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ABSTRACT. We introduce and study the Kunen-Shelah properties K.S;,
i=0,1,...,7. Let us highlight for a Banach space X some of our results:
(1) X* has a w*-nonseparable equivalent dual ball iff X has an ws-
polyhedron (i.e., a bounded family {x;};<., such that z; ¢ co({z; :
i € wy \ {j}}) for every j € wy) iff X has an uncountable bounded
almost biorthonal system (UBABS) of type n, for some 7 € [0,1), (i.e.,
a bounded family {(zq, fa)ti<a<w, € X x X* such that fuo(zs) =1
and | fo(zg)| <, if o # B); (2) if X has an uncountable w-independent
system then X has an UBABS of type 7 for every n € (0,1); (3) if X has
not the property (C) of Corson, then X has an w;-polyhedron; (4) X has
not an wy-polyhedron iff X has not a conver right-separated w1 -family
(i.e., a bounded family {;}i<., such that x; ¢ €6({z; : j < i < wi}) for
every j € wq) iff every w*-closed convex subset of X* is w*-separable
iff every convex subset of X* is w*-separable iff ©(X) =1, u(X) being
the Finet-Godefroy index of X (see [1]).

1. Introduction. If X is a Banach space and 6 an ordinal, a family {z,, :
a < 0} C X is said to be a 6-basic sequence if there exists 1 < K < o0
such that for every n < m in N, every families \; € R, ¢ = 1,...,m, and

< K| X Ao,

ap < .. < ap < .o <y < 0 we have || 32020 N,
A family {z;},c; C X is a basic sequence if it is a 6-basic sequence for
some ordinal #. If K = 1 the basic sequence is said to be monotone. A

biorthogonal system in X is a family {(z;,2}) : 7 € I} C X x X* such that
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xi(z;) = land xf(z;) =0, 4,5 € I, i # j. A Markuschevich system (in
short, a M-system) in X is a biorthogonal system {(z;,z}) :i € I} in X
such that {z} :4 € I'} is total on [{z; : i € I}] (see [14]).

It is well known (see [14, pg. 599]) that if the density of a Banach space
X satisfies Dens(X) > Wy, then X has a monotone w;-basic sequence.
Also if Dens(X) > ¢, X has a monotone w;-basic sequence, because in
this case an easy calculation shows that w*-Dens(X*) > R;. However, if
N; < Dens(X) < ¢ and w*-Dens(X*) < Ny, X can fail to have an un-
countable basic sequence, even an uncountable biorthogonal system. In-
deed, Shelah [13] constructed under the axiom <y, -an axiom which implies
the continuum hypothesis (CH)- a nonseparable Banach space S that fails
to have an uncountable biorthogonal system. Later Kunen [8, p. 1123]
constructed under (CH) a Hausdorff compact space K such that C(K) is
nonseparable and has not an uncountable biorthogonal system, among other
pathological interesting properties.

A Banach space X is said to have the Kunen-Shelah property K Sy (resp.
K Sy) if X has not an uncountable basic sequence (resp. an uncountable
Markuschevich system). A Banach space X is said to have the Kunen-
Shelah property KSs if X has not an uncountable biorthogonal system.
Clearly, KS; = KS; = K.

The first example of a Banach space X such that X € KSy but X ¢ K S,
was given in [9] and is the space of Johnson-Lindentrauss JLy (see [4]).
The properties K.Sy and K S; were separated in [2] (see also [1]), where it
was proved that if a Banach space X has the property (C) of Corson and
w*-Dens (X*) < Ny, then X € K 5.

Question 1. There exists a Banach space X such that X € KSy but
X ¢ K57

In this paper we study some structures similar to uncountable biorthogo-
nal systems, namely: uncountable w-independent families, w;-polyhedrons,

uncountable bounded almost biorthogonal systems (UBABS), etc. The
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lack of these structures allows us to define the Kunen-Shelah properties
KS3, KSy, etc.

In Section 2 we prove that a Banach space X has an w;-polyhedron iff X
has an UBABS iff X* has a w*-nonseparable dual equivalent ball. Section
3 deals with uncountable w-independent families. In Section 4 it is proved
that X has not an w;-polyhedron iff every w*-closed convex subset of X* is
w*-separable. In Section 5 we answer some questions posed by Finet and
Godefroy [1] concerning the index p(X). In Section 6 we prove that a space
X has not a convex right-separated w;-family iff every w*-closed convex
subset of X* is w*-separable. Finally, in Section 7 we show that X has an
wi-polyhedron iff X has a convex right-separated w;-family, whence every
w*-closed convex subset of X* is w*-separable iff every convex subset of X*
is so.

Let us introduce some notation. wy is the first uncountable ordinal, |A|
the cardinal of the set A and ¢ = |R|. If X is a Banach space, X* denotes
its dual, B(X) and S(X) the closed unit ball and sphere of X, resp., and
B(x,r) the closed ball with radius r and center z. If A C X we denote by [A]
the linear subspace spanned by A. Recall that a Banach space X is said to
have the property (C) of Corson (in short, X € (C)) if N;e;C; # ) whenever
{C; i € I} is a family of closed bounded convex subsets of X with the
countable intersection property, i.e., () # N;c;C; for every countable subset

J C 1.

2. UBABS and w;-polyhedrons. If X is a Banach space, a bounded
family {(xa, fo)}1<a<w, € X X X* is said to be an uncountable bounded al-
most biorthogonal system (in short, an UBABS), if there exist a real number
0 <7 < 1such that f,(z,) =1 and f,(z5) <n, if a # §. If in addition we
have |fo(z5)] < n for a # 3, then the UBABS {(z4, fa) h<a<w, C X x X*
is said to be of type 1. Define the index 7(X) as follows:

7(X) =inf{0 <n < 1:X has an UBABS of type n},
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where inf{(} = 1. Clearly, 7(X) is invariant by isomorphisms and: (1) if X
has an uncountable biorthogonal system, then 7(X) = 0; (2) 7(X) < 1 iff
X has an UBABS.

If 7 is a cardinal, a bounded family {z;};c, in a Banach space X is said to
be a T-polyhedron iff x; ¢ co({x;}icr\ () for every j € 7. In a dual Banach
space X* one can define a w*-7-polyhedron in a analogous way, using the

w*-topology instead of the w-topology.

Proposition 2.1. A Banach space X has an wy-polyhedron iff X* has an

w*-w1 -polyhedron.

Proof. Let {4 }a<w, € B(X) be an wy-polyhedron. By the Hahn-Banach
Theorem there exists f, € S(X*) such that:

fa(xa) > Sup{fa(ffz’) 11 € wy \ {a}} =:!€q-

By passing to a subsequence, we can suppose that there exist 0 < € < oo
and r € R such that f,(74) —eq > € > 0and [r — fo(za)] < §, Vo < wi.

Hence, if «, § < w; with a # (3, we have:
€ 3€e
fa(Ta) 21— 10T 2 fo(ws) — €= €5 > fa(a),
which implies that {f,}a<w, 1S an w*-wi-polyhedron in X*.
The converse implication is analogous. O
Let us see in the following Proposition the relation between w;-polyhedrons

and UBABS.

Proposition 2.2. For a Banach space X the following are equivalent:
(1) X has an w;-polyhedron; (2) X has an UBABS of type n for some
0<n<1;(3) X has an UBABS.

