gam(xi, xm) = xmha(x
i, xm). Entonces, la matriz (gab)

se reescribe de la siguiente manera,

(gab)a,b∈{1,...,m} =

 (gij)i,j∈{1,...,m−1}

xmh1
...

xmhm−1

xmh1 · · · xmhm−1 xmhm

 .

A continuación, debemos modificar el campo êm para que sea ortogonal a
todos los ei. Para ello, definimos em como sigue,

em := φjej + êm = φjej +
∂

∂xm
,

para ciertas funciones φj. Además, para que em(p) con p ∈ Σ esté en la dirección
del radical Radp, debemos imponer que,

φj|xm=0 = 0.

Luego, teniendo en cuenta de nuevo el Lema 2.8, se sigue que existen fun-
ciones ψj tales que φj = xmψj, es decir,

em = xmψjej + êm.

Ahora, exigiendo la condición de ortogonalidad, esto es, g(ei, em) = 0 para
todo i ∈ {1, . . . ,m− 1}, obtenemos que,

g(ei, em) = g(ei, x
mψjej + êm) = xmψjg(ei, ej) + g(ei, êm) =

= xmψjgij + xmhi = xm(ψjgij + hi) = 0.

Por ende, ψjgij+hi = 0, es decir, ψj = −(gij)−1hi. Aśı em queda completamente
determinado por dichas funciones y, denotando τ := gmm, se verifica (ii).

Por último, veamos que (iii) es cierto, esto es, g(em, [em, ei]) = 0. Para ello,
teniendo en cuenta (ii), basta ver que el campo [em, ei] está generado únicamente
por los campos {e1, . . . , em−1} =

{
∂

∂x1 , . . . ,
∂

∂xm−1

}
. En efecto,

[em, ei] = [em, ei](x
j)

∂

∂xj
+ [em, ei](x

m)
∂

∂xm
= [em, ei](x

j)
∂

∂xj
,

ya que se cumple lo siguiente,

[em, ei](x
m) = em(ei(x

m))− ei(em(xm)) =

= em

(
∂

∂xi
(xm)

)
− ei

((
xmψj

∂

∂xj
+

∂

∂xm

)
(xm)

)
=

= ei(0)− ei(1) = 0.

□
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En lo que sigue, consideraremos la base móvil {e1, . . . , em} definida en la
Proposición 2.9. En concreto, Σ viene dado por τ(x) = 0. Por otro lado, sea
p ∈ Σ el radical Radp queda determinado por em(p). Además, como la métrica
g es de tipo transverso sabemos que

dτ|p ̸= 0 y det
(
(hij)i,j∈{1,...,m−1}

)
̸= 0.

2.2. Geodésicas transversales

A continuación, comenzaremos a estudiar la existencia de geodésicas que
atraviesen la hipersuperficie Σ. Este es un problema que surge de manera natural
como consecuencia de la importancia de las curvas geodésicas en la geometŕıa
semi-riemanniana.

Para ello, recordamos que el Lema 1.44 nos dice que el spray geodésico en
coordenadas mixtas viene dado por el campo,

Π = eabu
b ∂

∂xa
− Γ c

abu
aub

∂

∂uc
.

Ahora, aplicando que Γm
ab = gcmΓcab = gmmΓmab =

1
τ
Γmab se sigue que,

Π = eabu
b ∂

∂xa
− Γ i

abu
aub

∂

∂ui
− 1

τ
Γmabu

aub
∂

∂um
.

En particular, sean x ∈ U y ξ ∈ TxM , tenemos que Π aplicado a ξ es de
la forma,

Π(ξ) = Ψξ(ξ)− Γ i
abu

a(ξ)ub(ξ)
∂

∂ui

∣∣∣∣
ξ

− 1

τ(x)
Γmabu

a(ξ)ub(ξ)
∂

∂um

∣∣∣∣
ξ

. (2.1)

En efecto,

Ψξ(ξ) = ẋa(ξ)
∂

∂xa

∣∣∣∣
ξ

= eabu
b(ξ)

∂

∂xa

∣∣∣∣
ξ

,

donde Ψξ : TxM −→ Tξ(TM) es el isomorfismo dado por,

Ψξ

(
∂

∂xi

∣∣∣∣
x

)
=

∂

∂xi

∣∣∣∣
ξ

, 1 ≤ i ≤ m.

Ahora, por fin estamos en condiciones de presentar el teorema que le da
nombre a esta sección.

