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Abstract. In this note we construct a C∞-smooth, LFC (Locally depending
on Finitely many Coordinates) bump function, in every separable Banach space
admitting a continuous, LFC bump function.

1. Introduction

The notion of a LFC function (a function that locally depends on finitely many
coordinates) was introduced by Pechanec, Whitfield and Zizler in [15], where they
showed that every Banach space which admits a LFC bump is saturated with copies
of c0. Nonetheless, the first use of LFC in the literature is Kuiper’s construction
(which appeared in [1]) of a C∞-smooth, LFC equivalent norm on c0. One of the most
important application of LFC is the use of C∞-smooth, LFC bumps on c0(Γ) in the
construction of Ck-smooth partitions of unity in reflexive Banach spaces admitting
a Ck-smooth bump, due to Toruńczyk [16]. The existence of a LFC bump on the
space implies additional properties: It was proved in [3] and [11] that it is Asplund.
However, not every Asplund, c0-saturated space admits a LFC bump function [11].

The LFC notion is closely related to the class of polyhedral Banach spaces (in-
troduced by Klee [13]; see [[12], Chapter 15] for results and references). Fonf [4]
proved that every polyhedral Banach space is saturated with copies of c0. Fonf [5]
characterized separable polyhedral Banach spaces as those Banach spaces admitting
an equivalent LFC norm. Later, Hájek [6] characterized them as those admitting an
equivalent C∞-smooth and LFC norm. Since it is easier to work with functions on
Rn than with functions defined on an infinite dimensional Banach space, the notion
of LFC has been successfully used (implicitly and explicitly) in a large number of
papers.

It remains an open problem whether every separable Banach space with a C∞-
smooth LFC bump is a polyhedral Banach space [9]. Hájek and Johanis conjectured
that the answer is negative. They constructed an Orlicz space admitting a C∞-
smooth LFC bump and not satisfying Leung’s sufficient condition on polyhedrality
[14]. Hájek and Johanis proved in [8] that every separable Banach space with a
Schauder basis and a continuous LFC bump, admits a C∞-smooth and LFC bump
function. This note extends the result of [8] and establish a characterization of
the class of separable Banach spaces admitting a continuous, LFC bump as those
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separable Banach spaces with a C∞-smooth LFC bump. This result answers a
problem posed in [8], [7] and [3].

We use a standard Banach space notation. If X is a separable Banach space
with norm || · ||, we denote by B(x, r) the open ball centered at x with radius r. A
function b : X −→ R is a bump function if it has a bounded and non-empty support.
The notion of a function that locally depends on finitely many coordinates was first
defined on Banach spaces with Schauder basis using the coordinate functionals [15].
Later, a generalization of this notion was considered by some authors using arbitrary
continuous linear functionals.

Definition 1.1. Let X be a Banach space, A ⊂ X an open subset, E be an arbitrary
set, M ⊂ X∗ and a mapping b : A −→ E.

(a) We say that b depends only on M on a subset U ⊂ A if b(x) = b(y) whenever
x, y ∈ U are such that f(x) = f(y) for all f ∈ M . If M = {f1, ..., fn},
this is equivalent to the existence of a mapping g : Rn −→ E such that
b(x) = g(f1(x), ..., fn(x)) for all x ∈ U .

(b) We say that b locally depends on finitely many coordinates from M (LFC-
M for short) if for each x ∈ A there are a neighbourhood Ux ⊂ A of x and
a finite subset Fx ⊂ M such that b depends only on Fx on Ux. We say
that b depends locally on finitely many coordinates (LFC for short) if it is
LFC-X∗.

(c) A norm is said to be LFC, if it is LFC away from the origin.

A simple example is the sup norm on c0, which is LFC-{e∗i } away from the origin
(where {e∗i } are the coordinate functionals in c0). Indeed, for every x ∈ c0, x 6= 0,
there exists n ∈ N such that |x(i)| < ||x||∞/2 for every i ≥ n. Then the norm || · ||∞
depends only on {e∗1, ..., e∗n} on B(x, ‖x‖∞/4).

We shall use the fact that for every LFC mapping b : A −→ E and every mapping
h : E −→ F (F and arbitrary set) the composition h◦b is also LFC. It can be readily
verified that a continuous function b : A −→ R (where A ⊂ X is an open subset of
the Banach space X) is LFC-M for some M ⊂ X∗ if and only if for every x ∈ A,
there are a neighborhood Vx ⊂ A of x, a finite subset {f1, . . . , fnx} ⊂ M and a
continuous function gx : Rnx −→ R such that gx(f1(y), . . . , fnx(y)) = b(y) for every
y ∈ Vx.

