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ANTONIO S. GRANERO(1), MAR JIMÉNEZ(2), ALEJANDRO MONTESINOS(1),
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Abstract. We introduce and study the Kunen-Shelah properties KSi,

i = 0, 1, ..., 7. Let us highlight for a Banach space X some of our results:

(1) X∗ has a w∗-nonseparable equivalent dual ball iff X has an ω1-

polyhedron (i.e., a bounded family {xi}i<ω1 such that xj /∈ co({xi :

i ∈ ω1 \ {j}}) for every j ∈ ω1) iff X has an uncountable bounded

almost biorthonal system (UBABS) of type η, for some η ∈ [0, 1), (i.e.,

a bounded family {(xα, fα)}1≤α<ω1 ⊂ X × X∗ such that fα(xα) = 1

and |fα(xβ)| ≤ η, if α 6= β); (2) if X has an uncountable ω-independent

system then X has an UBABS of type η for every η ∈ (0, 1); (3) if X has

not the property (C) of Corson, then X has an ω1-polyhedron; (4) X has

not an ω1-polyhedron iff X has not a convex right-separated ω1-family

(i.e., a bounded family {xi}i<ω1 such that xj /∈ co({xi : j < i < ω1}) for

every j ∈ ω1) iff every w∗-closed convex subset of X∗ is w∗-separable

iff every convex subset of X∗ is w∗-separable iff µ(X) = 1, µ(X) being

the Finet-Godefroy index of X (see [1]).

1. Introduction. If X is a Banach space and θ an ordinal, a family {xα :

α < θ} ⊂ X is said to be a θ-basic sequence if there exists 1 ≤ K < ∞
such that for every n < m in N, every families λi ∈ R, i = 1, ..., m, and

α1 < ... < αn < ... < αm < θ we have ‖∑i=n
i=1 λixαi

‖ ≤ K‖∑i=m
i=1 λixαi

‖.
A family {xi}i∈I ⊂ X is a basic sequence if it is a θ-basic sequence for

some ordinal θ. If K = 1 the basic sequence is said to be monotone. A

biorthogonal system in X is a family {(xi, x
∗
i ) : i ∈ I} ⊂ X ×X∗ such that
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x∗i (xi) = 1 and x∗i (xj) = 0, i, j ∈ I, i 6= j. A Markuschevich system (in

short, a M-system) in X is a biorthogonal system {(xi, x
∗
i ) : i ∈ I} in X

such that {x∗i : i ∈ I} is total on [{xi : i ∈ I}] (see [14]).

It is well known (see [14, pg. 599]) that if the density of a Banach space

X satisfies Dens(X) ≥ ℵ1, then X has a monotone ω1-basic sequence.

Also if Dens(X) > c, X has a monotone ω1-basic sequence, because in

this case an easy calculation shows that w∗-Dens(X∗) ≥ ℵ1. However, if

ℵ1 ≤ Dens(X) ≤ c and w∗-Dens(X∗) ≤ ℵ0, X can fail to have an un-

countable basic sequence, even an uncountable biorthogonal system. In-

deed, Shelah [13] constructed under the axiom 3ℵ1 -an axiom which implies

the continuum hypothesis (CH)- a nonseparable Banach space S that fails

to have an uncountable biorthogonal system. Later Kunen [8, p. 1123]

constructed under (CH) a Hausdorff compact space K such that C(K) is

nonseparable and has not an uncountable biorthogonal system, among other

pathological interesting properties.

A Banach space X is said to have the Kunen-Shelah property KS0 (resp.

KS1) if X has not an uncountable basic sequence (resp. an uncountable

Markuschevich system). A Banach space X is said to have the Kunen-

Shelah property KS2 if X has not an uncountable biorthogonal system.

Clearly, KS2 ⇒ KS1 ⇒ KS0.

The first example of a Banach space X such that X ∈ KS0 but X /∈ KS2

was given in [9] and is the space of Johnson-Lindentrauss JL2 (see [4]).

The properties KS2 and KS1 were separated in [2] (see also [1]), where it

was proved that if a Banach space X has the property (C) of Corson and

w∗-Dens (X∗) ≤ ℵ0, then X ∈ KS1.

Question 1. There exists a Banach space X such that X ∈ KS0 but

X /∈ KS1?

In this paper we study some structures similar to uncountable biorthogo-

nal systems, namely: uncountable ω-independent families, ω1-polyhedrons,

uncountable bounded almost biorthogonal systems (UBABS), etc. The
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lack of these structures allows us to define the Kunen-Shelah properties

KS3, KS4, etc.

In Section 2 we prove that a Banach space X has an ω1-polyhedron iff X

has an UBABS iff X∗ has a w∗-nonseparable dual equivalent ball. Section

3 deals with uncountable ω-independent families. In Section 4 it is proved

that X has not an ω1-polyhedron iff every w∗-closed convex subset of X∗ is

w∗-separable. In Section 5 we answer some questions posed by Finet and

Godefroy [1] concerning the index µ(X). In Section 6 we prove that a space

X has not a convex right-separated ω1-family iff every w∗-closed convex

subset of X∗ is w∗-separable. Finally, in Section 7 we show that X has an

ω1-polyhedron iff X has a convex right-separated ω1-family, whence every

w∗-closed convex subset of X∗ is w∗-separable iff every convex subset of X∗

is so.

Let us introduce some notation. ω1 is the first uncountable ordinal, |A|
the cardinal of the set A and c = |R|. If X is a Banach space, X∗ denotes

its dual, B(X) and S(X) the closed unit ball and sphere of X, resp., and

B(x, r) the closed ball with radius r and center x. If A ⊂ X we denote by [A]

the linear subspace spanned by A. Recall that a Banach space X is said to

have the property (C) of Corson (in short, X ∈ (C)) if ∩i∈ICi 6= ∅ whenever

{Ci : i ∈ I} is a family of closed bounded convex subsets of X with the

countable intersection property, i.e., ∅ 6= ∩i∈JCi for every countable subset

J ⊂ I.

2. UBABS and ω1-polyhedrons. If X is a Banach space, a bounded

family {(xα, fα)}1≤α<ω1 ⊂ X ×X∗ is said to be an uncountable bounded al-

most biorthogonal system (in short, an UBABS), if there exist a real number

0 ≤ η < 1 such that fα(xα) = 1 and fα(xβ) ≤ η, if α 6= β. If in addition we

have |fα(xβ)| ≤ η for α 6= β, then the UBABS {(xα, fα)}1≤α<ω1 ⊂ X ×X∗

is said to be of type η. Define the index τ(X) as follows:

τ(X) = inf{0 ≤ η < 1 : X has an UBABS of type η},
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where inf{∅} = 1. Clearly, τ(X) is invariant by isomorphisms and: (1) if X

has an uncountable biorthogonal system, then τ(X) = 0; (2) τ(X) < 1 iff

X has an UBABS.

If τ is a cardinal, a bounded family {xi}i∈τ in a Banach space X is said to

be a τ -polyhedron iff xj /∈ co({xi}i∈τ\{j}) for every j ∈ τ . In a dual Banach

space X∗ one can define a w∗-τ -polyhedron in a analogous way, using the

w∗-topology instead of the w-topology.

Proposition 2.1. A Banach space X has an ω1-polyhedron iff X∗ has an

w∗-ω1-polyhedron.

Proof. Let {xα}α<ω1 ⊂ B(X) be an ω1-polyhedron. By the Hahn-Banach

Theorem there exists fα ∈ S(X∗) such that:

fα(xα) > sup{fα(xi) : i ∈ ω1 \ {α}} =: eα.

By passing to a subsequence, we can suppose that there exist 0 < ε < ∞
and r ∈ R such that fα(xα) − eα ≥ ε > 0 and |r − fα(xα)| ≤ ε

4
, ∀α < ω1.

Hence, if α, β < ω1 with α 6= β, we have:

fα(xα) ≥ r − ε

4
> r − 3ε

4
≥ fβ(xβ)− ε ≥ εβ ≥ fβ(xα),

which implies that {fα}α<ω1 is an w∗-ω1-polyhedron in X∗.

The converse implication is analogous. ¤

Let us see in the following Proposition the relation between ω1-polyhedrons

and UBABS.

Proposition 2.2. For a Banach space X the following are equivalent:

(1) X has an ω1-polyhedron; (2) X has an UBABS of type η for some

0 ≤ η < 1; (3) X has an UBABS.

Proof. (1) ⇒ (2). If X has an uncountable biorthogonal system, then clearly

X has an UBABS of type 0.

In the contrary case, w∗-Dens(X∗) ≤ ℵ0. Let {xα}1≤α<ω1 ⊂ X be an ω1-

polyhedron. Assume that x1 = 0 and that ‖xα‖ ≤ 1. For each 1 ≤ α < ω1
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consider fα ∈ S(X∗) such that:

1 ≥ fα(xα) > sup{fα(xi) : 1 ≤ i < ω1, i 6= α} =: ρα.