Teorema 2.10. Sea M un Σ−espacio, p ∈ Σ y vp ∈ TpM \ TpΣ. Entonces,
existe una geodésica γ con γ′(0) = vp, si y sólo si, Ip(vp, vp, rp) = 0 para algún
rp ∈ Radp con rp ̸= 0.
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Demostración. Veamos cada una de las implicaciones por separado.

“⇒” Podemos asumir sin pérdida de generalidad que dτ(vp) < 0. Luego, para
x ∈ U y ξ ∈ TxM la ecuación (2.1) nos dice que el spray geodésico viene
dado por,

Π(ξ) = Ψξ(ξ)− Γ i
abu

a(ξ)ub(ξ)
∂

∂ui

∣∣∣∣
ξ

− 1

τ(x)
Γmabu

a(ξ)ub(ξ)
∂

∂um

∣∣∣∣
ξ

.

Ahora, teniendo en cuenta que τ(p) = 0 y que

Γmab = g(∇eaeb, em) = Ip(ea(p), eb(p), em(p))

para todo p ∈ Σ, concluimos que para que exista Π(vp) debe cumplirse que,

Γmabu
a(vp)u

b(vp) = Ip(ea(p), eb(p), em(p))ua(vp)ub(vp) = Ip(vp, vp, em(p)) = 0.

Es decir, Ip(vp, vp, em(p)) = 0 con em(p) ∈ Radp tal y cómo queŕıamos de-
mostrar.

“⇐” Para probar el rećıproco definimos el campo

S = (τ ◦ π)Π,

donde π : TM →M es la proyección canónica. Por tanto,

S(ξ) = τ(x)Ψξ(ξ)− τ(x)Γ i
abu

a(ξ)ub(ξ)
∂

∂ui

∣∣∣∣
ξ

− Γmabu
a(ξ)ub(ξ)

∂

∂um

∣∣∣∣
ξ

.

En particular, el Lema 1.12 nos dice que Π y S tienen las mismas curvas
integrales salvo reparametrización siempre que τ ◦ π ̸= 0.

Dado que (τ ◦ π)(vp) = τ(p) = 0 y que por hipótesis

Γmabu
a(vp)u

b(vp) = Ip(vp, vp, em(p)) = 0,

se deduce que S(vp) = 0. Por tanto, linealizamos S en vp y obtenemos,

DS|vp =(dτ ◦ π∗)⊗
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
− d

(
Γmabu

aub
)
|vp ⊗

∂

∂um

∣∣∣∣
vp

,

donde d denota la diferencial exterior.

El primer objetivo de la prueba consiste en hallar los autovalores y autovec-
tores de DS|vp . Para ello, previamente observamos que,



32 2 Métricas con cambio transversal de signatura: Ĺıneas geodésicas

∂

∂um
(
Γmabu

a(ξ)ub(ξ)
)
= dτ(ξ).

En efecto,

∂

∂um
(
Γmabu

a(ξ)ub(ξ)
)
= Γmmcu

c(ξ) + Γmbmu
b(ξ) =

= (Γmmb + Γmbm)u
b(ξ) =

= (Γmmi + Γmim)u
i(ξ) + 2Γmmmu

m(ξ) =

= em(τ)u
m(ξ) = dτ(ξ).

Nótese que hemos aplicado la fórmula de Koszul (1.4) para determinar Γmmi,
Γmim y Γmmm, esto es,

Γmmi =
1

2
(em(gim) + ei(gmm)− em(gmi)

−g(em, [ei, em]) + g(ei, [em, em]) + g(em, [em, ei])) =

=
1

2
ei(τ) + g(em, [em, ei]) =

=g(em, [em, ei]) = 0,

Γmim =
1

2
(ei(gmm) + em(gmi)− em(gim)

−g(ei, [em, em]) + g(em, [em, ei]) + g(em, [ei, em])) =

=
1

2
ei(τ) = 0,

Γmmm =
1

2
(em(gmm) + em(gmm)− em(gmm)

−g(em, [em, em]) + g(em, [em, em]) + g(em, [em, em])) =

=
1

2
em(τ).

Aqúı, hemos utilizado que [em, em] = 0 y la Proposición 2.9, que nos dice que
gim = gmi = 0, g(em, [em, ei]) = 0 y ei(τ) = 0.

