ON THE KUNEN-SHELAH PROPERTIES IN BANACH SPACES

ANTONIO S. GRANERO⁽¹⁾, MAR JIMÉNEZ⁽²⁾, ALEJANDRO MONTESINOS⁽¹⁾, JOSÉ P. MORENO⁽²⁾, AND ANATOLIJ PLICHKO

ABSTRACT. We introduce and study the Kunen-Shelah properties KS_i , i=0,1,...,7. Let us highlight for a Banach space X some of our results: (1) X^* has a w^* -nonseparable equivalent dual ball iff X has an ω_1 -polyhedron (i.e., a bounded family $\{x_i\}_{i<\omega_1}$ such that $x_j\notin \overline{\operatorname{co}}(\{x_i:i\in\omega_1\setminus\{j\}\})$ for every $j\in\omega_1$) iff X has an uncountable bounded almost biorthonal system (UBABS) of type η , for some $\eta\in[0,1)$, (i.e., a bounded family $\{(x_\alpha,f_\alpha)\}_{1\leq\alpha<\omega_1}\subset X\times X^*$ such that $f_\alpha(x_\alpha)=1$ and $|f_\alpha(x_\beta)|\leq\eta$, if $\alpha\neq\beta$); (2) if X has an uncountable ω -independent system then X has an UBABS of type η for every $\eta\in(0,1)$; (3) if X has not the property (C) of Corson, then X has an ω_1 -polyhedron; (4) X has not an ω_1 -polyhedron iff X has not a convex right-separated ω_1 -family (i.e., a bounded family $\{x_i\}_{i<\omega_1}$ such that $x_j\notin\overline{\operatorname{co}}(\{x_i:j< i<\omega_1\})$ for every $j\in\omega_1$) iff every w^* -closed convex subset of X^* is w^* -separable iff every convex subset of X^* is w^* -separable iff every convex subset of X is w^* -separable iff $\mu(X)=1$, $\mu(X)$ being the Finet-Godefroy index of X (see [1]).

1. **Introduction.** If X is a Banach space and θ an ordinal, a family $\{x_{\alpha} : \alpha < \theta\} \subset X$ is said to be a θ -basic sequence if there exists $1 \leq K < \infty$ such that for every n < m in \mathbb{N} , every families $\lambda_i \in \mathbb{R}$, i = 1, ..., m, and $\alpha_1 < ... < \alpha_n < ... < \alpha_m < \theta$ we have $\|\sum_{i=1}^{i=n} \lambda_i x_{\alpha_i}\| \leq K \|\sum_{i=1}^{i=m} \lambda_i x_{\alpha_i}\|$. A family $\{x_i\}_{i\in I} \subset X$ is a basic sequence if it is a θ -basic sequence for some ordinal θ . If K = 1 the basic sequence is said to be monotone. A biorthogonal system in X is a family $\{(x_i, x_i^*) : i \in I\} \subset X \times X^*$ such that

²⁰⁰⁰ Mathematics Subject Classification. 46B20, 46B26.

Key words and phrases. uncountable basic sequences, biorthogonal and Markuschevich systems, ω -independence, Kunen-Shelah properties.

Supported in part by the DGICYT (1) grant PB97-0240 and (2) grant PB97-0377.

 $x_i^*(x_i) = 1$ and $x_i^*(x_j) = 0$, $i, j \in I$, $i \neq j$. A Markuschevich system (in short, a M-system) in X is a biorthogonal system $\{(x_i, x_i^*) : i \in I\}$ in X such that $\{x_i^* : i \in I\}$ is total on $\overline{[\{x_i : i \in I\}]}$ (see [14]).

It is well known (see [14, pg. 599]) that if the density of a Banach space X satisfies $Dens(X) \geq \aleph_1$, then X has a monotone ω_1 -basic sequence. Also if $Dens(X) > \mathfrak{c}$, X has a monotone ω_1 -basic sequence, because in this case an easy calculation shows that w^* - $Dens(X^*) \geq \aleph_1$. However, if $\aleph_1 \leq Dens(X) \leq \mathfrak{c}$ and w^* - $Dens(X^*) \leq \aleph_0$, X can fail to have an uncountable basic sequence, even an uncountable biorthogonal system. Indeed, Shelah [13] constructed under the axiom \diamondsuit_{\aleph_1} -an axiom which implies the continuum hypothesis (CH)- a nonseparable Banach space S that fails to have an uncountable biorthogonal system. Later Kunen [8, p. 1123] constructed under (CH) a Hausdorff compact space K such that C(K) is nonseparable and has not an uncountable biorthogonal system, among other pathological interesting properties.

A Banach space X is said to have the Kunen-Shelah property KS_0 (resp. KS_1) if X has not an uncountable basic sequence (resp. an uncountable Markuschevich system). A Banach space X is said to have the Kunen-Shelah property KS_2 if X has not an uncountable biorthogonal system. Clearly, $KS_2 \Rightarrow KS_1 \Rightarrow KS_0$.

The first example of a Banach space X such that $X \in KS_0$ but $X \notin KS_2$ was given in [9] and is the space of Johnson-Lindentrauss JL_2 (see [4]). The properties KS_2 and KS_1 were separated in [2] (see also [1]), where it was proved that if a Banach space X has the property (C) of Corson and w^* -Dens $(X^*) \leq \aleph_0$, then $X \in KS_1$.

Question 1. There exists a Banach space X such that $X \in KS_0$ but $X \notin KS_1$?

In this paper we study some structures similar to uncountable biorthogonal systems, namely: uncountable ω -independent families, ω_1 -polyhedrons, uncountable bounded almost biorthogonal systems (UBABS), etc. The

lack of these structures allows us to define the Kunen-Shelah properties KS_3, KS_4 , etc.

In Section 2 we prove that a Banach space X has an ω_1 -polyhedron iff X has an UBABS iff X^* has a w^* -nonseparable dual equivalent ball. Section 3 deals with uncountable ω -independent families. In Section 4 it is proved that X has not an ω_1 -polyhedron iff every w^* -closed convex subset of X^* is w^* -separable. In Section 5 we answer some questions posed by Finet and Godefroy [1] concerning the index $\mu(X)$. In Section 6 we prove that a space X has not a convex right-separated ω_1 -family iff every w^* -closed convex subset of X^* is w^* -separable. Finally, in Section 7 we show that X has an ω_1 -polyhedron iff X has a convex right-separated ω_1 -family, whence every w^* -closed convex subset of X^* is w^* -separable iff every convex subset of X^* is so.

Let us introduce some notation. ω_1 is the first uncountable ordinal, |A| the cardinal of the set A and $\mathfrak{c} = |\mathbb{R}|$. If X is a Banach space, X^* denotes its dual, B(X) and S(X) the closed unit ball and sphere of X, resp., and B(x,r) the closed ball with radius r and center x. If $A \subset X$ we denote by [A] the linear subspace spanned by A. Recall that a Banach space X is said to have the property (C) of Corson (in short, $X \in (C)$) if $\bigcap_{i \in I} C_i \neq \emptyset$ whenever $\{C_i : i \in I\}$ is a family of closed bounded convex subsets of X with the countable intersection property, i.e., $\emptyset \neq \bigcap_{i \in J} C_i$ for every countable subset $J \subset I$.

2. **UBABS and** ω_1 -polyhedrons. If X is a Banach space, a bounded family $\{(x_{\alpha}, f_{\alpha})\}_{1 \leq \alpha < \omega_1} \subset X \times X^*$ is said to be an *uncountable bounded almost biorthogonal system* (in short, an UBABS), if there exist a real number $0 \leq \eta < 1$ such that $f_{\alpha}(x_{\alpha}) = 1$ and $f_{\alpha}(x_{\beta}) \leq \eta$, if $\alpha \neq \beta$. If in addition we have $|f_{\alpha}(x_{\beta})| \leq \eta$ for $\alpha \neq \beta$, then the UBABS $\{(x_{\alpha}, f_{\alpha})\}_{1 \leq \alpha < \omega_1} \subset X \times X^*$ is said to be of type η . Define the index $\tau(X)$ as follows:

 $\tau(X) = \inf\{0 \le \eta < 1 : X \text{ has an UBABS of type } \eta\},$

GRANERO, JIMÉNEZ, MONTESINOS, MORENO, AND PLICHKO

where $\inf\{\emptyset\} = 1$. Clearly, $\tau(X)$ is invariant by isomorphisms and: (1) if X has an uncountable biorthogonal system, then $\tau(X) = 0$; (2) $\tau(X) < 1$ iff X has an UBABS.

If τ is a cardinal, a bounded family $\{x_i\}_{i\in\tau}$ in a Banach space X is said to be a τ -polyhedron iff $x_j \notin \overline{\operatorname{co}}(\{x_i\}_{i\in\tau\setminus\{j\}})$ for every $j\in\tau$. In a dual Banach space X^* one can define a w^* - τ -polyhedron in a analogous way, using the w^* -topology instead of the w-topology.

Proposition 2.1. A Banach space X has an ω_1 -polyhedron iff X^* has an w^* - ω_1 -polyhedron.

Proof. Let $\{x_{\alpha}\}_{{\alpha}<{\omega_1}}\subset B(X)$ be an ${\omega_1}$ -polyhedron. By the Hahn-Banach Theorem there exists $f_{\alpha}\in S(X^*)$ such that:

$$f_{\alpha}(x_{\alpha}) > \sup\{f_{\alpha}(x_i) : i \in \omega_1 \setminus \{\alpha\}\} =: e_{\alpha}.$$

By passing to a subsequence, we can suppose that there exist $0 < \epsilon < \infty$ and $r \in \mathbb{R}$ such that $f_{\alpha}(x_{\alpha}) - e_{\alpha} \ge \epsilon > 0$ and $|r - f_{\alpha}(x_{\alpha})| \le \frac{\epsilon}{4}$, $\forall \alpha < \omega_1$. Hence, if $\alpha, \beta < \omega_1$ with $\alpha \ne \beta$, we have:

$$f_{\alpha}(x_{\alpha}) \ge r - \frac{\epsilon}{4} > r - \frac{3\epsilon}{4} \ge f_{\beta}(x_{\beta}) - \epsilon \ge \epsilon_{\beta} \ge f_{\beta}(x_{\alpha}),$$

which implies that $\{f_{\alpha}\}_{{\alpha}<\omega_1}$ is an w^* - ω_1 -polyhedron in X^* .

The converse implication is analogous.

Let us see in the following Proposition the relation between ω_1 -polyhedrons and UBABS.

Proposition 2.2. For a Banach space X the following are equivalent:

(1) X has an ω_1 -polyhedron; (2) X has an UBABS of type η for some $0 \le \eta < 1$; (3) X has an UBABS.

Proof. (1) \Rightarrow (2). If X has an uncountable biorthogonal system, then clearly X has an UBABS of type 0.

In the contrary case, w^* -Dens $(X^*) \leq \aleph_0$. Let $\{x_\alpha\}_{1 \leq \alpha < \omega_1} \subset X$ be an ω_1 -polyhedron. Assume that $x_1 = 0$ and that $||x_\alpha|| \leq 1$. For each $1 \leq \alpha < \omega_1$

consider $f_{\alpha} \in S(X^*)$ such that:

$$1 \ge f_{\alpha}(x_{\alpha}) > \sup\{f_{\alpha}(x_i) : 1 \le i < \omega_1, \ i \ne \alpha\} =: \rho_{\alpha}.$$

Observe that $\rho_{\alpha} \geq 0$ if $\alpha \neq 1$. By passing to an uncountable subsequence, it can be assumed that there are real numbers $0 < \epsilon, r \leq 1$ such that $f_{\alpha}(x_{\alpha}) - \rho_{\alpha} \geq \epsilon$ and $|r - f_{\alpha}(x_{\alpha})| < \frac{\epsilon}{8}$ for every $2 \leq \alpha < \omega_{1}$. Since w^{*} -Dens $(X^{*}) \leq \aleph_{0}$, by passing again to a subsequence, we assume that there exists $z \in X^{*}$ such that $z(x_{\alpha}) > 0$ and $|\frac{z(x_{\beta})}{z(x_{\alpha})} - 1| < \frac{\epsilon}{8}$ for every $2 \leq \alpha, \beta < \omega_{1}$. Then, if $g_{\alpha} = f_{\alpha} + \frac{z}{z(x_{\alpha})}$, $2 \leq \alpha < \omega_{1}$, we have:

$$g_{\alpha}(x_{\alpha}) = f_{\alpha}(x_{\alpha}) + 1 \ge r - \frac{\epsilon}{8} + 1 > r - \frac{6\epsilon}{8} + 1 \ge f_{\alpha}(x_{\alpha}) - \frac{7\epsilon}{8} + 1 \ge$$
$$\ge \sup\{g_{\alpha}(x_{\beta}) : 2 \le \beta < \omega_{1}, \beta \ne \alpha\} \ge \inf\{g_{\alpha}(x_{\beta}) : 2 \le \beta < \omega_{1}, \beta \ne \alpha\} \ge -\frac{\epsilon}{8}.$$

Denote $h_{\alpha} = \frac{g_{\alpha}}{g_{\alpha}(x_{\alpha})}$. Then, for $2 \leq \alpha, \beta < \omega_1, \alpha \neq \beta$, we have $h_{\alpha}(x_{\alpha}) = 1$ and:

$$-\frac{\frac{\epsilon}{8}}{r - \frac{\epsilon}{8} + 1} \le -\frac{\frac{\epsilon}{8}}{g_{\alpha}(x_{\alpha})} \le h_{\alpha}(x_{\beta}) = \frac{g_{\alpha}(x_{\beta})}{g_{\alpha}(x_{\alpha})} \le \frac{r + 1 - \frac{6\epsilon}{8}}{r + 1 - \frac{\epsilon}{8}}.$$

So, $\{(x_{\alpha}, h_{\alpha}): 2 \leq \alpha < \omega_1\} \subset X \times X^*$ is an UBABS of type η such that:

$$0 \le \eta = \max\{\frac{\frac{\epsilon}{8}}{r - \frac{\epsilon}{8} + 1}, \frac{r + 1 - \frac{6\epsilon}{8}}{r + 1 - \frac{\epsilon}{8}}\} < 1.$$

 $(2) \Rightarrow (3)$ is obvious and $(3) \Rightarrow (1)$ is clear because, if $\{(x_{\alpha}, f_{\alpha})\}_{1 \leq \alpha < \omega_1} \subset X \times X^*$ is an UBABS, then $\{x_{\alpha}\}_{\alpha < \omega_1}$ is an ω_1 -polyhedron.