Observe that ρα ≥ 0 if α 6= 1. By passing to an uncountable subsequence,

it can be assumed that there are real numbers 0 < ε, r ≤ 1 such that

fα(xα) − ρα ≥ ε and |r − fα(xα)| < ε
8

for every 2 ≤ α < ω1. Since w∗-

Dens(X∗) ≤ ℵ0, by passing again to a subsequence, we assume that there

exists z ∈ X∗ such that z(xα) > 0 and | z(xβ)

z(xα)
−1| < ε

8
for every 2 ≤ α, β < ω1.

Then, if gα = fα + z
z(xα)

, 2 ≤ α < ω1, we have:

gα(xα) = fα(xα) + 1 ≥ r − ε

8
+ 1 > r − 6ε

8
+ 1 ≥ fα(xα)− 7ε

8
+ 1 ≥

≥ sup{gα(xβ) : 2 ≤ β < ω1, β 6= α} ≥ inf{gα(xβ) : 2 ≤ β < ω1, β 6= α} ≥ − ε

8
.

Denote hα = gα

gα(xα)
. Then, for 2 ≤ α, β < ω1, α 6= β, we have hα(xα) = 1

and:

−
ε
8

r − ε
8

+ 1
≤ −

ε
8

gα(xα)
≤ hα(xβ) =

gα(xβ)

gα(xα)
≤ r + 1− 6ε

8

r + 1− ε
8

.

So, {(xα, hα) : 2 ≤ α < ω1} ⊂ X ×X∗ is an UBABS of type η such that:

0 ≤ η = max{
ε
8

r − ε
8

+ 1
,
r + 1− 6ε

8

r + 1− ε
8

} < 1.

(2) ⇒ (3) is obvious and (3) ⇒ (1) is clear because, if {(xα, fα)}1≤α<ω1 ⊂
X ×X∗ is an UBABS, then {xα}α<ω1 is an ω1-polyhedron. ¤

Let us consider some results on representation in polyhedrons, that we

need later. If {xi}i∈I is a w∗-τ -polyhedron in a dual Banach space X∗ with

τ = card(I) and K = cow∗({xi}i∈I), the core of K is the set:

K0 = core(K) = ∩{cow∗({xi}i∈I\A) : A ⊂ I, A finite}.

Define the function λ : K → [0, 1] as follows:

∀k ∈ K, λ(k) = sup{λ ∈ [0, 1] : ∃u ∈ K, ∃i ∈ I such that k = λxi+(1−λ)u}.

Let H = {x ∈ K : λ(x) = 0}. Since for every finite subset A ⊂ I, each x ∈
K has the expression x =

∑
i∈A λixi+(1−µ)u with u ∈ cow∗({xi}i∈I\A), λi ∈

[0, 1], i ∈ A, µ =
∑

i∈A λi ≤ 1, it can be seen easily that H ⊂ K0.
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Lemma 2.3. Let {xi}i∈I be a w∗-τ -polyhedron in the dual Banach space

X∗, τ = card(I), K = cow∗({xi}i∈I}, K0 =core(K) and H = {x ∈ K :

λ(x) = 0}. If x ∈ K, there exist a sequence of positive numbers {µn}n≥1

with 0 ≤ ∑
n≥1 µn = µ ≤ 1, a sequence of subindices (maybe no distinct)

{in}n≥1 ⊂ I and u ∈ H such that x =
∑

n≥1 µn · xin + (1− µ)u.

Proof. Clearly the statement is true if x ∈ H. Assume that x /∈ H, i.e.,

λ(x) > 0. Choose 0 < 1
2
λ(x) ≤ λ1 ≤ 1, i1 ∈ I, and u1 ∈ cow∗({xi}i∈I\{i1})

such that x = λ1xi1 + (1 − λ1)u1. If u1 ∈ H, we end. In the contrary

case, λ(u1) > 0 and we choose 0 < 1
2
λ(u1) ≤ λ2 ≤ 1, i2 ∈ I, and u2 ∈

cow∗({xi}i∈I\{i2} such that u1 = λ2xi2 +(1−λ2)u2. By reiteration, there are

two possibilities:

(A) um ∈ H for some m ∈ N. Then we obtain the representation:

x =
m∑

k=1

λk · Pk−1 · xik + Pmum, Pk =
n∏

k=1

(1− λk), P0 = 1. (1)

(B) Always um /∈ H. As Pm decreases in (1), there exists limm≥1 Pm =

P ∈ [0, 1]. We have two cases:

(1) :P > 0. Observe that P > 0 iff the series
∑

k≥1 λk < +∞. In

consequence the series
∑

k≥1 λkPk−1xik converges and um → u ∈ K

as m → ∞. So from (1) we obtain x =
∑

k≥1 λk · Pk−1 · xik + Pu.

We claim that λ(u) = 0. Indeed, suppose that µ := λ(u) > 0 and

pick q ∈ N such that P/Pq > 1/2, λq+1 < µ/8. Then:

uq =
1

Pq

(∑
j≥1

λq+jPq+j−1xq+j + Pu

)
,

which implies that λ(uq) ≥ P
Pq

λ(u) = P
Pq

µ > µ
2
. Since 0 < 1

2
λ(uq) ≤

λq+1 ≤ 1, we obtain µ
8

> λq+1 ≥ µ
4
, a contradiction.

(2) :P = 0. In this case Pmum → 0 as m → ∞ and we obtain the

representation x =
∑

k≥1 λkPk−1xik with
∑

k≥1 λkPk−1 = 1.

¤
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In order to connect the existence of an UBABS in a Banach space X with

the w∗-nonseparability of dual equivalent unit balls of X∗, we introduce the

index σ(X). If K ⊂ X∗ is a disc (i.e., a convex symmetric subset of X∗),

define the index σ(K) as:

σ(K) = max{0 ≤ t ≤ 1 : ∃A ⊂ K, |A| ≤ ℵ0, tK ⊆ cow∗(A ∪ (−A))}

Observe that 0 ≤ σ(K) < 1 iff K is w∗-nonseparable and that there exists

a countable subset A ⊂ K such that σ(K) ·K ⊂ cow∗(A ∪ (−A)).

Lemma 2.4. Let X be a Banach space, K ⊂ X∗ a w∗-nonseparable disc

and σ(K) < ρ ≤ 1. Then there exists ε = ε(ρ) > 0 (depending on ρ)

such that for every countable subset A ⊂ K there exists k ∈ K satisfying

dist(ρk, cow∗(A ∪ (−A))) ≥ ε.

Proof. In the contrary case, there exist a sequence of real numbers εn ↓ 0

and a sequence of countable subsets An ⊂ K, n ≥ 1, such that every k ∈ K

satisfies dist(ρk, cow∗(An ∪ (−An))) < εn. So, if A = ∪n≥1An we have

ρK ⊂ cow∗(A ∪ (−A)), a contradiction. ¤

Define the index σ(X), X a Banach space, as follows:

σ(X) = inf{σ(K) : K ⊂ X∗ a dual equivalent ball of X∗}.

It is clear that σ(X) is invariant by isomorphisms.

Proposition 2.5. For a Banach space X we have that:

σ(X) = inf{σ(K) : K ⊂ X∗ a w∗-compact disc }.

Proof. Obviously σ(X) ≥ inf{σ(K) : K ⊂ X∗ a w∗-compact disc }. In

order to prove the contrary inequality, it is enough to see that σ(X) ≤ σ(K)

for any w∗-compact disc K ⊂ X∗. So, fix a w∗-compact disc K ⊂ X∗.

Assume that K is w∗-nonseparable, pick σ(K) < ρ < 1 and let ε = ε(ρ) > 0

be given by Lemma 2.4. For 0 < δ < ε such that ρ + δ < 1 consider

Hδ = K + δB(X∗), which is an equivalent dual ball of X∗. We claim that

σ(Hδ) ≤ ρ + δ. Indeed, let ρ + δ < t ≤ 1 and A ⊂ Hδ a countable subset.
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Then A ⊂ A1 + A2, where A1 ⊂ K, A2 ⊂ δB(X∗) are countable subsets.

Assume that tHδ ⊂ cow∗(A ∪ (−A)). As cow∗(A ∪ (−A)) ⊂ cow∗(A1 ∪
(−A1)) + δB(X∗), we get:

tK ⊂ tHδ ⊂ cow∗(A1 ∪ (−A1)) + δB(X∗),

which implies that ,∀k ∈ K, dist(tk, cow∗(A1∪(−A1)) ≤ δ. But by Lemma

2.4 there exists k ∈ K such that dist(ρk, cow∗(A1 ∪ (−A1))) ≥ ε. Thus

dist(tk, cow∗(A1 ∪ (−A1)) > δ, a contradiction. So, tHδ * cow∗(A ∪ (−A))

and σ(Hδ) ≤ ρ + δ, ∀0 < δ < ε. Hence, σ(X) ≤ ρ, for every σ(K) < ρ < 1,

and from this fact we conclude that σ(X) ≤ σ(K). ¤

Proposition 2.6. If X is a Banach space then σ(X) ≤ τ(X).

Proof. Assume that τ(X) < η < 1 and choose an UBABS {(xα, fα)}α<ω1 ⊂
X × X∗ of type η such that ‖fα‖ = 1 and ‖xα‖ ≤ M, ∀α < ω1, for

some 0 < M < ∞. Clearly, {±fα}α<ω1 is an w∗-ω1-polyhedron. Denote

K = cow∗({±fα}α<ω1), K0 = core (K) and H = {z ∈ K : λ(z) = 0}. It is

easy to see that |z(xα)| ≤ η for every z ∈ K0 and α < ω1. We claim that

σ(K) ≤ η. Indeed, let A ⊂ K be countable. By Lemma 2.3 there exists

γ < ω1 such that:

A ⊂ co({±fα}α≤γ ∪H) ⊂ cow∗({±fα}α≤γ ∪H).