Como consecuencia, realicemos el cálculo de los siguiente autovalores y au-
tovectores:

• En primer lugar, ∂
∂um es un autovector de DS|vp con autovalor positivo

−dτ(vp) > 0. En efecto, dado que π∗
(

∂
∂um

)
= 0, se tiene que,

DS|vp

(
∂

∂um

)
= −d

(
Γmabu

aub
)
|vp
(

∂

∂um

)
∂

∂um
=

= − ∂

∂um
(
Γmabu

a(vp)u
b(vp)

) ∂

∂um
=

= −dτ(vp)
∂

∂um
.
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• Por otro lado, para cualquier

X ∈ D :=
{
Ψvp(vp) | vp ∈ TpΣ

}
⊕ span

{
∂

∂u1
, . . . ,

∂

∂um−1

}
,

existe un C(X) ∈ R tal que X+C(X) ∂
∂um es un autovector de DS|vp con

autovalor 0. Efectivamente,

DS|vp
(
X + C(X) ∂

∂um

)
=(dτ ◦ π∗)

(
X + C(X) ∂

∂um

) (
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
− d

(
Γmabu

aub
)
|vp
(
X + C(X) ∂

∂um

)
∂

∂um =

=− d
(
Γmabu

aub
)
|vp (X) ∂

∂um

− C(X) ∂
∂um

(
Γmabu

a(vp)u
b(vp)

)
∂

∂um =

=− d
(
Γmabu

aub
)
|vp (X) ∂

∂um

− C(X)dτ(vp)
∂

∂um = 0.

Nótese que π∗
(

∂
∂um

)
= 0 y (dτ ◦ π∗) (X) = dτ(w) = 0 con w ∈ TpΣ. Por

tanto, el C(X) ∈ R buscado es,

C(X) = −
d
(
Γmabu

aub
)
|vp (X)

dτ(vp)
.

Aśı que, la aplicación D −→ ker(DS|vp) tal que X 7−→ X + C(X) ∂
∂um es

un monomorfismo y se tiene que

dim ker(DS|vp) ≥ dim D = 2m− 2.

• Por último, para calcular el autoespacio generalizado asociado a autova-
lores negativos observamos que,

DS|vp
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
=

=(dτ ◦ π∗)
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

) (
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
− d

(
Γmabu

aub
)
|vp
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
∂

∂um =

=dτ(vp)
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
− d

(
Γmabu

aub
)
|vp
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
∂

∂um .

En consecuencia, existe k0 ∈ R tal que

ν = Ψvp(vp)− Γ i
abu

a(vp)u
b(vp)

∂
∂ui + k0

∂
∂um ∈ TvpTM

es un autovector de DS|vp con autovalor negativo dτ(vp) < 0, esto es,

DS|vp
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui + k0
∂

∂um

)
=

=dτ(vp)
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui + k0
∂

∂um

)
.

(2.2)
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En efecto, por un lado,

DS|vp
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui + k0
∂

∂um

)
=

=dτ(vp)
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
− d

(
Γmabu

aub
)
|vp
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
∂

∂um

− k0dτ(vp) ∂
∂um .

Mientras que, por otro lado,

dτ(vp)
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui + k0
∂

∂um

)
=

=dτ(vp)
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
+ k0dτ(vp)

∂
∂um .

Por ello, para que se verifique (2.2) debe cumplirse que,

k0dτ(vp)
∂

∂um =− d
(
Γmabu

aub
)
|vp
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
∂

∂um

− k0dτ(vp) ∂
∂um .

Aśı que, el k0 ∈ R deseado es,

k0 = −
d
(
Γmabu

aub
)
|vp
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
2dτ(vp)

=

=
1

2
C
(
Ψvp(vp)− Γ i

abu
a(vp)u

b(vp)
∂

∂ui

)
.

De hecho, nótese que π∗(ν) = vp, ya que π∗
(
Ψvp(vp)

)
= vp y π∗

(
∂

∂ua

)
= 0.

Finalmente, de aqúı concluimos que

TvpTM = N− ⊕N0 ⊕N+,

donde N− y N+ denotan los autoespacios generalizados de autovalores de
DS|vp negativos y positivos, respectivamente. Mientras que N0 es el au-
toespacio de autovalor 0. Como resultado del estudio realizado previamen-
te y dado que dim TvpTM = 2m, sabemos que dimN− = dimN+ = 1 y
dimN0 = 2m− 2.

A continuación, aplicando el Teorema 1.17 se deduce que existen subvarie-
dades Ws y Wu de TM que son invariantes por el flujo de S y satisfacen que
TvpWs = N− y TvpWu = N+.