2. Continuous LFC bumps

We first show that it is possible to “join together” any finite number of neighbor-
hoods, where we have local factorizations of a given LFC function, to obtain a new
factorization of the LFC function in the union of these neighborhoods by a suitable
composition through the space c0.

Lemma 2.1. Let X be a Banach space such that X∗ is separable, and b : X −→ R be
a continuous, LFC function on X. Let us consider p ∈ N, Bj = B(xj , rj) open balls,
integers nj ∈ N, continuous functions gj : Rnj −→ R and functionals {f j

i }
nj

i=1 ⊂ X∗,
for j = 1 . . . , p. Let us assume that for every x ∈ B(xj , 2rj),

b(x) = gj(f j
1 (x), ..., f j

nj
(x)).
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Then, there exists a continuous linear map T : X −→ c0(N) and a continuous
function g : c0(N) −→ R such that b(x) = g(T (x)) for every x ∈

⋃p
j=1Bj.

Proof. Since X∗ is a separable Banach space, there exists a one-to-one continuous
linear mapping i : X −→ c0(N). Indeed, it is enough to take a sequence {gk}∞k=1

dense on SX∗ and define i(x) = (gk(x)/2k)∞k=1. In addition, the linear mapping
i satisfies that xn

ω−→ 0 (weakly) whenever {xn}∞n=1 is a bounded sequence with
i(xn)→ 0 (in norm).

Let us consider the continuous, LFC function b : X −→ R. We define n =∑p
j=1 nj , consider Rn = Rn1×· · ·×Rnp and the canonical proyection pj : Rn −→ Rnj

given by pj(v) = vj , for v = (v1, . . . , vp) ∈ Rn1 × · · · × Rnp . We can relabel the
set of functionals {f1

1 , . . . , f
1
n1
, . . . , fp

1 , . . . , f
p
np} as {f1, . . . , fn} in such a way that

pj(f1(x), . . . , fn(x)) = (f j
1 (x), . . . , f j

nj (x)) for every x ∈ X and j = 1, . . . , p. Let us
define Gj : Rn −→ R as Gj(x) = gj(pj(x)). To simplify notation, we will use gj to
denote Gj in the rest of the proof (thus, we have gj(f1(x), ..., fn(x)) = b(x) for all
x ∈ B(xj , 2rj)). We define

(2.1) T : X −→ Rn × c0(N), T (x) = (f1(x), ..., fn(x), i(x)).

The function T is one-to-one, linear and continuous.
Let us first show the assertion of the lemma for p = 2. Since T is one-to-one,

T (B1) ∩ T (B2) = T (B1 ∩ B2). If x ∈ T (B1) ∩ T (B2) = T (B1 ∩ B2), there exists
y ∈ B1 ∩ B2 such that T (y) = x. Thus b(y) = g1(f1(y), ..., fn(y)) = g1(π(x)) =
g2(f1(y), ..., fn(y)) = g2(π(x)), where π is the projection of Rn × c0(N) onto Rn

given by the n first coordinates.
Let us define g : T (B1) ∪ T (B2) −→ R as

g(x) =

{
g1(π(x)) if x ∈ T (B1)
g2(π(x)) if x ∈ T (B2).

If x ∈ T (B1) ∩ T (B2), we have already showed that g1(π(x)) = g2(π(x)). To
show that g is well defined and continuous on T (B1) ∪ T (B2), it suffices to prove
that g1(π(x)) = g2(π(x)) whenever x ∈ T (B1) ∩ T (B2). Assume, on the contrary,
that there is z ∈ T (B1) ∩ T (B2) with g1(π(z)) 6= g2(π(z)). Then, there exist two
sequences {xm} ⊂ B1 and {ym} ⊂ B2 such that T (xm) → z and T (ym) → z.
Since limm ||π(T (xm))−π(z)||∞ = limm ||π(T (ym))−π(z)||∞ = 0 and g1 and g2 are
continuous, we have

g1(π(z)) = lim
m→∞

g1(π(T (xm))) = lim
m→∞

g1(f1(xm), ..., fn(xm)),

g2(π(z)) = lim
m→∞

g2(π(T (ym))) = lim
m→∞

g2(f1(ym), ..., fn(ym)).