Clearly, cow∗(A ∪ (−A)) ⊂ cow∗({±fα}α≤γ ∪H) and for every γ < ρ < ω1

and every z ∈ cow∗({±fα}α≤γ ∪H) we have |z(xρ)| ≤ η.

Hence, for every γ < ρ < ω1 and η < t ≤ 1 we have that tfρ /∈ cow∗(A ∪
(−A)). So σ(K) ≤ η and from this fact we conclude that σ(X) ≤ τ(X). ¤

Now we prove for a Banach space X that σ(X) = 1 iff τ(X) = 1.

Proposition 2.7. A Banach space X has an UBABS of type η, for some

η ∈ [0, 1), iff X∗ has a w∗-nonseparable equivalent dual unit ball. So,

σ(X) = 1 iff τ(X) = 1.
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Proof. Firstly, if X has an UBABS of type η, for some η ∈ [0, 1) (i.e.,

τ(X) < 1), then by Prop. 2.6 we have σ(x) < 1 (i.e., X∗ has a w∗-

nonseparable equivalent dual unit ball).

Assume now that X is a Banach space with σ(X) < 1 equipped with an

equivalent norm such that σ(B(X∗)) < 1. Fix ρ > 0 with σ(B(X∗)) < ρ <

1. If A ⊂ S(X) and ε ≥ 0 we put:

(A, ε)⊥ = {z ∈ X∗ : |z(x)| ≤ ε, ∀x ∈ A} and S((A, ε)⊥) = S(X∗) ∩ (A, ε)⊥.

Clearly εB(X∗) + A⊥ ⊂ (A, ε)⊥.

Claim 0. If A ⊂ S(X) and A⊥ 6= {0}, then εS(X∗) ⊂ co(S((A, ε)⊥))

for 0 ≤ ε < 1.

Indeed, let u ∈ εS(X∗) be arbitrary and pick some v ∈ A⊥ \ {0}. We

can find λ, µ > 0 such that u + λv, u − µv ∈ S(X∗). Thus, u + λv, u −
µv ∈ S((A, ε)⊥). Let t ∈ (0, 1) be such that tλ + (1 − t)(−µ) = 0. Then

u = t(u + λv) + (1− t)(u− µv) ∈ co(S((A, ε)⊥)).

Claim 1. For every countable subsets A ⊂ S(X) and F ⊂ S(X∗)

there exists f ∈ S((A,
√

ρ)⊥) such that
√

ρf /∈ cow∗(F ∪ (−F )).

The opposite means that
√

ρS((A,
√

ρ)⊥) ⊂ cow∗(F ∪ (−F )). By Claim

0 we have
√

ρS(X∗) ⊂ co(S((A,
√

ρ)⊥)). So:

ρB(X∗) ⊂ cow∗(ρS(X∗)) ⊂ cow∗(
√

ρS((A,
√

ρ)⊥)) ⊂ cow∗(F ∪ (−F )),

a contradiction because σ(B(X∗)) < ρ. So, Claim 1 holds.

Claim 2. There exist 0 ≤ δ < ε ≤ 1−√ρ such that for every count-

able subsets A ⊂ S(X) and F ⊂ S(X∗) there exist f0 ∈ S((A,
√

ρ)⊥)

and x0 ∈ S(X) such that f0(x0) ≥ 1− δ and f(x0) ≤ 1− ε, ∀f ∈ F .

Denote by R = {r = (r1, r2) ∈ Q × Q : 0 < r1 < r2 ≤ 1 − √ρ}. As R
is countable, we can put R = {rn}n≥1. If Claim 2 is false, for every pair

rn = (rn1, rn2) ∈ R we can choose countable subsets An ⊂ S(X), Fn ⊂
S(X∗), n ≥ 1, such that for every g ∈ S((An,

√
ρ)⊥) and every x ∈ S(X)

either g(x) < 1 − rn1 or there exists f ∈ Fn with f(x) > 1 − rn2. Let
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A = ∪n≥1An, F = ∪n≥1Fn. By Claim 1 there exists f0 ∈ S((A,
√

ρ)⊥) such

that
√

ρf0 /∈ cow∗(F ∪ (−F )). By the Hahn-Banach Theorem there exists

y ∈ S(X) such that:

√
ρf0(y) > sup{|f(y)| : f ∈ F} =: γ0 ≥ 0.

Choose a sequence {zn}n≥1 ⊂ S(X) such that:

lim
n→∞

f0(zn) = ‖f0‖ = 1 and 1− f0(zn) < 1
n
(f0(y)− γ0), n ≥ 1. (2)

Then f0(
zn+

1
n
y

‖zn+
1
n
y‖) = 1− δn with:

0 ≤ δn =
‖zn + 1

n
y‖ − f0(zn)− 1

n
f0(y)

‖zn + 1
n
y‖ ≤ 1− f0(zn) + 1

n
(1− f0(y))

‖zn + 1
n
y‖ .

Hence, limn→∞ δn = 0. On the other hand, for every f ∈ F :

f(
zn + 1

n
y

‖zn + 1
n
y‖) ≤ 1 + 1

n
γ0

‖zn + 1
n
y‖ = 1− εn,

where:

εn =
‖zn + 1

n
y‖ − 1− 1

n
γ0

‖zn + 1
n
y‖ ≤ 1 + 1

n
− 1− 1

n
γ0

‖zn + 1
n
y‖ =

1
n
(1− γ0)

‖zn + 1
n
y‖

and

εn =
‖zn + 1

n
y‖ − 1− 1

n
γ0

‖zn + 1
n
y‖ >

‖zn + 1
n
y‖ − f0(zn)− 1

n
f0(y)

‖zn + 1
n
y‖ = δn ≥ 0

by (2). Pick any n ∈ N such that
1
n
(1− γ0)

‖zn+
1
n
y‖ ≤ 1 − √ρ. Then 0 ≤ δn <

εn ≤ 1−√ρ and there is some m ∈ N such that δn ≤ rm1 < rm2 ≤ εn. Let

x0 =
zn+

1
n
y

‖zn+
1
n
y‖ ∈ S(X) and observe that f0 ∈ S((Am,

√
ρ)⊥), f0(x0) ≥ 1−δn

and f(x0) ≤ 1 − εn, ∀f ∈ F . Then f0 ∈ S((Am,
√

ρ)⊥), f0(x0) ≥ 1 − rm1

and f(x0) ≤ 1− εn ≤ 1− rm2, ∀f ∈ Fm, a contradiction. So, Claim 2 holds.

Let 0 ≤ δ < ε ≤ 1−√ρ be from Claim 2. We will construct a transfinite

sequence {(xα, fα)}α<ω1 ⊂ S(X)× S(X∗) so that for every α < ω1:

fα(xα) ≥ 1− δ (3)
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and

fα(xβ) ≤ 1− ε if α 6= β. (4)

On the first step, we take x1 ∈ S(X) and f1 ∈ S(X∗) such that f1(x1) = 1.

Let 1 < α0 < ω1 and suppose constructed the family {(xα, fα) : α < α0}
fulfilling the conditions (3) and (4). Let us apply the Claim 2, putting there

F = {fα : α < α0} and A = {xα : α < α0}. Denote the received elements

x0 and f0 by xα0 and fα0 . The inequality (3) for α = α0 is satisfied by

construction. The inequality (4) for α = α0 and β < α0 holds because

f0 ∈ S((A,
√

ρ)⊥) and ε ≤ 1 − √
ρ. For β = α0 and α < α0 it follows

because sup{f(x0) : f ∈ F} ≤ 1 − ε. Now the set {(xα, fα)}α<ω1 , where

xα = xα , fα = fα/fα(xα) , 1 ≤ α < ω1, is an uncountable bounded (by

(1− δ)−1) almost biorthogonal system. ¤

Proposition 2.8. Let X be a Banach space such that σ(X) < 1
3
. Then

τ(X) ≤ 2σ(X)
1−σ(X)

. So, for every Banach space we have that: (1) σ(X) = 0

iff τ(X) = 0; (2) σ(X) = 0 whenever X has an uncountable biorthogonal

system.

