LFC BUMPS ON SEPARABLE BANACH SPACES

M. JIMENEZ-SEVILLA AND L. SANCHEZ-GONZALEZ

ABSTRACT. In this note we construct a C°°-smooth, LFC (Locally depending
on Finitely many Coordinates) bump function, in every separable Banach space
admitting a continuous, LFC bump function.

1. INTRODUCTION

The notion of a LFC function (a function that locally depends on finitely many
coordinates) was introduced by Pechanec, Whitfield and Zizler in [15], where they
showed that every Banach space which admits a LFC bump is saturated with copies
of ¢y. Nonetheless, the first use of LFC in the literature is Kuiper’s construction
(which appeared in [1]) of a C*°-smooth, LFC equivalent norm on ¢y. One of the most
important application of LFC is the use of C*°-smooth, LFC bumps on ¢y(I") in the
construction of C*-smooth partitions of unity in reflexive Banach spaces admitting
a C*-smooth bump, due to Torusiczyk [16]. The existence of a LFC bump on the
space implies additional properties: It was proved in [3] and [11] that it is Asplund.
However, not every Asplund, cp-saturated space admits a LFC bump function [11].

The LFC notion is closely related to the class of polyhedral Banach spaces (in-
troduced by Klee [13]; see [[12], Chapter 15] for results and references). Fonf [4]
proved that every polyhedral Banach space is saturated with copies of ¢g. Fonf [5]
characterized separable polyhedral Banach spaces as those Banach spaces admitting
an equivalent LFC norm. Later, Héjek [6] characterized them as those admitting an
equivalent C°°-smooth and LFC norm. Since it is easier to work with functions on
R"™ than with functions defined on an infinite dimensional Banach space, the notion
of LFC has been successfully used (implicitly and explicitly) in a large number of
papers.

It remains an open problem whether every separable Banach space with a C*°-
smooth LFC bump is a polyhedral Banach space [9]. Hajek and Johanis conjectured
that the answer is negative. They constructed an Orlicz space admitting a C°°-
smooth LFC bump and not satisfying Leung’s sufficient condition on polyhedrality
[14]. H&jek and Johanis proved in [8] that every separable Banach space with a
Schauder basis and a continuous LFC bump, admits a C*°-smooth and LFC bump
function. This note extends the result of [8] and establish a characterization of
the class of separable Banach spaces admitting a continuous, LFC bump as those
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separable Banach spaces with a C°°-smooth LFC bump. This result answers a
problem posed in [8], [7] and [3].

We use a standard Banach space notation. If X is a separable Banach space
with norm || - ||, we denote by B(x,r) the open ball centered at = with radius r. A
function b : X — R is a bump function if it has a bounded and non-empty support.
The notion of a function that locally depends on finitely many coordinates was first
defined on Banach spaces with Schauder basis using the coordinate functionals [15].
Later, a generalization of this notion was considered by some authors using arbitrary
continuous linear functionals.

Definition 1.1. Let X be a Banach space, A C X an open subset, E be an arbitrary
set, M C X* and a mappingb: A — FE.

(a) We say that b depends only on M on a subset U C A if b(x) = b(y) whenever
x,y € U are such that f(x) = f(y) for all f € M. If M = {f1,..., fn},
this is equivalent to the existence of a mapping g : R — FE such that
b(z) = g(f1(x), ..., fulz)) for allz € U.

(b) We say that b locally depends on finitely many coordinates from M (LFC-
M for short) if for each x € A there are a neighbourhood U, C A of x and
a finite subset F,, C M such that b depends only on F, on U,. We say
that b depends locally on finitely many coordinates (LFC for short) if it is
LFC-X*.

(¢) A norm is said to be LFC, if it is LFC away from the origin.