Let us consider some results on representation in polyhedrons, that we need later. If $\{x_i\}_{i\in I}$ is a w^* - τ -polyhedron in a dual Banach space X^* with $\tau = \operatorname{card}(I)$ and $K = \overline{\operatorname{co}}^{w^*}(\{x_i\}_{i\in I})$, the *core* of K is the set:

$$K_0 = \operatorname{core}(K) = \bigcap \{\overline{\operatorname{co}}^{w^*}(\{x_i\}_{i \in I \setminus A}) : A \subset I, A \text{ finite}\}.$$

Define the function $\lambda:K\to [0,1]$ as follows:

 $\forall k \in K, \ \lambda(k) = \sup\{\lambda \in [0,1] : \exists u \in K, \exists i \in I \text{ such that } k = \lambda x_i + (1-\lambda)u\}.$

Let $H = \{x \in K : \lambda(x) = 0\}$. Since for every finite subset $A \subset I$, each $x \in K$ has the expression $x = \sum_{i \in A} \lambda_i x_i + (1-\mu)u$ with $u \in \overline{\operatorname{co}}^{w^*}(\{x_i\}_{i \in I \setminus A}), \lambda_i \in [0,1], i \in A, \mu = \sum_{i \in A} \lambda_i \leq 1$, it can be seen easily that $H \subset K_0$.

Lemma 2.3. Let $\{x_i\}_{i\in I}$ be a w^* - τ -polyhedron in the dual Banach space X^* , $\tau = card(I)$, $K = \overline{co}^{w^*}(\{x_i\}_{i\in I}\}$, $K_0 = core(K)$ and $H = \{x \in K : \lambda(x) = 0\}$. If $x \in K$, there exist a sequence of positive numbers $\{\mu_n\}_{n\geq 1}$ with $0 \leq \sum_{n\geq 1} \mu_n = \mu \leq 1$, a sequence of subindices (maybe no distinct) $\{i_n\}_{n\geq 1} \subset I$ and $u \in H$ such that $x = \sum_{n>1} \mu_n \cdot x_{i_n} + (1-\mu)u$.

Proof. Clearly the statement is true if $x \in H$. Assume that $x \notin H$, i.e., $\lambda(x) > 0$. Choose $0 < \frac{1}{2}\lambda(x) \le \lambda_1 \le 1$, $i_1 \in I$, and $u_1 \in \overline{\operatorname{co}}^{w^*}(\{x_i\}_{i \in I \setminus \{i_1\}})$ such that $x = \lambda_1 x_{i_1} + (1 - \lambda_1) u_1$. If $u_1 \in H$, we end. In the contrary case, $\lambda(u_1) > 0$ and we choose $0 < \frac{1}{2}\lambda(u_1) \le \lambda_2 \le 1$, $i_2 \in I$, and $u_2 \in \overline{\operatorname{co}}^{w^*}(\{x_i\}_{i \in I \setminus \{i_2\}})$ such that $u_1 = \lambda_2 x_{i_2} + (1 - \lambda_2) u_2$. By reiteration, there are two possibilities:

(A) $u_m \in H$ for some $m \in \mathbb{N}$. Then we obtain the representation:

$$x = \sum_{k=1}^{m} \lambda_k \cdot P_{k-1} \cdot x_{i_k} + P_m u_m, \ P_k = \prod_{k=1}^{n} (1 - \lambda_k), \ P_0 = 1.$$
 (1)

- (B) Always $u_m \notin H$. As P_m decreases in (1), there exists $\lim_{m\geq 1} P_m = P \in [0,1]$. We have two cases:
 - (1) : $\underline{P} > 0$. Observe that P > 0 iff the series $\sum_{k \geq 1} \lambda_k < +\infty$. In consequence the series $\sum_{k \geq 1} \lambda_k P_{k-1} x_{i_k}$ converges and $u_m \to u \in K$ as $m \to \infty$. So from (1) we obtain $x = \sum_{k \geq 1} \lambda_k \cdot P_{k-1} \cdot x_{i_k} + Pu$. We claim that $\lambda(u) = 0$. Indeed, suppose that $\mu := \lambda(u) > 0$ and pick $q \in \mathbb{N}$ such that $P/P_q > 1/2$, $\lambda_{q+1} < \mu/8$. Then:

$$u_q = \frac{1}{P_q} \left(\sum_{j \ge 1} \lambda_{q+j} P_{q+j-1} x_{q+j} + Pu \right),$$

which implies that $\lambda(u_q) \geq \frac{P}{P_q}\lambda(u) = \frac{P}{P_q}\mu > \frac{\mu}{2}$. Since $0 < \frac{1}{2}\lambda(u_q) \leq \lambda_{q+1} \leq 1$, we obtain $\frac{\mu}{8} > \lambda_{q+1} \geq \frac{\mu}{4}$, a contradiction.

(2) : $\underline{P} = \underline{0}$. In this case $P_m u_m \to 0$ as $m \to \infty$ and we obtain the representation $x = \sum_{k \ge 1} \lambda_k P_{k-1} x_{i_k}$ with $\sum_{k \ge 1} \lambda_k P_{k-1} = 1$.

In order to connect the existence of an UBABS in a Banach space X with the w^* -nonseparability of dual equivalent unit balls of X^* , we introduce the index $\sigma(X)$. If $K \subset X^*$ is a disc (i.e., a convex symmetric subset of X^*), define the index $\sigma(K)$ as:

$$\sigma(K) = \max\{0 \le t \le 1 : \exists A \subset K, |A| \le \aleph_0, \ tK \subseteq \overline{\operatorname{co}}^{w^*}(A \cup (-A))\}$$

Observe that $0 \le \sigma(K) < 1$ iff K is w^* -nonseparable and that there exists a countable subset $A \subset K$ such that $\sigma(K) \cdot K \subset \overline{\operatorname{co}}^{w^*}(A \cup (-A))$.

Lemma 2.4. Let X be a Banach space, $K \subset X^*$ a w^* -nonseparable disc and $\sigma(K) < \rho \le 1$. Then there exists $\epsilon = \epsilon(\rho) > 0$ (depending on ρ) such that for every countable subset $A \subset K$ there exists $k \in K$ satisfying $dist(\rho k, \overline{co}^{w^*}(A \cup (-A))) \ge \epsilon$.

Proof. In the contrary case, there exist a sequence of real numbers $\epsilon_n \downarrow 0$ and a sequence of countable subsets $A_n \subset K$, $n \geq 1$, such that every $k \in K$ satisfies $\operatorname{dist}(\rho k, \overline{\operatorname{co}}^{w^*}(A_n \cup (-A_n))) < \epsilon_n$. So, if $A = \bigcup_{n \geq 1} A_n$ we have $\rho K \subset \overline{\operatorname{co}}^{w^*}(A \cup (-A))$, a contradiction.

Define the index $\sigma(X)$, X a Banach space, as follows:

$$\sigma(X) = \inf \{ \sigma(K) : K \subset X^* \text{ a dual equivalent ball of } X^* \}.$$

It is clear that $\sigma(X)$ is invariant by isomorphisms.

Proposition 2.5. For a Banach space X we have that:

$$\sigma(X) = \inf \{ \sigma(K) : K \subset X^* \ a \ w^* \text{-}compact \ disc \ \}.$$

Proof. Obviously $\sigma(X) \geq \inf\{\sigma(K) : K \subset X^* \text{ a } w^*\text{-compact disc }\}$. In order to prove the contrary inequality, it is enough to see that $\sigma(X) \leq \sigma(K)$ for any $w^*\text{-compact disc } K \subset X^*$. So, fix a $w^*\text{-compact disc } K \subset X^*$. Assume that K is $w^*\text{-nonseparable}$, pick $\sigma(K) < \rho < 1$ and let $\epsilon = \epsilon(\rho) > 0$ be given by Lemma 2.4. For $0 < \delta < \epsilon$ such that $\rho + \delta < 1$ consider $H_{\delta} = K + \delta B(X^*)$, which is an equivalent dual ball of X^* . We claim that $\sigma(H_{\delta}) \leq \rho + \delta$. Indeed, let $\rho + \delta < t \leq 1$ and $A \subset H_{\delta}$ a countable subset.

Then $A \subset A_1 + A_2$, where $A_1 \subset K$, $A_2 \subset \delta B(X^*)$ are countable subsets. Assume that $tH_{\delta} \subset \overline{\operatorname{co}}^{w^*}(A \cup (-A))$. As $\overline{\operatorname{co}}^{w^*}(A \cup (-A)) \subset \overline{\operatorname{co}}^{w^*}(A_1 \cup (-A_1)) + \delta B(X^*)$, we get:

$$tK \subset tH_{\delta} \subset \overline{co}^{w^*}(A_1 \cup (-A_1)) + \delta B(X^*),$$

which implies that $, \forall k \in K, \quad \operatorname{dist}(tk, \overline{\operatorname{co}}^{w^*}(A_1 \cup (-A_1)) \leq \delta.$ But by Lemma 2.4 there exists $k \in K$ such that $\operatorname{dist}(\rho k, \overline{\operatorname{co}}^{w^*}(A_1 \cup (-A_1))) \geq \epsilon.$ Thus $\operatorname{dist}(tk, \overline{\operatorname{co}}^{w^*}(A_1 \cup (-A_1)) > \delta,$ a contradiction. So, $tH_\delta \nsubseteq \overline{\operatorname{co}}^{w^*}(A \cup (-A))$ and $\sigma(H_\delta) \leq \rho + \delta, \ \forall 0 < \delta < \epsilon.$ Hence, $\sigma(X) \leq \rho$, for every $\sigma(K) < \rho < 1$, and from this fact we conclude that $\sigma(X) \leq \sigma(K)$.

Proposition 2.6. If X is a Banach space then $\sigma(X) \leq \tau(X)$.

Proof. Assume that $\tau(X) < \eta < 1$ and choose an UBABS $\{(x_{\alpha}, f_{\alpha})\}_{\alpha < \omega_{1}} \subset X \times X^{*}$ of type η such that $||f_{\alpha}|| = 1$ and $||x_{\alpha}|| \leq M$, $\forall \alpha < \omega_{1}$, for some $0 < M < \infty$. Clearly, $\{\pm f_{\alpha}\}_{\alpha < \omega_{1}}$ is an w^{*} - ω_{1} -polyhedron. Denote $K = \overline{\operatorname{co}}^{w^{*}}(\{\pm f_{\alpha}\}_{\alpha < \omega_{1}})$, $K_{0} = \operatorname{core}(K)$ and $H = \{z \in K : \lambda(z) = 0\}$. It is easy to see that $|z(x_{\alpha})| \leq \eta$ for every $z \in K_{0}$ and $\alpha < \omega_{1}$. We claim that $\sigma(K) \leq \eta$. Indeed, let $A \subset K$ be countable. By Lemma 2.3 there exists $\gamma < \omega_{1}$ such that:

$$A \subset \overline{\operatorname{co}}(\{\pm f_\alpha\}_{\alpha \le \gamma} \cup H) \subset \overline{\operatorname{co}}^{w^*}(\{\pm f_\alpha\}_{\alpha \le \gamma} \cup H).$$

Clearly, $\overline{\operatorname{co}}^{w^*}(A \cup (-A)) \subset \overline{\operatorname{co}}^{w^*}(\{\pm f_{\alpha}\}_{\alpha \leq \gamma} \cup H)$ and for every $\gamma < \rho < \omega_1$ and every $z \in \overline{\operatorname{co}}^{w^*}(\{\pm f_{\alpha}\}_{\alpha \leq \gamma} \cup H)$ we have $|z(x_{\rho})| \leq \eta$.