Proof. (A) Let ‖·‖ be an equivalent norm on X such that the corresponding

dual unit ball B(X∗) satisfies σ(B(X∗)) < 1
3
. It is enough to prove that

there exists in X an UBABS of type η ≤ 2a
1−a

, for every σ(B(X∗)) < a <

1
3
. So, fix some σ(B(X∗)) < a < 1

3
. By induction we choose a family

{(xα, fα)}α<ω1 ⊂ S(X)× S(X∗) such that:

fα(xα) >
1− a

2
but |fα(xβ)| < a, if α 6= β. (5)

Pick (x1, f1) ∈ S(X)×S(X∗) satisfying f1(x1) = 1. Let α < ω1 and assume

that we have chosen {(xβ, fβ)}β<α ⊂ S(X)× S(X∗) fulfilling (5). Denote:

Aα = [{xβ : β < α}] and Fα = cow∗({±fβ : β < α} ∪G0),

where G0 ⊂ B(X∗) is a countable symmetric subset 1-norming on Aα. By

[15, Lemma 4.3] there exists xα ∈ S(X) such that sup{|f(xα)| : f ∈ Fα} <
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a. We claim that dist(xα, Aα) > 1−a
2

. Indeed, pick z ∈ Aα and observe that,

if ‖z‖ < 1+a
2

, then clearly ‖z − xα‖ > 1−a
2

, and if ‖z‖ ≥ 1+a
2

, then:

‖z − xα‖ ≥ sup{f(z − xα) : f ∈ Fα} ≥

≥ ‖z‖ − sup{f(xα) : f ∈ Fα} >
1 + a

2
− a =

1− a

2
.

This fact means that, if Q : X → X
Aα

is the canonical quotient mapping,

then ‖Q(xα)‖ > 1−a
2

. So, as ( X
Aα

)∗ = A⊥
α there exists fα ∈ S(X∗) ∩ A⊥

α

such that fα(xα) > 1−a
2

. Thus we have chosen the pair (xα, fα) and this

completes the induction.

Now put f̃α = fα

fα(xα)
and consider the family F = {(xα, f̃α)}α<ω1 and

observe that:

(a) F is bounded because ‖xα‖ = 1 and:

‖f̃α‖ =
‖fα‖
|fα(xα)| <

1
1−a
2

=
2

1− a
<

2

1− 1
3

= 3.

(b) f̃α(xα) = 1 and |f̃α(xβ)| = |fα(xβ)|
fα(xα)

< a
1−a
2

= 2a
1−a

< 1 if α 6= β.

So, F is an UBABS of type η ≤ 2a
1−a

.

(B) (1) follows from (A) and Prop. 2.6. (2) follows from the definition of

τ(X) and (1). ¤

3. On ω-independence. The Kunen-Shelah property KS3. A family

{xi}i∈I in a Banach space X is said to be ω-independent if for every sequence

(in)n≥1 ⊂ I of distinct indices, and every sequence (λn)n≥1 ⊂ R, the series
∑∞

n=1 λnxin converges (in norm) to 0 iff λn = 0 for every n ≥ 1 (see [6],[12]).

A Banach space X is said to have the Kunen-Shelah property KS3 if X has

not an uncountable ω-independent family. Of course, every biorthogonal

family is ω-independent (i.e., KS3 ⇒ KS2), but there are ω-independent

families which are not merely biorthogonal systems. Here is one example:

X = C([0, 1]ω1) and {fn
α}α<ω1,n≥1 defined as

fn
α ( (tγ)γ<ω1 ) = tnα
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for every x = (tγ)γ<ω1 ∈ [0, 1]ω1 . This family is ω-independent but not a

biorthogonal system by the Theorem of Müntz-Szasz (see [11, 15.26 Th.]).

Question 2. Does a Banach space have an uncountable biorthogonal

system whenever it has an uncountable ω-independent family?

Unfortunately, the indices σ(X), τ(X) do not separate the properties KS2

and KS3, because as we prove in the following, if X ∈ KS3, then σ(X) = 0.

Lemma 3.1. Let X be a Banach space, {xi}1≤i<ω1 ⊂ X an uncountable

bounded ω-independent family, H ⊂ X a closed separable subspace and

N ∈ N. Then there exist ordinal numbers ρ < γ < ω1 such that xρ /∈
co (H ∪ {±Nxi}γ≤i<ω1).

Proof. Without loss of generality suppose that ‖xi‖ ≤ 1, ∀i < ω1. Assume

that for every pair of ordinal numbers ρ, γ such that ρ < γ < ω1 we have

xρ ∈ co (H ∪ {±Nxi}γ≤i<ω1). For n ∈ N and ρ < γ < ω1, denote Dγ =

co({±Nxi}γ≤i<ω1) and

H(ρ, γ, n) =

{
(u, λ) ∈ H × (0, 1] : ∃v ∈ Dγ with ‖λu + (1− λ)v − xρ‖ <

1

2n

}
.

If ρ < γ < γ′ < ω1 and n ≥ 1, by the hypothesis and the definition of

H(ρ, γ, n), we have H(ρ, γ, n) 6= ∅, H(ρ, γ, n+1) ⊂ H(ρ, γ, n) ⊃ H(ρ, γ′, n).

For β < ω1 and n ≥ 1 define:

H(β, n) = cl (∪{H(ρ, γ, n) : β ≤ ρ < γ < ω1}) .

where “cl” means the closure in H × (0, 1]. Clearly, for β < β′ and n ≥ 1

we have:

∅ 6= H(β′, n) ⊂ H(β, n) ⊃ H(β, n + 1).

Since H×(0, 1] is hereditarily Lindelöff , for each n ≥ 1 there exists βn < ω1

such that for every βn ≤ β < ω1 we have H(β, n) = H(βn, n). So, for every

(u, λ) ∈ H(βn, n) and every βn ≤ β < ω1 we have (u, λ) ∈ H(β, n), which

implies that there exist β ≤ ρ < γ < ω1 and v ∈ Dγ such that:

‖xρ − (λu + (1− λ)v)‖ < 1
n
.
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Let β0 = supn≥1 βn and fix β0 ≤ ρ < γ < ω1 and n ≥ 1. Pick (u, µ) ∈
H(ρ, γ, n) and w ∈ Dγ such that ‖xρ − (µu + (1 − µ)w)‖ < 1

2n
. Since

(u, µ) ∈ H(β0, n) = H(γ, n), there exist γ ≤ σ < θ < ω1 and v ∈ Dθ such

that ‖xσ − (µu + (1− µ)v)‖ < 1
n
.

Denote T = xσ − (µu + (1− µ)v). Then we have µu = xσ − T − (1− µ)v

and:

‖xρ − (xσ − T − (1− µ)v + (1− µ)w)‖ <
1

2n
.

Since ‖T‖ < 1
n
, we obtain:

‖xρ − (xσ − (1− µ)v + (1− µ)w)‖ =

= ‖xρ − (xσ − T − (1− µ)v + (1− µ)w)− T‖ ≤

≤ ‖xρ − (xσ − T − (1− µ)v + (1− µ)w)‖+ ‖T‖ <
1

2n
+

1

n
=

3

2n
.

Since xσ, v, w ∈ Eγ := [{xi}γ≤i<ω1 ], if n →∞ (with ρ, γ fixed), we obtain

that xρ ∈ Eγ (in particular, this implies that Eβ0 = Eβ, ∀β0 ≤ β < ω1).

Denote S = xρ − (xσ − (1− µ)v + (1− µ)w). Then:

xρ = S + µv + (1− µ)w + xσ − v.

Taking into account that µv + (1 − µ)w,−v ∈ Dγ, xσ ∈ 1
N

Dγ and that

‖S‖ < 3
2n

, we finally get xρ ∈ cl((1 + 1
N

)Dγ + Dγ) = cl((2 + 1
N

)Dγ). So, xρ

is an accumulation point of Fγ := (2 + 1
N

)Dγ (because xρ ∈ Fγ \ Fγ).

In consequence, we can conclude that every xi, β0 ≤ i < ω1, is an accu-

mulation point of every Fγ for γ < ω1.

Let (an)n≥1 be a sequence of positive real numbers such that limn→∞ an =

0,
∑

n≥1 an = ∞, and let bn = supm>n am. Fix β0 < τ < ω1. Using the

proof of [6, Th. 3], like in [12], we can construct inductively a sequence of

signs {εn}n≥1, a sequence of real numbers {λn
r }n≥1,1≤r≤k(n) and a sequence

of ordinals {γn
r }n≥1,1≤r≤k(n) such that:

(1)
∑k(n)

r=1 |λn
r | ≤ 2N + 1, for every n ≥ 1.

(2) τ < γn
1 < γn

2 < · · · < γn
k(n) < γn+1

1 < · · · < ω1, for every n ≥ 1.
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(3) xτ +
∑

n≥1 anεnyn = 0, where yn =
∑k(n)

r=1 λn
r xγn

r
.

Let us see the two first steps of this argument. Denote K = {xi}τ<i<ω1 .

Step 1. By the proof of [6, Th. 3] we can find p1 ∈ N, a finite sequence

of (not necessarily distinct) elements {hn}1≤n≤p1 ⊂ K and a finite sequence

of signs {εn}1≤n≤p1 such that:

‖xτ +

p1∑
n=1

anεnhn‖ < 2−1,

‖xτ +

j∑
n=1

anεnhn‖ < b1 + 1 + 2−1, for 1 ≤ j ≤ p1.

Since hn ∈ cl(Fβ), ∀β0 ≤ β < ω1, we can find, for 1 ≤ n ≤ p1, real

numbers {λn
r }1≤r≤k(n) with

∑k(n)
r=1 |λn

r | ≤ 2N + 1, and ordinals {γn
r }k(n)

r=1 such

that:

(a) τ < γn
1 < γn

2 < · · · < γn
k(n) < γn+1

1 < · · · < ω1.