A simple example is the sup norm on ¢y, which is LFC-{e}} away from the origin
(where {e}} are the coordinate functionals in ¢p). Indeed, for every x € ¢y, = # 0,
there exists n € N such that |z(i)| < ||z||c0/2 for every i > n. Then the norm || - ||~
depends only on {ej,...,e} on B(x, ||z|00/4).

We shall use the fact that for every LFC mapping b : A — FE and every mapping
h: E — F (F and arbitrary set) the composition hob is also LFC. It can be readily
verified that a continuous function b : A — R (where A C X is an open subset of
the Banach space X) is LFC-M for some M C X* if and only if for every x € A,
there are a neighborhood V, C A of z, a finite subset {fi,...,fn,} C M and a
continuous function ¢g* : R™ — R such that ¢*(f1(y),. .., fn,(y)) = b(y) for every

y e V.

2. ConTINUOUS LFC BUMPS

We first show that it is possible to “join together” any finite number of neighbor-
hoods, where we have local factorizations of a given LFC function, to obtain a new
factorization of the LFC function in the union of these neighborhoods by a suitable
composition through the space cy.

Lemma 2.1. Let X be a Banach space such that X* is separable, andb: X — R be
a continuous, LFC function on X. Let us consider p € N, Bj = B(xj,7;) open balls,
integers nj € N, continuous functions ¢/ i R"% — R and functionals {1} }:21 C X7,
for j=1...,p. Let us assume that for every x € B(xj,2r;),

b(x) = g’ (f](2), .. fi, ().
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Then, there exists a continuous linear map T : X — co(N) and a continuous
function g : co(N) — R such that b(z) = g(T(x)) for every x € U?:l B;.

Proof. Since X* is a separable Banach space, there exists a one-to-one continuous
linear mapping ¢ : X — ¢o(N). Indeed, it is enough to take a sequence {gx}3>,
dense on Sy« and define i(z) = (gr(x)/2%)%%,. In addition, the linear mapping
i satisfies that z, > 0 (weakly) whenever {x,}>, is a bounded sequence with
i(xy) — 0 (in norm).

Let us consider the continuous, LFC function b : X — R. We define n =
Z§:1 n;, consider R™ = R™! x ... xR"? and the canonical proyection p; : R" — R"
given by p;(v) = v, for v = (v1,...,vp) € R™ x --- x R"™. We can relabel the
set of functionals {f{,..., fa ..., fY,.... fh,} as {f1,..., fa} in such a way that
pi(fi(x), ..., fulx)) = (fi(®),..., fi;(x)) for every € X and j = 1,...,p. Let us
define G’ : R — R as G/(x) = ¢’(p;(x)). To simplify notation, we will use ¢’ to
denote G7 in the rest of the proof (thus, we have ¢’ (f1(z), ..., fn(z)) = b(z) for all
x € B(xj,2r;)). We define

(2.1) T: X — R" x ¢(N), T(x) = (fi(z),..., ful(x),i(z)).

The function T is one-to-one, linear and continuous.

Let us first show the assertion of the lemma for p = 2. Since T is one-to-one,
T(Bl) N T(BQ) = T(Bl N BQ). If z € T(Bl) N T(BQ) = T(Bl N BQ), there exists
y € By N By such that T(y) = z. Thus b(y) = ¢ (f1(y), ..., faly)) = g*(7(z)) =
(1), fn(y) = g*(n(x)), where 7 is the projection of R™ x cy(N) onto R”
given by the n first coordinates.

Let us define g : T(B;) UT(B2) — R as

o) = gt (m(z)) ifz € T(By)
¢*(m(x)) if z € T(By).