En particular, Ws es una curva inmersa diferenciable que interseca las fibras
sobre Σ transversalmente en vp y existe una parametrización regular γ1(t) de
Ws en torno a vp tal que γ1(0) = vp y γ

′
1(0) = ν. De esta forma, consideramos

γ2 := π ◦ γ1 la proyección de γ1, verificando que
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γ2(0) = (π ◦ γ1)(0) = π(γ1(0)) = π(vp) = p,

γ′2(0) = (π ◦ γ1)′(0) = π∗(γ
′
1(0)) = π∗(ν) = vp.

En concreto, se tiene que γ2 es una ĺınea pregeodésica sobre M . Esto se debe
a que Ws es ĺınea integral del campo S y, en consecuencia, también lo es del
campo Π. Por tanto, basta tener en cuenta que las ĺıneas integrales de Π se
proyectan en ĺıneas geodésicas sobre M .

Además, el Teorema 7 de [2] y que Ip(vp, vp, rp) = 0 nos dice que existe un
único campo vectorial diferenciable y paralelo P sobre γ2 y P (0) = vp.

Por otro lado, se verifica que P es tangente a γ2 en todo punto. En efecto,
basta considerar que si γ2 es pregeodésica y P es un campo vectorial paralelo
a lo largo de γ2, entonces el ángulo que forma P (t) con γ′2(t) es constante α0.
Luego,

α0 = ĺım
t→0

( ̂P (t), γ′(t)) = (v̂p, vp) = 0.

De este modo, podemos parametrizar γ2 para obtener una curva

γ : (−ε, ε) −→M

para algún ε > 0 con γ′ = P , esto es, γ(0) = p y γ′(0) = vp. Por tanto,
concluimos que la curva γ es la geodésica buscada.

□

Σ
p

M
γ

vp

Figura 2.3. Curva geodésica γ con γ′(0) = vp

2.3. Geodésicas radicales

Nótese que en el Teorema 2.10, el vector vp ∈ TpM \ TpΣ no pertenece al
espacio radical Radp. Pues en ese caso, se tendŕıa que vp = λem(p) para cierto
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λ ∈ R\{0}. En consecuencia, Ip(vp, vp, em(p)) ̸= 0. En efecto, aplicado la fórmula
de Koszul (1.4) se deduce que,

Ip(vp, vp, em(p)) = Ip(λem(p), λem(p), em(p)) = λ2Ip(em(p), em(p), em(p)) =
= λ2g(∇emem, em) =

λ2

2
em(τ) =

λ2

2
dτ(em(p)) =

λ
2
dτ(vp) ̸= 0.

De esta manera, en el siguiente teorema estudiamos que ocurre en el caso
de que vp ∈ Radp, es decir, que las geodésicas atraviesen la hipersuperficie Σ en
la dirección del subespacio radical.

Teorema 2.11. Sea M un Σ−espacio con radical transverso en p ∈ Σ. Enton-
ces, si rp ∈ Radp, existe una curva diferenciable pregeodésica γ con γ(0) = p y
γ′(0) = rp.

Demostración. En primer lugar, nótese que vamos a utilizar la misma notación
y coordenadas en TM que en la prueba del Teorema 2.10.

Como sabemos que el vector em(p) genera al radical Radp, asumimos que
rp = λem(p) para cierto λ ∈ R \ {0}, esto es,

ui(rp) = 0 y um(rp) = λ.

Además, podemos suponer sin pérdida de generalidad que dτ(rp) < 0 y
Ip(rp, rp, em(p)) ̸= 0.

A continuación, para todo x ∈M definimos la función

h(x) :=
1

2
dτ(λem(x))

y consideramos el siguiente campo vectorial desplazado,

S̃(ξ) := S(ξ) + h(x)ua(ξ)
∂

∂ua

∣∣∣∣
ξ

, ξ ∈ TxM.

Nótese que las proyecciones a M de las ĺıneas integrales de los campos S̃,
S y Π son las mismas. Pues, por el Lema 1.43 lo son las de Π y Π̃ = Π + h

τ
V

y por el Lema 1.12 los campos S̃ = τΠ̃ y Π̃ tienes las mismas ĺıneas integrales
en TM \ π−1(Σ).