(b) ‖xτ +
∑p1

n=1 anεn ·
∑k(n)

r=1 λn
r xγn

r
‖ < 2−1.

(c) ‖xτ +
∑j

n=1 anεn ·
∑k(n)

r=1 λn
r xγn

r
‖ < b1 + 1 + 2−1, for 1 ≤ j ≤ p1.

Step 2. Let u1 = xτ +
∑p1

n=1 anεn ·
∑k(n)

r=1 λn
r xγn

r
. By the proof of [6, Th.

3] we can find p1 < p2 ∈ N, a finite sequence of (not necessarily distinct)

elements {hn}p1+1≤n≤p2 ⊂ K and a finite sequence of signs {εn}p1+1≤n≤p2

such that:

‖u1 +

p2∑
n=p1+1

anεnhn‖ < 2−2,

‖u1 +

j∑
n=p1+1

anεnhn‖ < bp1 + 2−1 + 2−2, for p1 + 1 ≤ j ≤ p2.

Since hn ∈ cl(Fβ), ∀β0 ≤ β < ω1, we can find, for p1 < n ≤ p2, real

numbers {λn
r }1≤r≤k(n) with

∑k(n)
r=1 |λn

r | ≤ 2N + 1, and ordinals {γn
r }k(n)

r=1 such

that:

(a) γp1

k(p1) < γn
1 < γn

2 < · · · < γn
k(n) < γn+1

1 < · · · < ω1.

(b) ‖u1 +
∑p2

n=p1+1 anεn ·
∑k(n)

r=1 λn
r xγn

r
‖ < 2−2.

(c) ‖u1 +
∑j

n=p1+1 anεn ·
∑k(n)

r=1 λn
r xγn

r
‖ < bp1 +2−1 +2−2, for p1 < j ≤ p2.
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Now by reiteration we obtain the complete construction. It is easy to

see that the series xτ +
∑

n≥1 anεn

(∑k(n)
r=1 λn

r xγn
r

)
converges to zero. This

proves that {xi}i<ω1 is not ω-independent, a contradiction. So, we can

choose ρ < γ < ω1 such that xρ /∈ co(H ∪ {±Nxi}γ≤i<ω1). ¤

Proposition 3.2. Let a Banach space X have an uncountable ω-independent

family {xα}1≤α<ω1. Then for every 0 < η < 1, there exist an uncountable

subsequence {αi}i<ω1 ⊂ ω1 and an UBABS {(zi, fi)}i<ω1 ⊂ X ×X∗ of type

η such that zi = xαi
and fi(zj) = 0 for j < i < ω1. So, τ(X) = 0 and X

has an ω1-polyhedron.

Proof. Let {xi}1≤i<ω1 ⊂ X be an uncountable ω-independent family and

suppose, without loss of generality, that ‖xi‖ ≤ 1 for every i < ω1. Let

N ∈ N be such that 1/N ≤ η. In the following we choose by induction two

subsequences of ordinal numbers {iα, jα}α<ω1 , iα < jα ≤ iβ < jβ < ω1, for

α < β < ω1, such that:

xiα /∈ co
(
[{xiβ : β < α}] ∪ {±Nxj}jα≤j<ω1

)
. (6)

Indeed, let α < ω1 and assume that we have chosen {iβ, jβ}β<α sat-

isfying (6). Put H =
[{xiβ}β<α

]
and ν = supβ<α{jβ} (if α = 1, put

H = {0} and ν = 1). By Lemma 3.1 there exist ν ≤ ρ < γ < ω1

such that xρ /∈ co (H ∪ {±Nxi}γ≤i<ω1). So, we put iα = ρ, jα = γ and

this completes the induction. Let zα = xiα , α < ω1. By (6) we have

zα /∈ co
(
[{zβ : β < α}] ∪ {±Nzj}α<j<ω1

)
. So, by the Hahn-Banach Theo-

rem there exists fα ∈ X∗ such that:

1 = fα(zα) > sup{fα(x) : x ∈ co
(
[{zβ : β < α}] ∪ {±Nzj}α<j<ω1

)
}.

Clearly, fα(zβ) = 0, if β < α, and |fα(Nzβ)| < 1, i.e., |fα(zβ)| < 1/N , if

α < β < ω1. Finally, choosing an uncountable subsequence A ⊂ ω1 with

{‖fα‖ : α ∈ A} bounded, then {(zα, fα) : α ∈ A} is the UBABS of type η

we are looking for. ¤
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4. The Kunen-Shelah property KS4. A Banach space X is said to have

the Kunen-Shelah property KS4 if X has not an ω1-polyhedron. The impli-

cation KS4 ⇒ KS3 was proved in [3]. It also follows from Prop. 3.2 and

from Prop. 7.3 and a result of Sersouri [12].

Proposition 4.1. Let Z be a Banach space and X ⊂ Z a closed subspace

such that Z/X is separable. Then the following are equivalent: (a) Z ∈ KS4

; (b) X ∈ KS4.

Proof. (a)⇒(b). This is obvious.

(b)⇒(a). Assume that Z /∈ KS4 and prove that X /∈ KS4. By Prop.

2.2 there exists in Z an UBABS {(zα, fα) : α < ω1} of type η ∈ [0, 1) with

‖fα‖ ≤ M, ∀α < ω1, for some 0 < M < ω1. Denote ε := 1 − η. Since

Z/X is separable, there exists an uncountable subset I ⊂ ω1 such that, if

Q : Z → Z/X is the canonical quotient mapping, then ‖Qzα −Qzβ‖ < ε
4M

for every α, β ∈ I. Fix τ ∈ I and denote yα = zα − zτ , ∀α ∈ I. Since

‖Qyα‖ < ε
4M

, there exists xα ∈ X such that ‖xα−yα‖ < ε
4M

, ∀α ∈ I. Then

for each α, β ∈ I, α 6= β, we have:

fα(xα) = fα(yα) + fα(xα − yα) ≥ fα(yα)−M
ε

4M
= fα(zα)− fα(zτ )− ε

4
=

= 1− fα(zτ )− ε

4
> η − fα(zτ ) +

ε

4
≥ fα(zβ)− fα(zτ ) +

ε

4
=

= fα(yβ) +
ε

4
= fα(yβ) + M

ε

4M
≥ fα(xβ),

which implies that {xα : α ∈ I} is an uncountable polyhedron in X, i.e.,

X ∈ KS4. ¤

In the following we obtain some characterizations of the property KS4.

Let us see some previous lemmas.

Lemma 4.2. Let X be a locally convex topological space, τ = σ(X,X∗), f ∈
X∗\{0}, C ⊂ f−1(1) a bounded convex subset and B = co(C∪(−C)). Then

C is τ -separable iff B is τ -separable.

Proof. Clearly, B is τ -separable whenever C is τ -separable. For the converse

implication suppose that B is τ -separable and choose a countable subset



18 GRANERO, JIMÉNEZ, MONTESINOS, MORENO, AND PLICHKO

A ⊂ C such that D := {tx − (1 − t)y : x, y ∈ A, t ∈ [0, 1]} is τ -dense

in B. Now it is an easy exercise to prove that C ⊂ τ -cl(A), i.e., C is

τ -separable. ¤

Lemma 4.3. Let X be a locally convex topological space, τ = σ(X, X∗), C ⊂
X a convex subset such that for some f ∈ X∗ there exists a countable subset

R ⊂ R satisfying:

(1) ∅ 6= (inf{f(x) : x ∈ C}, sup{f(x) : x ∈ C}) ⊂ R.

(2) Cr := {x ∈ C : f(x) = r} is τ -separable, for each r ∈ R.

Then C is τ -separable.

Proof. By hypothesis inf{f(x) : x ∈ C} < sup{f(x) : x ∈ C}. For each

r ∈ R, choose a countable subset Ar ⊂ Cr such that Cr ⊂ τ -cl(Ar). Let

A = ∪r∈RAr be a countable subset of C. We claim that A is τ -dense in

C. Indeed, pick z0 ∈ C arbitrarily and let U be a τ -neighborhood of z0

in C. By hypothesis, there exists some r ∈ R such that Cr ∩ U 6= ∅. So,

Ar ∩ U 6= ∅, whence A ∩ U 6= ∅. ¤

Proposition 4.4. Let X be a Banach space. The following are equivalent:

(1) X ∈ KS4.

(2) K ⊂ X∗ is w∗-separable whenever K is a w∗-compact convex sym-

metric subset such that ‖ · ‖-int(K) 6= ∅.
(3) K ⊂ X∗ is w∗-separable whenever K is a w∗-compact convex sym-

metric subset, i.e., σ(X) = 1 = τ(X).

(4) K ⊂ X∗ is w∗-separable whenever K is a w∗-closed convex symmet-

ric subset.

(5) K ⊂ X∗ is w∗-separable whenever K is a w∗-closed convex subset.