If = € T(By) NT(By), we have already showed that ¢'(w(z)) = ¢*(n(x)). To
show that ¢ is well defined and continuous on 7'(B;) U T(B3), it suffices to prove
that g!(w(x)) = ¢g*(w(x)) whenever x € T(By) NT(Bz). Assume, on the contrary,
that there is z € T(B;) N T(Bz) with g'(7(2)) # ¢?(n(2)). Then, there exist two
sequences {x,,} C By and {ym,} C Ba such that T'(z,,) — z and T'(ym) — 2.
Since limy, ||7(T (2m)) — 7(2)]]oo = limy, ||7(T(ym)) — 7(2)||oc = 0 and g! and ¢? are
continuous, we have
g'(r(2)) = lim_g'(m(T(zm))) = lim_g"(fi(@m), -, fulzm)),

m—0o0

P(r(z) = lim g*(r(Tyn)) = Tm_g*(fi(m). o Falym).

m—00

Let 0 > 0 such that |g'(21, ..., 2,) —g%(21, ..., 2n)| > & > 0, where z; is the i-coordinate
of z. Since the functions g and g2 are continuous on the point (21, ..., z,), there exists
n > 0such that |g' (t1, ..., tn) =g (21, ..., 20)| < 6/4and |g?(t1, .oy tn) =g (21, oy 20)| <
0/4 whenever t = (t1,...,t,) € R™ and ||(t1, ..., tn) — (21, -, 2n)||co < 7. Let us take
0 < e < min{n,ry/2}. There exists ng € N such that ||7(T'(z,)) — 7(2)||ec < € and
|7 (T (ym)) — 7(2)||co < € whenever m > ng. To simplify, we denote {x,,} and {ym}
as the subsequences {Zm, }m>n, and {ym }m>ng-
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Since T(xy, — Ym) — 0, by the remark at the beginning of the proof, we obtain
that z,, — ym — 0. From the fact that co“({zm — ym : m € N}) =co({xm — ym :
m € N}), we obtain convex combinations of {x,, —ym } converging (in norm) to 0, i.e.
there are non-negative numbers {A$}7s such that > "9 X5 = 1 and || D7 Az —
o Afyi|l < e. Since Y07 Ny € 31 and Yo Afy; € Bg, we have

dist(z Xex;, Bo) < | Z Xsz; — Z Xyill <e.
i=1 i=1 i=1

Notice that e < r9/2 and then "9 Xsa; € B(x2,2r2) N By. Therefore

b(Z)\f:gi)— ZA films), Z)\ fulz)) =g WOTZAE:@
i=1
(2.3) Z)\Efl (x4), Z/\Efn (24)) _g (moT Z)\E:L',

We know that ||7(T'(x )) —7(2)||o < € for every m € N. Thus, by convexity, we
have that ||7 o T'(3 " Axi) — 7(2)||ec < €. Since € < 1, we deduce

(2.4) Z)\afl x;), Z)\ fn(@) = g (21, .y 20)| < 6/4,

(2.5) ZA fi(zs), Z)\ Falz)) = G (21, ooy 20)| < 6/4.

From equations (2.2), (2.3), (2.4) and (2.5) we deduce that |g' (21, ..., 2,)—g%(21, ..., 2n)| <
0/2 which is a contradiction. This proves that the function g is well defined and
continuous on the closed set T'(B1) UT(B2). Now, by the Tietze theorem we can
construct a continuous extension, which we shall denote also by g, on the space
R™ x ¢p(N). Notice that the above arguments imply that b|p,up, is weakly (sequen-
tially) uniformly continuous.

Finally, let us define B(z) = g(T'(x)) for every x € X. Then B is a continuous
function and B(z) = b(z) for every = € By U Bs.

Let us consider the general case of p balls. Since the function 7" defined in (2.1)
is one-to-one, (;c; T'(Bi) = T((;e; B:i) where I C {1,...,p}. If x € (;c; T(B;) =

T(N;e; Bi) there exists y € (N, B such that T'(y) = z. Thus b(y) = ¢'(f1(y), ..., fa(y)) =

g'(m(@)) = ¢ (f1(y), ..., fu(y)) = ¢’(m(x)) for every i,j € I, where 7 is the pro-
jection of R™ x ¢o(N) onto R™ given by the n first coordinates. Let us define
g:U_; T(B;) — R such that