Proof. (1) = (2). If X has an uncountable biorthogonal system, then clearly
X has an UBABS of type 0.
In the contrary case, w*-Dens(X*) < Rj. Let {24 }1<a<w; € X be an wy-

polyhedron. Assume that z; = 0 and that ||z,|| < 1. For each 1 < a < w;
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consider f, € S(X*) such that:
1> falzg) > sup{fa(z;) : 1 <i <wy, i # a}=:pa,.

Observe that p, > 0 if a # 1. By passing to an uncountable subsequence,
it can be assumed that there are real numbers 0 < €, < 1 such that
fa(Ta) = pa > € and |r — fo(2,)| < g for every 2 < o < w;. Since w*-

Dens(X*) < g, by passing again to a subsequence, we assume that there

exists z € X* such that z(z,) > 0 and |Zgz§;—1| < gforevery 2 < a, 8 < w;.

z

Then, if g, = fo + -, 2 < a < wp, we have:

z(za)
€ 6e Te
ga(xa):fa(xa)—i—l2r—§+1>r—§+12fa(xa)—§+12
. €
> sup{ga(z5) 12 < <wy, B #a} >inf{g.(23) : 2 < <wy, [ #a} > -5
Denote h, = gag(;a). Then, for 2 < «a, f < wy,a # 3, we have h,(x,) = 1
and:
€ € 1 — 6e
(e = ) T
T_§+1 ga(l'a) goc(xoz) T+1_§
S0, {(zas ha) 12 < a<wi} CX x X*is an UBABS of type 7 such that:
0<n= 8 81 < 1.
=1 max{r—g—l—l’ r+1—§}

(2) = (3) is obvious and (3) = (1) is clear because, if {(xq, fo) H<a<w, C
X x X*is an UBABS, then {z,}q<s, is an wy-polyhedron. O

Let us consider some results on representation in polyhedrons, that we
need later. If {x;};c; is a w*-7-polyhedron in a dual Banach space X* with

7 = card(l) and K = 0" ({x;}icr), the core of K is the set:
Ko = core(K) = N{c0" ({i}iera) : A C I, A finite}.
Define the function A : K — [0, 1] as follows:
Vk € K, AM(k) =sup{\ € [0,1] : Ju € K,3Ti € I such that k = Az;+(1—-\)u}.

Let H = {x € K : A(xz) = 0}. Since for every finite subset A C I, each z €
K has the expression x = >, \iz;+(1—p)u with u € @0 ({;}iena), \i €
0,1],i € A, =3",c4 A <1, it can be seen easily that H C Kj.
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Lemma 2.3. Let {x;}ic; be a w*-T-polyhedron in the dual Banach space
X*, 7 = card(l), K = c0" ({x;}icr}, Ko =core(K) and H = {z € K :
Mz) = 0}. Ifx € K, there exist a sequence of positive numbers {ji, }n>1
with 0 < 37 o) pn = p < 1, a sequence of subindices (maybe no distinct)
{infn>1 C 1 and u € H such that x =) o pin - 7, + (1 — p)u.

Proof. Clearly the statement is true if x € H. Assume that x ¢ H, i.e.,
A(z) > 0. Choose 0 < tA(z) < A\ <1, 4 € I, and uy € ©@0* ({&;}ien (i)
such that = = Az, + (1 — A\)uy. If uy € H, we end. In the contrary
case, A(u1) > 0 and we choose 0 < %)\(ul) < X <1, iy e, and uy €
oV ({z: }ien fin) such that u; = Aoy, + (1 — A2)ug. By reiteration, there are

two possibilities:
(A) u,, € H for some m € N. Then we obtain the representation:

n

x:Z)\kPk—lxzk—i_Pmuma Pk:H(l_/\k)a P():l (1)
k=1 k=1
(B) Always u,,, ¢ H. As P,, decreases in (1), there exists lim,,>1 P, =
P €0, 1]. We have two cases:

(1) :P>0. Observe that P > 0 iff the series >, Ay < +oo. In
consequence the series Zkzl A Py_17;, converges and u,, — u € K
as m — o0o. So from (1) we obtain x = Y, o) Ay - Pt - 7y, + Pu.
We claim that A(u) = 0. Indeed, suppose that p := A(u) > 0 and
pick ¢ € N such that P/P, > 1/2, A\;41 < u/8. Then:

1
Ug = F (Z )\q+qu+j_1l‘q+j + Pu) y

7 \j>1

which implies that A(u,) > P%)\(u) = P%,u > £, Since 0 < $A(uy) <
Agr1 < 1, we obtain £ > A4y > 4, a contradiction.
(2) :P=0. In this case Pyu, — 0 as m — oo and we obtain the

representation x = Z,Ql A Py_12;, with 21@1 MNPy = 1.
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In order to connect the existence of an UBABS in a Banach space X with
the w*-nonseparability of dual equivalent unit balls of X™, we introduce the
index o(X). If K C X* is a disc (i.e., a convex symmetric subset of X*),

define the index o(K) as:
o(K)=max{0 <t <1:3AC K, |A| <Ry, tK C" (AU (-A))}

Observe that 0 < o(K) < 1 iff K is w*-nonseparable and that there exists
a countable subset A C K such that o(K) - K C co¥ (AU (—A)).

Lemma 2.4. Let X be a Banach space, K C X* a w*-nonseparable disc
and o(K) < p < 1. Then there exists € = €(p) > 0 (depending on p)
such that for every countable subset A C K there exists k € K satisfying
dist(pk,co” (AU (—A))) > e.

Proof. In the contrary case, there exist a sequence of real numbers ¢, | 0
and a sequence of countable subsets A,, C K, n > 1, such that every k € K
satisfies dist(pk,c0% (A, U (=4,))) < €. So, if A = U,>1 A, we have
pK C ¥ (AU (—A)), a contradiction. O

Define the index o(X), X a Banach space, as follows:
o(X)=inf{o(K): K C X* a dual equivalent ball of X*}.

It is clear that o(X) is invariant by isomorphisms.

Proposition 2.5. For a Banach space X we have that:
o(X)=inf{o(K): K C X* a w*-compact disc }.

Proof. Obviously o(X) > inf{o(K) : K C X* a w*-compact disc }. In
order to prove the contrary inequality, it is enough to see that o(X) < o(K)
for any w*-compact disc K C X*. So, fix a w*-compact disc K C X*.
Assume that K is w*-nonseparable, pick 0(K) < p < 1 and let e = ¢(p) > 0
be given by Lemma 2.4. For 0 < 0 < € such that p + 9 < 1 consider
Hs = K + §B(X"), which is an equivalent dual ball of X*. We claim that
o(Hs) < p+4. Indeed, let p+ 6 <t <1 and A C Hs a countable subset.



8 GRANERO, JIMENEZ, MONTESINOS, MORENO, AND PLICHKO

Then A C A; + As, where A; C K, Ay C §B(X*) are countable subsets.
Assume that tHs C co¥ (AU (—=A)). As co¥ (AU (—A)) C v (A, U
(—Ay)) + dB(X™), we get:

tK C tHs C " (A U (=A))) +06B(X™),

which implies that , Vk € K, dist(tk,c0" (A;U(—A;)) < 6. But by Lemma
2.4 there exists k € K such that dist(pk,c0% (4, U (—A;))) > e. Thus
dist(tk,c0"" (A; U (—A;)) > 4, a contradiction. So, tHs € co” (AU (—A))
and o(Hs) < p+9, V0 <6 < e. Hence, 0(X) < p, for every o(K) < p < 1,
and from this fact we conclude that o(X) < o(K). O

Proposition 2.6. If X is a Banach space then o(X) < 7(X).