Proof. (1) ⇒ (2). This follows from Prop. 2.7 and Prop. 2.2, because if

K ⊂ X∗ is a w∗-compact convex symmetric subset such that ‖·‖-int(K) 6= ∅,
then K is the dual unit ball of X∗ when X is equipped with the equivalent

norm | · | such that |x| = sup{x∗(x) : x ∈ K} for every x ∈ X.
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(2) ⇒ (3). Let K ⊂ X∗ be a w∗-compact convex symmetric subset and

denote Kn = K+ 1
n
B(X∗), which is w∗-compact convex symmetric subset of

X∗ with nonempty interior. By (2) there is a countable family {xn,m}m≥1 ⊂
Kn such that Kn = {xn,m : m ≥ 1}w∗

for every n ≥ 1. Pick kn,m ∈ K such

that ‖kn,m−xn,m‖ ≤ 1
n
. Then it is easy to see that K = {kn,m : n,m ≥ 1}w∗

.

(3) ⇒ (4). Let K ⊂ X∗ be a w∗-closed convex symmetric subset and

denote Kn = K ∩ nB(X∗). By (3) Kn is w∗-separable and so K, because

K = ∪n≥1Kn.

(4) ⇒ (5). It is enough to prove that if K ⊂ X∗ is a w∗-compact convex

subset, then K is w∗-separable. Without loss of generality, assume that

0 /∈ K. Let f ∈ X be such that 0 < min{f(k) : k ∈ K} ≤ max{f(k) :

k ∈ K} < ∞. If t ∈ [min{f(k) : k ∈ K}, max{f(k) : k ∈ K}], denote

Kt = {k ∈ K : f(k) = t} and Ct = cow∗(Kt ∪ (−Kt)). By (4) and Lemma

4.2 each Ct is w∗-separable. So, from Lemma 4.3 we get that K is w∗-

separable.

(5) ⇒ (1). Suppose that there exists in X a bounded ω1-polyhedron

{xi}i<ω1 . By Prop. 2.2, there exists in X an UBABS {(xα, fα)}α<ω1 ⊂
X × X∗ such that ‖fα‖ = 1, ‖xα‖ ≤ M, fα(xα) = 1 and fα(xβ) ≤ 1 − ε,

for every α, β < ω1, α 6= β, and some 1 ≥ ε > 0, 1 ≤ M < +∞. Let

K = cow∗({fα : α < ω1}). Consider the w∗-open slices Uα = {k ∈ K :

k(xα) > 1− ε
3
} for all α < ω1. Then Uα is a w∗-open neighborhood of fα in

K and we can easily realize that Uα ∩ Uβ = ∅, whenever α 6= β. Thus K is

w∗-nonseparable, a contradiction to (5). So, X ∈ KS4. ¤

Question 3. Let X be a Banach space. If τ(X) < 1, is τ(X) = 0? If

τ(X) = 0, does X have an uncountable ω-independent family?

5. The Finet-Godefroy indices. If X is a Banach space, the Finet-

Godefroy indices d∞(X) and µ(X) were introduced in [1] and defined as

follows:

d∞(X) = inf{d(X, Y ) : Y subspace of `∞(N)}
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where d(X,Y ) is the Banach-Mazur distance. Clearly, d∞(X) depends upon

the norm ‖·‖ of X and we see easily that: (i) d∞(X) ∈ [1,∞]; (ii) d∞(X) <

∞ iff X is isomorphic to a subspace of `∞(N); (iii) d∞(X, ‖ · ‖) = 1 iff

(X, ‖ · ‖) is isometric to a subspace of `∞(N) iff the dual unit ball B(X∗) is

w∗-separable. The corresponding isomorphic invariant index is:

µ(X) = sup{d∞(X, | · |)}

where the supremum is computed over the set of equivalent norms on X.

Proposition 5.1. Let X be a Banach space. Then:

(1) µ(X) = σ(X)−1 (0−1 = ∞).

(2) If X has an uncountable ω-independent system, then µ(X) = ∞.

Proof. (1) This follows from [1, Lemma III.1] and a simple calculation.

(2) By Prop. 3.2 and Prop. 2.8 we get that σ(X) = 0. Now apply (1). ¤

The following questions are proposed in [1] :

(1) It is clear that µ(X) = 1 if X is separable. Is the converse true?

(2) Does there exist a nonseparable Banach space X such that every

quotient of X is isometric to a subspace of `∞(N)?

In the following we answer these questions.

Proposition 5.2. Let X be a Banach space. The following are equivalent:

(1) X ∈ KS4.

(2) Every quotient of (X, | · |) is isometric to a subspace of `∞(N), for

every equivalent norm | · | of X.

(3) µ(X) = 1.

(4) Every quotient of X satisfies the property KS4.

Proof. (1) ⇒ (2). Let | · | be an equivalent norm on X, Y ⊂ X a closed

subspace and Z = (X/Y, | · |) the corresponding quotient space. Clearly,

we have (B(Z∗), w∗) = (B(Y ⊥), w∗). But (B(Y ⊥), w∗) is w∗-separable by

Prop. 4.4. So, Z is isometric to a subspace of `∞(N).
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(2) ⇒ (3). By (2) d∞(X, | · |) = 1 for every equivalent norm | · | on X.

So, µ(X) = 1.

(3) ⇒ (4). Since µ(X/Y ) ≤ µ(X) for every quotient X/Y (see [1, Th.

III-2]), (3) implies that µ(X/Y ) = 1, i.e., σ(X/Y ) = 1. So, by Prop. 4.4

we get that X/Y ∈ KS4.

(4) ⇒ (1). This is obvious. ¤

Corollary 5.3. If X is either the space C(K), under CH and K being

the Kunen compact space, or the space S of Shelah, under 3ℵ1, then X is

nonseparable, µ(X) = 1 and every quotient of (X, | · |) is isometric to a

subspace of `∞(N), for every equivalent norm | · | of X.

Proof. This follows from Prop. 5.2 since in both cases X ∈ KS4 (see Section

6). ¤

Remarks. (1) The fact that every quotient of (X, | · |) is isometric to a

subspace of `∞(N) for every equivalent norm | · | of X, when X = C(K), K

being the Kunen compact, was shown in [5, Cor. 4.5].

(2) In [1] is asked if µ(X) = ∞ whenever a Banach space X satisfies

µ(X) > 1. In fact, it is not known a Banach space X such that 1 < µ(X) <

∞. Observe that 1 < µ(X) < ∞ implies that X ∈ KS3 but X /∈ KS4,

because: (i) 1 < µ(X) < ∞ iff 1 > σ(X) > 0 by Prop. 5.1; (ii) 1 > σ(X)

iff X /∈ KS4 by Prop. 4.4; (iii) and σ(X) > 0 implies X ∈ KS3 by Prop.

3.2 and Prop. 2.8.

6. The Kunen-Shelah property KS5. Let θ be an ordinal. A convex

right-separated θ-family in a Banach space X is a bounded family {xi}i<θ ⊂
X such that xj /∈ co({xi : j < i < θ}) for every j ∈ θ. A family of

convex closed bounded subsets {Cα}α<θ in the Banach space X is said to

be a contractive (resp. expansive) θ-onion iff Cα $ Cβ (resp. Cβ $ Cα)

whenever β < α < θ. It is easy to prove that X has a contractive θ-onion iff

X has a convex right-separated θ-family. In the dual Banach space X∗ one

can define a contractive (resp. expansive) w∗-θ-onion in a analogous way,

using the w∗-topology instead of the w-topology.
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A Banach space X is said to have the Kunen-Shelah property KS5 if X has

not a contractive uncountable onion. If X has a τ -polyhedron {xα : α < τ},
it is clear that {Cα : α < τ}, Cα = co({xβ : α < β < τ}), is a contractive

τ -onion. So, the property KS5 implies KS4, whence by Prop. 3.2 we get

KS5 ⇒ KS3, a result proved by Sersouri in [12].

Proposition 6.1. Let X be a Banach space. Then:

(1) X has a contractive ω1-onion iff X∗ has an expansive w∗-ω1-onion.

(2) X has an expansive ω1-onion iff X∗ has a contractive w∗-ω1-onion.

(3) X is nonseparable iff X∗ has a contractive w∗-ω1-onion.

Proof. (1) Assume that X has a contractive ω1-onion, i.e., there exists a

sequence {xα}α<ω1 ⊂ B(X) such that xα /∈ co({xβ}α<β<ω1). By the Hahn-

Banach Theorem there exists fα ∈ X∗ such that:

fα(xα) > sup{fα(xβ) : α < β < ω1} =: eα.

By passing to a subsequence, we can suppose that there exist 0 < ε,M < ∞
and r ∈ R such that ‖fα‖ ≤ M, fα(xα) − eα ≥ ε > 0 and |r − fα(xα)| ≤
ε
4
, ∀α < ω1. Hence, if β < α < ω1, we have:

fα(xα) ≥ r − ε

4
> r − 3ε

4
≥ fβ(xβ)− ε ≥ eβ ≥ fβ(xα),

which implies that fα /∈ cow∗({fβ : β < α}) =: Kα, i.e., {Kα : α < ω1} is

an expansive w∗-ω1-onion in X∗.

The converse implication is analogous.

(2) Use the same argument that in (1).

(3) Apply (2) and that X has an expansive ω1-onion iff X is nonseparable.

¤

A Banach space has the property HL(1) (in short, X ∈ HL(1)) whenever

in every family of open semi-spaces {Ui}i∈I of X there exists a countable

subset {in}n≥1 ⊂ I such that ∪n≥1Uin = ∪i∈IUi, i.e., every closed convex

subset of X is the intersection of a countable family of closed semi-spaces

of X.
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Proposition 6.2. Let X be a Banach space. Then the following are equiv-

alent: (1) X ∈ KS5; (2) Every convex subset of X∗ is w∗-separable; (3)

X ∈ HL(1).