Hence, for every $\gamma < \rho < \omega_1$ and $\eta < t \le 1$ we have that $tf_\rho \notin \overline{\operatorname{co}}^{w^*}(A \cup (-A))$. So $\sigma(K) \le \eta$ and from this fact we conclude that $\sigma(X) \le \tau(X)$. \square

Now we prove for a Banach space X that $\sigma(X) = 1$ iff $\tau(X) = 1$.

Proposition 2.7. A Banach space X has an UBABS of type η , for some $\eta \in [0,1)$, iff X^* has a w^* -nonseparable equivalent dual unit ball. So, $\sigma(X) = 1$ iff $\tau(X) = 1$.

Proof. Firstly, if X has an UBABS of type η , for some $\eta \in [0,1)$ (i.e., $\tau(X) < 1$), then by Prop. 2.6 we have $\sigma(x) < 1$ (i.e., X^* has a w^* -nonseparable equivalent dual unit ball).

Assume now that X is a Banach space with $\sigma(X) < 1$ equipped with an equivalent norm such that $\sigma(B(X^*)) < 1$. Fix $\rho > 0$ with $\sigma(B(X^*)) < \rho < 1$. If $A \subset S(X)$ and $\epsilon \geq 0$ we put:

$$(A, \epsilon)^{\perp} = \{z \in X^* : |z(x)| \le \epsilon, \ \forall x \in A\} \text{ and } S((A, \epsilon)^{\perp}) = S(X^*) \cap (A, \epsilon)^{\perp}.$$

Clearly $\epsilon B(X^*) + A^{\perp} \subset (A, \epsilon)^{\perp}.$

Claim 0. If $A \subset S(X)$ and $A^{\perp} \neq \{0\}$, then $\epsilon S(X^*) \subset \operatorname{co}(S((A, \epsilon)^{\perp}))$ for $0 \leq \epsilon < 1$.

Indeed, let $u \in \epsilon S(X^*)$ be arbitrary and pick some $v \in A^{\perp} \setminus \{0\}$. We can find $\lambda, \mu > 0$ such that $u + \lambda v, u - \mu v \in S(X^*)$. Thus, $u + \lambda v, u - \mu v \in S((A, \epsilon)^{\perp})$. Let $t \in (0, 1)$ be such that $t\lambda + (1 - t)(-\mu) = 0$. Then $u = t(u + \lambda v) + (1 - t)(u - \mu v) \in \operatorname{co}(S((A, \epsilon)^{\perp}))$.

Claim 1. For every countable subsets $A \subset S(X)$ and $F \subset S(X^*)$ there exists $f \in S((A, \sqrt{\rho})^{\perp})$ such that $\sqrt{\rho} f \notin \overline{\mathbf{co}}^{w^*}(F \cup (-F))$.

The opposite means that $\sqrt{\rho}S((A,\sqrt{\rho})^{\perp}) \subset \overline{\operatorname{co}}^{w^*}(F \cup (-F))$. By Claim 0 we have $\sqrt{\rho}S(X^*) \subset \operatorname{co}(S((A,\sqrt{\rho})^{\perp}))$. So:

$$\rho B(X^*) \subset \overline{\operatorname{co}}^{w^*}(\rho S(X^*)) \subset \overline{\operatorname{co}}^{w^*}(\sqrt{\rho} S((A,\sqrt{\rho})^{\perp})) \subset \overline{\operatorname{co}}^{w^*}(F \cup (-F)),$$

a contradiction because $\sigma(B(X^*)) < \rho$. So, Claim 1 holds.

Claim 2. There exist $0 \le \delta < \epsilon \le 1 - \sqrt{\rho}$ such that for every countable subsets $A \subset S(X)$ and $F \subset S(X^*)$ there exist $f_0 \in S((A, \sqrt{\rho})^{\perp})$ and $x_0 \in S(X)$ such that $f_0(x_0) \ge 1 - \delta$ and $f(x_0) \le 1 - \epsilon$, $\forall f \in F$.

Denote by $\mathcal{R} = \{r = (r_1, r_2) \in \mathbb{Q} \times \mathbb{Q} : 0 < r_1 < r_2 \leq 1 - \sqrt{\rho}\}$. As \mathcal{R} is countable, we can put $\mathcal{R} = \{r_n\}_{n\geq 1}$. If Claim 2 is false, for every pair $r_n = (r_{n1}, r_{n2}) \in \mathcal{R}$ we can choose countable subsets $A_n \subset S(X)$, $F_n \subset S(X^*)$, $n \geq 1$, such that for every $g \in S((A_n, \sqrt{\rho})^{\perp})$ and every $x \in S(X)$ either $g(x) < 1 - r_{n1}$ or there exists $f \in F_n$ with $f(x) > 1 - r_{n2}$. Let

 $A = \bigcup_{n \geq 1} A_n$, $F = \bigcup_{n \geq 1} F_n$. By Claim 1 there exists $f_0 \in S((A, \sqrt{\rho})^{\perp})$ such that $\sqrt{\rho} f_0 \notin \overline{\operatorname{co}}^{w^*}(F \cup (-F))$. By the Hahn-Banach Theorem there exists $y \in S(X)$ such that:

$$\sqrt{\rho} f_0(y) > \sup\{|f(y)| : f \in F\} =: \gamma_0 \ge 0.$$

Choose a sequence $\{z_n\}_{n\geq 1}\subset S(X)$ such that:

$$\lim_{n \to \infty} f_0(z_n) = ||f_0|| = 1 \text{ and } 1 - f_0(z_n) < \frac{1}{n} (f_0(y) - \gamma_0), \ n \ge 1.$$
 (2)

Then $f_0(\frac{z_n + \frac{1}{n}y}{\|z_n + \frac{1}{n}y\|}) = 1 - \delta_n$ with:

$$0 \le \delta_n = \frac{\|z_n + \frac{1}{n}y\| - f_0(z_n) - \frac{1}{n}f_0(y)}{\|z_n + \frac{1}{n}y\|} \le \frac{1 - f_0(z_n) + \frac{1}{n}(1 - f_0(y))}{\|z_n + \frac{1}{n}y\|}.$$

Hence, $\lim_{n\to\infty} \delta_n = 0$. On the other hand, for every $f \in F$:

$$f(\frac{z_n + \frac{1}{n}y}{\|z_n + \frac{1}{n}y\|}) \le \frac{1 + \frac{1}{n}\gamma_0}{\|z_n + \frac{1}{n}y\|} = 1 - \epsilon_n,$$

where:

$$\epsilon_n = \frac{\|z_n + \frac{1}{n}y\| - 1 - \frac{1}{n}\gamma_0}{\|z_n + \frac{1}{n}y\|} \le \frac{1 + \frac{1}{n} - 1 - \frac{1}{n}\gamma_0}{\|z_n + \frac{1}{n}y\|} = \frac{\frac{1}{n}(1 - \gamma_0)}{\|z_n + \frac{1}{n}y\|}$$

and

$$\epsilon_n = \frac{\|z_n + \frac{1}{n}y\| - 1 - \frac{1}{n}\gamma_0}{\|z_n + \frac{1}{n}y\|} > \frac{\|z_n + \frac{1}{n}y\| - f_0(z_n) - \frac{1}{n}f_0(y)}{\|z_n + \frac{1}{n}y\|} = \delta_n \ge 0$$

by (2). Pick any $n \in \mathbb{N}$ such that $\frac{\frac{1}{n}(1-\gamma_0)}{\|z_n+\frac{1}{n}y\|} \leq 1-\sqrt{\rho}$. Then $0 \leq \delta_n < \epsilon_n \leq 1-\sqrt{\rho}$ and there is some $m \in \mathbb{N}$ such that $\delta_n \leq r_{m1} < r_{m2} \leq \epsilon_n$. Let $x_0 = \frac{z_n+\frac{1}{n}y}{\|z_n+\frac{1}{n}y\|} \in S(X)$ and observe that $f_0 \in S((A_m,\sqrt{\rho})^{\perp}), \ f_0(x_0) \geq 1-\delta_n$ and $f(x_0) \leq 1-\epsilon_n, \ \forall f \in F$. Then $f_0 \in S((A_m,\sqrt{\rho})^{\perp}), \ f_0(x_0) \geq 1-r_{m1}$ and $f(x_0) \leq 1-\epsilon_n \leq 1-r_{m2}, \ \forall f \in F_m$, a contradiction. So, Claim 2 holds.

Let $0 \le \delta < \varepsilon \le 1 - \sqrt{\rho}$ be from Claim 2. We will construct a transfinite sequence $\{(x_{\alpha}, f_{\alpha})\}_{\alpha < \omega_1} \subset S(X) \times S(X^*)$ so that for every $\alpha < \omega_1$:

$$f_{\alpha}(x_{\alpha}) \ge 1 - \delta \tag{3}$$

and

$$f_{\alpha}(x_{\beta}) \le 1 - \varepsilon \text{ if } \alpha \ne \beta.$$
 (4)

On the first step, we take $x_1 \in S(X)$ and $f_1 \in S(X^*)$ such that $f_1(x_1) = 1$. Let $1 < \alpha_0 < \omega_1$ and suppose constructed the family $\{(x_\alpha, f_\alpha) : \alpha < \alpha_0\}$ fulfilling the conditions (3) and (4). Let us apply the Claim 2, putting there $F = \{f_\alpha : \alpha < \alpha_0\}$ and $A = \{x_\alpha : \alpha < \alpha_0\}$. Denote the received elements x_0 and f_0 by x_{α_0} and f_{α_0} . The inequality (3) for $\alpha = \alpha_0$ is satisfied by construction. The inequality (4) for $\alpha = \alpha_0$ and $\beta < \alpha_0$ holds because $f_0 \in S((A, \sqrt{\rho})^{\perp})$ and $\varepsilon \leq 1 - \sqrt{\rho}$. For $\beta = \alpha_0$ and $\alpha < \alpha_0$ it follows because $\sup\{f(x_0) : f \in F\} \leq 1 - \varepsilon$. Now the set $\{(\overline{x}_\alpha, \overline{f}_\alpha)\}_{\alpha < \omega_1}$, where $\overline{x}_\alpha = x_\alpha$, $\overline{f}_\alpha = f_\alpha/f_\alpha(x_\alpha)$, $1 \leq \alpha < \omega_1$, is an uncountable bounded (by $(1 - \delta)^{-1}$) almost biorthogonal system.

Proposition 2.8. Let X be a Banach space such that $\sigma(X) < \frac{1}{3}$. Then $\tau(X) \leq \frac{2\sigma(X)}{1-\sigma(X)}$. So, for every Banach space we have that: (1) $\sigma(X) = 0$ iff $\tau(X) = 0$; (2) $\sigma(X) = 0$ whenever X has an uncountable biorthogonal system.

Proof. (A) Let $\|\cdot\|$ be an equivalent norm on X such that the corresponding dual unit ball $B(X^*)$ satisfies $\sigma(B(X^*)) < \frac{1}{3}$. It is enough to prove that there exists in X an UBABS of type $\eta \leq \frac{2a}{1-a}$, for every $\sigma(B(X^*)) < a < \frac{1}{3}$. So, fix some $\sigma(B(X^*)) < a < \frac{1}{3}$. By induction we choose a family $\{(x_{\alpha}, f_{\alpha})\}_{\alpha < \omega_1} \subset S(X) \times S(X^*)$ such that:

$$f_{\alpha}(x_{\alpha}) > \frac{1-a}{2} \text{ but } |f_{\alpha}(x_{\beta})| < a, \text{ if } \alpha \neq \beta.$$
 (5)

Pick $(x_1, f_1) \in S(X) \times S(X^*)$ satisfying $f_1(x_1) = 1$. Let $\alpha < \omega_1$ and assume that we have chosen $\{(x_\beta, f_\beta)\}_{\beta < \alpha} \subset S(X) \times S(X^*)$ fulfilling (5). Denote:

$$A_{\alpha} = \overline{[\{x_{\beta} : \beta < \alpha\}]}$$
 and $F_{\alpha} = \overline{\operatorname{co}}^{w^*}(\{\pm f_{\beta} : \beta < \alpha\} \cup G_0),$

where $G_0 \subset B(X^*)$ is a countable symmetric subset 1-norming on A_α . By [15, Lemma 4.3] there exists $x_\alpha \in S(X)$ such that $\sup\{|f(x_\alpha)| : f \in F_\alpha\}$

a. We claim that $\operatorname{dist}(x_{\alpha}, A_{\alpha}) > \frac{1-a}{2}$. Indeed, pick $z \in A_{\alpha}$ and observe that, if $||z|| < \frac{1+a}{2}$, then clearly $||z - x_{\alpha}|| > \frac{1-a}{2}$, and if $||z|| \ge \frac{1+a}{2}$, then:

$$||z - x_{\alpha}|| \ge \sup\{f(z - x_{\alpha}) : f \in F_{\alpha}\} \ge$$

 $\ge ||z|| - \sup\{f(x_{\alpha}) : f \in F_{\alpha}\} > \frac{1+a}{2} - a = \frac{1-a}{2}.$

This fact means that, if $Q: X \to \frac{X}{A_{\alpha}}$ is the canonical quotient mapping, then $||Q(x_{\alpha})|| > \frac{1-a}{2}$. So, as $(\frac{X}{A_{\alpha}})^* = A_{\alpha}^{\perp}$ there exists $f_{\alpha} \in S(X^*) \cap A_{\alpha}^{\perp}$ such that $f_{\alpha}(x_{\alpha}) > \frac{1-a}{2}$. Thus we have chosen the pair (x_{α}, f_{α}) and this completes the induction.