De este modo, S̃(rp) = 0. Efectivamente,

S̃(rp) =S(rp) + h(p)ua(rp)
∂

∂ua

∣∣∣∣
rp

=

=τ(p)Ψrp(rp)− τ(p)Γ i
abu

a(rp)u
b(rp)

∂

∂ui

∣∣∣∣
rp

− Γmabu
a(rp)u

b(rp)
∂

∂um

∣∣∣∣
rp

+
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+ h(p)ua(rp)
∂

∂ua

∣∣∣∣
rp

=

=− λ2Γmmm
∂

∂um

∣∣∣∣
rp

+
λ2

2
dτ(em(p))

∂

∂um

∣∣∣∣
rp

=

=− λ2

2
em(τ)

∂

∂um

∣∣∣∣
rp

+
λ2

2
em(τ)

∂

∂um

∣∣∣∣
rp

= 0.

En consecuencia, podemos linealizar el campo S̃ en rp, es decir,

DS̃
∣∣∣
rp

=(dτ ◦ π∗)⊗
(
Ψrp(rp)− Γ i

abu
a(rp)u

b(rp)
∂

∂ui

)
− d

(
Γmabu

aub
)
|rp ⊗

∂

∂um

∣∣∣∣
rp

+ d (hua) |rp ⊗
∂

∂ua

∣∣∣∣
rp

=

=(dτ ◦ π∗)⊗
(
Ψrp(rp)− λ2Γ i

mm

∂

∂ui

)
− d

(
Γmabu

aub
)
|rp ⊗

∂

∂um

∣∣∣∣
rp

+ h(p)dui(rp)⊗
∂

∂ui

∣∣∣∣
rp

+ h(p)dum(rp)⊗
∂

∂um

∣∣∣∣
rp

+ λdh(p)⊗ ∂

∂um

∣∣∣∣
rp

.

Ahora, nos interesa calcular los autovalores y autovectores de DS̃
∣∣∣
rp
.

En primer lugar, veamos que ∂
∂um es un autovector de DS̃

∣∣∣
rp

con autovalor

positivo −1
2
dτ(rp) > 0. Teniendo en cuenta que π∗

(
∂

∂um

)
= 0, se deduce que,

DS̃
∣∣∣
rp

(
∂

∂um

)
=− d

(
Γmabu

aub
)
|rp
(

∂

∂um

)
∂

∂um

+ h(p)dui(rp)

(
∂

∂um

)
∂

∂ui
+ h(p)dum(rp)

(
∂

∂um

)
∂

∂um

+ λdh(p)

(
∂

∂um

)
∂

∂um
=

=− ∂

∂um
(
Γmabu

a(rp)u
b(rp)

) ∂

∂um

+ h(p)
∂

∂um
(
ui(rp)

) ∂

∂ui
+ h(p)

∂

∂um
(um(rp))

∂

∂um

+ λ
∂

∂um
(h(p))

∂

∂um
=

=− dτ(rp)
∂

∂um
+ h(p)

∂

∂um
= (−dτ(rp) + h(p))

∂

∂um
=

=

(
−dτ(rp) +

1

2
dτ(rp)

)
∂

∂um
= −1

2
dτ(rp)

∂

∂um
.
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Por otro lado, para todo wp ∈ TpΣ, Ψwp(wp) es un autovector de DS̃
∣∣∣
rp

con

autovalor 0. Recordando que

Ψwp(wp) = eabu
b(wp)

∂

∂xa

∣∣∣∣
wp

y que dτ(wp) = 0 para todo wp ∈ TpΣ, es claro que,

DS̃
∣∣∣
rp

(
Ψwp(wp)

)
= 0.

Además, para todo j ∈ {1, . . . ,m − 1} se tiene que ∂
∂uj es un autovector

de DS̃
∣∣∣
rp

con autovalor negativo 1
2
dτ(rp) < 0. Como antes, aplicando que

π∗
(

∂
∂uj

)
= 0, se sigue que,

DS̃
∣∣∣
rp

(
∂

∂uj

)
=− d

(
Γmabu

aub
)
|rp
(

∂

∂uj

)
∂

∂um

+ h(p)dui(rp)

(
∂

∂uj

)
∂

∂ui
+ h(p)dum(rp)

(
∂

∂uj

)
∂

∂um

+ λdh(p)

(
∂

∂uj

)
∂

∂um
=

=− ∂

∂uj
(
Γmabu

a(rp)u
b(rp)

) ∂

∂um

+ h(p)
∂

∂uj
(
ui(rp)

) ∂

∂ui
+ h(p)

∂

∂uj
(um(rp))

∂

∂um

+ λ
∂

∂uj
(h(p))

∂

∂um
=

=h(p)
∂

∂uj
=

1

2
dτ(rp)

∂

∂uj
.