Proof. (1) ⇔ (2). By Prop. 6.1, X has not a contractive uncountable onion

iff X∗ has not an expansive uncountable w∗-onion and it is trivial to prove

that this occurs iff every convex subset of X∗ is w∗-separable.

(2) ⇒ (3). Suppose that X /∈ HL(1) and let F = {Ui}i<ω1 be an un-

countable family of open semi-spaces of X such that F has not a countable

subcover. Assume that Ui = {x ∈ X : x∗i (x) < ai}, with ai 6= 0, for all

i < ω1 (if ai = 0, for some i < ω1, we put the family Uin = {x ∈ X : x∗i (x) <

− 1
n
}, n ≥ 1, instead of Ui). Dividing by |ai|, we can suppose that each Ui

has the expression Ui = {x ∈ X : y∗i (x) < εi} with εi = ±1 and y∗i = x∗i /|ai|.
Putting F1 = {Ui ∈ F : εi = +1} and F2 = {Ui ∈ F : εi = −1}, it is clear

that either F1 or F2 has not countable subcover.

Assume that F1 doesn’t admit a countable subcover (the argument for F2

is similar). So, there exists an uncountable family {Vα : α < ω1} ⊂ F1, Vα =

{x ∈ X : z∗α(x) < 1}, such that there exists xα ∈ Vα \ ∪β<αVβ, ∀α < ω1.

Put A = co{z∗i }i<ω1 , which is w∗-separable, by hypothesis. Thus, we can

find ρ < ω1 such that A ⊂ cow∗({z∗i }i≤ρ). Pick ρ < α < ω1. As xα ∈
Vα \ ∪β<αVβ, we get that z∗α(xα) < 1 and z∗β(xα) ≥ 1 for every β < α. Let

C = {x∗ ∈ X∗ : x∗(xα) ≥ 1}, which is a convex w∗-closed subset of X∗.

Since z∗i ∈ C for all i ≤ ρ, it follows that A ⊂ C. So, z∗α /∈ C and z∗α ∈ A, a

contradiction which proves (3).

(3) ⇒ (1). Suppose that X has a contractive ω1-onion {Cα}α<ω1 . We

choose vectors xα ∈ Cα\Cα+1 and a sequence of open semi-spaces {Uα}α<ω1

such that xα ∈ Uα and Uα ∩ Cα+1 = ∅. Clearly, no countable subfamily of

{Uα}α<ω1 covers {xα}α<ω1 , which contradicts to (3). ¤

Remark. If X is a Banach space, we put X ∈ L(1) if from every cover of

X by open semi-spaces we can choose a countable subcover. Clearly, X has
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the property (C) of Corson iff X ∈ L(1). Since X ∈ HL(1) ⇒ X ∈ L(1),

we have that X ∈ KS5 implies X ∈(C).

Proposition 6.3. If X is either the space C(K), under CH and K being the

Kunen compact space, or the space S of Shelah, under 3ℵ1, then X ∈ KS5

Proof. The space C(K), K being the Kunen compact space, satisfies C(K) ∈
KS5 because for every uncountable family {xi : i ∈ I} ⊂ C(K), there exists

j ∈ I such that xj ∈ wcl({xi : i ∈ I \ {j}}). It is clear that a space with

this property cannot have an ω1-onion.

The space S of Shelah satisfies (see [13, Lemma 5.2]) that if {yi}i<ω1 ⊂ S

is an uncountable sequence, then ∀ε > 0,∀n ≥ 1, there exist i0 < i1 < ... <

in < ω1 such that:

‖yi0 −
1

n
(yi1 + ... + yin)‖ ≤ 1

n
‖yi0‖+ ε. (7)

Assume that S has an ω1-onion {Cα : 1 ≤ α < ω1} with C1 ⊂ B(S). Choose

xα ∈ Cα \ Cα+1 and let ηα := dist(xα, Cα+1) which satisfies ηα > 0. By

passing to a subsequence, it can be assumed that ηα ≥ η > 0, ∀α < ω1.

Let m ∈ N be such that 1
m

< η
2
. By (7) there exists i0 < i1 < ... < im < ω1

such that:

‖xi0 −
1

m
(xi1 + ... + xim)‖ ≤ 1

m
‖xi0‖+

η

2
< η.

Since 1
m

(xi1 + ... + xim) ∈ Ci0+1 and dist(xi0 , Ci0+1) ≥ η, we get a con-

tradiction which proves that S ∈ KS5. ¤

7. KS4 and KS5 are equivalent. If X is Asplund or has the property

(C) of Corson, it is easy to prove that X ∈ KS4 ⇔ X ∈ KS5. In the

following we prove the equivalence KS5 ⇔ KS4 in general. A sequence

{Cα : α < ω1} of convex closed bounded subset of a Banach space X is

said to be a generalized ω1-onion iff ∅ 6= Cα ⊂ Cβ, for β < α, and there

exists a subsequence {αβ}β<ω1 ⊂ ω1, with αβ1 < αβ2 if β1 < β2, such that

Cαβ1
6= Cαβ2

, i.e., {Cαβ
: β < ω1} is an ω1-onion. If C ⊂ X is a subset,
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denote by cone(C) the closed convex cone generated by C. Observe that, if

C is a convex subset, then cone(C) = cl(∪λ≥0λC).

Lemma 7.1. Let X be a Banach space, C ⊂ X a convex closed separable

subset of X and {Cα : 1 ≤ α < ω1} a generalized ω1-onion of X.

(1) If dist(C, Cα) = 0 for every α < ω1, then for every ε > 0 there exists

cε ∈ C such that dist(cε, Cα) ≤ ε for every α < ω1.

(2) There are two disjoint alternatives, namely:

(A) either there exist two ordinals β < α < ω1 and z ∈ Cβ such that

z /∈ co([C] ∪ cone(Cα)),

(B) or for every pair of ordinals β < α < ω1 we have Cβ ⊂ co([C]∪
cone(Cα)). In this case, we have:

co([C] ∪ cone(Cα)) = co([C] ∪ cone(Cβ)), ∀α, β < ω1,

and for every ε > 0 there exists cε ∈ X such that dist(cε, Cα) ≤ ε

for every α < ω1.

Proof. (1) For every α < ω1 and n ≥ 1 let C(α, n) = {x ∈ C : dist(x,Cα) ≤
1/n}. Then {C(α, n) : α < ω1} is a family of nonempty closed convex subset

such that C(α, n) ⊃ C(β, n), if α < β, with the countable intersection

property. Since C is separable, we conclude that ∩α<ω1C(α, n) 6= ∅ for

every n ≥ 1. So, if for every n ≥ 1 we pick cn ∈ ∩α<ω1C(α, n), then

dist(cn, Cα) ≤ 1/n for every α < ω1.

(2) Clearly, the alternatives (A) and (B) are disjoint. Suppose that (B)

holds. Since [C] is separable there exist two ordinals β0 < α0 < ω1 and

z0 ∈ Cβ0 \ Cα0 such that z0 /∈ [C] but z0 ∈ co([C] ∪ cone(Cα)) for every

α < ω1.

Claim. If H = [C ∪ {z0}], then dist(H,Cα) = 0 for every α < ω1.

Indeed, let ε0 = dist(z0, [C]) and n0 ≥ 1 such that 2
n0

< ε0. Observe that

for every α < ω1 and ε > 0 we can choose λ ∈ [0, 1), µ > 0, w ∈ [C] and
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v ∈ Cα such that:

‖λw + (1− λ)µv − z0‖ ≤ ε. (8)

Let M > 0 be such that C1 ⊂ B(0; M). We claim that if we pick α <

ω1, n ≥ n0, λ ∈ [0, 1), µ > 0, w ∈ [C] and v ∈ Cα fulfilling (8) with

ε = 1/n, then (1− λ)µ ≥ 1
n0M

. Indeed, in the contrary case we would have:

ε0 ≤ ‖λw − z0‖ = ‖λw + (1− λ)µv − z0 − (1− λ)µv‖ ≤

≤ ‖λw + (1− λ)µv − z0‖+ ‖(1− λ)µv‖ ≤ 1

n0

+
1

n0

< ε0,

which is a contradiction. So, for every α < ω1, n ≥ n0, λ ∈ [0, 1), µ >

0, w ∈ C and v ∈ Cα fulfilling (8) with ε = 1/n we have:

‖ z0

(1− λ)µ
− λ

(1− λ)µ
w − v‖ ≤ 1

(1− λ)µn
≤ n0M

n

and this proves that dist(H, Cα) = 0 for every α < ω1.

As H is separable, given ε > 0, applying (1) we can choose a vector

cε ∈ X such that dist(cε, Cα) ≤ ε for every α < ω1, and this completes the

proof. ¤

Proposition 7.2. Let X be a Banach space without the property (C) of

Corson. Then there exists a sequence {(yα, y∗α) : α < ω1} ⊂ X × X∗ such

that y∗α(yα) = 1 for all α < ω1 but y∗α(yβ) = 0, if β < α, and y∗α(yβ) ≤ 0, if

β > α. So, X has a ω1-polyhedron and X /∈ KS4.