Now put $\tilde{f}_{\alpha} = \frac{f_{\alpha}}{f_{\alpha}(x_{\alpha})}$ and consider the family $\mathfrak{F} = \{(x_{\alpha}, \tilde{f}_{\alpha})\}_{\alpha < \omega_1}$ and observe that:

(a) \mathfrak{F} is bounded because $||x_{\alpha}|| = 1$ and:

$$\|\tilde{f}_{\alpha}\| = \frac{\|f_{\alpha}\|}{|f_{\alpha}(x_{\alpha})|} < \frac{1}{\frac{1-a}{2}} = \frac{2}{1-a} < \frac{2}{1-\frac{1}{3}} = 3.$$

(b)
$$\tilde{f}_{\alpha}(x_{\alpha}) = 1$$
 and $|\tilde{f}_{\alpha}(x_{\beta})| = \frac{|f_{\alpha}(x_{\beta})|}{f_{\alpha}(x_{\alpha})} < \frac{a}{\frac{1-a}{2}} = \frac{2a}{1-a} < 1$ if $\alpha \neq \beta$.

So, \mathfrak{F} is an UBABS of type $\eta \leq \frac{2a}{1-a}$.

- (B) (1) follows from (A) and Prop. 2.6. (2) follows from the definition of $\tau(X)$ and (1).
- 3. On ω -independence. The Kunen-Shelah property KS_3 . A family $\{x_i\}_{i\in I}$ in a Banach space X is said to be ω -independent if for every sequence $(i_n)_{n\geq 1}\subset I$ of distinct indices, and every sequence $(\lambda_n)_{n\geq 1}\subset \mathbb{R}$, the series $\sum_{n=1}^{\infty}\lambda_nx_{i_n}$ converges (in norm) to 0 iff $\lambda_n=0$ for every $n\geq 1$ (see [6],[12]). A Banach space X is said to have the Kunen-Shelah property KS_3 if X has not an uncountable ω -independent family. Of course, every biorthogonal family is ω -independent (i.e., $KS_3\Rightarrow KS_2$), but there are ω -independent families which are not merely biorthogonal systems. Here is one example: $X=C([0,1]^{\omega_1})$ and $\{f_{\alpha}^n\}_{\alpha<\omega_1,n\geq 1}$ defined as

$$f_{\alpha}^{n}\left(\,(t_{\gamma})_{\gamma<\omega_{1}}\,\right)\,=\,t_{\alpha}^{n}$$

for every $x = (t_{\gamma})_{\gamma < \omega_1} \in [0,1]^{\omega_1}$. This family is ω -independent but not a biorthogonal system by the Theorem of Müntz-Szasz (see [11, 15.26 Th.]).

Question 2. Does a Banach space have an uncountable biorthogonal system whenever it has an uncountable ω -independent family?

Unfortunately, the indices $\sigma(X)$, $\tau(X)$ do not separate the properties KS_2 and KS_3 , because as we prove in the following, if $X \in KS_3$, then $\sigma(X) = 0$.

Lemma 3.1. Let X be a Banach space, $\{x_i\}_{1 \leq i < \omega_1} \subset X$ an uncountable bounded ω -independent family, $H \subset X$ a closed separable subspace and $N \in \mathbb{N}$. Then there exist ordinal numbers $\rho < \gamma < \omega_1$ such that $x_\rho \notin \overline{co}(H \cup \{\pm Nx_i\}_{\gamma \leq i < \omega_1})$.

Proof. Without loss of generality suppose that $||x_i|| \le 1$, $\forall i < \omega_1$. Assume that for every pair of ordinal numbers ρ, γ such that $\rho < \gamma < \omega_1$ we have $x_{\rho} \in \overline{\text{co}}(H \cup \{\pm Nx_i\}_{\gamma \le i < \omega_1})$. For $n \in \mathbb{N}$ and $\rho < \gamma < \omega_1$, denote $D_{\gamma} = \text{co}(\{\pm Nx_i\}_{\gamma \le i < \omega_1})$ and

$$H(\rho, \gamma, n) = \left\{ (u, \lambda) \in H \times (0, 1] : \exists v \in D_{\gamma} \text{ with } \|\lambda u + (1 - \lambda)v - x_{\rho}\| < \frac{1}{2n} \right\}.$$

If $\rho < \gamma < \gamma' < \omega_1$ and $n \ge 1$, by the hypothesis and the definition of $H(\rho, \gamma, n)$, we have $H(\rho, \gamma, n) \ne \emptyset$, $H(\rho, \gamma, n+1) \subset H(\rho, \gamma, n) \supset H(\rho, \gamma', n)$.

For $\beta < \omega_1$ and $n \ge 1$ define:

$$H(\beta,n) = \operatorname{cl}\left(\cup\{H(\rho,\gamma,n):\beta\leq\rho<\gamma<\omega_1\}\right).$$

where "cl" means the closure in $H \times (0,1]$. Clearly, for $\beta < \beta'$ and $n \ge 1$ we have:

$$\emptyset \neq H(\beta', n) \subset H(\beta, n) \supset H(\beta, n+1).$$

Since $H \times (0,1]$ is hereditarily Lindelöff, for each $n \geq 1$ there exists $\beta_n < \omega_1$ such that for every $\beta_n \leq \beta < \omega_1$ we have $H(\beta,n) = H(\beta_n,n)$. So, for every $(u,\lambda) \in H(\beta_n,n)$ and every $\beta_n \leq \beta < \omega_1$ we have $(u,\lambda) \in H(\beta,n)$, which implies that there exist $\beta \leq \rho < \gamma < \omega_1$ and $v \in D_{\gamma}$ such that:

$$||x_{\rho} - (\lambda u + (1 - \lambda)v)|| < \frac{1}{n}.$$

Let $\beta_0 = \sup_{n \geq 1} \beta_n$ and fix $\beta_0 \leq \rho < \gamma < \omega_1$ and $n \geq 1$. Pick $(u, \mu) \in H(\rho, \gamma, n)$ and $w \in D_{\gamma}$ such that $||x_{\rho} - (\mu u + (1 - \mu)w)|| < \frac{1}{2n}$. Since $(u, \mu) \in H(\beta_0, n) = H(\gamma, n)$, there exist $\gamma \leq \sigma < \theta < \omega_1$ and $v \in D_{\theta}$ such that $||x_{\sigma} - (\mu u + (1 - \mu)v)|| < \frac{1}{n}$.

Denote $T = x_{\sigma} - (\mu u + (1 - \mu)v)$. Then we have $\mu u = x_{\sigma} - T - (1 - \mu)v$ and:

$$||x_{\rho} - (x_{\sigma} - T - (1 - \mu)v + (1 - \mu)w)|| < \frac{1}{2n}.$$

Since $||T|| < \frac{1}{n}$, we obtain:

$$||x_{\rho} - (x_{\sigma} - (1 - \mu)v + (1 - \mu)w)|| =$$

$$= ||x_{\rho} - (x_{\sigma} - T - (1 - \mu)v + (1 - \mu)w) - T|| \le$$

$$\le ||x_{\rho} - (x_{\sigma} - T - (1 - \mu)v + (1 - \mu)w)|| + ||T|| < \frac{1}{2n} + \frac{1}{n} = \frac{3}{2n}.$$

Since $x_{\sigma}, v, w \in E_{\gamma} := \overline{[\{x_i\}_{\gamma \leq i < \omega_1}]}$, if $n \to \infty$ (with ρ, γ fixed), we obtain that $x_{\rho} \in E_{\gamma}$ (in particular, this implies that $E_{\beta_0} = E_{\beta}$, $\forall \beta_0 \leq \beta < \omega_1$). Denote $S = x_{\rho} - (x_{\sigma} - (1 - \mu)v + (1 - \mu)w)$. Then:

$$x_{\rho} = S + \mu v + (1 - \mu)w + x_{\sigma} - v.$$

Taking into account that $\mu v + (1 - \mu)w, -v \in D_{\gamma}, \ x_{\sigma} \in \frac{1}{N}D_{\gamma}$ and that $||S|| < \frac{3}{2n}$, we finally get $x_{\rho} \in \text{cl}((1 + \frac{1}{N})D_{\gamma} + D_{\gamma}) = \text{cl}((2 + \frac{1}{N})D_{\gamma})$. So, x_{ρ} is an accumulation point of $F_{\gamma} := (2 + \frac{1}{N})D_{\gamma}$ (because $x_{\rho} \in \overline{F_{\gamma}} \setminus F_{\gamma}$).

In consequence, we can conclude that every x_i , $\beta_0 \leq i < \omega_1$, is an accumulation point of every F_{γ} for $\gamma < \omega_1$.

Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers such that $\lim_{n\to\infty} a_n = 0$, $\sum_{n\geq 1} a_n = \infty$, and let $b_n = \sup_{m>n} a_m$. Fix $\beta_0 < \tau < \omega_1$. Using the proof of [6, Th. 3], like in [12], we can construct inductively a sequence of signs $\{\epsilon_n\}_{n\geq 1}$, a sequence of real numbers $\{\lambda_r^n\}_{n\geq 1,1\leq r\leq k(n)}$ and a sequence of ordinals $\{\gamma_r^n\}_{n\geq 1,1\leq r\leq k(n)}$ such that:

- (1) $\sum_{r=1}^{k(n)} |\lambda_r^n| \le 2N + 1$, for every $n \ge 1$.
- (2) $\tau < \gamma_1^n < \gamma_2^n < \dots < \gamma_{k(n)}^n < \gamma_1^{n+1} < \dots < \omega_1$, for every $n \ge 1$.

(3)
$$x_{\tau} + \sum_{n\geq 1} a_n \epsilon_n y_n = 0$$
, where $y_n = \sum_{r=1}^{k(n)} \lambda_r^n x_{\gamma_r^n}$.

Let us see the two first steps of this argument. Denote $K = \{x_i\}_{\tau < i < \omega_1}$.

<u>Step 1.</u> By the proof of [6, Th. 3] we can find $p_1 \in \mathbb{N}$, a finite sequence of (not necessarily distinct) elements $\{h_n\}_{1 \leq n \leq p_1} \subset K$ and a finite sequence of signs $\{\epsilon_n\}_{1 \leq n \leq p_1}$ such that:

$$||x_{\tau} + \sum_{n=1}^{p_1} a_n \epsilon_n h_n|| < 2^{-1},$$

$$||x_{\tau} + \sum_{n=1}^{j} a_n \epsilon_n h_n|| < b_1 + 1 + 2^{-1}, \text{ for } 1 \le j \le p_1.$$

Since $h_n \in \operatorname{cl}(F_\beta)$, $\forall \beta_0 \leq \beta < \omega_1$, we can find, for $1 \leq n \leq p_1$, real numbers $\{\lambda_r^n\}_{1 \leq r \leq k(n)}$ with $\sum_{r=1}^{k(n)} |\lambda_r^n| \leq 2N+1$, and ordinals $\{\gamma_r^n\}_{r=1}^{k(n)}$ such that:

(a)
$$\tau < \gamma_1^n < \gamma_2^n < \dots < \gamma_{k(n)}^n < \gamma_1^{n+1} < \dots < \omega_1$$
.

(b)
$$||x_{\tau} + \sum_{n=1}^{p_1} a_n \epsilon_n \cdot \sum_{r=1}^{k(n)} \lambda_r^n x_{\gamma_r^n}|| < 2^{-1}$$
.

(c)
$$||x_{\tau} + \sum_{n=1}^{j} a_n \epsilon_n \cdot \sum_{r=1}^{k(n)} \lambda_r^n x_{\gamma_r^n}|| < b_1 + 1 + 2^{-1}$$
, for $1 \le j \le p_1$.