Let δ > 0 such that |g1(z1, ..., zn)−g2(z1, ..., zn)| ≥ δ > 0, where zi is the i-coordinate
of z. Since the functions g1 and g2 are continuous on the point (z1, ..., zn), there exists
η > 0 such that |g1(t1, ..., tn)−g1(z1, ..., zn)| < δ/4 and |g2(t1, ..., tn)−g2(z1, ..., zn)| <
δ/4 whenever t = (t1, ..., tn) ∈ Rn and ‖(t1, ..., tn) − (z1, ..., zn)‖∞ < η. Let us take
0 < ε < min{η, r2/2}. There exists n0 ∈ N such that ||π(T (xm))− π(z)||∞ < ε and
||π(T (ym))− π(z)||∞ < ε whenever m ≥ n0. To simplify, we denote {xm} and {ym}
as the subsequences {xm}m≥n0 and {ym}m≥n0 .
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Since T (xm − ym) → 0, by the remark at the beginning of the proof, we obtain
that xm − ym

ω−→ 0. From the fact that coω({xm − ym : m ∈ N}) = co({xm − ym :
m ∈ N}), we obtain convex combinations of {xm−ym} converging (in norm) to 0, i.e.
there are non-negative numbers {λε

i}
mε
i=1 such that

∑mε
i=1 λ

ε
i = 1 and ‖

∑mε
i=1 λ

ε
ixi −∑mε

i=1 λ
ε
iyi‖ < ε. Since

∑mε
i=1 λ

ε
ixi ∈ B1 and

∑mε
i=1 λ

ε
iyi ∈ B2, we have

dist(
mε∑
i=1

λε
ixi, B2) ≤ ‖

mε∑
i=1

λε
ixi −

mε∑
i=1

λε
iyi‖ < ε.

Notice that ε < r2/2 and then
∑mε

i=1 λ
ε
ixi ∈ B(x2, 2r2) ∩B1. Therefore

b(
mε∑
i=1

λε
ixi) = g2(

mε∑
i=1

λε
if1(xi), ...,

mε∑
i=1

λε
ifn(xi)) = g2(π ◦ T (

mε∑
i=1

λε
ixi)) =(2.2)

= g1(
mε∑
i=1

λε
if1(xi), ...,

mε∑
i=1

λε
ifn(xi)) = g1(π ◦ T (

mε∑
i=1

λε
ixi)).(2.3)

We know that ||π(T (xm)) − π(z)||∞ < ε for every m ∈ N. Thus, by convexity, we
have that ||π ◦ T (

∑mε
i=1 λ

ε
ixi)− π(z)||∞ < ε. Since ε < η, we deduce

|g1(
mε∑
i=1

λε
if1(xi), ...,

mε∑
i=1

λε
ifn(xi))− g1(z1, ..., zn)| < δ/4,(2.4)

|g2(
mε∑
i=1

λε
if1(xi), ...,

mε∑
i=1

λε
ifn(xi))− g2(z1, ..., zn)| < δ/4.(2.5)

From equations (2.2), (2.3), (2.4) and (2.5) we deduce that |g1(z1, ..., zn)−g2(z1, ..., zn)| <
δ/2 which is a contradiction. This proves that the function g is well defined and
continuous on the closed set T (B1) ∪ T (B2). Now, by the Tietze theorem we can
construct a continuous extension, which we shall denote also by g, on the space
Rn× c0(N). Notice that the above arguments imply that b|B1∪B2 is weakly (sequen-
tially) uniformly continuous.

Finally, let us define B(x) = g(T (x)) for every x ∈ X. Then B is a continuous
function and B(x) = b(x) for every x ∈ B1 ∪B2.

Let us consider the general case of p balls. Since the function T defined in (2.1)
is one-to-one,

⋂
i∈I T (Bi) = T (

⋂
i∈I Bi) where I ⊂ {1, ..., p}. If x ∈

⋂
i∈I T (Bi) =

T (
⋂

i∈I Bi) there exists y ∈
⋂

i∈I Bi such that T (y) = x. Thus b(y) = gi(f1(y), ..., fn(y)) =
gi(π(x)) = gj(f1(y), ..., fn(y)) = gj(π(x)) for every i, j ∈ I, where π is the pro-
jection of Rn × c0(N) onto Rn given by the n first coordinates. Let us define
g :

⋃p
i=1 T (Bi) −→ R such that

g(x) = gi(π(x)), if x ∈ T (Bi).