9(z) = ¢'(n(z)), if z € T(B;).
Let us check that g is well defined and continuous in (J/_; T(B;). Consider z €
Micr T(B;) where I C {1,...,p} and I has at least two elements. If i, j € I and i # j,
it is enough to check that ¢'(m(x)) = ¢/ (n(x)), whenever x € T(B;) N T(B;). This
equality is already proved for the case p = 2. Notice that the integer n con81dered
in the case p = 2 for the two balls B; and Bj; is less or equal than the integer n
considered in the general case of the p balls By,..., B),, and thus the projections,
both denoted as m, do not necessarily coincide. Nevertheless, this fact does not
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interfere in the proof, since we consider g*(w(z)) as g*(px(x)) in both case. Now,
we can apply the Tietze theorem and find a continuous extension, which we shall
denote also by g, defined on R™ x ¢¢(N). Notice that the above arguments imply
that b’Ufﬂ p, is weakly (sequentially) uniformly continuous.

Finally, let us define B(z) = g(T'(x)) for every x € X. Then, B is a continuous
function and B(x) = b(z), for every z € | J_; B;. O

Let us establish now the following characterization.

Theorem 2.2. Let X be a separable Banach space. The following statements are
equivalent:

(1) X admits a continuous, LFC bump.
(2) X admits a C*°-smooth, LFC bump.

Proof. We only need to prove (1) = (2). Let b : X — R be a continuous, LFC
bump. We can obtain, using a composition of b with a suitable real function, a
continuous, LFC bump b : X — [1,2] such that (0) = 1 and b(z) = 2 whenever
|lz|| > 1. For every x € X, there exist 7, > 0, n, € N, functionals { f{, ..., fii } C X*
and a continuous function g* : R™* — R such that

b(y) = 9" (I (), - fr, (W), for every y € B(x,2r,).

Since X is separable, there exists a sequence of points {z,,}>°_; C X such that
X = Umen Bm (where ry, = 14, and By, = B(%,,7m)). We can assume that 0 € By
and define the increasing sequence of open sets V; := B U ... U B;. We know by a
result of Fabian and Zizler [3] that, under our assumptions, X* is separable. From
Lemma 2.1, we obtain for every j € N, a continuous linear map T; : X — ¢o(N)
and a continuous function g; : ¢o(N) — R such that b(z) = g;(T;(z)) for every
x e Vj.

Following the construction given by Héjek and Johanis in [8], let us choose two
sequences of real numbers €; and 7; decreasing to 0 and 1 respectively, 0 < g; <
1(mj — njp1) with g < 1+ 7 and &1 < §. We can uniformly approximate the
continuous function 7; g; in ¢o(N) by a C*-smooth and LFC-{e}} function [16],
which we shall denote by h;, satisfying

|hj(x) —njg5(x)] < e, for every x € ¢y(N).

Let us define H; : X — R, Hj(xz) = h;j(Tj(x)), for every z € X and j € N.
Since T} is linear and continuous and h; is C*°-smooth and LFC, we can easily
deduce that H; is C*°-smooth and LFC. Indeed, for every x € X, let us consider
V' C ¢p(N) a neighborhood of T)j(x), a natural number s, a function p : R®* — R and

*

{e1,...,e:} (coordinate functionals on c(N)) such that h;(y) = p(ej(y), ..., e:(y)) for

ceey Cg

every y € V. Since T} is continuous, the set W = T;%V) is a neighborhood of x on
X. Then Hj(z) = p(e} o Tj(2),...,e5 0 Tj(z)) for all z € W. Because e o Tj € X*,
we conclude that H; is LFC. In addition, we have