Step 2. Let $u_1 = x_\tau + \sum_{n=1}^{p_1} a_n \epsilon_n \cdot \sum_{r=1}^{k(n)} \lambda_r^n x_{\gamma_r^n}$. By the proof of [6, Th. 3] we can find $p_1 < p_2 \in \mathbb{N}$, a finite sequence of (not necessarily distinct) elements $\{h_n\}_{p_1+1 \leq n \leq p_2} \subset K$ and a finite sequence of signs $\{\epsilon_n\}_{p_1+1 \leq n \leq p_2}$ such that:

$$||u_1 + \sum_{n=p_1+1}^{p_2} a_n \epsilon_n h_n|| < 2^{-2},$$

$$||u_1 + \sum_{n=p_1+1}^{j} a_n \epsilon_n h_n|| < b_{p_1} + 2^{-1} + 2^{-2}, \text{ for } p_1 + 1 \le j \le p_2.$$

Since $h_n \in \operatorname{cl}(F_\beta)$, $\forall \beta_0 \leq \beta < \omega_1$, we can find, for $p_1 < n \leq p_2$, real numbers $\{\lambda_r^n\}_{1 \leq r \leq k(n)}$ with $\sum_{r=1}^{k(n)} |\lambda_r^n| \leq 2N+1$, and ordinals $\{\gamma_r^n\}_{r=1}^{k(n)}$ such that:

(a)
$$\gamma_{k(p_1)}^{p_1} < \gamma_1^n < \gamma_2^n < \dots < \gamma_{k(n)}^n < \gamma_1^{n+1} < \dots < \omega_1$$
.

(b)
$$||u_1 + \sum_{n=p_1+1}^{p_2} a_n \epsilon_n \cdot \sum_{r=1}^{k(n)} \lambda_r^n x_{\gamma_r^n}|| < 2^{-2}$$
.

(c)
$$\|u_1 + \sum_{n=n_1+1}^{j} a_n \epsilon_n \cdot \sum_{r=1}^{k(n)} \lambda_r^n x_{\gamma_r^n}\| < b_{p_1} + 2^{-1} + 2^{-2}$$
, for $p_1 < j \le p_2$.

Now by reiteration we obtain the complete construction. It is easy to see that the series $x_{\tau} + \sum_{n\geq 1} a_n \epsilon_n \left(\sum_{r=1}^{k(n)} \lambda_r^n x_{\gamma_r^n}\right)$ converges to zero. This proves that $\{x_i\}_{i<\omega_1}$ is not ω -independent, a contradiction. So, we can choose $\rho < \gamma < \omega_1$ such that $x_{\rho} \notin \overline{\text{co}}(H \cup \{\pm Nx_i\}_{\gamma \leq i < \omega_1})$.

Proposition 3.2. Let a Banach space X have an uncountable ω -independent family $\{x_{\alpha}\}_{1 \leq \alpha < \omega_{1}}$. Then for every $0 < \eta < 1$, there exist an uncountable subsequence $\{\alpha_{i}\}_{i < \omega_{1}} \subset \omega_{1}$ and an UBABS $\{(z_{i}, f_{i})\}_{i < \omega_{1}} \subset X \times X^{*}$ of type η such that $z_{i} = x_{\alpha_{i}}$ and $f_{i}(z_{j}) = 0$ for $j < i < \omega_{1}$. So, $\tau(X) = 0$ and X has an ω_{1} -polyhedron.

Proof. Let $\{x_i\}_{1 \leq i < \omega_1} \subset X$ be an uncountable ω -independent family and suppose, without loss of generality, that $||x_i|| \leq 1$ for every $i < \omega_1$. Let $N \in \mathbb{N}$ be such that $1/N \leq \eta$. In the following we choose by induction two subsequences of ordinal numbers $\{i_{\alpha}, j_{\alpha}\}_{\alpha < \omega_1}, i_{\alpha} < j_{\alpha} \leq i_{\beta} < j_{\beta} < \omega_1$, for $\alpha < \beta < \omega_1$, such that:

$$x_{i_{\alpha}} \notin \overline{\operatorname{co}}\left(\overline{[\{x_{i_{\beta}} : \beta < \alpha\}]} \cup \{\pm Nx_{j}\}_{j_{\alpha} \leq j < \omega_{1}}\right).$$
 (6)

Indeed, let $\alpha < \omega_1$ and assume that we have chosen $\{i_{\beta}, j_{\beta}\}_{\beta < \alpha}$ satisfying (6). Put $H = \overline{[\{x_{i_{\beta}}\}_{\beta < \alpha}]}$ and $\nu = \sup_{\beta < \alpha} \{j_{\beta}\}$ (if $\alpha = 1$, put $H = \{0\}$ and $\nu = 1$). By Lemma 3.1 there exist $\nu \leq \rho < \gamma < \omega_1$ such that $x_{\rho} \notin \overline{\operatorname{co}}(H \cup \{\pm Nx_i\}_{\gamma \leq i < \omega_1})$. So, we put $i_{\alpha} = \rho$, $j_{\alpha} = \gamma$ and this completes the induction. Let $z_{\alpha} = x_{i_{\alpha}}, \alpha < \omega_1$. By (6) we have $z_{\alpha} \notin \overline{\operatorname{co}}(\overline{[\{z_{\beta} : \beta < \alpha\}]} \cup \{\pm Nz_j\}_{\alpha < j < \omega_1})$. So, by the Hahn-Banach Theorem there exists $f_{\alpha} \in X^*$ such that:

$$1 = f_{\alpha}(z_{\alpha}) > \sup\{f_{\alpha}(x) : x \in \overline{\operatorname{co}}\left(\overline{[\{z_{\beta} : \beta < \alpha\}]} \cup \{\pm Nz_{j}\}_{\alpha < j < \omega_{1}}\right)\}.$$

Clearly, $f_{\alpha}(z_{\beta}) = 0$, if $\beta < \alpha$, and $|f_{\alpha}(Nz_{\beta})| < 1$, i.e., $|f_{\alpha}(z_{\beta})| < 1/N$, if $\alpha < \beta < \omega_1$. Finally, choosing an uncountable subsequence $A \subset \omega_1$ with $\{||f_{\alpha}|| : \alpha \in A\}$ bounded, then $\{(z_{\alpha}, f_{\alpha}) : \alpha \in A\}$ is the UBABS of type η we are looking for.

4. The Kunen-Shelah property KS_4 . A Banach space X is said to have the Kunen-Shelah property KS_4 if X has not an ω_1 -polyhedron. The implication $KS_4 \Rightarrow KS_3$ was proved in [3]. It also follows from Prop. 3.2 and from Prop. 7.3 and a result of Sersouri [12].

Proposition 4.1. Let Z be a Banach space and $X \subset Z$ a closed subspace such that Z/X is separable. Then the following are equivalent: (a) $Z \in KS_4$; (b) $X \in KS_4$.

Proof. (a) \Rightarrow (b). This is obvious.

(b) \Rightarrow (a). Assume that $Z \notin KS_4$ and prove that $X \notin KS_4$. By Prop. 2.2 there exists in Z an UBABS $\{(z_{\alpha}, f_{\alpha}) : \alpha < \omega_1\}$ of type $\eta \in [0, 1)$ with $\|f_{\alpha}\| \leq M$, $\forall \alpha < \omega_1$, for some $0 < M < \omega_1$. Denote $\epsilon := 1 - \eta$. Since Z/X is separable, there exists an uncountable subset $I \subset \omega_1$ such that, if $Q: Z \to Z/X$ is the canonical quotient mapping, then $\|Qz_{\alpha} - Qz_{\beta}\| < \frac{\epsilon}{4M}$ for every $\alpha, \beta \in I$. Fix $\tau \in I$ and denote $y_{\alpha} = z_{\alpha} - z_{\tau}$, $\forall \alpha \in I$. Since $\|Qy_{\alpha}\| < \frac{\epsilon}{4M}$, there exists $x_{\alpha} \in X$ such that $\|x_{\alpha} - y_{\alpha}\| < \frac{\epsilon}{4M}$, $\forall \alpha \in I$. Then for each $\alpha, \beta \in I$, $\alpha \neq \beta$, we have:

$$f_{\alpha}(x_{\alpha}) = f_{\alpha}(y_{\alpha}) + f_{\alpha}(x_{\alpha} - y_{\alpha}) \ge f_{\alpha}(y_{\alpha}) - M\frac{\epsilon}{4M} = f_{\alpha}(z_{\alpha}) - f_{\alpha}(z_{\tau}) - \frac{\epsilon}{4} =$$

$$= 1 - f_{\alpha}(z_{\tau}) - \frac{\epsilon}{4} > \eta - f_{\alpha}(z_{\tau}) + \frac{\epsilon}{4} \ge f_{\alpha}(z_{\beta}) - f_{\alpha}(z_{\tau}) + \frac{\epsilon}{4} =$$

$$= f_{\alpha}(y_{\beta}) + \frac{\epsilon}{4} = f_{\alpha}(y_{\beta}) + M\frac{\epsilon}{4M} \ge f_{\alpha}(x_{\beta}),$$

which implies that $\{x_{\alpha} : \alpha \in I\}$ is an uncountable polyhedron in X, i.e., $X \in KS_4$.

In the following we obtain some characterizations of the property KS_4 . Let us see some previous lemmas.

Lemma 4.2. Let X be a locally convex topological space, $\tau = \sigma(X, X^*)$, $f \in X^* \setminus \{0\}$, $C \subset f^{-1}(1)$ a bounded convex subset and $B = co(C \cup (-C))$. Then C is τ -separable iff B is τ -separable.

Proof. Clearly, B is τ -separable whenever C is τ -separable. For the converse implication suppose that B is τ -separable and choose a countable subset

 $A \subset C$ such that $D := \{tx - (1-t)y : x, y \in A, t \in [0,1]\}$ is τ -dense in B. Now it is an easy exercise to prove that $C \subset \tau$ -cl(A), i.e., C is τ -separable.

Lemma 4.3. Let X be a locally convex topological space, $\tau = \sigma(X, X^*)$, $C \subset X$ a convex subset such that for some $f \in X^*$ there exists a countable subset $\mathcal{R} \subset \mathbb{R}$ satisfying:

- (1) $\emptyset \neq (\inf\{f(x) : x \in C\}, \sup\{f(x) : x \in C\}) \subset \overline{\mathcal{R}}.$
- (2) $C_r := \{x \in C : f(x) = r\}$ is τ -separable, for each $r \in \mathcal{R}$.

Then C is τ -separable.

Proof. By hypothesis $\inf\{f(x): x \in C\} < \sup\{f(x): x \in C\}$. For each $r \in \mathcal{R}$, choose a countable subset $A_r \subset C_r$ such that $C_r \subset \tau\text{-cl}(A_r)$. Let $A = \bigcup_{r \in \mathcal{R}} A_r$ be a countable subset of C. We claim that A is τ -dense in C. Indeed, pick $z_0 \in C$ arbitrarily and let U be a τ -neighborhood of z_0 in C. By hypothesis, there exists some $r \in \mathcal{R}$ such that $C_r \cap U \neq \emptyset$. So, $A_r \cap U \neq \emptyset$, whence $A \cap U \neq \emptyset$.

Proposition 4.4. Let X be a Banach space. The following are equivalent:

- (1) $X \in KS_4$.
- (2) $K \subset X^*$ is w^* -separable whenever K is a w^* -compact convex symmetric subset such that $\|\cdot\|$ -int $(K) \neq \emptyset$.
- (3) $K \subset X^*$ is w^* -separable whenever K is a w^* -compact convex symmetric subset, i.e., $\sigma(X) = 1 = \tau(X)$.
- (4) $K \subset X^*$ is w^* -separable whenever K is a w^* -closed convex symmetric subset.
- (5) $K \subset X^*$ is w^* -separable whenever K is a w^* -closed convex subset.

Proof. (1) \Rightarrow (2). This follows from Prop. 2.7 and Prop. 2.2, because if $K \subset X^*$ is a w^* -compact convex symmetric subset such that $\|\cdot\|$ -int $(K) \neq \emptyset$, then K is the dual unit ball of X^* when X is equipped with the equivalent norm $|\cdot|$ such that $|x| = \sup\{x^*(x) : x \in K\}$ for every $x \in X$.