Proof. Assume that 7(X) < n < 1 and choose an UBABS {(z4, fa) ta<w, C
X x X* of type n such that [|f,| = 1 and ||z.|| < M, Va < wy, for
some 0 < M < oo. Clearly, {£f,}a<w, 18 an w*-w;-polyhedron. Denote
K =" ({£fa}tacw,), Ko = core (K)and H ={z € K : \(2) = 0}. It is
easy to see that |z(z,)| < n for every z € Ky and o < wy. We claim that
o(K) < n. Indeed, let A C K be countable. By Lemma 2.3 there exists

v < wy such that:
A C({*fatasy UH) C 0" ({£fatasy UH).

Clearly, c6” (AU (—A4)) C 0" ({fa}a<y U H) and for every v < p < w;
and every z € €0” ({£fa}a<y U H) we have |2(z,)] < 7.

Hence, for every v < p < w; and < t < 1 we have that ¢f, ¢ co* (AU
(—A)). So ¢(K) < nand from this fact we conclude that o(X) < 7(X). O

Now we prove for a Banach space X that o(X) = 1iff 7(X) = 1.

Proposition 2.7. A Banach space X has an UBABS of type n, for some

n € [0,1), iff X* has a w*-nonseparable equivalent dual unit ball. So,
o(X)=14fr(X)=1.
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Proof. Firstly, if X has an UBABS of type 7, for some n € [0,1) (i.e.,
7(X) < 1), then by Prop. 2.6 we have o(z) < 1 (i.e.,, X* has a w*-
nonseparable equivalent dual unit ball).

Assume now that X is a Banach space with o(X) < 1 equipped with an
equivalent norm such that o(B(X*)) < 1. Fix p > 0 with o(B(X"*)) < p <
1. If AcC S(X) and € > 0 we put:

(A,e)f ={z€ X" |2(x)| <¢, Vo € A} and S((A,e)7) = S(X*) N (A, e)*.

Clearly eB(X*) + At C (A, e)t.

Claim 0. If A C S(X) and A+ # {0}, then ¢S(X*) C co(S((A,€)1))
for 0 <e < 1.

Indeed, let u € €S(X*) be arbitrary and pick some v € A+ \ {0}. We
can find A\, > 0 such that u + Av,u — pv € S(X*). Thus, u + A\v,u —
pv € S((A,e)t). Let t € (0,1) be such that tA + (1 —¢)(—u) = 0. Then
u="t(u+ )+ (1 —1t)(u—puv) € co(S((A,e)h)).

Claim 1. For every countable subsets A C S(X) and F C S(X*)
there exists f € S((4,,/p)") such that \/pf ¢ co” (F U (—F)).

The opposite means that \/pS((4, /p)*) C @ (F U (—F)). By Claim
0 we have \/pS(X*) C co(S((4,/p)")). So:

pB(X™) C T (pS(X™)) C @ (VpS((A, p)h)) C @ (FU(-F)),

a contradiction because o(B(X*)) < p. So, Claim 1 holds.

Claim 2. Thereexist 0 < § < e < 1—,/p such that for every count-
able subsets A C S(X) and F C S(X*) there exist fo € S((4,/p)")
and zy € S(X) such that fy(zo) >1—9 and f(zg) <1—¢, VfeF.

Denote by R = {r = (r,12) € QxQ:0<r; <ry <1-—,/p}. AsR
is countable, we can put R = {r,},>1. If Claim 2 is false, for every pair
Tn = (Tn1,Tm2) € R we can choose countable subsets A, C S(X), F, C
S(X*), n > 1, such that for every g € S((A,, /p)*) and every z € S(X)
either g(x) < 1 — r,; or there exists f € F, with f(z) > 1 — r,2. Let
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A =Up>1A,, F =Uy>1F,. By Claim 1 there exists fo € S((A4, \/ﬁ)l) such
that \/pfo ¢ c0” (F U (—F)). By the Hahn-Banach Theorem there exists
y € S(X) such that:

Vaholy) > sup{lf ()] : f € F} =70 > 0.

Choose a sequence {z,},>1 C S(X) such that:

nli_{gofo(zn) = [|foll =1 and 1 — fo(z,) < %(fo(y) —%), n=1. (2)

1
zZn+ _y .
Then fo(—4—) =1— 4, with:
oGy
Lyl - — L 1— 11—
1z + 2yll 20 + Ly]|

Hence, lim,, .o d,, = 0. On the other hand, for every f € F":

1 1
n . 1 n
Zn + Y < + 2%

v il S gl =
where:
gl == 145 -1-3%  3(1=%)
" 20 + 5l |zl 20 + 2y
and

_ Nzt iyl =1 =50 lle £ 5yl = folza) = 5 fo(y)

|20 + Ly |2 + Ly

n

1 —
by (2). Pick any n € N such that all =%) <1-—,/p. Then 0 <9, <

T
lzn+ >yl
€n <1 —/p and there is some m € N such that 6, < 7,1 <72 < €, Let
1
To = —”Zﬁ ?sn € S(X) and observe that fy € S((An, \/ﬁ)i), folzo) > 1-6,
zn+ E

and f(zg) <1—€,, Vf € F. Then fy € S((Am, /p)"), folzo) > 1 —rpm
and f(xg) <1—¢€, < 1—rpe, Vf € F,, a contradiction. So, Claim 2 holds.

Let 0<d<e<1— v/p be from Claim 2. We will construct a transfinite
sequence {(Zq, fo)ta<w; € S(X) x S(X*) so that for every a < wy:

fa(a) 21 =90 (3)
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and

falwg) S1—cif a# 8. (4)

On the first step, we take x; € S(X) and f; € S(X*) such that fi(z1) = 1.
Let 1 < oy < wy and suppose constructed the family {(z., fa) : @ < ap}
fulfilling the conditions (3) and (4). Let us apply the Claim 2, putting there
F={fo:a<a}and A= {z,: a < ap}. Denote the received elements
xo and fy by x4, and f,,. The inequality (3) for a = «y is satisfied by
construction. The inequality (4) for &« = ap and § < ap holds because
fo e S(A,p)r) and e <1 —/p. For f = o and o < « it follows
because sup{f(zo) : f € F} <1 —¢. Now the set {(Ta, fo)}acw, Where
To = Ta , fo = fo/falra), 1 < a < wi, is an uncountable bounded (by

(1 —6)~') almost biorthogonal system. O

Proposition 2.8. Let X be a Banach space such that o(X) < . Then

T(X) < ff;ég). So, for every Banach space we have that: (1) o(X) = 0

iff 7(X) =0; (2) 0(X) = 0 whenever X has an uncountable biorthogonal

system.