Nótese que, aplicando la Proposición 2.9 obtenemos que,

∂

∂uj
(
Γmabu

a(rp)u
b(rp)

)
=Γmibu

b(rp) + Γmaiu
a(rp) =

= (Γmia + Γmai)u
a(rp) =

=λ (Γmim + Γmmi) =

=λg(em, [em, ei]) = 0.

Por último, existen c1, . . . , cm−1 ∈ R tales que

η = Ψrp(rp) + ck
∂

∂uk
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es autovector de DS̃
∣∣∣
rp

con autovalor negativo dτ(rp) < 0.

DS̃
∣∣∣
rp

(
Ψrp(rp) + ck ∂

∂uk

)
=(dτ ◦ π∗)

(
Ψrp(rp) + ck ∂

∂uk

) (
Ψrp(rp)− λ2Γ i

mm
∂

∂ui

)
− d

(
Γmabu

aub
)
|rp
(
Ψrp(rp) + ck ∂

∂uk

)
∂

∂um

+ h(p)dui(rp)
(
Ψrp(rp) + ck ∂

∂uk

)
∂

∂ui

+ h(p)dum(rp)
(
Ψrp(rp) + ck ∂

∂uk

)
∂

∂um

+ λdh(p)
(
Ψrp(rp) + ck ∂

∂uk

)
∂

∂um =

=dτ(rp)
(
Ψrp(rp)− λ2Γ i

mm
∂

∂ui

)
− ck ∂

∂uk

(
Γmabu

a(rp)u
b(rp)

)
∂

∂um

+ h(p)ck ∂
∂uk

(
ui(rp)

)
∂

∂ui

+ h(p)ck ∂
∂uk (u

m(rp))
∂

∂um

+ λck ∂
∂uk (h(p))

∂
∂um =

=dτ(rp)
(
Ψrp(rp)− λ2Γ i

mm
∂

∂ui

)
+ h(p)ck ∂

∂uk =

=dτ(rp)
(
Ψrp(rp) +

(
1
2
ck − λ2Γ k

mm

)
∂

∂uk

)
.

Luego, para los valores ck = −2λ2Γ k
mm, k ∈ {1, . . . ,m− 1}, se cumple lo que

queremos.

Además, nótese que π∗(η) = rp, pues π∗
(
Ψrp(rp)

)
= rp y π∗

(
∂

∂uk

)
= 0.

Finalmente, recopilando todo lo obtenido hasta ahora tenemos que

TrpTM = Ñ− ⊕ Ñ0 ⊕ Ñ+,

donde N− y N+ denotan los autoespacios generalizados de autovalores de DS̃|rp
negativos y positivos, respectivamente. Mientras que N0 es el autoespacio de
autovalor 0. En concreto, hemos deducido que dim Ñ0 = m− 1, dim Ñ+ = 1 y
dim Ñ− = m, siendo dτ(rp) el autovalor más negativo.

Por tanto, sea Y el autoespacio asociado al autovalor dτ(rp), aplicando el
argumento que se muestra en el Teorema 2 de [3], deducimos que existe una

subvariedad L̃ invariante por el flujo de S̃ tal que rp ∈ L̃ y TrpL̃ = Y .

Ahora, consideramos γ̃(t) una parametrización regular de L̃ en un entorno
de rp con γ̃(0) = rp y γ̃′(0) = η. Entonces, la proyección γ = π ◦ γ̃ de γ̃ define

una parametrización regular de L = π(L̃) en torno a p verificando que

γ(0) = π(γ̃(0)) = π(rp) = p,

γ′(0) = π∗(γ̃
′(0)) = π∗(η) = rp.

En consecuencia, la proyección L de L̃ determina una curva diferenciable
pregeodésica γ con γ(0) = p y γ′(0) = rp.

□
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2.4. Ejemplos de geodésicas

En esta sección tomaremos diferentes métricas en R2 y hallaremos las
geodésicas en cada uno de los casos, estudiando aśı aquellas que puedan atravesar
la hipersuperficie formada por los puntos en los que la métrica degenera.

Ejemplo 2.12. Consideramos en R2 la métrica

g =

(
1 0
0 y

)
que es singular en Σ = {(x, y) ∈ R2 | y = 0} y en donde el vector que determina
al radical es ∂

∂y
transverso a Σ.

Calculando los śımbolos de Christoffel en R2 \Σ obtenemos que

Γ 1
11 = Γ 2

11 = Γ 1
12 = Γ 2

12 = Γ 1
22 = 0 y Γ 2

22 =
1

2y
.