- (2) \Rightarrow (3). Let $K \subset X^*$ be a w^* -compact convex symmetric subset and denote $K_n = K + \frac{1}{n}B(X^*)$, which is w^* -compact convex symmetric subset of X^* with nonempty interior. By (2) there is a countable family $\{x_{n,m}\}_{m\geq 1} \subset K_n$ such that $K_n = \overline{\{x_{n,m} : m \geq 1\}}^{w^*}$ for every $n \geq 1$. Pick $k_{n,m} \in K$ such that $||k_{n,m} x_{n,m}|| \leq \frac{1}{n}$. Then it is easy to see that $K = \overline{\{k_{n,m} : n, m \geq 1\}}^{w^*}$.
- (3) \Rightarrow (4). Let $K \subset X^*$ be a w^* -closed convex symmetric subset and denote $K_n = K \cap nB(X^*)$. By (3) K_n is w^* -separable and so K, because $K = \bigcup_{n \geq 1} K_n$.
- $(4)\Rightarrow (5)$. It is enough to prove that if $K\subset X^*$ is a w^* -compact convex subset, then K is w^* -separable. Without loss of generality, assume that $0\notin K$. Let $f\in X$ be such that $0<\min\{f(k):k\in K\}\le\max\{f(k):k\in K\}\}$ denote $k\in K$ on the sum of $k\in K$ of
- (5) \Rightarrow (1). Suppose that there exists in X a bounded ω_1 -polyhedron $\{x_i\}_{i<\omega_1}$. By Prop. 2.2, there exists in X an UBABS $\{(x_\alpha, f_\alpha)\}_{\alpha<\omega_1} \subset X \times X^*$ such that $||f_\alpha|| = 1$, $||x_\alpha|| \leq M$, $f_\alpha(x_\alpha) = 1$ and $f_\alpha(x_\beta) \leq 1 \epsilon$, for every $\alpha, \beta < \omega_1, \alpha \neq \beta$, and some $1 \geq \epsilon > 0$, $1 \leq M < +\infty$. Let $K = \overline{\operatorname{co}}^{w^*}(\{f_\alpha : \alpha < \omega_1\})$. Consider the w^* -open slices $U_\alpha = \{k \in K : k(x_\alpha) > 1 \frac{\epsilon}{3}\}$ for all $\alpha < \omega_1$. Then U_α is a w^* -open neighborhood of f_α in K and we can easily realize that $U_\alpha \cap U_\beta = \emptyset$, whenever $\alpha \neq \beta$. Thus K is w^* -nonseparable, a contradiction to (5). So, $X \in KS_4$.
- Question 3. Let X be a Banach space. If $\tau(X) < 1$, is $\tau(X) = 0$? If $\tau(X) = 0$, does X have an uncountable ω -independent family?
- 5. The Finet-Godefroy indices. If X is a Banach space, the Finet-Godefroy indices $d_{\infty}(X)$ and $\mu(X)$ were introduced in [1] and defined as follows:

$$d_{\infty}(X) = \inf\{d(X,Y): Y \text{ subspace of } \ell_{\infty}(\mathbb{N})\}$$

where d(X,Y) is the Banach-Mazur distance. Clearly, $d_{\infty}(X)$ depends upon the norm $\|\cdot\|$ of X and we see easily that: (i) $d_{\infty}(X) \in [1,\infty]$; (ii) $d_{\infty}(X) < \infty$ iff X is isomorphic to a subspace of $\ell_{\infty}(\mathbb{N})$; (iii) $d_{\infty}(X,\|\cdot\|) = 1$ iff $(X,\|\cdot\|)$ is isometric to a subspace of $\ell_{\infty}(\mathbb{N})$ iff the dual unit ball $B(X^*)$ is w^* -separable. The corresponding isomorphic invariant index is:

$$\mu(X) = \sup\{d_{\infty}(X, |\cdot|)\}\$$

where the supremum is computed over the set of equivalent norms on X.

Proposition 5.1. Let X be a Banach space. Then:

- (1) $\mu(X) = \sigma(X)^{-1} \quad (0^{-1} = \infty).$
- (2) If X has an uncountable ω -independent system, then $\mu(X) = \infty$.

Proof. (1) This follows from [1, Lemma III.1] and a simple calculation.

(2) By Prop. 3.2 and Prop. 2.8 we get that $\sigma(X) = 0$. Now apply (1). \square

The following questions are proposed in [1]:

- (1) It is clear that $\mu(X) = 1$ if X is separable. Is the converse true?
- (2) Does there exist a nonseparable Banach space X such that every quotient of X is isometric to a subspace of $\ell_{\infty}(\mathbb{N})$?

In the following we answer these questions.

Proposition 5.2. Let X be a Banach space. The following are equivalent:

- (1) $X \in KS_4$.
- (2) Every quotient of $(X, |\cdot|)$ is isometric to a subspace of $\ell_{\infty}(\mathbb{N})$, for every equivalent norm $|\cdot|$ of X.
- (3) $\mu(X) = 1$.
- (4) Every quotient of X satisfies the property KS_4 .

Proof. (1) \Rightarrow (2). Let $|\cdot|$ be an equivalent norm on $X, Y \subset X$ a closed subspace and $Z = (X/Y, |\cdot|)$ the corresponding quotient space. Clearly, we have $(B(Z^*), w^*) = (B(Y^{\perp}), w^*)$. But $(B(Y^{\perp}), w^*)$ is w^* -separable by Prop. 4.4. So, Z is isometric to a subspace of $\ell_{\infty}(\mathbb{N})$.

- $(2) \Rightarrow (3)$. By (2) $d_{\infty}(X, |\cdot|) = 1$ for every equivalent norm $|\cdot|$ on X. So, $\mu(X) = 1$.
- (3) \Rightarrow (4). Since $\mu(X/Y) \leq \mu(X)$ for every quotient X/Y (see [1, Th. III-2]), (3) implies that $\mu(X/Y) = 1$, i.e., $\sigma(X/Y) = 1$. So, by Prop. 4.4 we get that $X/Y \in KS_4$.

$$(4) \Rightarrow (1)$$
. This is obvious.

Corollary 5.3. If X is either the space C(K), under CH and K being the Kunen compact space, or the space S of Shelah, under \diamondsuit_{\aleph_1} , then X is nonseparable, $\mu(X) = 1$ and every quotient of $(X, |\cdot|)$ is isometric to a subspace of $\ell_{\infty}(\mathbb{N})$, for every equivalent norm $|\cdot|$ of X.

Proof. This follows from Prop. 5.2 since in both cases $X \in KS_4$ (see Section 6).

- **Remarks.** (1) The fact that every quotient of $(X, |\cdot|)$ is isometric to a subspace of $\ell_{\infty}(\mathbb{N})$ for every equivalent norm $|\cdot|$ of X, when X = C(K), K being the Kunen compact, was shown in [5, Cor. 4.5].
- (2) In [1] is asked if $\mu(X) = \infty$ whenever a Banach space X satisfies $\mu(X) > 1$. In fact, it is not known a Banach space X such that $1 < \mu(X) < \infty$. Observe that $1 < \mu(X) < \infty$ implies that $X \in KS_3$ but $X \notin KS_4$, because: (i) $1 < \mu(X) < \infty$ iff $1 > \sigma(X) > 0$ by Prop. 5.1; (ii) $1 > \sigma(X)$ iff $X \notin KS_4$ by Prop. 4.4; (iii) and $\sigma(X) > 0$ implies $X \in KS_3$ by Prop. 3.2 and Prop. 2.8.
- 6. The Kunen-Shelah property KS_5 . Let θ be an ordinal. A convex right-separated θ -family in a Banach space X is a bounded family $\{x_i\}_{i<\theta} \subset X$ such that $x_j \notin \overline{\operatorname{co}}(\{x_i : j < i < \theta\})$ for every $j \in \theta$. A family of convex closed bounded subsets $\{C_\alpha\}_{\alpha<\theta}$ in the Banach space X is said to be a contractive (resp. expansive) θ -onion iff $C_\alpha \subsetneq C_\beta$ (resp. $C_\beta \subsetneq C_\alpha$) whenever $\beta < \alpha < \theta$. It is easy to prove that X has a contractive θ -onion iff X has a convex right-separated θ -family. In the dual Banach space X^* one can define a contractive (resp. expansive) w^* - θ -onion in a analogous way, using the w^* -topology instead of the w-topology.

A Banach space X is said to have the Kunen-Shelah property KS_5 if X has not a contractive uncountable onion. If X has a τ -polyhedron $\{x_{\alpha} : \alpha < \tau\}$, it is clear that $\{C_{\alpha} : \alpha < \tau\}$, $C_{\alpha} = \overline{\text{co}}(\{x_{\beta} : \alpha < \beta < \tau\})$, is a contractive τ -onion. So, the property KS_5 implies KS_4 , whence by Prop. 3.2 we get $KS_5 \Rightarrow KS_3$, a result proved by Sersouri in [12].

Proposition 6.1. Let X be a Banach space. Then:

- (1) X has a contractive ω_1 -onion iff X^* has an expansive w^* - ω_1 -onion.
- (2) X has an expansive ω_1 -onion iff X^* has a contractive w^* - ω_1 -onion.
- (3) X is nonseparable iff X^* has a contractive w^* - ω_1 -onion.

Proof. (1) Assume that X has a contractive ω_1 -onion, i.e., there exists a sequence $\{x_{\alpha}\}_{{\alpha}<\omega_1}\subset B(X)$ such that $x_{\alpha}\notin \overline{\operatorname{co}}(\{x_{\beta}\}_{{\alpha}<\beta<\omega_1})$. By the Hahn-Banach Theorem there exists $f_{\alpha}\in X^*$ such that:

$$f_{\alpha}(x_{\alpha}) > \sup\{f_{\alpha}(x_{\beta}) : \alpha < \beta < \omega_1\} =: e_{\alpha}.$$

By passing to a subsequence, we can suppose that there exist $0 < \epsilon, M < \infty$ and $r \in \mathbb{R}$ such that $||f_{\alpha}|| \leq M$, $|f_{\alpha}(x_{\alpha}) - e_{\alpha}| \geq \epsilon > 0$ and $|r - f_{\alpha}(x_{\alpha})| \leq \epsilon < \epsilon$. Hence, if $\beta < \alpha < \omega_1$, we have:

$$f_{\alpha}(x_{\alpha}) \ge r - \frac{\epsilon}{4} > r - \frac{3\epsilon}{4} \ge f_{\beta}(x_{\beta}) - \epsilon \ge e_{\beta} \ge f_{\beta}(x_{\alpha}),$$

which implies that $f_{\alpha} \notin \overline{\operatorname{co}}^{w^*}(\{f_{\beta} : \beta < \alpha\}) =: K_{\alpha}$, i.e., $\{K_{\alpha} : \alpha < \omega_1\}$ is an expansive w^* - ω_1 -onion in X^* .

The converse implication is analogous.

- (2) Use the same argument that in (1).
- (3) Apply (2) and that X has an expansive ω_1 -onion iff X is nonseparable.

A Banach space has the property HL(1) (in short, $X \in HL(1)$) whenever in every family of open semi-spaces $\{U_i\}_{i\in I}$ of X there exists a countable subset $\{i_n\}_{n\geq 1} \subset I$ such that $\bigcup_{n\geq 1} U_{i_n} = \bigcup_{i\in I} U_i$, i.e., every closed convex subset of X is the intersection of a countable family of closed semi-spaces of X. **Proposition 6.2.** Let X be a Banach space. Then the following are equivalent: (1) $X \in KS_5$; (2) Every convex subset of X^* is w^* -separable; (3) $X \in HL(1)$.

Proof. (1) \Leftrightarrow (2). By Prop. 6.1, X has not a contractive uncountable onion iff X^* has not an expansive uncountable w^* -onion and it is trivial to prove that this occurs iff every convex subset of X^* is w^* -separable.

 $(2) \Rightarrow (3)$. Suppose that $X \notin HL(1)$ and let $\mathfrak{F} = \{U_i\}_{i < \omega_1}$ be an uncountable family of open semi-spaces of X such that \mathfrak{F} has not a countable subcover. Assume that $U_i = \{x \in X : x_i^*(x) < a_i\}$, with $a_i \neq 0$, for all $i < \omega_1$ (if $a_i = 0$, for some $i < \omega_1$, we put the family $U_{in} = \{x \in X : x_i^*(x) < -\frac{1}{n}\}, n \geq 1$, instead of U_i). Dividing by $|a_i|$, we can suppose that each U_i has the expression $U_i = \{x \in X : y_i^*(x) < \epsilon_i\}$ with $\epsilon_i = \pm 1$ and $y_i^* = x_i^*/|a_i|$. Putting $\mathfrak{F}_1 = \{U_i \in \mathfrak{F} : \epsilon_i = +1\}$ and $\mathfrak{F}_2 = \{U_i \in \mathfrak{F} : \epsilon_i = -1\}$, it is clear that either \mathfrak{F}_1 or \mathfrak{F}_2 has not countable subcover.

Assume that \mathfrak{F}_1 doesn't admit a countable subcover (the argument for \mathfrak{F}_2 is similar). So, there exists an uncountable family $\{V_\alpha : \alpha < \omega_1\} \subset \mathfrak{F}_1$, $V_\alpha = \{x \in X : z_\alpha^*(x) < 1\}$, such that there exists $x_\alpha \in V_\alpha \setminus \bigcup_{\beta < \alpha} V_\beta$, $\forall \alpha < \omega_1$. Put $A = \operatorname{co}\{z_i^*\}_{i < \omega_1}$, which is w^* -separable, by hypothesis. Thus, we can find $\rho < \omega_1$ such that $A \subset \overline{\operatorname{co}}^{w^*}(\{z_i^*\}_{i \le \rho})$. Pick $\rho < \alpha < \omega_1$. As $x_\alpha \in V_\alpha \setminus \bigcup_{\beta < \alpha} V_\beta$, we get that $z_\alpha^*(x_\alpha) < 1$ and $z_\beta^*(x_\alpha) \ge 1$ for every $\beta < \alpha$. Let $C = \{x^* \in X^* : x^*(x_\alpha) \ge 1\}$, which is a convex w^* -closed subset of X^* . Since $z_i^* \in C$ for all $i \le \rho$, it follows that $A \subset C$. So, $z_\alpha^* \notin C$ and $z_\alpha^* \in A$, a contradiction which proves (3).