Proof. (A) Let ||-]| be an equivalent norm on X such that the corresponding
dual unit ball B(X*) satisfies o(B(X*)) < 3.
there exists in X an UBABS of type n < 2%, for every o(B(X*)) < a <

It is enough to prove that

3. So, fix some o(B(X*)) < a < 3. By induction we choose a family

{(maa fa)}a<w1 C S(X) X S(X*) such that:
fa(za) > 1_Ta but |fo(zs)] < a, if a# 3. (5)

Pick (z1, f1) € S(X) x S(X*) satisfying fi(z1) = 1. Let @ < w; and assume
that we have chosen {(z3, f3)}s<a C S(X) x S(X*) fulfilling (5). Denote:

Ay =[{zs:B<al] and F, =" ({£f5: 3 < a}UG)),

where Gy C B(X™) is a countable symmetric subset 1-norming on A,. By

[15, Lemma 4.3] there exists z, € S(X) such that sup{|f(z.)|: f € F.} <
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a. We claim that dist(z,, As) > 1;—“ Indeed, pick z € A, and observe that,

if [|z]] < 42, then clearly ||z — zo|| > 152, and if ||z|| > £, then:

|2 — 2ol > sup{f(z —2a) : f € Fu} >

1+a 1l—a

2HZH_Sl’lp{f(xa)fEF101}> 2 —a= 2 °
This fact means that, if QQ : X — A% is the canonical quotient mapping,
then [|Q(za)| > %52 So, as (A%)* = AL there exists f, € S(X*) N At

such that f,(z,) > 5% Thus we have chosen the pair (24, f.) and this

completes the induction.

Now put f, = fa{;a) and consider the family § = {(z, fw)}(mw1 and
observe that:
(a) § is bounded because ||z,|| = 1 and:
. N 1 2 2
=l L2 2 g

falwa] ~ 52 T—a 1]
(b) falwa) = 1 and |fulzs)| = (G5 < 125 = 25 < Lifa £ 6

So, ¥ is an UBABS of type n < 2%

— l—a

(B) (1) follows from (A) and Prop. 2.6. (2) follows from the definition of
7(X) and (1). O

3. On w-independence. The Kunen-Shelah property KS;. A family
{z;}icr in a Banach space X is said to be w-independent if for every sequence
(in)n>1 C I of distinct indices, and every sequence (\,),>1 C R, the series
Yoo A, converges (in norm) to 0 iff A, = 0 for every n > 1 (see [6],[12]).
A Banach space X is said to have the Kunen-Shelah property KSs if X has
not an uncountable w-independent family. Of course, every biorthogonal
family is w-independent (i.e., KS3 = KS3), but there are w-independent
families which are not merely biorthogonal systems. Here is one example:

X =C([0,1)*) and {f?}a<cw, n>1 defined as

fg ( (t'y>7<w1 ) = tZ
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for every = = (ty)y<w, € [0,1]**. This family is w-independent but not a
biorthogonal system by the Theorem of Miintz-Szasz (see [11, 15.26 Th.]).
Question 2. Does a Banach space have an uncountable biorthogonal
system whenever it has an uncountable w-independent family?
Unfortunately, the indices o(X), 7(X) do not separate the properties K S,
and K Sz, because as we prove in the following, if X € K S3, then o(X) = 0.

Lemma 3.1. Let X be a Banach space, {x;}1<icw, C X an uncountable
bounded w-independent family, H C X a closed separable subspace and
N € N. Then there exist ordinal numbers p < v < wy such that z, ¢
0 (HU{ENZ; }<icw)-

Proof. Without loss of generality suppose that ||z;|| < 1, Vi < w;. Assume
that for every pair of ordinal numbers p,y such that p < v < w; we have
z, € co(H U{E£Nz;}y<icw,). Forn € Nand p < v < wy, denote D, =
co({£Nz;}y<icw,) and

H(p,v,n) = {(u,)\) € H x (0,1]: 3v € D, with [[Au+ (1 = XNv —=z,| < o™
n
If p <v <9 <w and n > 1, by the hypothesis and the definition of

H(p,7,n), we have H(p,v,n) # 0, H(p,v,n+1) C H(p,v,n) D H(p,7';n).

For 8 < w; and n > 1 define:

H(B,n)=cl(UW{H(p,v,n): <p<vy<wi}).

where “cl” means the closure in H x (0,1]. Clearly, for § < " and n > 1
we have:

0+ H(B,n)C HB,n) D HB,n+1).
Since H x (0, 1] is hereditarily Lindel6ff , for each n > 1 there exists 3, < w;
such that for every (3, < 8 < w; we have H(3,n) = H((,,n). So, for every
(u,\) € H(B,,n) and every (3, < 8 < w; we have (u,\) € H((3,n), which
implies that there exist 8 < p <~y <w; and v € D, such that:

|z, — Au+ (1= Mo)| < L.

1}.
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Let Gy = sup,>; B, and fix fy < p <y <w; and n > 1. Pick (u,p) €
H(p,v,n) and w € D, such that ||z, — (pu + (1 — p)w)|| < 5. Since
(u, ) € H(fBo,n) = H(,n), there exist v < 0 < < w; and v € Dy such
that ||z, — (pu+ (1 — p)v)|| < 2.

Denote T'= x, — (uu+ (1 — p)v). Then we have pu =z, — T — (1 — p)v

and:

7y~ (=T = (1= o+ (1 = )| < 5

Since ||T|| < £, we obtain:

l2p = (2o = (1 = v+ (1 = pJw)|| =

= llzp = (2o =T = (1 = o+ (1 = pw) =T <

1 1 3
<z, — (2, — T — (1 — 1— T < —+=-==—.
<y = (2 =T = (1= o+ (1= )| + 1T < oo+ = =

Since z,,v,w € E, = [{z;}y<icw ], if n — 00 (with p, 7 fixed), we obtain
that z, € E, (in particular, this implies that Eg, = Eg, V6, < 8 < wy).
Denote S =z, — (v, — (1 — p)v + (1 — p)w). Then:

z,=S+p+(1—pw+z, —v.

Taking into account that pv + (1 — p)w,—v € D,, z, € D, and that
|S|| < 5, we finally get z, € cI((1 + +)D, + D,) = cl((2+ +)D,). So, z,
is an accumulation point of F), := (2 + +)D,, (because z, € F, \ F,).

In consequence, we can conclude that every z;, Gy < i < wq, is an accu-

mulation point of every F, for v < w;.

Let (an)n>1 be a sequence of positive real numbers such that lim,, . a, =
0, > ps1an = 00, and let b, = sup,,., an. Fix fy < 7 < w;. Using the
proof of [6, Th. 3], like in [12], we can construct inductively a sequence of
signs {€n }n>1, a sequence of real numbers {A”},>11<,<k(n) and a sequence
of ordinals {7} }>1,1<r<k(n) sSuch that:
(1) S A2 < 2N + 1, for every n > 1.

(2) T<'y’f<'y“§<---<’y}:(n)<'y{‘+1<---<w1,foreveryn21.
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k
(3) ZTr + Zn21 Un€nYn = 0, where y, = Zr(:nf A?‘T’W
Let us see the two first steps of this argument. Denote K = {z;},<icu, -

Step 1. By the proof of [6, Th. 3] we can find p; € N, a finite sequence
of (not necessarily distinct) elements {h, }1<n<p, C K and a finite sequence

of signs {€, }1<n<p, such that:

p1
|-+ aneahal <277,

n=1
J
|z + > anenhall <bi+1+27" for 1 < j < p;.
n=1
Since h,, € cl(Fp), V6 < [ < wy, we can find, for 1 < n < p, real
numbers {7} <,<pm) With Zf(:nl) |A"| < 2N + 1, and ordinals {vf}f(:nl) such
that:

() T <A < < <y << <

(b) llar + 3205 anén - ZI:(:T;) Arap|l <271
(©) flwr + 320, anen - Zf(:nl) MNaan| < by +1+271 for 1 <j<p.