Let us check that g is well defined and continuous in
⋃p

i=1 T (Bi). Consider z ∈⋂
i∈I T (Bi) where I ⊂ {1, ..., p} and I has at least two elements. If i, j ∈ I and i 6= j,

it is enough to check that gi(π(x)) = gj(π(x)), whenever x ∈ T (Bi) ∩ T (Bj). This
equality is already proved for the case p = 2. Notice that the integer n considered
in the case p = 2 for the two balls Bi and Bj is less or equal than the integer n
considered in the general case of the p balls B1, . . . , Bp, and thus the projections,
both denoted as π, do not necessarily coincide. Nevertheless, this fact does not
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interfere in the proof, since we consider gk(π(x)) as gk(pk(x)) in both case. Now,
we can apply the Tietze theorem and find a continuous extension, which we shall
denote also by g, defined on Rn × c0(N). Notice that the above arguments imply
that b|∪p

i=1Bi
is weakly (sequentially) uniformly continuous.

Finally, let us define B(x) = g(T (x)) for every x ∈ X. Then, B is a continuous
function and B(x) = b(x), for every x ∈

⋃p
i=1Bi. �

Let us establish now the following characterization.

Theorem 2.2. Let X be a separable Banach space. The following statements are
equivalent:

(1) X admits a continuous, LFC bump.
(2) X admits a C∞-smooth, LFC bump.

Proof. We only need to prove (1) ⇒ (2). Let b : X −→ R be a continuous, LFC
bump. We can obtain, using a composition of b with a suitable real function, a
continuous, LFC bump b : X −→ [1, 2] such that b(0) = 1 and b(x) = 2 whenever
‖x‖ ≥ 1. For every x ∈ X, there exist rx > 0, nx ∈ N, functionals {fx

1 , ..., f
x
nx
} ⊂ X∗

and a continuous function gx : Rnx −→ R such that

b(y) = gx(fx
1 (y), ..., fx

nx
(y)), for every y ∈ B(x, 2rx).

Since X is separable, there exists a sequence of points {xm}∞m=1 ⊂ X such that
X =

⋃
m∈NBm (where rm = rxm and Bm = B(xm, rm)). We can assume that 0 ∈ B1

and define the increasing sequence of open sets Vj := B1 ∪ ... ∪ Bj . We know by a
result of Fabian and Zizler [3] that, under our assumptions, X∗ is separable. From
Lemma 2.1, we obtain for every j ∈ N, a continuous linear map Tj : X −→ c0(N)
and a continuous function gj : c0(N) −→ R such that b(x) = gj(Tj(x)) for every
x ∈ Vj .

Following the construction given by Hájek and Johanis in [8], let us choose two
sequences of real numbers εj and ηj decreasing to 0 and 1 respectively, 0 < εj <
1
4(ηj − ηj+1) with η1 < 1 + 1

4 and ε1 < 1
8 . We can uniformly approximate the

continuous function ηj gj in c0(N) by a C∞-smooth and LFC-{e∗i } function [16],
which we shall denote by hj , satisfying

|hj(x)− ηj gj(x)| < εj , for every x ∈ c0(N).

Let us define Hj : X −→ R, Hj(x) = hj(Tj(x)), for every x ∈ X and j ∈ N.
Since Tj is linear and continuous and hj is C∞-smooth and LFC, we can easily
deduce that Hj is C∞-smooth and LFC. Indeed, for every x ∈ X, let us consider
V ⊂ c0(N) a neighborhood of Tj(x), a natural number s, a function p : Rs −→ R and
{e∗1, ..., e∗s} (coordinate functionals on c0(N)) such that hj(y) = p(e∗1(y), ..., e∗s(y)) for
every y ∈ V . Since Tj is continuous, the set W = T−1

j (V ) is a neighborhood of x on
X. Then Hj(z) = p(e∗1 ◦ Tj(z), ..., e∗s ◦ Tj(z)) for all z ∈ W . Because e∗i ◦ Tj ∈ X∗,
we conclude that Hj is LFC. In addition, we have

|Hj(x)− ηj b(x)| < εj , for every x ∈ Vj .