 $(3) \Rightarrow (1)$. Suppose that X has a contractive ω_1 -onion $\{C_{\alpha}\}_{{\alpha}<\omega_1}$. We choose vectors $x_{\alpha} \in C_{\alpha} \setminus C_{\alpha+1}$ and a sequence of open semi-spaces $\{U_{\alpha}\}_{{\alpha}<\omega_1}$ such that $x_{\alpha} \in U_{\alpha}$ and $U_{\alpha} \cap C_{\alpha+1} = \emptyset$. Clearly, no countable subfamily of $\{U_{\alpha}\}_{{\alpha}<\omega_1}$ covers $\{x_{\alpha}\}_{{\alpha}<\omega_1}$, which contradicts to (3).

Remark. If X is a Banach space, we put $X \in L(1)$ if from every cover of X by open semi-spaces we can choose a countable subcover. Clearly, X has

the property (C) of Corson iff $X \in L(1)$. Since $X \in HL(1) \Rightarrow X \in L(1)$, we have that $X \in KS_5$ implies $X \in (C)$.

Proposition 6.3. If X is either the space C(K), under CH and K being the Kunen compact space, or the space S of Shelah, under \diamondsuit_{\aleph_1} , then $X \in KS_5$

Proof. The space C(K), K being the Kunen compact space, satisfies $C(K) \in KS_5$ because for every uncountable family $\{x_i : i \in I\} \subset C(K)$, there exists $j \in I$ such that $x_j \in \text{wcl}(\{x_i : i \in I \setminus \{j\}\})$. It is clear that a space with this property cannot have an ω_1 -onion.

The space S of Shelah satisfies (see [13, Lemma 5.2]) that if $\{y_i\}_{i<\omega_1} \subset S$ is an uncountable sequence, then $\forall \epsilon > 0, \forall n \geq 1$, there exist $i_0 < i_1 < ... < i_n < \omega_1$ such that:

$$||y_{i_0} - \frac{1}{n}(y_{i_1} + \dots + y_{i_n})|| \le \frac{1}{n}||y_{i_0}|| + \epsilon.$$
 (7)

Assume that S has an ω_1 -onion $\{C_{\alpha}: 1 \leq \alpha < \omega_1\}$ with $C_1 \subset B(S)$. Choose $x_{\alpha} \in C_{\alpha} \setminus C_{\alpha+1}$ and let $\eta_{\alpha} := \operatorname{dist}(x_{\alpha}, C_{\alpha+1})$ which satisfies $\eta_{\alpha} > 0$. By passing to a subsequence, it can be assumed that $\eta_{\alpha} \geq \eta > 0$, $\forall \alpha < \omega_1$. Let $m \in \mathbb{N}$ be such that $\frac{1}{m} < \frac{\eta}{2}$. By (7) there exists $i_0 < i_1 < ... < i_m < \omega_1$ such that:

$$||x_{i_0} - \frac{1}{m}(x_{i_1} + \dots + x_{i_m})|| \le \frac{1}{m}||x_{i_0}|| + \frac{\eta}{2} < \eta.$$

Since $\frac{1}{m}(x_{i_1} + ... + x_{i_m}) \in C_{i_0+1}$ and $\operatorname{dist}(x_{i_0}, C_{i_0+1}) \geq \eta$, we get a contradiction which proves that $S \in KS_5$.

7. KS_4 and KS_5 are equivalent. If X is Asplund or has the property (C) of Corson, it is easy to prove that $X \in KS_4 \Leftrightarrow X \in KS_5$. In the following we prove the equivalence $KS_5 \Leftrightarrow KS_4$ in general. A sequence $\{C_{\alpha} : \alpha < \omega_1\}$ of convex closed bounded subset of a Banach space X is said to be a generalized ω_1 -onion iff $\emptyset \neq C_{\alpha} \subset C_{\beta}$, for $\beta < \alpha$, and there exists a subsequence $\{\alpha_{\beta}\}_{\beta<\omega_1} \subset \omega_1$, with $\alpha_{\beta_1} < \alpha_{\beta_2}$ if $\beta_1 < \beta_2$, such that $C_{\alpha_{\beta_1}} \neq C_{\alpha_{\beta_2}}$, i.e., $\{C_{\alpha_{\beta}} : \beta < \omega_1\}$ is an ω_1 -onion. If $C \subset X$ is a subset,

denote by $\operatorname{cone}(C)$ the closed convex cone generated by C. Observe that, if C is a convex subset, then $\operatorname{cone}(C) = \operatorname{cl}(\bigcup_{\lambda \geq 0} \lambda C)$.

Lemma 7.1. Let X be a Banach space, $C \subset X$ a convex closed separable subset of X and $\{C_{\alpha} : 1 \leq \alpha < \omega_1\}$ a generalized ω_1 -onion of X.

- (1) If $dist(C, C_{\alpha}) = 0$ for every $\alpha < \omega_1$, then for every $\epsilon > 0$ there exists $c_{\epsilon} \in C$ such that $dist(c_{\epsilon}, C_{\alpha}) \leq \epsilon$ for every $\alpha < \omega_1$.
- (2) There are two disjoint alternatives, namely:
 - (A) either there exist two ordinals $\beta < \alpha < \omega_1$ and $z \in C_\beta$ such that $z \notin \overline{co}([C] \cup cone(C_\alpha)),$
 - (B) or for every pair of ordinals $\beta < \alpha < \omega_1$ we have $C_{\beta} \subset \overline{co}([C] \cup cone(C_{\alpha}))$. In this case, we have:

$$\overline{co}([C] \cup cone(C_{\alpha})) = \overline{co}([C] \cup cone(C_{\beta})), \ \forall \alpha, \beta < \omega_1,$$

and for every $\epsilon > 0$ there exists $c_{\epsilon} \in X$ such that $dist(c_{\epsilon}, C_{\alpha}) \leq \epsilon$ for every $\alpha < \omega_1$.

- Proof. (1) For every $\alpha < \omega_1$ and $n \ge 1$ let $C(\alpha, n) = \{x \in C : \operatorname{dist}(x, C_\alpha) \le 1/n\}$. Then $\{C(\alpha, n) : \alpha < \omega_1\}$ is a family of nonempty closed convex subset such that $C(\alpha, n) \supset C(\beta, n)$, if $\alpha < \beta$, with the countable intersection property. Since C is separable, we conclude that $\bigcap_{\alpha < \omega_1} C(\alpha, n) \ne \emptyset$ for every $n \ge 1$. So, if for every $n \ge 1$ we pick $c_n \in \bigcap_{\alpha < \omega_1} C(\alpha, n)$, then $\operatorname{dist}(c_n, C_\alpha) \le 1/n$ for every $\alpha < \omega_1$.
- (2) Clearly, the alternatives (A) and (B) are disjoint. Suppose that (B) holds. Since [C] is separable there exist two ordinals $\beta_0 < \alpha_0 < \omega_1$ and $z_0 \in C_{\beta_0} \setminus C_{\alpha_0}$ such that $z_0 \notin [\overline{C}]$ but $z_0 \in \overline{\text{co}}([C] \cup \text{cone}(C_{\alpha}))$ for every $\alpha < \omega_1$.

Claim. If
$$H = \overline{[C \cup \{z_0\}]}$$
, then $\operatorname{dist}(H, C_{\alpha}) = 0$ for every $\alpha < \omega_1$.

Indeed, let $\epsilon_0 = \operatorname{dist}(z_0, \overline{[C]})$ and $n_0 \ge 1$ such that $\frac{2}{n_0} < \epsilon_0$. Observe that for every $\alpha < \omega_1$ and $\epsilon > 0$ we can choose $\lambda \in [0, 1), \ \mu > 0, \ w \in [C]$ and

 $v \in C_{\alpha}$ such that:

$$\|\lambda w + (1 - \lambda)\mu v - z_0\| \le \epsilon. \tag{8}$$

Let M > 0 be such that $C_1 \subset B(0; M)$. We claim that if we pick $\alpha < \omega_1$, $n \geq n_0$, $\lambda \in [0,1)$, $\mu > 0$, $w \in [C]$ and $v \in C_\alpha$ fulfilling (8) with $\epsilon = 1/n$, then $(1-\lambda)\mu \geq \frac{1}{n_0M}$. Indeed, in the contrary case we would have:

$$\epsilon_0 \le \|\lambda w - z_0\| = \|\lambda w + (1 - \lambda)\mu v - z_0 - (1 - \lambda)\mu v\| \le$$

$$\le \|\lambda w + (1 - \lambda)\mu v - z_0\| + \|(1 - \lambda)\mu v\| \le \frac{1}{n_0} + \frac{1}{n_0} < \epsilon_0,$$

which is a contradiction. So, for every $\alpha < \omega_1$, $n \ge n_0$, $\lambda \in [0,1)$, $\mu > 0$, $w \in C$ and $v \in C_{\alpha}$ fulfilling (8) with $\epsilon = 1/n$ we have:

$$\left\| \frac{z_0}{(1-\lambda)\mu} - \frac{\lambda}{(1-\lambda)\mu} w - v \right\| \le \frac{1}{(1-\lambda)\mu n} \le \frac{n_0 M}{n}$$

and this proves that $dist(H, C_{\alpha}) = 0$ for every $\alpha < \omega_1$.

As H is separable, given $\epsilon > 0$, applying (1) we can choose a vector $c_{\epsilon} \in X$ such that $\operatorname{dist}(c_{\epsilon}, C_{\alpha}) \leq \epsilon$ for every $\alpha < \omega_1$, and this completes the proof.

Proposition 7.2. Let X be a Banach space without the property (C) of Corson. Then there exists a sequence $\{(y_{\alpha}, y_{\alpha}^*) : \alpha < \omega_1\} \subset X \times X^*$ such that $y_{\alpha}^*(y_{\alpha}) = 1$ for all $\alpha < \omega_1$ but $y_{\alpha}^*(y_{\beta}) = 0$, if $\beta < \alpha$, and $y_{\alpha}^*(y_{\beta}) \leq 0$, if $\beta > \alpha$. So, X has a ω_1 -polyhedron and $X \notin KS_4$.

Proof. Since X doesn't satisfy the property (C) of Corson, it is easy to see that there exists in X a ω_1 -onion $\{C_\alpha : \alpha < \omega_1\}$ such that $\cap_{\alpha < \omega_1} C_\alpha = \emptyset$. Using a transfinite inductive process with ω_1 steps we construct:

- (1) A sequence of numbers $\{n_{\alpha} : \alpha < \omega_1\}$ with $n_{\alpha} \in \{0, 1\}$ such that if $p(\alpha) = |\{\beta \leq \alpha : n_{\beta} = 1\}|$ then $p(\alpha) < \aleph_0$.
- (2) Two sequences of ordinals $\{\rho_{\gamma}, \tau_{\gamma} : \gamma < \omega_1\}$ such that $1 \leq \rho_{\gamma} < \tau_{\gamma} \leq \rho_{\beta} < \omega_1$ if $\gamma < \beta < \omega_1$.
- (3) For each $\alpha < \omega_1$ a generalized ω_1 -onion $\{C_{\beta}^{(\alpha)} : \rho_{\alpha} \leq \beta < \omega_1\}$ such that $C_{\gamma} \supset C_{\gamma}^{(\alpha)} \supset C_{\gamma}^{(\beta)} \neq \emptyset$ if $\alpha \leq \beta < \omega_1$ and $\rho_{\beta} \leq \gamma < \omega_1$.

- (4) If $n_{\alpha} = 0$ we choose an element $y_{\alpha} \in C_{\rho_{\alpha}}^{(\alpha)}$ such that if $H_{\alpha} = \overline{[\{y_{\beta} : \beta < \alpha, n_{\beta} = 0\}]}$ then $y_{\alpha} \notin \overline{\text{co}}(H_{\alpha} \cup \text{cone}(C_{\tau_{\alpha}}^{(\alpha)}))$. Also, in this case we demand that $C_{\gamma}^{(\alpha)} = \bigcap_{\beta < \alpha} C_{\gamma}^{(\beta)}$ for every $\rho_{\alpha} \leq \gamma < \omega_{1}$.
- (5) If $n_{\alpha} = 1$ we do not choose the element y_{α} . Instead of we pick a vector $a_{p(\alpha)} \in X$ such that $C_{\beta}^{(\alpha)} \subset B(a_{p(\alpha)}, 2^{-p(\alpha)})$ for every $\tau_{\alpha} \leq \beta < \omega_1$, which will imply that:

$$\operatorname{diam}(C_{\beta}^{(\alpha)}) \leq 2^{-p(\alpha)+1} \text{ and } \operatorname{dist}(a_{p(\alpha)}, C_{\beta}^{(\alpha)}) \leq 2^{-p(\alpha)}, \ \forall \tau_{\alpha} \leq \beta < \omega_{1}.$$

Begin the construction.