Step 2. Let wy =z, + > '\, ane, - Sk A'ayn. By the proof of [6, Th.
3] we can find p; < po € N, a finite sequence of (not necessarily distinct)
elements {hy,}p+1<n<p, C K and a finite sequence of signs {e€, }p+1<n<p,

such that:

p2

lur+ ) aneahn] <272

n=p1+1

j
|lur + Z Anenhn| < bp, +271+272 forp +1 <5 < po.
n=p1+1

Since h,, € cl(F3), VB < B < wy, we can find, for p; < n < po, real
numbers {A}1<,<pm) With Zf(:”l) |A"| < 2N + 1, and ordinals {’yﬁ}f(jl) such
that:

() Wy < <P <0 <Yy < W< <

(b) ||U1 + ZPQ An€n - Zf(:nl) )\;LQT%?}” < 272,

n=pi1+1
(©) 4 3y @ SE) N | < by, +270 4272, for py < j < o
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Now by reiteration we obtain the complete construction. It is easy to
see that the series z, + ) -, ané, <Zf(:"1) )\Z}xw) converges to zero. This
proves that {x;};<,, is not w-independent, a contradiction. So, we can

choose p < v < wy such that x, ¢ c6(H U {£Nz;} <icw,)- O

Proposition 3.2. Let a Banach space X have an uncountable w-independent
family {xo}1<a<w,- Then for every 0 < n < 1, there exist an uncountable
subsequence {a;}icw, C w1 and an UBABS {(zi, fi) }icw, € X X X* of type
n such that z; = x,, and fi(z;) =0 for j <i < wy. So, 7(X) =0 and X

has an wi-polyhedron.

Proof. Let {;}1<i<w, € X be an uncountable w-independent family and
suppose, without loss of generality, that ||z;|| < 1 for every i < w;. Let
N € N be such that 1/N <. In the following we choose by induction two
subsequences of ordinal numbers {iq, jota<w:la < Jo < i < jg < wy, for

a < [ < wy, such that:

vio @ ([, B < aH U{ENT sy ) (6)

Indeed, let @ < w; and assume that we have chosen {ig,js}s<a sat-
isfying (6). Put H = m and v = supg_,{js} (if a = 1, put
H = {0} and v = 1). By Lemma 3.1 there exist v < p < 7 < wy
such that z, ¢ ¢ (H U{£Nz;} <icw,). So, we put ip, = p, jo = v and
this completes the induction. Let z, = z;,,a < w;. By (6) we have
2o ¢ TO (MU {j:sz}a<j<wl>. So, by the Hahn-Banach Theo-

rem there exists f, € X* such that:

L= falza) > sup{fa(@) : v €@ ([{z5 1 7 < al U{£N2 acjcn )

Clearly, fo(zg) = 0, if 8 < a, and |fo(N2zg)| < 1, e, |fa(z)] < 1/N, if
a < < wy. Finally, choosing an uncountable subsequence A C w; with
{l|fall : @ € A} bounded, then {(z,, fa) : @ € A} is the UBABS of type n

we are looking for. O
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4. The Kunen-Shelah property KS,. A Banach space X is said to have
the Kunen-Shelah property KS4 if X has not an w;-polyhedron. The impli-
cation K Sy = KS3 was proved in [3]. It also follows from Prop. 3.2 and

from Prop. 7.3 and a result of Sersouri [12].

Proposition 4.1. Let Z be a Banach space and X C Z a closed subspace
such that Z /X is separable. Then the following are equivalent: (a) Z € K S,
;(b) X € KS,.

Proof. (a)=(b). This is obvious.

(b)=(a). Assume that Z ¢ KS, and prove that X ¢ KS,;. By Prop.
2.2 there exists in Z an UBABS {(z,, fa) : @ < w1} of type n € [0,1) with
| fall < M, Va < wy, for some 0 < M < w;. Denote € := 1 — 1. Since
Z/X is separable, there exists an uncountable subset I C w; such that, if
Q : Z — Z/X is the canonical quotient mapping, then [|Qzq — Q23] < 137
for every o, € I. Fix 7 € I and denote y, = 2, — 2z,, Ya € I. Since
|Quall < 757, there exists z, € X such that ||z, —ya|| < 557, Yo € I. Then
for each a, B € I, a # 3, we have:

Jal@a) = falya) + fal@a = Yo) 2 falya) = Moz = falza) = faler) =

=1- fa(ZT) - i >n— fa(zT) +§ > fa(zﬂ) - fOc(ZT) + 2 =

= foz(yﬁ) + i = foz(yﬁ) + Mﬁ > fa(wﬁ)>

which implies that {z, : « € I} is an uncountable polyhedron in X i.e.,

X € KS,. U

In the following we obtain some characterizations of the property K.Sy.

Let us see some previous lemmas.

Lemma 4.2. Let X be a locally convex topological space, T = o(X, X*), f €
X*\{0}, C C Y1) a bounded convex subset and B = co(CU(—C)). Then
C is T-separable iff B is T-separable.

Proof. Clearly, B is T-separable whenever C'is 7-separable. For the converse

implication suppose that B is 7-separable and choose a countable subset
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A C C such that D := {tz — (1 —t)y : z,y € A,t € [0,1]} is 7-dense
in B. Now it is an easy exercise to prove that C' C 7-cl(A), ie., C is

T-separable. O

Lemma 4.3. Let X be a locally convex topological space, T = o(X, X*), C C
X a convex subset such that for some f € X* there exists a countable subset
R C R satisfying:

(1) 0 # (inf{f(x) :z € C},sup{f(z) :x € C}) CR.
(2) C,:={x € C: f(x) =r} is T-separable, for each r € R.

Then C' is T-separable.

Proof. By hypothesis inf{f(z) : x € C'} < sup{f(z) : x € C}. For each
r € R, choose a countable subset A, C C, such that C,. C 7-cl(4,). Let
A = U,erA, be a countable subset of C. We claim that A is 7-dense in
C. Indeed, pick 2y € C arbitrarily and let U be a 7-neighborhood of zj
in C. By hypothesis, there exists some 7 € R such that C, N U # . So,
A, NU # 0, whence ANU # (. O

Proposition 4.4. Let X be a Banach space. The following are equivalent:

(1) X € KS,.

(2) K C X* is w*-separable whenever K is a w*-compact convex sym-
metric subset such that || - ||-int(K) # .

(3) K C X* is w*-separable whenever K is a w*-compact convexr sym-
metric subset, i.e., o(X) =1=71(X).

(4) K C X* is w*-separable whenever K is a w*-closed convex symmet-
ric subset.

(5) K C X* is w*-separable whenever K is a w*-closed conver subset.

Proof. (1) = (2). This follows from Prop. 2.7 and Prop. 2.2, because if
K C X*is aw*-compact convex symmetric subset such that [|-||-int(K) # 0,
then K is the dual unit ball of X* when X is equipped with the equivalent
norm | - | such that |z| = sup{z*(z) : x € K} for every x € X.
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(2) = (3). Let K C X* be a w*-compact convex symmetric subset and
denote K,, = K+ %B (X*), which is w*-compact convex symmetric subset of
X* with nonempty interior. By (2) there is a countable family {;, m }m>1 C
K, such that K,, = {z,m : m > 1}w* for every n > 1. Pick k., € K such
that ||knm—2nm| < L. Then it is easy to see that K = {kym : n,m > 1}w*.

(3) = (4). Let K C X* be a w*-closed convex symmetric subset and
denote K,, = K NnB(X*). By (3) K, is w*-separable and so K, because
K = Upsi K.