Por tanto, deducimos que las ecuaciones de las geodésicas en R2\Σ vienen dadas
por el siguiente sistema de ecuaciones diferenciales,

ẍ = 0,

ÿ +
1

2y
(ẏ)2 = 0,

cuya solución es,

x(t) = at+ b,

y(t) = c (3t+ d)
2
3 ,

para ciertos a, b, c, d ∈ R. De esta forma, si buscamos una geodésica γ(t) con
condiciones iniciales γ(0) = (x0, y0) y γ

′(0) = (u0, v0), se deduce que

a = u0, b = x0, c = y
1
3
0

(v0
2

) 2
3

y d =
2y0
v0

con v0 ̸= 0. Aśı, la geodésica γ viene determinada por

γ(t) =

(
u0t+ x0, y

1
3
0

(v0
2

) 2
3

(
3t+

2y0
v0

) 2
3

)
y su velocidad en cada punto es

γ′(t) =

(
u0, 2y

1
3
0

(v0
2

) 2
3

(
3t+

2y0
v0

)− 1
3

)
.
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Figura 2.4. Geodésicas en R2 con la métrica g

En concreto, algunos ejemplos generales de pedazos de geodésicas llegando
a tocar Σ, pero sin atravesarla, vienen representados en la Figura 2.4.

En particular, si u0 = 0 obtenemos geodésicas verticales en la dirección del
radical de la forma

γ(t) =

(
x0, y

1
3
0

(v0
2

) 2
3

(
3t+

2y0
v0

) 2
3

)
,

que cortan a Σ en t0 = −2y0
3v0

, pero no la atraviesan. No obstante, los pedazos de
geodésicas verticales en y > 0 e y < 0 pegan diferenciablemente atravesando Σ,
véase la Figura 2.5.

Figura 2.5. Geodésicas radicales

Sin embargo, aunque toda geodésica en la forma general corta a Σ en
t0 = −2y0

3v0
, pegar dos pedazos de geodésicas generales en y > 0 e y < 0 no

produce una ĺınea diferenciable, ya que γ′(t) no es diferenciable en t0 = −2y0
3v0

,
véase la Figura 2.6.
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Figura 2.6. Geodésicas en R2 con la métrica g

En consecuencia, deducimos que las únicas geodésicas que atraviesan la
hipersuperficie Σ son las geodésicas verticales, es decir, las geodésicas radicales.
Luego, según el Teorema 2.10, esto nos dice que sea p ∈ Σ, no existe un vector
tangente vp ∈ TpR2 \ TpΣ tal que Ip(vp, vp, rp) = 0, para algún rp ∈ Radp con

rp ̸= 0. En efecto, sea rp =
∂
∂y

∣∣∣
p
y vp = αp

∂
∂x

∣∣
p
+ βp

∂
∂y

∣∣∣
p
se tiene que

I(vp, vp, rp) = g(∇vpvp, rp) =

= g

(
β2

2y

∂

∂y
+ α

∂α

∂x

∂

∂x
+ α

∂β

∂x

∂

∂y
+ β

∂α

∂y

∂

∂x
+ β

∂β

∂y

∂

∂y
,
∂

∂y

)
=

=
β2

2
+ α

∂β

∂x
y + β

∂β

∂y
y.

Teniendo en cuenta que p ∈ Σ, esto es, p es de la forma p = (x0, y0) con
y0 = 0, se sigue que Ip(vp, vp, rp) = 0, si y sólo si, βp = 0. Es decir, vp = αp

∂
∂x

∣∣
p
∈

TpΣ, pero esto no es posible ya que hemos dicho que vp ∈ TpR2 \ TpΣ.

En general, no es sencillo encontrar ejemplos de métricas que nos permitan
hallar las expresiones expĺıcitas de las geodésicas. No obstante, a continuación
presentamos un ejemplo en el que representemos geodésicas que atraviesan la
hipersuperficie Σ en una dirección distinta a la del radical.

Ejemplo 2.13. Tomamos en R2 la métrica

g =

(
ey 0
0 y

)
que es singular en Σ = {(x, y) ∈ R2 | y = 0} y en donde el vector que determina
al radical es ∂

∂y
transverso a Σ.
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Los śımbolos de Christoffel en R2 \Σ vienen dados por

Γ 1
11 = Γ 2

12 = Γ 1
22 = 0, Γ 2

11 = −
ey

2y
, Γ 1

12 =
1

2
y Γ 2

22 =
1

2y
.