Step 1. In this step we choose $n_1 = 0$, $\rho_1 = 1$, $\tau_1 = 2$, $C_{\beta}^{(1)} = C_{\beta}$, for every $1 \leq \beta < \omega_1$, $y_1 \in C_1 \setminus C_2$ arbitrary and $H_1 = \{0\}$.

<u>Step</u> $\alpha + 1 < \omega_1$. Suppose constructed all the steps $\beta \leq \alpha$ satisfying the above requirements and construct the step $\alpha + 1$. By hypothesis $\{C_{\beta}^{(\alpha)} : \tau_{\alpha} \leq \beta < \omega_1\}$ is a generalized ω_1 -onion. By Lemma 7.1 there are two disjoint alternatives:

- (A) There exist two ordinals $\tau_{\alpha} \leq \beta_0 < \alpha_0 < \omega_1$ and a vector $z_0 \in C_{\beta_0}^{(\alpha)}$ such that $z_0 \notin \overline{\text{co}}(H_{\alpha} \cup \text{cone}(C_{\alpha_0}^{(\alpha)}))$. In this case we do $\rho_{\alpha+1} = \beta_0$, $\tau_{\alpha+1} = \alpha_0$, $n_{\alpha+1} = 0$, $y_{\alpha+1} = z_0$ and $C_{\beta}^{(\alpha+1)} = C_{\beta}^{(\alpha)}$ for every $\rho_{\alpha+1} \leq \beta < \omega_1$.
- (B) If (A) doesn't hold, there exists $c \in X$ such that $\operatorname{dist}(c, C_{\beta}^{(\alpha)}) \leq 2^{-(p(\alpha)+2)}$ for every $\tau_{\alpha} \leq \beta < \omega_{1}$. In this case we do $n_{\alpha+1} = 1$, $p(\alpha + 1) = p(\alpha) + 1$, $\rho_{\alpha+1} = \tau_{\alpha}$, $\tau_{\alpha+1} = \tau_{\alpha} + 1$, $a_{p(\alpha+1)} = c$ and $C_{\beta}^{(\alpha+1)} = B(a_{p(\alpha+1)}, 2^{-p(\alpha+1)}) \cap C_{\beta}^{(\alpha)}$ for every $\rho_{\alpha+1} \leq \beta < \omega_{1}$. Since $n_{\alpha+1} = 1$ we do not choose $y_{\alpha+1}$.

Step $\alpha < \omega_1$, α a limit ordinal. Let $\alpha < \omega_1$ be a limit ordinal, suppose constructed all the steps $\beta < \alpha$ satisfying the above requirements and construct the step α .

Claim: $|\{\beta < \alpha : n_{\beta} = 1\}| < \aleph_0$.

Indeed, in the contrary case we would have a sequence of ordinals $\{\beta_m\}_{m\geq 1} \uparrow \alpha$, $\beta_m < \beta_{m+1} < \alpha$, such that $n_{\beta_m} = 1$ for every $m \geq 1$.

28

Obviously $p(\beta_m) \uparrow +\infty$ when $m \to \infty$. The sequence $\{a_{p(\beta_m)}\}_{m\geq 1}$ is a Cauchy sequence. Indeed, if r < s are two integers, for every $\tau_{\beta_s} \leq \beta < \omega_1$, since $C_{\beta}^{(\beta_s)} \subset C_{\beta}^{(\beta_r)}$, we have:

$$\operatorname{dist}(a_{p(\beta_r)}, a_{p(\beta_s)}) \leq \operatorname{dist}(a_{p(\beta_r)}, C_{\beta}^{(\beta_r)}) + \operatorname{diam}(C_{\beta}^{(\beta_r)}) + \operatorname{dist}(a_{p(\beta_s)}, C_{\beta}^{(\beta_r)}) \leq$$

$$\leq 2^{-p(\beta_r)} + 2^{-p(\beta_r)+1} + 2^{-p(\beta_s)} \underset{r,s \to \infty}{\longrightarrow} 0.$$

Let $a_0 := \lim_{m \to \infty} a_{p(\beta_m)}$ and $\gamma_0 = \sup\{\tau_\beta : \beta < \alpha\}$. Then $a_0 \in C_\gamma$ for every $\gamma_0 \le \gamma < \omega_1$ because:

$$\operatorname{dist}(a_0, C_{\gamma}) \leq \operatorname{dist}(a_0, a_{p(\beta_m)}) + \operatorname{dist}(a_{p(\beta_m)}, C_{\gamma}^{(\beta_m)}) \underset{m \to \infty}{\longrightarrow} 0.$$

Hence $\bigcap_{\alpha<\omega_1} C_{\alpha} \neq \emptyset$, a contradiction which proves the Claim.

Denote as above $\gamma_0 = \sup\{\tau_\beta : \beta < \alpha\}$ and let $D_\gamma := \bigcap_{\beta < \alpha} C_\gamma^{(\beta)}$ for every $\gamma_0 \le \gamma < \omega_1$. By the Claim and the construction of the previous steps we have that:

- (a) There exists an ordinal $\delta_0 < \alpha$ such that $n_{\delta} = 0$ for every $\delta_0 \le \delta < \alpha$. So, $p(\delta) = p(\delta_0)$ for every $\delta \in [\delta_0, \alpha)$.
- (b) For every $\gamma_0 \leq \gamma < \omega_1$ we have $D_{\gamma} = C_{\gamma}^{(\delta_0)}$, which by induction hypothesis implies that $\{D_{\gamma} : \gamma_0 \leq \gamma < \omega_1\}$ is a generalized ω_1 -onion.

If $H_{\alpha} := \overline{[\{y_{\beta} : \beta < \alpha, n_{\beta} = 0\}]}$, by Lemma 7.1 we have the following disjoint alternatives:

- (A) There are two ordinals $\gamma_0 \leq \beta_0 < \alpha_0 < \omega_1$ and a vector $z_0 \in D_{\beta_0}$ such that $z_0 \notin \overline{\text{co}}(H_\alpha \cup \text{cone}(D_{\alpha_0}))$. In this case we do $\rho_\alpha = \beta_0$, $\tau_\alpha = \alpha_0$, $n_\alpha = 0$, $y_\alpha = z_0$ and $C_\beta^{(\alpha)} = D_\beta$ for every $\rho_\alpha \leq \beta < \omega_1$.
- (B) If (A) doesn't hold, there exists $c \in X$ such that $\operatorname{dist}(c, D_{\gamma}) \leq 2^{-p(\delta_0)+2}$ for every $\gamma_0 \leq \gamma < \omega_1$. In this case we do $n_{\alpha} = 1$, $p(\alpha) = p(\delta_0) + 1$, $\rho_{\alpha} = \gamma_0$, $\tau_{\alpha} = \rho_{\alpha} + 1$, $a_{p(\alpha)} = c$ and $C_{\gamma}^{(\alpha)} = B(a_{p(\alpha)}, 2^{-p(\alpha)}) \cap D_{\gamma}$ for $\gamma_0 \leq \gamma < \omega_1$. Since $n_{\alpha} = 1$ we do not choose y_{α} .

And this completes the induction.

Obviously, there exists $\rho < \omega_1$ such that $n_{\alpha} = 0$ for every $\rho \leq \alpha < \omega_1$, which gives us the sequence $\{y_{\alpha} : \rho \leq \alpha < \omega_1\}$ fulfilling that $y_{\alpha} \notin \overline{\operatorname{co}}(\overline{[\{y_{\beta} : \rho \leq \beta < \alpha\}]} \cup \operatorname{cone}(\{y_{\beta} : \alpha < \beta < \omega_1\})) =: K_{\alpha}$ for every $\rho \leq \alpha < \omega_1$. So, by the Hahn-Banach theorem there exists $y_{\alpha}^* \in X^*$ such that $y_{\alpha}^*(y_{\alpha}) = 1$ but $\sup\{y_{\alpha}^*(y) : y \in K_{\alpha}\} < 1$. In particular, $y_{\alpha}^*(y_{\beta}) = 0$, if $\rho \leq \beta < \alpha$, and $y_{\alpha}^*(y_{\beta}) \leq 0$ if $\alpha < \beta < \omega_1$.

Proposition 7.3. Let X be a Banach space. We have:

(1) If $X \in KS_4$, then $X \in (C)$; (2) $X \in KS_4$ iff $X \in KS_5$.

Proof. (1) This follows from Prop. 7.2 where it is proved that if $X \notin (C)$ then X has an ω_1 -polyhedron.

(2) Clearly, $X \in KS_5$ implies $X \in KS_4$. Assume that $X \in KS_4$. By (1) we have that $X \in (C)$. In order to prove that $X \in KS_5$, by Prop. 6.2 it is enough to prove that every convex subset $C \subset X^*$ is w^* -separable. Since $X \in KS_4$, \overline{C}^{w^*} is w^* -separable by Prop. 4.4. So, there exists a countable family $\{z_n : n \geq 1\} \subset \overline{C}^{w^*}$ w^* -dense in \overline{C}^{w^*} . Since $X \in (C)$, by [10, pg. 147] there exists a countable family $\{z_{nm} : n, m \geq 1\} \subset C$ such that $z_n \in \overline{\operatorname{co}}^{w^*}(\{z_{nm} : m \geq 1\})$ for every $n \geq 1$. So, C is w^* -separable. \square

Remarks. A nonseparable Banach space X has the Kunen-Shelah property KS_6 if for every uncountable family $\{x_i\}_{i\in I}\subset X$ there exists $j\in I$ such that $x_j\in wcl(\{x_i\}_{i\in I\setminus\{j\}})$ (wcl=weak closure). Clearly, $KS_6\Rightarrow KS_5$. It seems that the unique known example of a Banach space X such that $X\in KS_6$ is the space X=C(K), K being the Kunen compact space ([8, p. 1123]) constructed by Kunen under CH. This space C(K) of Kunen has more interesting pathological properties. For example, $(C(K))^n, w^n$ is hereditarily Lindelöf for every $n\in\mathbb{N}$. In view of this situation, we can introduce the property KS_7 . A Banach space X is said to have the Kunen-Shelah property KS_7 iff (X^n, w^n) is for every $n\in\mathbb{N}$. It can be easily proved that $KS_7\Rightarrow KS_6$. We do not know either if the Shelah space S has the property KS_6 or if the properties KS_5, KS_6 and KS_7 can be separated.

References

- [1] C. Finet and G. Godefroy, *Biorthogonal systems and big quotient spaces*, Contemporary Math., vol. 85 (1989), 87-110.
- [2] A. S. GRANERO, Some uncountable structures and the Choquet-Edgar property in non-separable Banach spaces, Proc. of the 10th Spanish-Portuguese Conf. in Math. III, Murcia (1985), 397-406.
- [3] A. S. GRANERO, M. JIMÉNEZ SEVILLA AND J. P. MORENO, On ω -independence and the Kunen-Shelah property, Proc. Edinburgh Math. Soc., 45 (2002), 391-395.
- [4] W. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated Banach spaces, Israel J. Math., vol. 17 (1974), 219-230.
- [5] M. JIMÉNEZ SEVILLA AND J. P. MORENO, Renorming Banach Spaces with the Mazur Intersection Property, J. Funct. Anal., 144 (1997), 486-504.
- [6] N. J. Kalton, Independence in separable Banach spaces, Contemporary Math., vol. 85 (1989), 319-323
- [7] J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach spaces I, Springer-Verlag, 1977.
- [8] S. NEGREPONTIS, Banach Spaces and Topology , Handbook of Set-Theoretic Topology, North-Holland, 1984, p. 1045-1142.
- [9] A. N. PLICHKO, Some properties of the Johnson-Lindenstrauss space, Funct. Anal. and its Appl., vol. 15 (1981), 88-89.
- [10] R. Pol, On a question of H. H. Corson and some related problems, Fund. Math., vol. 109 (1980), 143-154.
- [11] W. Rudin, Real and Complex Analysis, McGraw Hill, (1974).
- [12] A. Sersouri, ω -independence in nonseparable Banach spaces, Contemporary Math., vol. 85 (1989), 509-512
- [13] S. Shelah, Uncountable constructions for B.A., e.c. groups and Banach spaces, Israel J. Math., 51(1985), 273-297.
- [14] I. SINGER, Bases in Banach Spaces II, Springer-Verlag, (1981).
- [15] D. VAN DULST, Reflexive and superreflexive Banach spaces, Math. Centrum, Amsterdam, 1978.
- D. Análisis Matemático, Facultad de Matemáticas, Universidad Complutense, Madrid 28040, Spain, granero@mat.ucm.es, marjim@mat.ucm.es, montesinos@mat.ucm.es

D. DE MATEMÁTICAS. FACULTAD DE CIENCIAS. UNIVERSIDAD AUTÓNOMA DE MADRID, MADRID 28049, SPAIN, **josepedro.moreno@uam.es**

Dept. of Mathematics, Pedagogical University, Shevchenko str. 1, Kirovograd 2506, Ukraine, aplichko@kspu.kr.ua