(4) = (5). It is enough to prove that if K C X* is a w*-compact convex
subset, then K is w*-separable. Without loss of generality, assume that
0 ¢ K. Let f € X be such that 0 < min{f(k) : k € K} < max{f(k) :
ke K} <oo. Ifte [min{f(k):k € K}, max{f(k) : k € K}|, denote
K;={ke K: f(k) =t} and C; =" (K; U (—K})). By (4) and Lemma
4.2 each C} is w*-separable. So, from Lemma 4.3 we get that K is w*-

separable.

(5) = (1). Suppose that there exists in X a bounded w;-polyhedron
{z;}icw,- By Prop. 2.2, there exists in X an UBABS {(za, fa)}a<w; C
X x X* such that [|f.]] =1, ||zal|l < M, fa(zs) =1 and fu(xs) < 1 —ck,
for every a, 3 < wi,a # (B, and some 1 > ¢ > 0, 1 < M < +oo. Let
K =" ({fs : @ < wi}). Consider the w*-open slices U, = {k € K :
k(o) > 1— 5} for all @ < wy. Then U, is a w*-open neighborhood of f, in
K and we can easily realize that U, N U = (), whenever o # . Thus K is
w*-nonseparable, a contradiction to (5). So, X € KSj. O

Question 3. Let X be a Banach space. If 7(X) < 1, is 7(X) = 07 If

7(X) =0, does X have an uncountable w-independent family?

5. The Finet-Godefroy indices. If X is a Banach space, the Finet-
Godefroy indices do(X) and pu(X) were introduced in [1] and defined as

follows:

doo (X) = inf{d(X,Y) : Y subspace of /. (N)}
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where d(X,Y) is the Banach-Mazur distance. Clearly, d.,(X) depends upon
the norm || - || of X and we see easily that: (i) duo(X) € [1,00]; (ii) doo(X) <
oo iff X is isomorphic to a subspace of (o (N); (iii) doo(X, || - ||) = 1 iff
(X, || - ||) is isometric to a subspace of ¢ (N) iff the dual unit ball B(X™) is

w*-separable. The corresponding isomorphic invariant index is:

u(X) = sup{doo (X, [ - )}

where the supremum is computed over the set of equivalent norms on X.

Proposition 5.1. Let X be a Banach space. Then:
(1) p(X) =0o(X)™ (07" =o00).
(2) If X has an uncountable w-independent system, then u(X) = oo.

Proof. (1) This follows from [1, Lemma III.1] and a simple calculation.

(2) By Prop. 3.2 and Prop. 2.8 we get that o(X) = 0. Now apply (1). O

The following questions are proposed in [1] :
(1) It is clear that pu(X) =1 if X is separable. Is the converse true?
(2) Does there exist a nonseparable Banach space X such that every

quotient of X is isometric to a subspace of £ (N)?

In the following we answer these questions.

Proposition 5.2. Let X be a Banach space. The following are equivalent:

(1) X € KS,.

(2) Every quotient of (X,|-|) is isometric to a subspace of (N), for
every equivalent norm |- | of X.

(3) w(X) =1.

(4) Every quotient of X satisfies the property K Sy.

Proof. (1) = (2). Let | - | be an equivalent norm on X, Y C X a closed
subspace and Z = (X/Y,|-|) the corresponding quotient space. Clearly,
we have (B(Z*),w*) = (B(Y?1),w*). But (B(Y1),w*) is w*-separable by
Prop. 4.4. So, Z is isometric to a subspace of £, (N).
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(2) = (3). By (2) dw(X,|-]) = 1 for every equivalent norm |- | on X.
So, u(X) = 1.

(3) = (4). Since pu(X/Y) < p(X) for every quotient X/Y (see [1, Th.
I11-2]), (3) implies that u(X/Y) = 1, i.e., o(X/Y) = 1. So, by Prop. 44
we get that X/Y € KS,.

(4) = (1). This is obvious. O

Corollary 5.3. If X is either the space C(K), under CH and K being
the Kunen compact space, or the space S of Shelah, under <y, then X is
nonseparable, (X)) = 1 and every quotient of (X,| - |) is isometric to a

subspace of U+ (N), for every equivalent norm |- | of X.

Proof. This follows from Prop. 5.2 since in both cases X € K S, (see Section
6). O

Remarks. (1) The fact that every quotient of (X, |- |) is isometric to a
subspace of (. (N) for every equivalent norm |- | of X, when X = C(K), K
being the Kunen compact, was shown in [5, Cor. 4.5].

(2) In [1] is asked if p(X) = oo whenever a Banach space X satisfies
u(X) > 1. In fact, it is not known a Banach space X such that 1 < pu(X) <
0o0. Observe that 1 < u(X) < oo implies that X € KS; but X ¢ KSj,
because: (i) 1 < pu(X) < o0 iff 1 > (X) > 0 by Prop. 5.1; (ii) 1 > o(X)
iff X ¢ KS; by Prop. 4.4; (iii) and o(X) > 0 implies X € K S3 by Prop.
3.2 and Prop. 2.8.

6. The Kunen-Shelah property KSs. Let 6 be an ordinal. A convez
right-separated 6-family in a Banach space X is a bounded family {x;};<g C
X such that z; ¢ co({z; : j < i < 0}) for every j € 6. A family of
convex closed bounded subsets {C,}a<p in the Banach space X is said to
be a contractive (resp. expansive) 0-onion iff C, G Cs (resp. Cg G Cy)
whenever § < a < 6. It is easy to prove that X has a contractive #-onion iff
X has a convex right-separated #-family. In the dual Banach space X™* one
can define a contractive (resp. expansive) w*-f-onion in a analogous way,

using the w*-topology instead of the w-topology.
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A Banach space X is said to have the Kunen-Shelah property K S if X has
not a contractive uncountable onion. If X has a 7-polyhedron {z, : o < 7},
it is clear that {C, : @ < 7}, Cy =¢0({zs : a < f < 7}), is a contractive
T-onion. So, the property KSs implies KSy, whence by Prop. 3.2 we get
K S5 = KS3, a result proved by Sersouri in [12].

Proposition 6.1. Let X be a Banach space. Then:
(1) X has a contractive wy-onion iff X* has an expansive w*-wy-onion.
(2) X has an expansive wi-onion iff X* has a contractive w*-wy-onion.

(8) X is nonseparable iff X* has a contractive w*-w;-onion.

Proof. (1) Assume that X has a contractive wi-onion, i.e., there exists a
sequence {Z4}a<w, C B(X) such that x, ¢ c6({xs}a<p<w,). By the Hahn-
Banach Theorem there exists f, € X* such that:

fa(za) >sup{fa(zp) :a < B <wi} =:e,.

By passing to a subsequence, we can suppose that there exist 0 < e, M < oo
and 7 € R such that ||fo|| < M, fo(za) —eq > € >0 and |r — fo(za)| <

7 Va <w;. Hence, if 8 < a < w;, we have:

falwa) > 71— i > — % > fp(zp) — € > e > fa(wa),

which implies that f, & 0 ({fs: B < a}) = K,, i.e., {Ky:a < wi}is
an expansive w*-wi-onion in X*.

The converse implication is analogous.

(2) Use the same argument that in (1).

(3) Apply (2) and that X has an expansive w;-onion iff X is nonseparable.
U

A Banach space has the property HL(1) (in short, X € HL(1)) whenever
in every family of open semi-spaces {U;}ier of X there exists a countable
subset {i,}n>1 C I such that U,>1U; = U;erU;, i.e., every closed convex

subset of X is the intersection of a countable family of closed semi-spaces

of X.
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Proposition 6.2. Let X be a Banach space. Then the following are equiv-
alent: (1) X € KSs; (2) Every convex subset of X* is w*-separable; (3)
X € HL(1).