Luego, las ecuaciones de las geodésicas en R2 \Σ quedan determinadas por
el siguiente sistema de ecuaciones diferenciales,

ẍ+
1

2
ẋẏ = 0,

ÿ +
1

2y
(ẏ)2 − ey

2y
(ẋ)2 = 0.

Sin embargo, aunque es complicado encontrar la expresión expĺıcita de las
geodésicas, el Teorema 2.10 nos da la condición de existencia de geodésicas que
atraviesan Σ en una dirección distinta a la del radical. En efecto, sea p ∈ Σ y

los vectores rp =
∂
∂y

∣∣∣
p
∈ Radp y vp = αp

∂
∂x

∣∣
p
+βp

∂
∂y

∣∣∣
p
∈ TpR2 \TpΣ se tiene que

I(vp, vp, rp) = g(∇vpvp, rp) =

= g
(
αβ ∂

∂x
− α2 ey

2y
∂
∂y

+ g2

2y
∂
∂y

+ β2

2y
∂
∂y

+ α∂α
∂x

∂
∂x

+ α∂β
∂x

∂
∂y

+ β ∂α
∂y

∂
∂x

+ β ∂β
∂y

∂
∂y
, ∂

∂y

)
=

= −1

2
α2ey +

β2

2
+ α

∂β

∂x
y + β

∂β

∂y
y.

Por tanto, teniendo en cuenta que p ∈ Σ implica que p es de la forma
p = (x0, y0) con y0 = 0, se deduce que Ip(vp, vp, rp) = 0, si y sólo si, αp = ±βp. Es
decir, existirá una geodésica que atraviese Σ en la dirección de vp ∈ TpR2 \TpΣ,
si y sólo,

vp = αp
∂

∂x

∣∣∣∣
p

± αp
∂

∂y

∣∣∣∣
p

.

Finalmente, veamos una representación de las geodésicas en este ejemplo.
En primer lugar, en la Figura 2.7 vemos geodésicas que no atraviesan Σ. Por
otro lado, en la Figura 2.8 se representan geodésicas radicales. Por último, en
la Figura 2.9 observamos geodésicas transversales, que atraviesan Σ en una
dirección distinta a la del radical.
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Figura 2.7. Geodésicas que no atraviesan Σ

Figura 2.8. Geodésicas radicales

Figura 2.9. Geodésicas transversales



Conclusiones

En esta memoria hemos estudiado las geodésicas que atraviesan la hipersu-
perficie Σ determinada por los puntos en los que la métrica g es degenerada. Este
problema lo hemos abordado diferenciando dos casos fundamentales: las geodési-
cas radicales, que atraviesan la hipersuperficie en la dirección del subespacio
radical y las geodésicas transversales que lo hacen en otra dirección transversal.

Cabe destacar que para el desarrollo de estos resultados ha sido necesaria
la construcción previa de una base móvil {e1, . . . , em} de M verificando ciertas
propiedades.

Por un lado, la existencia de las geodésicas transversales está condicionada
por el valor del tensor I. Por otro lado, para determinar las geodésicas radicales
partimos de un campo radical em, es decir, un campo en M tal que em(p) ∈
Radp para todo p ∈ Σ, y construimos en TM el campo S̃ = τΠ + hV siendo
h = 1

2
em(τ), τ = g(em, em) y donde Π denota al spray geodésico y V el campo

de Liouville. Aśı, S̃ tiene a rp = λem(p) como punto singular para todo p ∈ Σ.

De esta manera, se ha conseguido encontrar para cada p ∈ Σ una ĺınea
L̃p invariante por el flujo de S̃ con rp ∈ L̃p uńıvocamente determinada y que
vaŕıa diferenciablemente con p ∈ Σ. En consecuencia, se prueba entonces que
Lp = π(L̃p) es una ĺınea pregeodésica que atraviesa Σ en la dirección del radical,
esto es, TpLp = Radp.

En el futuro seŕıa interesante explorar en nuevas direcciones. En particular,
con la familia de ĺıneas Lp con p ∈ Σ se construye una carta (xi, xm) en un
entorno U de M tal que p ∈ U , a esta carta se le denomina carta normal, de
forma que la matriz asociada a la métrica respecto a ella es de la forma

(gab)a,b∈{1,...,m} =

 (gij)
0
...
0

0 ··· 0 xm


y las ĺıneas xi := xi(p), xm := t, para todo p ∈ Σ, constituyen la familia de las
ĺıneas radicales. En estas condiciones, se prueba que la ĺınea pregeodésica radical
Lp que atraviesa Σ por el punto p es esencialmente única.
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