|Hj(z) —n;jb(x)] < g, for every z € Vj.
Let us define
P: X — Lo(N), ®(x) = (Hj(2));.
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¢ is well defined since lim; Hj(x) = b(x) for every x € X. Let us check that ® is
continuous. Consider x € X and € > 0. Since b is continuous, there is 6 > 0 such
that [b(z) — b(y)| < § whenever ||z — y|| < §. In addition, there exists jo € N such
that if j > jo, then x € Vj and ¢; < §. Thus, for every y € Vj, with ||z — y|[ <4,
we have

| Hj () —Hj(y)| < [Hj(x)=n;b(x)|+n;1b(z) —b(y) [+ |n;bly) — H;(y)| < 2€j+m§ <e

whenever j > jg. From the above inequality and the fact that Hy,...,Hj, are
continuous at z, we can easily deduce the continuity of ¢ at x.
Let us consider the open subset U of /o (N),
U={x € lx(N):|xj|—¢cj > sup|z;| +¢j, for some jo € N}.
J>Jjo

Let us prove that p(X) C U. If € Vj, for some jo and j > jo, we have
Hjo(z) = €jo > njob(x) — 285 > jo1b(x) + 265, > (n;b(x) +€5) + 5 > Hj(x) + ¢,
and thus ®(X) C U. By [8, Lemma 13|, there exists a C*°-smooth and LFC-{e}}

function F' : U — (0,00) (where {ef} are the coordinate functionals on (. (N))
satisfying ||z||ecc < F(z) < ||2||coc + €1. Then the composition function defined as

B: X — R, B(x) =F(®(x))
is C*°-smooth and LFC. In addition,
(a) Since 0 € Vj for every j € N, H;(0) < n; - b(0) + &5 < m1 + €1. Thus,
B(0) < [|®(2)]loc + 1 < 11 + 261 < 5.
(b) If [|z|| > 1 and jo € N verifies x € Vj,, then Hj,(z) > n;, b(z) —&j, >
21jo — €jo > 2 —¢e1 and B(z) > ||®(2)||oc > 2 —€1 > %.
Therefore B is a separating function on X and by composing it with a suitable
C*°-smooth, real function we obtain a C*°-smooth, LFC bump on X. O

Lemma 2.1 and Theorem 2.2 can be generalized using the concept of locally
factorized functions.

Definition 2.3. Let X, E and Y be Banach spaces, A C X an open subset, F a
family of Banach spaces and b: A — 'Y a continuous mapping.

(a) We say that b is factorized by E on a subset U C A if there exists a contin-
wous, linear map T : X — E and a continuous function G : E — Y such
that b(x) = G(T'(z)) for allz € U.

(b) We say that b is locally factorized by E (b is LF-E, for short) if for each
x € A there exists a neighbourhod U, C A of x such that b is factorized by
E on U,.

(c) We say that b is locally factorized by F (b is LF-F, for short) if for each
x € A there are a neighbourhood U, C A of x and a Banach space E, € F
such that b is factorized by E, on U,.

Every continuous, LFC function is LF-cg. However, there exist LF-F functions
that are not LFC. For a Banach space E with norm [|-||, let us consider X = F =
{(xn)32, : xp € E and lim, ||z,|| = 0} with the norm ||z|| = sup{||z,|| : n € N},
for every x € X. It can be readily verified that the norm in X is LF-E. Moreover,
if &= /¢, with 1 <p < oo, then the norm in X is LF-£,. However, note that in this
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case, X does not admit a continuous, LFC bump, because » o E 18 not co-saturated.
With the same arguments employed in Lemma 2.1 and Theorem 2.2, we can show
the following more general statement.

Proposition 2.4. Let X, E be separable Banach spaces and F a family of separable
Banach spaces such that X admits a continuous, LF-E (LF-F) bump. Assume
that X* is separable and E (every E € F, respectively) admits a bump function b
satisfying one of the following properties:

(1) b is Ck-smooth, where k € NU {oo},
(2) b is continuous and LFC,
(3) b is LEC and C*-smooth, where k € NU {oo}.

Then, X admits a bump function satisfying the same property.
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