Let us define

Φ : X −→ `∞(N), Φ(x) = (Hj(x))j .
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Φ is well defined since limj Hj(x) = b(x) for every x ∈ X. Let us check that Φ is
continuous. Consider x ∈ X and ε > 0. Since b is continuous, there is δ > 0 such
that |b(x) − b(y)| < ε

4 whenever ||x − y|| < δ. In addition, there exists j0 ∈ N such
that if j ≥ j0, then x ∈ Vj and εj <

ε
4 . Thus, for every y ∈ Vj0 with ||x − y|| < δ,

we have

|Hj(x)−Hj(y)| ≤ |Hj(x)−ηjb(x)|+ηj |b(x)−b(y)|+|ηjb(y)−Hj(y)| ≤ 2εj +ηj
ε

4
< ε,

whenever j ≥ j0. From the above inequality and the fact that H1, . . . ,Hj0 are
continuous at x, we can easily deduce the continuity of Φ at x.

Let us consider the open subset U of `∞(N),

U = {x ∈ `∞(N) : |xj0 | − εj0 > sup
j>j0

|xj |+ εj0 for some j0 ∈ N}.

Let us prove that ϕ(X) ⊂ U . If x ∈ Vj0 for some j0 and j > j0, we have

Hj0(x)− εj0 > ηj0b(x)− 2εj0 > ηj0+1b(x) + 2εj0 > (ηjb(x) + εj) + εj0 > Hj(x) + εj0

and thus Φ(X) ⊂ U . By [8, Lemma 13], there exists a C∞-smooth and LFC-{e∗i }
function F : U → (0,∞) (where {e∗i } are the coordinate functionals on `∞(N))
satisfying ||x||∞ ≤ F (x) ≤ ||x||∞ + ε1. Then the composition function defined as

B : X −→ R, B(x) = F (Φ(x))

is C∞-smooth and LFC. In addition,
(a) Since 0 ∈ Vj for every j ∈ N, Hj(0) < ηj · b(0) + εj ≤ η1 + ε1. Thus,

B(0) ≤ ||Φ(x)||∞ + ε1 ≤ η1 + 2ε1 ≤ 3
2 .

(b) If ‖x‖ ≥ 1 and j0 ∈ N verifies x ∈ Vj0 , then Hj0(x) > ηj0 b(x) − εj0 ≥
2ηj0 − εj0 > 2− ε1 and B(x) ≥ ||Φ(x)||∞ > 2− ε1 ≥ 15

8 .

Therefore B is a separating function on X and by composing it with a suitable
C∞-smooth, real function we obtain a C∞-smooth, LFC bump on X. �

Lemma 2.1 and Theorem 2.2 can be generalized using the concept of locally
factorized functions.

Definition 2.3. Let X, E and Y be Banach spaces, A ⊂ X an open subset, F a
family of Banach spaces and b : A→ Y a continuous mapping.

(a) We say that b is factorized by E on a subset U ⊂ A if there exists a contin-
uous, linear map T : X −→ E and a continuous function G : E −→ Y such
that b(x) = G(T (x)) for all x ∈ U .

(b) We say that b is locally factorized by E (b is LF-E, for short) if for each
x ∈ A there exists a neighbourhod Ux ⊂ A of x such that b is factorized by
E on Ux.

(c) We say that b is locally factorized by F (b is LF-F , for short) if for each
x ∈ A there are a neighbourhood Ux ⊂ A of x and a Banach space Ex ∈ F
such that b is factorized by Ex on Ux.

Every continuous, LFC function is LF-c0. However, there exist LF-F functions
that are not LFC. For a Banach space E with norm ||·||, let us consider X =

∑
c0
E =

{(xn)∞n=1 : xn ∈ E and limn ||xn|| = 0} with the norm ||x|| = sup{||xn|| : n ∈ N},
for every x ∈ X. It can be readily verified that the norm in X is LF-E. Moreover,
if E = `p with 1 ≤ p ≤ ∞, then the norm in X is LF-`p. However, note that in this
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case, X does not admit a continuous, LFC bump, because
∑

c0
E is not c0-saturated.

With the same arguments employed in Lemma 2.1 and Theorem 2.2, we can show
the following more general statement.

Proposition 2.4. Let X, E be separable Banach spaces and F a family of separable
Banach spaces such that X admits a continuous, LF-E (LF-F) bump. Assume
that X∗ is separable and E (every E ∈ F , respectively) admits a bump function b
satisfying one of the following properties:

(1) b is Ck-smooth, where k ∈ N ∪ {∞},
(2) b is continuous and LFC,
(3) b is LFC and Ck-smooth, where k ∈ N ∪ {∞}.

Then, X admits a bump function satisfying the same property.
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