Proof. (1) < (2). By Prop. 6.1, X has not a contractive uncountable onion
iff X* has not an expansive uncountable w*-onion and it is trivial to prove
that this occurs iff every convex subset of X* is w*-separable.

(2) = (3). Suppose that X ¢ HL(1) and let § = {U;}i<,, be an un-
countable family of open semi-spaces of X such that § has not a countable
subcover. Assume that U; = {z € X : 2} (x) < a;}, with a; # 0, for all
i < wy (if a; = 0, for some i < wy, we put the family U, = {x € X : 2}(x) <
—%},n > 1, instead of U;). Dividing by |a;|, we can suppose that each Uj;
has the expression U; = {x € X : yf(z) < ¢;} with ¢, = £1 and y} = x/|a,|.
Putting §1 = {U; € § : ¢, = +1} and §y = {U; € § : ¢, = —1}, it is clear
that either §; or §» has not countable subcover.

Assume that §; doesn’t admit a countable subcover (the argument for §
is similar). So, there exists an uncountable family {V,, : « < w1} C F1, Vo, =
{r € X : z(x) < 1}, such that there exists z, € V, \ Ug<aV3, Vo < wy.
Put A = co{z!}icw,, which is w*-separable, by hypothesis. Thus, we can
find p < wy such that A C @0 ({2} }i<,). Pick p < a < wy. As z, €
Vo \ Up<a V3, we get that 2 (z,) < 1 and 2j3(w,) > 1 for every # < a. Let
C ={z" € X*: 2*(z,) > 1}, which is a convex w*-closed subset of X*.
Since 2 € C for all i < p, it follows that A C C. So, 2z ¢ C and 2z € A, a
contradiction which proves (3).

(3) = (1). Suppose that X has a contractive wy-onion {Cp}acw,. We
choose vectors z, € C,\ Cyy1 and a sequence of open semi-spaces {Us, }a<u,
such that z, € U, and U, N Cyp1 = (. Clearly, no countable subfamily of
{Us}a<w, covers {4 }a<w,, which contradicts to (3). O

Remark. If X is a Banach space, we put X € L(1) if from every cover of

X by open semi-spaces we can choose a countable subcover. Clearly, X has
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the property (C) of Corson iff X € L(1). Since X € HL(1) = X € L(1),
we have that X € K S5 implies X €(C).

Proposition 6.3. If X is either the space C(K), under CH and K being the
Kunen compact space, or the space S of Shelah, under <y,, then X € KSs

Proof. The space C'(K), K being the Kunen compact space, satisfies C'(K) €
K S5 because for every uncountable family {z; : i € I} C C(K), there exists
j € I such that z; € wel({z; :i € I\ {j}}). It is clear that a space with
this property cannot have an w;-onion.

The space S of Shelah satisfies (see [13, Lemma 5.2]) that if {y;}icw, C S
is an uncountable sequence, then Ve > 0,Vn > 1, there exist ip < 11 < ... <

i, < wy such that:

1 1
io — — Wiy o F Y )l < i : 7
lyio = — (i + oo+ 4[| < —yiol| + € (7)

Assume that S has an wy-onion {C,, : 1 < a < w;} with Cy C B(S). Choose
o € Cy \ Coqr and let 1, = dist(z,, Coy1) which satisfies n, > 0. By
passing to a subsequence, it can be assumed that n, > n > 0, Va < w;.
Let m € N be such that % < 3. By (7) there exists 49 < 11 < ... <ip < w1
such that:

1
|z — E(% + ot @,

Since L (zj, + ... + 1,,) € Cio1 and  dist(z;y, Cio41) > 1, we get a con-
tradiction which proves that S € K Ss. O

7. KS; and K S5 are equivalent. If X is Asplund or has the property
(C) of Corson, it is easy to prove that X € KS; & X € KS;. In the
following we prove the equivalence KS; < KS; in general. A sequence
{Cs : @ < wy} of convex closed bounded subset of a Banach space X is
said to be a generalized wy-onion iff O # C, C Cp, for f < «, and there
exists a subsequence {as} <y, C wi, With ag, < ag, if 81 < (2, such that
Coy, # Cay,, e, {Coy : B < wi} is an wy-onion. If €' C X is a subset,
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denote by cone(C) the closed convex cone generated by C. Observe that, if
C' is a convex subset, then cone(C) = cl(Uy>oAC).

Lemma 7.1. Let X be a Banach space, C C X a convex closed separable

subset of X and {Cy : 1 < a <wy} a generalized wy-onion of X.

(1) If dist(C,C,) = 0 for every o < wyq, then for every e > 0 there exists
ce € C such that dist(c.,C,) < € for every a < wy.
(2) There are two disjoint alternatives, namely:
(A) either there exist two ordinals f < a < wy and z € Cg such that
z ¢ co([C]U cone(Cy)),
(B) or for every pair of ordinals f < o < wy we have Cy C co([C]U

cone(Cy)). In this case, we have:
co([ClU cone(Cy,)) = co([C]U cone(Cy)), Ya,f < wy,

and for every € > 0 there ezists c. € X such that dist(c.,Cy) < €

for every a < wy.

Proof. (1) For every a < wy andn > 1let C(a,n) ={z € C: dist(x,C,) <
1/n}. Then {C(a,n) : a < wy} is a family of nonempty closed convex subset
such that C(a,n) D C(B,n), if a < F, with the countable intersection
property. Since C' is separable, we conclude that Ny, C(a,n) # § for
every n > 1. So, if for every n > 1 we pick ¢, € Nycw,C(a,n), then

dist(cp, Cq) < 1/n for every o < wy.

(2) Clearly, the alternatives (A) and (B) are disjoint. Suppose that (B)

holds. Since [C] is separable there exist two ordinals fy < ap < w; and

29 € Cg, \ Ca, such that zy ¢ [C] but 2y € ¢6([C] U cone(C,)) for every

a < wi.

Claim. If H = [C' U {z}], then dist(H,(C,) =0 for every o < w;.

Indeed, let ¢y = dist(2o, [C]) and ng > 1 such that nlo < €g. Observe that

for every a@ < w; and € > 0 we can choose A € [0,1), u > 0, w € [C] and
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v € C, such that:
| Adw + (1 — Npv — 2| < e (8)

Let M > 0 be such that C; C B(0; M). We claim that if we pick a <
wi, n>mng, A€ [0,1), p >0, we [C] and v € C, fulfilling (8) with

e =1/n, then (1 —\)p > nOLM Indeed, in the contrary case we would have:
€0 < || Aw — 2ol = || Aw 4+ (1 = Npv — 29 — (1 — X)pwl| <
1 1
< [Aw + (1= Apv = 2o + [[(1 = Mpol] £ — 4+ — < e,
o T

which is a contradiction. So, for every o < wy, n > ng, A € [0,1), p >
0, w e C and v € C, fulfilling (8) with e = 1/n we have:

|| 20 _ A w — UH < 1 < 7’LOM
(I=Mp  (I=Mp T (1=MNpn T n

and this proves that dist(H, C,) = 0 for every a < w;.

As H is separable, given € > 0, applying (1) we can choose a vector
¢ € X such that dist(c., C,) < € for every a < wy, and this completes the

proof. O

Proposition 7.2. Let X be a Banach space without the property (C) of
Corson. Then there exists a sequence {(ya,yl) : @ < w1} C X X X* such
that y'(yo) = 1 for all a < wy but yi(ys) =0, if < «, and y}(yg) <0, if
B> «a. So, X has a wy-polyhedron and X ¢ KS,.