Proof. Since X doesn’t satisfy the property (C) of Corson, it is easy to see

that there exists in X a ω1-onion {Cα : α < ω1} such that ∩α<ω1Cα = ∅.
Using a transfinite inductive process with ω1 steps we construct:

(1) A sequence of numbers {nα : α < ω1} with nα ∈ {0, 1} such that if

p(α) = |{β ≤ α : nβ = 1}| then p(α) < ℵ0.

(2) Two sequences of ordinals {ργ, τγ : γ < ω1} such that 1 ≤ ργ < τγ ≤
ρβ < ω1 if γ < β < ω1.

(3) For each α < ω1 a generalized ω1-onion {C(α)
β : ρα ≤ β < ω1} such

that Cγ ⊃ C
(α)
γ ⊃ C

(β)
γ 6= ∅ if α ≤ β < ω1 and ρβ ≤ γ < ω1.
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(4) If nα = 0 we choose an element yα ∈ C
(α)
ρα such that if Hα =

[{yβ : β < α, nβ = 0}] then yα /∈ co(Hα ∪ cone(C
(α)
τα )). Also, in this

case we demand that C
(α)
γ = ∩β<αC

(β)
γ for every ρα ≤ γ < ω1.

(5) If nα = 1 we do not choose the element yα. Instead of we pick a

vector ap(α) ∈ X such that C
(α)
β ⊂ B(ap(α), 2

−p(α)) for every τα ≤
β < ω1, which will imply that:

diam(C
(α)
β ) ≤ 2−p(α)+1 and dist(ap(α), C

(α)
β ) ≤ 2−p(α), ∀τα ≤ β < ω1.

Begin the construction.

Step 1. In this step we choose n1 = 0, ρ1 = 1, τ1 = 2, C
(1)
β = Cβ, for

every 1 ≤ β < ω1, y1 ∈ C1 \ C2 arbitrary and H1 = {0}.

Step α + 1 < ω1. Suppose constructed all the steps β ≤ α satisfying the

above requirements and construct the step α+1. By hypothesis {C(α)
β : τα ≤

β < ω1} is a generalized ω1-onion. By Lemma 7.1 there are two disjoint

alternatives:

(A) There exist two ordinals τα ≤ β0 < α0 < ω1 and a vector z0 ∈ C
(α)
β0

such that z0 /∈ co(Hα ∪ cone(C
(α)
α0 )). In this case we do ρα+1 = β0, τα+1 =

α0, nα+1 = 0, yα+1 = z0 and C
(α+1)
β = C

(α)
β for every ρα+1 ≤ β < ω1.

(B) If (A) doesn’t hold, there exists c ∈ X such that dist(c, C
(α)
β ) ≤

2−(p(α)+2) for every τα ≤ β < ω1. In this case we do nα+1 = 1, p(α +

1) = p(α) + 1, ρα+1 = τα, τα+1 = τα + 1, ap(α+1) = c and C
(α+1)
β =

B(ap(α+1), 2
−p(α+1)) ∩ C

(α)
β for every ρα+1 ≤ β < ω1. Since nα+1 = 1 we do

not choose yα+1.

Step α < ω1, α a limit ordinal. Let α < ω1 be a limit ordinal, sup-

pose constructed all the steps β < α satisfying the above requirements and

construct the step α.

Claim : |{β < α : nβ = 1}| < ℵ0.

Indeed, in the contrary case we would have a sequence of ordinals

{βm}m≥1 ↑ α, βm < βm+1 < α, such that nβm = 1 for every m ≥ 1.
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Obviously p(βm) ↑ +∞ when m → ∞. The sequence {ap(βm)}m≥1 is a

Cauchy sequence. Indeed, if r < s are two integers, for every τβs ≤ β < ω1,

since C
(βs)
β ⊂ C

(βr)
β , we have:

dist(ap(βr), ap(βs)) ≤ dist(ap(βr), C
(βr)
β ) + diam(C

(βr)
β ) + dist(ap(βs), C

(βr)
β ) ≤

≤ 2−p(βr) + 2−p(βr)+1 + 2−p(βs) →
r,s→∞

0.

Let a0 := limm→∞ ap(βm) and γ0 = sup{τβ : β < α}. Then a0 ∈ Cγ for every

γ0 ≤ γ < ω1 because:

dist(a0, Cγ) ≤ dist(a0, ap(βm)) + dist(ap(βm), C
(βm)
γ ) →

m→∞
0.

Hence ∩α<ω1Cα 6= ∅, a contradiction which proves the Claim.

Denote as above γ0 = sup{τβ : β < α} and let Dγ := ∩β<αC
(β)
γ for every

γ0 ≤ γ < ω1. By the Claim and the construction of the previous steps we

have that:

(a) There exists an ordinal δ0 < α such that nδ = 0 for every δ0 ≤ δ < α.

So, p(δ) = p(δ0) for every δ ∈ [δ0, α).

(b) For every γ0 ≤ γ < ω1 we have Dγ = C
(δ0)
γ , which by induction

hypothesis implies that {Dγ : γ0 ≤ γ < ω1} is a generalized ω1-onion.

If Hα := [{yβ : β < α, nβ = 0}], by Lemma 7.1 we have the following

disjoint alternatives:

(A) There are two ordinals γ0 ≤ β0 < α0 < ω1 and a vector z0 ∈ Dβ0 such

that z0 /∈ co(Hα ∪ cone(Dα0)). In this case we do ρα = β0, τα = α0, nα =

0, yα = z0 and C
(α)
β = Dβ for every ρα ≤ β < ω1.

(B) If (A) doesn’t hold, there exists c ∈ X such that dist(c,Dγ) ≤
2−p(δ0)+2 for every γ0 ≤ γ < ω1. In this case we do nα = 1, p(α) =

p(δ0) + 1, ρα = γ0, τα = ρα + 1, ap(α) = c and C
(α)
γ = B(ap(α), 2

−p(α)) ∩Dγ

for γ0 ≤ γ < ω1. Since nα = 1 we do not choose yα.

And this completes the induction.
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Obviously, there exists ρ < ω1 such that nα = 0 for every ρ ≤ α <

ω1, which gives us the sequence {yα : ρ ≤ α < ω1} fulfilling that yα /∈
co([{yβ : ρ ≤ β < α}] ∪ cone({yβ : α < β < ω1})) =: Kα for every ρ ≤
α < ω1. So, by the Hahn-Banach theorem there exists y∗α ∈ X∗ such that

y∗α(yα) = 1 but sup{y∗α(y) : y ∈ Kα} < 1. In particular, y∗α(yβ) = 0, if

ρ ≤ β < α, and y∗α(yβ) ≤ 0 if α < β < ω1. ¤

Proposition 7.3. Let X be a Banach space. We have:

(1) If X ∈ KS4, then X ∈ (C); (2) X ∈ KS4 iff X ∈ KS5.

Proof. (1) This follows from Prop. 7.2 where it is proved that if X /∈ (C)

then X has an ω1-polyhedron.

(2) Clearly, X ∈ KS5 implies X ∈ KS4. Assume that X ∈ KS4. By (1)

we have that X ∈ (C). In order to prove that X ∈ KS5, by Prop. 6.2 it

is enough to prove that every convex subset C ⊂ X∗ is w∗-separable. Since

X ∈ KS4, C
w∗

is w∗-separable by Prop. 4.4. So, there exists a countable

family {zn : n ≥ 1} ⊂ C
w∗

w∗-dense in C
w∗

. Since X ∈ (C), by [10,

pg. 147] there exists a countable family {znm : n,m ≥ 1} ⊂ C such that

zn ∈ cow∗({znm : m ≥ 1}) for every n ≥ 1. So, C is w∗-separable. ¤

Remarks. A nonseparable Banach space X has the Kunen-Shelah prop-

erty KS6 if for every uncountable family {xi}i∈I ⊂ X there exists j ∈ I

such that xj ∈ wcl({xi}i∈I\{j}) (wcl=weak closure). Clearly, KS6 ⇒ KS5.

It seems that the unique known example of a Banach space X such that

X ∈ KS6 is the space X = C(K), K being the Kunen compact space ([8,

p. 1123]) constructed by Kunen under CH. This space C(K) of Kunen

has more interesting pathological properties. For example, (C(K))n, wn)

is hereditarily Lindelöf for every n ∈ N. In view of this situation, we can

introduce the property KS7. A Banach space X is said to have the Kunen-

Shelah property KS7 iff (Xn, wn) is for every n ∈ N. It can be easily proved

that KS7 ⇒ KS6. We do not know either if the Shelah space S has the

property KS6 or if the properties KS5, KS6 and KS7 can be separated.



30 GRANERO, JIMÉNEZ, MONTESINOS, MORENO, AND PLICHKO

References

[1] C. Finet and G. Godefroy, Biorthogonal systems and big quotient spaces,

Contemporary Math., vol. 85 (1989), 87-110.

[2] A. S. Granero, Some uncountable structures and the Choquet-Edgar property

in non-separable Banach spaces, Proc. of the 10th Spanish-Portuguese Conf. in

Math. III, Murcia (1985), 397-406.
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