Proof. Since X doesn’t satisfy the property (C) of Corson, it is easy to see
that there exists in X a wj-onion {C, : a < w;} such that Ny<yw, Co = 0.

Using a transfinite inductive process with w; steps we construct:

(1) A sequence of numbers {n, : & < w;} with n, € {0,1} such that if
pla) = { < a:ng =1} then p(a) < Ny.

(2) Two sequences of ordinals {p,, 7, : 7 < wi} such that 1 < p, < 7, <
pg<w ify < B <w.

(3) For each a < wy a generalized w;-onion {Céa) D Pa < B < wy} such
thatC’WDC’A(Ya) DCSﬁ)¢®ifa§B<w1 and pg <7y < w;.
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(4) If n, = 0 we choose an element y, € C(i‘) such that if H, =
H{yp : B < a,ng = 0}] then y, ¢ co(H, U cone(CﬁS))). Also, in this

case we demand that 05“) = ﬂg<aC§ﬁ) for every p, < v < wy.

(5) If n, = 1 we do not choose the element y,. Instead of we pick a
vector ap) € X such that C’éa) C B(ap(a),Q_p(a)) for every 7, <
8 < wi, which will imply that:

diam(Céa)) < 27P@F and dist(ap(a), C’éa)) <277 Y < B < wy.

Begin the construction.

Step 1. In this step we choose n; =0, p1 =1, 71 = 2, C’él) = (Cj, for
every 1 < 8 < wq, y1 € C1\ Cy arbitrary and H; = {0}.

Step o + 1 < w;. Suppose constructed all the steps 3 < « satisfying the

above requirements and construct the step a+1. By hypothesis {ng) CTa <
f < wy} is a generalized wy-onion. By Lemma 7.1 there are two disjoint

alternatives:

(A) There exist two ordinals 7, < fy < ap < w; and a vector zg € C’éf:)
such that zo ¢ @0(H, U cone(CLY)). In this case we do pas1 = Bo, Tapr =
g, Nar1 =0, Yor1 = 2o and C’éaﬂ) = C’[ga) for every poi1 < 0 < wy.

(B) If (A) doesn’t hold, there exists ¢ € X such that dist(c, C’éa)) <
2-(P(@)+2) for every 7, < B < w;. In this case we do ngy1 = 1, pla +
1) = p(a) + 1, pat1 = Tay Tag1 = Ta + 1, ap@+1y = ¢ and Céa“) =
B(ap(a+1), 27PN C’[ga) for every pas1 < 8 < wy. Since ng41 = 1 we do

not choose yq11.

Step a < wy, a a limit ordinal. Let a < w; be a limit ordinal, sup-

pose constructed all the steps 3 < «a satisfying the above requirements and

construct the step a.

Claim : [{# < a:ng=1} <N,.
Indeed, in the contrary case we would have a sequence of ordinals

{Bntm>1 T @, Bm < Bm+1 < «, such that ng, = 1 for every m > 1.
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Obviously p(6,) T 400 when m — oo. The sequence {apg,,)}m>1 is a
Cauchy sequence. Indeed, if r < s are two integers, for every 73, < 8 < wy,

since Céﬁs) C CéﬁT), we have:

dist(ap(s, ), ap(s,)) < dist(aps,), Céﬁr)) + diam(CéﬁT)) + dist(ap(ﬁs),Céﬁr)) <

< 2—P(ﬂr) + 2_p(ﬁr)+1 + 2—p(ﬁs) — 0.

7,8—00

Let ag := limy, o0 ap(s,,) and v = sup{7s : B < a}. Then ay € C, for every

Yo < v < wp because:
dist(ap, C,) < dist(ag, aygs,) + dist(aygs,.), ) — 0.

Hence Ny« Co # 0, a contradiction which proves the Claim.

Denote as above vy = sup{7s : § < a} and let D, := ﬂ5<a0§5) for every
Y < v < wi. By the Claim and the construction of the previous steps we

have that:

(a) There exists an ordinal §y < « such that ns = 0 for every dy < 0 < a.

So, p(0) = p(dy) for every § € [dg, ).

(b) For every 79 < v < w; we have D, = 0550), which by induction

hypothesis implies that {D. : 70 < < w;} is a generalized w;-onion.

If H, := [{yg: 8 < a,ng =0}, by Lemma 7.1 we have the following

disjoint alternatives:

(A) There are two ordinals vy < ) < ap < wy and a vector zy € Dg, such
that zo ¢ ¢6(H, U cone(D,,)). In this case we do p, = o, Ta = g, Na =

0, Yo = 2 and ng‘) = Dy for every p, < 3 < wy.

(B) If (A) doesn’t hold, there exists ¢ € X such that dist(c, D,) <
27P00)+2 for every 79 < v < wi. In this case we do n, = 1, p(a) =
(%) + 1, pa =, Ta = pPa + 1, ap@) = c and C«(,O‘) = B(ap(a), 277N D,

for 79 < v < wy. Since n, = 1 we do not choose vy,

And this completes the induction.



ON THE KUNEN-SHELAH PROPERTIES IN BANACH SPACES 29

Obviously, there exists p < w; such that n, = 0 for every p < a <

wi, which gives us the sequence {y, : p < o < wi} fulfilling that y, ¢

co({ys:p<B<a}l]U cone({ys : @ < f < wy})) = K, for every p <
a < wy. So, by the Hahn-Banach theorem there exists y: € X* such that
Yi(ya) = 1 but sup{y’(y) : v € K,} < 1. In particular, y}(yz) = 0, if
p<pf<a,and y’(yz) <0if a < 8 < wy. OJ

Proposition 7.3. Let X be a Banach space. We have:
(1) If X € KSy, then X € (C); (2) X € KSy iff X € KS;.

Proof. (1) This follows from Prop. 7.2 where it is proved that if X ¢ (C)
then X has an w;-polyhedron.

(2) Clearly, X € K S5 implies X € KS;. Assume that X € K.S,. By (1)
we have that X € (C). In order to prove that X € KSs, by Prop. 6.2 it
is enough to prove that every convex subset C' C X* is w*-separable. Since
X € K8y, " s w*-separable by Prop. 4.4. So, there exists a countable
family {z, : n > 1} C " w*-dense in C" . Since X € (C), by [10,
pg. 147] there exists a countable family {z,,, : n,m > 1} C C such that

2y € €0 ({2pm : m > 1}) for every n > 1. So, C' is w*-separable. O

Remarks. A nonseparable Banach space X has the Kunen-Shelah prop-
erty KSg if for every uncountable family {z;};c; C X there exists j € T
such that z; € wel({w;}ien ;) (wel=weak closure). Clearly, KSs = KS;.
It seems that the unique known example of a Banach space X such that
X € KSg is the space X = C(K), K being the Kunen compact space ([8,
p. 1123]) constructed by Kunen under CH. This space C(K) of Kunen
has more interesting pathological properties. For example, (C(K))", w")
is hereditarily Lindelof for every n € N. In view of this situation, we can
introduce the property KS7. A Banach space X is said to have the Kunen-
Shelah property K.S7 iff (X", w") is for every n € N. It can be easily proved
that KS7; = K.Sg. We do not know either if the Shelah space S has the
property K Sg or if the properties K55, K.S¢ and K.S; can be separated.
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